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Abstract: Authentic, “messy data” contain variability that comes from many sources, such as
natural variation in nature, chance occurrences during research, and human error. It is this
messiness that both deters potential users of authentic data, and gives data the power to create
unique learning opportunities that reveal the nature of science itself. While the value of bringing
contemporary research and messy data into the classroom is recognized, implementation can
seem overwhelming. We discuss the importance of frequent interactions with messy data
throughout K-16 science education as a mechanism for students to engage in the practices of
science such as visualizing, analyzing, and interpreting data. We describe strategies to help
facilitate the use of messy data in the classroom, while building complexity over time. We
outline one potential sequence of activities, with specific examples, to highlight how various

activity types can be used to scaffold students’ interactions with messy data.
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Introduction

Almost two decades ago, Lynn Steen, president of the Mathematical Association of
America, recognized that “the world of the twenty-first century is a world awash in numbers”
(NCED, 2001). As we look to the future, data literacy is only becoming more essential as science
and society increasingly rely on information found in large datasets (Steen, 1999; NRC, 2003;
Manyika et al., 2011). Because science and data are tightly linked (Bowen & Roth, 2005; Speth
et al.; 2010), we can weave data seamlessly through K-12 and undergraduate science education
and increase student’s exposure to data.

Data literacy is defined as “the ability to understand and use data to inform decisions”
(Mandinach & Gummer, 2013) and is an interdisciplinary field lying at the intersection of data
science, quantitative reasoning, and authentic context (Kjelvik & Schultheis, 2019). In addition
to specific abilities, data literacy is characterized by habits of mind such as curiosity, resiliency,
and ethical decision-making (Box 1). Data literacy is becoming more commonplace in formal
and informal K-16 education (Konold et al., 2000; Metz, 2008, Speth et al., 2010), and is
addressed in K-12 and undergraduate science education reform efforts. These include the Next
Generation Science Standards (NRC, 2012; NGSS Lead States, 2013), ACT College Readiness
Standards (ACT, Inc., 2014), the new AP Biology Curriculum Framework (The College Board,
2013), Vision and Change (AAAS, 2015), and the American Statistical Association Curriculum
Guidelines for Undergraduate Programs in Statistical Science (ASA, 2014). These initiatives
highlight several scientific practices into which data can be integrated, including developing
students' abilities to analyze and interpret data, use mathematical thinking, and communicate

arguments based on evidence (NRC, 2012; NGSS Lead States, 2013).
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Current challenges in data literacy

Despite science education reform efforts, the basic skills necessary for data literacy are
not yet sufficiently taught in schools. High school graduates lack a proficiency in data use
necessary to conduct contemporary research (Hernandez et al., 2012; Strasser & Hampton, 2012)
and for a career that involves working with data (Finzer, 2013; Oceans of Data Institute, 2014).
The result is a workforce lacking the quantitative abilities desired by employers. According to a
recent report, the United States workforce faces a shortage of 1.5 million managers and analysts
with the ability to interpret large datasets for the purpose of decision making (Manyika et al.,
2011). As stated by Juan LaVista, Principal Data Scientist at Microsoft, “Basic skills in working
with data that every person should have are not being taught in K-16 schools. Thus, they are
lacking at the highest levels in the broad array of professions that are becoming increasingly
data-driven” (Oceans of Data Institute, 2014). Therefore, to prepare today’s students for data-
intensive careers, training in data literacy needs to be incorporated throughout science education.

Outside of the workforce, students in today’s classrooms are the next generation of
citizens voting on pressing issues concerning science. The role of data in society is becoming
more important as technological advancements continue (Schield, 2004; Wolff et al., 2017;
Borges-Rey, 2017). Many global issues are informed by scientific research, and if individuals do
not understand the scientific process and the role of scientific data, they will not value research
funding, or information collected by the scientific community.

Additionally, the ability to use data for personal decision making is an important skill.
Data inform all aspects of everyday life (Mayes et al., 2014), including decisions regarding
courses of medical treatment, financial investments or savings strategies, voting and political

actions, and food and material consumption. Further, the ability to interpret data, and use them to
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construct arguments based on evidence, gives individuals the option to advocate for themselves
and their communities. Learning how data can be used to persuade, or to identify cases of misuse
or misrepresentation, empowers an individual to think freely, question the arguments of others,
and make decisions for themselves (Lutskey, 2008; Mayes et al., 2014). Therefore, making these
abilities ubiquitous in the general public may help fight inequality in society.

