
1 

Title: Using messy, authentic data to promote data literacy and reveal the nature of science  1 

Citation: Schultheis, E. H. and M. K. Kjelvik (2020). "Using Messy, Authentic Data to Promote 2 
Data Literacy & Reveal the Nature of Science." The American Biology Teacher 82(7): 439–446. 3 

  4 
 5 
Authors: Elizabeth H. Schultheis1,2 and Melissa K. Kjelvik1,2 6 

1BEACON Center for the Study of Evolution in Action  7 
Michigan State University 8 
East Lansing, MI 48824 9 
 10 
2W.K. Kellogg Biological Station 11 
Michigan State University 12 
Hickory Corners, MI 49060 13 
 14 
Corresponding author: Elizabeth H. Schultheis 15 
 16 
eschultheis@gmail.com 17 
W.K. Kellogg Biological Station 18 
3700 E. Gull Lake Drive 19 
Hickory Corners, MI 49060 20 
Phone: (631) 327 - 2870 21 
Fax: (269) 671- 2351 22 

 23 

Keywords: data literacy, Data Nuggets, nature of science, first hand data, second hand data, 24 

scaffolding, messy data, authentic data 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 



2 

Abstract: Authentic, “messy data” contain variability that comes from many sources, such as 34 

natural variation in nature, chance occurrences during research, and human error. It is this 35 

messiness that both deters potential users of authentic data, and gives data the power to create 36 

unique learning opportunities that reveal the nature of science itself. While the value of bringing 37 

contemporary research and messy data into the classroom is recognized, implementation can 38 

seem overwhelming. We discuss the importance of frequent interactions with messy data 39 

throughout K-16 science education as a mechanism for students to engage in the practices of 40 

science such as visualizing, analyzing, and interpreting data. We describe strategies to help 41 

facilitate the use of messy data in the classroom, while building complexity over time. We 42 

outline one potential sequence of activities, with specific examples, to highlight how various 43 

activity types can be used to scaffold students’ interactions with messy data.  44 
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Introduction 57 

Almost two decades ago, Lynn Steen, president of the Mathematical Association of 58 

America, recognized that “the world of the twenty-first century is a world awash in numbers” 59 

(NCED, 2001). As we look to the future, data literacy is only becoming more essential as science 60 

and society increasingly rely on information found in large datasets (Steen, 1999; NRC, 2003; 61 

Manyika et al., 2011). Because science and data are tightly linked (Bowen & Roth, 2005; Speth 62 

et al.; 2010), we can weave data seamlessly through K-12 and undergraduate science education 63 

and increase student’s exposure to data.  64 

Data literacy is defined as “the ability to understand and use data to inform decisions” 65 

(Mandinach & Gummer, 2013) and is an interdisciplinary field lying at the intersection of data 66 

science, quantitative reasoning, and authentic context (Kjelvik & Schultheis, 2019). In addition 67 

to specific abilities, data literacy is characterized by habits of mind such as curiosity, resiliency, 68 

and ethical decision-making (Box 1). Data literacy is becoming more commonplace in formal 69 

and informal K-16 education (Konold et al., 2000; Metz, 2008, Speth et al., 2010), and is 70 

addressed in K-12 and undergraduate science education reform efforts. These include the Next 71 

Generation Science Standards (NRC, 2012; NGSS Lead States, 2013), ACT College Readiness 72 

Standards (ACT, Inc., 2014), the new AP Biology Curriculum Framework (The College Board, 73 

2013), Vision and Change (AAAS, 2015), and the American Statistical Association Curriculum 74 

Guidelines for Undergraduate Programs in Statistical Science (ASA, 2014). These initiatives 75 

highlight several scientific practices into which data can be integrated, including developing 76 

students' abilities to analyze and interpret data, use mathematical thinking, and communicate 77 

arguments based on evidence (NRC, 2012; NGSS Lead States, 2013). 78 

 79 



4 

Current challenges in data literacy 80 

Despite science education reform efforts, the basic skills necessary for data literacy are 81 

not yet sufficiently taught in schools. High school graduates lack a proficiency in data use 82 

necessary to conduct contemporary research (Hernandez et al., 2012; Strasser & Hampton, 2012) 83 

and for a career that involves working with data (Finzer, 2013; Oceans of Data Institute, 2014). 84 

The result is a workforce lacking the quantitative abilities desired by employers. According to a 85 

recent report, the United States workforce faces a shortage of 1.5 million managers and analysts 86 

with the ability to interpret large datasets for the purpose of decision making (Manyika et al., 87 