These deficiencies in data and scientific literacy ultimately result in a workforce without
the necessary quantitative skills necessary for modern jobs and a public unable to use data in
their everyday lives (Steen, 1999; NCES, 2005). Here we discuss why the use of authentic data
throughout science education may be a remedy to these challenges. We hypothesize that the
strongest learning experiences surrounding data and science literacy arise when students have
frequent opportunities to work with authentic, messy data (Schultheis & Kjelvik, 2015). This is
due to the inherent qualities of messy data, and their ability to engender unique learning
opportunities not found in other resources. However, messy datasets can be quite complex,
creating a potential barrier for classroom use (Kjelvik & Schultheis, 2019). To break down this
barrier, we highlight techniques to scaffold messy data usage and propose an activity sequence
that provides students with repeated practice working with various types of messy data, with

increasing complexity over time.

Learning opportunities from the use of messy, authentic data in the classroom

Authentic data result from scientific observations and investigations. These datasets are
collected in a variety of ways including by scientists, citizen scientists, sensors and other
automated processes, or generated through modeling and simulations. Authentic data are always

attached to a context, and the connection a student feels to data may differ based on their ability
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to find and understand its relevance (Langen et al., 2014). Working with authentic data is
engaging for students (Langen et al., 2014) because it allows students to take on the role of a
scientist, which may lead to the same sense of awe felt through exploration of unanswered
questions and learning something new about the way the world works (Gould et al., 2014).
Alternatively, if context is removed by having students explore patterns or trends without
meaning, data lose their power to capture the interest and engagement of students (Konold &
Higgins, 2003) and students are deprived of the journey of exploring the unknown (Gould et al.,
2014). This often occurs when students work with heavily curated examples of data with
messiness removed, or fake data generated to illustrate a specific scientific or mathematical
concept.

Throughout this paper we use the term “messy data” to represent a particular type of
authentic data (Kjelvik & Schultheis, 2019). A key element in messy datasets is variability. The
source of this variability comes from both natural variation and systematic or precision error
(Gould et al., 2014). These datasets may have missing values due to events that took place during
a study, and could contain outliers, unexpected trends, or lack significant results. The
interpretation of messy data may or may not support original hypotheses and predictions, but has
the potential to inspire additional scientific questions beyond those initially conceived when the

study began.

Nature of science
Science is a way of understanding the natural world, and is both an accumulation of
knowledge and a way of knowing (NGSS Lead States, 2013 - Appendix H). The overarching

goal of science is to investigate the unknown, and the interpretation of authentic, messy data
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plays an important role in this process. To those unfamiliar with the nature of science, messiness
in scientific data, or unexpected results, may lead to distrust in scientific findings; however, it is
in fact these aspects that gives science its power. For example, messy data provide unique
opportunities to engender connections between a student and the data; a missing data point or
outlier in a table can come to life when used for a discussion surrounding failed experimental
trials and the personal story that the researcher went through when collecting data. Similarly,
results that run contrary to predictions deepen our curiosity about how the world works and
motivates scientists to pursue unanticipated research paths and ask new questions. Therefore, an
important outcome of science education should be for students to come away with an
understanding of the nature of scientific knowledge as not a fixed truth, but something constantly
being updated to include recent discoveries (Duschl, 1990; Dasgupta et al., 2014; Strode, 2015).
Research has shown that students benefit from explicit instruction concerning the nature
of science (Moss, 2001; Khishfe & Abd-El-Khalick, 2002; Schwartz et al., 2004) and that
promoting a student’s curiosity from an early age can lead to increased achievement in math and
reading (Shah et al., 2018). Educators can use authentic, messy data to introduce the nature of
science and promote associated habits of mind (Box 1). For example, highlighting the non-linear,
cyclical process of science can help students understand that scientists must often reexamine and
revise their thinking about a system before fully understanding it. Additionally, by exploring
when to remove outliers from a dataset based on statistical parameters or their biological
relevance, instructors can bring up issues of data ethics. Finally, instructors can emphasize the
value of focusing on what data as evidence tells us, over trying to confirm previously held beliefs

(Hogan & Maglienti, 2001). These types of discussions may lead students to think scientifically
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and can help normalize the messy aspects of research, resulting in a classroom culture that values
uncertainty.

Inquiry investigations are a mechanism for students to put scientific habits of mind into
action with first-hand experience collecting data. However, without previous experience with
messy data, students may not be familiar with many of the skills and concepts necessary for
working with complex data, and therefore may become frustrated if they face them all at once
during their first inquiry experience (Kanari & Millar, 2004; Langen et al., 2014). Without prior
exposure to messy data and the process of science, students may be led to the misconception that
they have “messed up” when they see variation around their sample means or collect data that go
against their predictions and does not support their hypothesis (Séré et al., 2001). This leads
students to not trust the data they have collected, and leaves them unable to challenge what is
accepted in the field or critique the findings of others (Holmes et al., 2015). Students often
believe that the data they have collected are of lower quality than those collected by experts in
the field (Allie et al., 1998), when in fact data collected by scientists are often as messy as
student-collected data (Gould et al., 2014). However, when given opportunities to practice
working with messy data before conducting inquiry investigations, students have greater
confidence in data they collect themselves and are more likely to challenge an accepted model

based on their findings (Holmes et al., 2015).

First- and second-hand data
Scientists use a variety of data types, including data from their own research, collected by
their collaborators, and archived in online repositories. Similarly for students, authentic data will

ideally come from many sources, including data they collect themselves during inquiry projects;
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guided use of online data repositories; reading peer-reviewed journals; or classroom activities
designed to scaffold students as they work with data.

These data sources fall into two general categories: first-hand data collected by students
directly, and second-hand data obtained by students or teachers from outside sources (NRC,
1996; Palincsar & Magnusson, 2001; Magnusson et al., 2004). Using a variety of data sources
during instruction can deepen student understanding of science content (Duschl, 1990).
Therefore, when selecting data-centric activities for the classroom, it is important to consider that
first- and second-hand data may lead to two different learning experiences for students, and the
use of both in the classroom may be complementary (Hug & McNeill, 2008).

When collecting first-hand data, students are better able to question the strengths and
weaknesses of the dataset, having directly experienced where uncertainty and variability entered
during data collection (Kastens et al., 2015). When working with data they collected themselves
students are more likely to see how the source and quality of data are important for what claims
can be made, discuss limitations such as measurement error, and cite the sources from which the
data came (Hug & McNeill, 2008). In addition, students may feel a personal connection to first-
hand data, better understand the real-world significance behind the values, and be able to more
easily visualize what the variables represent in the natural world (Hug & McNeill, 2008). First-
hand data may, therefore, be particularly helpful when students are learning to be critical users of
data. However, first-hand data also come with limitations, such as the types of phenomena that
can be studied in a classroom setting and the amount of time required to conduct in-depth
investigations (Hug & McNeill, 2008).

When working with second-hand data, students have the opportunity to extend beyond

what is possible when working with their own data (Palincsar & Magnusson, 2001). For
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example, they can explore long-term environmental patterns like climatic variations, or a diverse
set of genomes from DNA sequences. These second-hand datasets can supplement first-hand
investigations by serving as models of data organization and methods used for data collection
(Palincsar & Magnusson, 2001). However, the use of this broader pool of data has some potential
drawbacks. For example, when students work with large datasets from online repositories they
may lack a full understanding of the variables without proper metadata. Or, students may distrust
second-hand data without proper identification of the interest groups and methods behind its
collection (Langen et al., 2014; Kastens et al., 2015). Therefore, both first- and second-hand data
provide rich opportunities for students, but it is important to explicitly guide students’

interactions with various forms of data to draw out the most productive experiences.

Using authentic data in the classroom
The importance of practice and scaffolding

The use of messy data can be a challenge for students of all ages, especially those that
have few inquiry or research experiences of their own. To build student comfort and confidence,
educators can provide opportunities for repeated exposure to messy data and the research process
in multiple settings (Germann & Aram, 1996). A study by Holmes and colleagues (2015)
emphasized the importance of repetition - students who were repeatedly asked to make decisions
using data showed increased sophistication in their reasoning, were better prepared to identify
limitations in data or study designs, and were more likely to propose changes to improve their
own investigations. With numerous experiences working through diverse datasets, students will
be able to develop the tools and habits of mind to independently use and interpret data (Konold

& Higgins, 2003).
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Without proper guidance, students often feel overwhelmed when left to independently
perform data-centric activities, but too much structure can cause students to lose motivation and
the curiosity that originally inspired them (Konold & Higgins, 2003). Scaffolding strategies can
be used to support students as they develop their understanding of data-centric practices.
Scaffolding is defined as instructional techniques that guide students to greater independence and
understanding of concepts and processes. The “fading”, or gradual removal, of these scaffolds
can build students’ abilities to perform tasks on their own (McNeill et al., 2006). Faded
scaffolding can help students perform tasks independently and make connections across contexts,
and has been shown to be more effective than providing a scaffold and removing it all at once
(McNeill et al., 2006). Examples of faded scaffolding strategies for authentic data include (1)
providing decision making tools to help students identify appropriate statistics for analyzing data
or the selection of the appropriate graph type for data representation (Angra & Gardner, 2016),
(2) initially providing, and then slowly removing, graph features when helping students construct
graphs (Schultheis & Kjelvik, 2015), or (3) providing a structure for student explanations,

ensuring they include all necessary evidence and elements (McNeill et al., 2006).

Features of data-centric activities and example lesson sequence

To help educators categorize and compare qualities of data-centric activities we previously
identified a list of features that can be varied to increase complexity in classroom activities using
data - selection, curation, scope, size, and messiness (Kjelvik & Schultheis, 2019). In this paper,
we focus on the feature of “messiness” and describe a potential sequence of classroom activities
to demonstrate one way in which various data-centric activities can be used to scaffold students’

interactions with messy data (Table 1 ). Although explicit instruction is needed to move students
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from simple to complex interactions with data, there are many diverse paths educators can take.
In this section we describe one potential sequence of classroom activities and associated focal
topics for each (Activity Type A-E, Table 1).

To begin, students can be introduced to the interpretation of simple data tables or
visualizations by examining datasets that have already been curated or graphed for classroom
use. These are commonly found in textbooks, lectures, or other educational activities (Activity
Type A). These tasks can be woven in to supplement other course activities by using a dataset to
make a clear point connecting data to scientific content. Although the dataset may not contain
messiness, the use of these simplified datasets can increase awareness of how data are used to
disseminate research results and support scientific principles. An example of this type of activity
is having students work with data already summarized in a simple table, or visualized for them in
a graph. These materials can be used for a lesson designed to hone in on data interpretation.
Teachers looking for this type of resource can use Data Nuggets, resources designed to scaffold
student abilities when graphing. Each Data Nugget comes in three graphing levels, where the
simplest provides the graph to students as a way to practice data interpretation (Box 2).

Following these curated examples, teachers can introduce lessons designed to involve
students in some aspects of dataset curation and summarization. These datasets can leave some
data curation steps to the students, such as summarizing data by calculating averages across
groups (Activity Type B). Typically, data summarization simplifies messiness within a dataset
and eases interpretation. For example, simplified datasets used in textbooks, scientific journals,
and news and media sources have likely gone through some level of data summarization.
However, data summarization can also be used to hide messiness in a dataset to mislead or

misrepresent results. By practicing components of data summarization, students can learn how

12



287  changes can be made to datasets to illustrate particular concepts. In general, Data Nuggets (Box
288  2) are designed to highlight messiness and reveal some of the iterative research components of
289  the scientific process. As a part of this process, some Data Nuggets provide a data table, but
290 leave some form of mathematical calculation (e.g. means, total counts, converting to ratios or
291  percentages) to the students to perform data summarization. These resources, which pair

292  interpretation of messy data and the stories about unexpected or unclear results, have proven
293 useful for teachers (Schultheis & Kjelvik, 2015). Students can use the same dataset to compare
294  several different ways the data can be represented and how that might affect interpretation.

295  Giving students opportunities to practice data summarization in a variety of contexts can give
296  them insight into how data are presented and to think through how the data may have been

297  modified to produce the variables displayed.

298 Next, students can move from examining well-structured problems to more complex
299  inquiry investigations (Activity Type C). From our own experience, we’ve found that scaffolding
300 inquiry experiences by sharing the true stories and messy datasets behind scientific research has
301  given students a better understanding of how unanticipated results are a common occurrence in
302  the process of science. Additionally, to help students move into inquiry, Data Nuggets can be
303  used to introduce students to a scientific topic and study system. After students examine the
304  dataset provided by the scientist, they are asked to generate their own questions that resulted
305  from analyzing the highlighted data. This can be a way to provide a base for students to launch
306 their own inquiry questions.

307 As students begin to ask their own questions and consider different ways to collect data,
308  inquiry will require more creativity on their part (Konold et al., 2000; Kastens et al., 2015). By

309 transitioning to inquiry, students can begin to step out into the unknown by collecting their own
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data and engaging in the practices of science (Activity Type C). Importantly, first-hand data
collection and inquiry projects are often how students are first introduced to the various ways
messiness can enter a dataset. Whether through natural variability or experimental error, students
often must grapple with unexpected results. The sources of variability and the nature of scientific
investigations is an important discussion topic at this step. Students must be guided to think
through variation and that it represents more than “human error” during data collection. Having
prior experience with messy datasets that resulted from scientists’ research can help students
realize that messiness is a key part of how researchers learn about the world.

Finally, educators can transition students from datasets that they can interact with and
summarize by hand, to ones where digital tools are necessary, such as online visualization
platforms or statistical programs (Activity types D, E). Working with smaller datasets at first can
help students buy-in to the activity, providing them with the motivation to use a larger second-
hand dataset to answer additional follow-up questions (Schultheis & Kjelvik, 2015). To facilitate
this process we’ve created Digital Data Nuggets where students can start by working with the
pencil and paper activity, and then move onto a digital platform to explore both larger versions
of the same data, and bring in new variables (Box 2). This process accurately represents the
nature of science and how scientists often begin their own investigations by looking at
summarized data published in studies, and working with data hosted in online repositories.
Another way to scaffold this transition for students, a potential strategy is to “nest” student-
collected datasets within larger online datasets. This is a common strategy when engaging
students in citizen science projects where they collect small amounts of data themselves, but then
contribute these data into a larger pool that they can then analyze and interpret. This scaffolding

step can be used to help students see their first-hand data as part of a bigger picture, which could
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help support a strengthened connection to what might otherwise be an overwhelming dataset
(Lehrer & Schauble, 2004).

Within the context of online learning platforms, there are opportunities for students to be
more involved in the scientific question of interest, selection of the variables to be explored, and
curation of the dataset and resulting visual representation. Students can start by working in
platforms designed specifically for educational settings, such as Digital Data Nuggets, that
provide guidance and direction (Activity Type D). As students gain familiarity with digital tools,
they can progress towards processing and pulling larger datasets out of online repositories or
even building their own dataset that brings together several sources of data (Activity type E). By
moving students to a digital data environment, students will be given opportunities to explore
and discuss messiness at a different scale. The ability to examine large datasets will provide
students with opportunities to apply what they have learned about messiness from the previous

activity types that had much more limited datasets.

Conclusion

Experiences working with messy data provide opportunities to increase students’ content
knowledge while simultaneously increasing their understanding of the nature of science and the
scientific enterprise (Mourad et al., 2012; Langen et al., 2014). While student data literacy is
currently low (Steen, 1999; NCED, 2001; Wilkins, 2010; Manyika et al., 2011; Oceans of Data
Institute, 2014), it can improve when given opportunities to interact with authentic data (Duschl,
1990; Gould et al., 2014; Kastens et al., 2015). This value has been recognized by educators and
curriculum reform efforts, which comes at a perfect time to tap into the resources made available

through freely available datasets and educational resources (Picone et al., 2007; Metz, 2008;
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Gould et al., 2014; Schultheis & Kjelvik, 2015; Harsh & Schmitt-Harsh, 2016; Angra &
Gardner, 2017).

Just as the messiness and complexity of authentic datasets makes their use intimidating
for students and teachers, it also has the potential to bring about learning opportunities not
possible when messiness is hidden. Because messy data are a product of true scientific
endeavors, they have the potential to immerse students in the practice of science and the habits of
mind of a scientist. Science is about exploring the unknown, and this often results in surprising
results. Datasets from scientific research contain artifacts from study methodology and true
variability that hints to the complexity of our world. Students working with these data will be
given a window to see how science works and may hopefully feel inspired and confident in their

own ability to ask questions and tap into their desire to understand “why?”.
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Box 1: Example data literacy learning objectives and habits of mind

Below we have detailed just some of the opportunities for rich learning experiences,
conversations that can be had with students, and some of the dispositions that may develop when
using authentic data and research in the classroom.

Student outcomes and quantitative reasoning learning objectives for using messy data in the
classroom:

e Discuss sources of variation found in data (natural, experimental)
Differentiate instances when data does or does not provide support for a hypothesis
Analyze and interpret results beyond what may have been expected from predictions
Explain that science is an iterative process and does not follow a linear methodology
Apply mathematical thinking to answer scientific questions
Understand that there are limitations to scientific studies and data collection, often
impacting the design of research studies
Critique whether a dataset is appropriate evidence to answer a scientific question
e Construct a claim that is supported by data as evidence

Habits of mind that characterize data literacy:

e Belief and capability: Confidence in one’s ability to perform data skills such as analyzing
data, interpreting trends and patterns, and critically reviewing claims supported by
evidence.

e Resiliency: Understand that the process of science is not complete with a single study and
have the associated persistence to continue to seek out answers. Acknowledge and accept
that often a study yields more questions than answers.

e Humility: Awareness of the limits of scientific knowledge; what we know today can
always be overturned by new data.

e FEthical: Removal of personal bias. Self-awareness regarding potential assumptions.

e Flexibility: Comfort with messiness, uncertainty, and the ability to accept failure. Open to
the challenging of beliefs and able to place trust in the scientific process.

e Inventiveness: Develop testable questions and creative ways to find solutions.

e Curiosity: Drive for knowledge and understanding that leads to an inquiry mindset.
Seeing creative possibilities and new ways to represent data.

e (ritical Thinking: Ability to connect scientific principles to the numbers and patterns
found in datasets. Actively question data and the evidence used to support claims.

Box 2: Data Nuggets provide opportunities for repeated practice with authentic data

Data Nuggets are K-16 classroom activities, co-designed by scientists and teachers, designed to
bring contemporary research and authentic data into the classroom (Schultheis & Kjelvik, 2015;
http://datanuggets.org). Within each activity, students engage in the practices of science as they
read scientific text, visualize and interpret data, construct explanations based on evidence, and
ask questions. Each activity is written by the scientists themselves and provides the story of the
people behind the research and what first inspired them to ask questions and pursue their passion.
Because the authenticity of the research process is maintained, students often face unexpected
results, including messy data that do not support original hypotheses.
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Data Nuggets can be used to scaffold students as they build confidence in their quantitative
abilities. Each activity is assigned a Content Level (1-4) according to the difficulty of the
reading, vocabulary, and scientific concepts. Additionally, each Data Nugget activity is available
in three Graph Types (A-C), according to the graphing skills required. Type A activities provide
the graph for the students, allowing a focus on interpretation and using data to support scientific
explanations. Type B activities provide scale and axis labels, but requires students to graph the
data. Type C provides an unlabeled grid on which students create their own visualization of the
data, allowing more flexibility and opportunities to determine appropriate representations.

To further the quantitative skills and abilities represented in Data Nuggets, we created Digital
Data Nuggets to scaffold student data literacy abilities. Students can explore smaller datasets by
hand using Data Nuggets, and then move onto Digital Data Nuggets where datasets are larger
and need tools to help with visualization and curation. These activities are built in collaboration
with existing online data visualization platforms that are designed to allow students to easily
explore large datasets, construct graphs, do statistics, and more. Using these data visualization
platforms allow students to visualize and explore big data, while not requiring them to develop
data science skills simultaneously.

Table 1

Table 1. Potential sequence of classroom activities that advance in the complexity and sophistication of
students’ interactions with authentic messy data.

Data Characteristics Potential Focal Topics

Activity Type A. Simplified second-
hand data, summarized, curated to
display a clear trend.

Easily illustrate a specific scientific concept (e.g. NGSS
Disciplinary Core Idea) and how scientific results are
disseminated.

Activity Type B. Second-hand data that
includes some level of messiness (e.g.
variation, outliers, does not follow
predictions) or curation by student.

Introduce students to statistical concepts, curation, how to
interpret data with variation and unexpected results, how data
can be modified and displayed in different ways.

Activity Type C. First-hand data
collected from classroom labs or
inquiry projects.

Asking scientific questions, how to quantify variables,
importance of experimental design (e.g. replicates, controls),
give students ownership and a personal connection to data.

Activity Type D. Large, second-hand
online datasets with guided instruction.

Introduction to computational tasks and data visualization
techniques, examines variability at a larger scale.

Activity Type E. Large, second-hand
online datasets open to student inquiry

investigation.

Organizing data, finding and selecting appropriate variables,
building knowledge from multiple sources.
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