2011). As stated by Juan LaVista, Principal Data Scientist at Microsoft, “Basic skills in working 88 

with data that every person should have are not being taught in K-16 schools. Thus, they are 89 

lacking at the highest levels in the broad array of professions that are becoming increasingly 90 

data-driven” (Oceans of Data Institute, 2014). Therefore, to prepare today’s students for data-91 

intensive careers, training in data literacy needs to be incorporated throughout science education.  92 

Outside of the workforce, students in today’s classrooms are the next generation of 93 

citizens voting on pressing issues concerning science. The role of data in society is becoming 94 

more important as technological advancements continue (Schield, 2004; Wolff et al., 2017; 95 

Borges-Rey, 2017). Many global issues are informed by scientific research, and if individuals do 96 

not understand the scientific process and the role of scientific data, they will not value research 97 

funding, or information collected by the scientific community.  98 

Additionally, the ability to use data for personal decision making is an important skill. 99 

Data inform all aspects of everyday life (Mayes et al., 2014), including decisions regarding 100 

courses of medical treatment, financial investments or savings strategies, voting and political 101 

actions, and food and material consumption. Further, the ability to interpret data, and use them to 102 
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construct arguments based on evidence, gives individuals the option to advocate for themselves 103 

and their communities. Learning how data can be used to persuade, or to identify cases of misuse 104 

or misrepresentation, empowers an individual to think freely, question the arguments of others, 105 

and make decisions for themselves (Lutskey, 2008; Mayes et al., 2014). Therefore, making these 106 

abilities ubiquitous in the general public may help fight inequality in society.  107 

These deficiencies in data and scientific literacy ultimately result in a workforce without 108 

the necessary quantitative skills necessary for modern jobs and a public unable to use data in 109 

their everyday lives (Steen, 1999; NCES, 2005). Here we discuss why the use of authentic data 110 

throughout science education may be a remedy to these challenges. We hypothesize that the 111 

strongest learning experiences surrounding data and science literacy arise when students have 112 

frequent opportunities to work with authentic, messy data (Schultheis & Kjelvik, 2015). This is 113 

due to the inherent qualities of messy data, and their ability to engender unique learning 114 

opportunities not found in other resources. However, messy datasets can be quite complex, 115 

creating a potential barrier for classroom use (Kjelvik & Schultheis, 2019). To break down this 116 

barrier, we highlight techniques to scaffold messy data usage and propose an activity sequence 117 

that provides students with repeated practice working with various types of messy data, with 118 

increasing complexity over time.  119 

 120 

Learning opportunities from the use of messy, authentic data in the classroom 121 

Authentic data result from scientific observations and investigations. These datasets are 122 

collected in a variety of ways including by scientists, citizen scientists, sensors and other 123 

automated processes, or generated through modeling and simulations. Authentic data are always 124 

attached to a context, and the connection a student feels to data may differ based on their ability 125 
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to find and understand its relevance (Langen et al., 2014). Working with authentic data is 126 

engaging for students (Langen et al., 2014) because it allows students to take on the role of a 127 

scientist, which may lead to the same sense of awe felt through exploration of unanswered 128 

questions and learning something new about the way the world works (Gould et al., 2014). 129 

Alternatively, if context is removed by having students explore patterns or trends without 130 

meaning, data lose their power to capture the interest and engagement of students (Konold & 131 

Higgins, 2003) and students are deprived of the journey of exploring the unknown (Gould et al., 132 

2014). This often occurs when students work with heavily curated examples of data with 133 

messiness removed, or fake data generated to illustrate a specific scientific or mathematical 134 

concept.  135 

Throughout this paper we use the term “messy data” to represent a particular type of 136 

authentic data (Kjelvik & Schultheis, 2019). A key element in messy datasets is variability. The 137 

source of this variability comes from both natural variation and systematic or precision error 138 

(Gould et al., 2014). These datasets may have missing values due to events that took place during 139 

a study, and could contain outliers, unexpected trends, or lack significant results. The 140 

interpretation of messy data may or may not support original hypotheses and predictions, but has 141 

the potential to inspire additional scientific questions beyond those initially conceived when the 142 

study began.  143 

 144 

Nature of science 145 

Science is a way of understanding the natural world, and is both an accumulation of 146 

knowledge and a way of knowing (NGSS Lead States, 2013 - Appendix H). The overarching 147 

goal of science is to investigate the unknown, and the interpretation of authentic, messy data 148 



7 

plays an important role in this process. To those unfamiliar with the nature of science, messiness 149 

in scientific data, or unexpected results, may lead to distrust in scientific findings; however, it is 150 

in fact these aspects that gives science its power. For example, messy data provide unique 151 

opportunities to engender connections between a student and the data; a missing data point or 152 

outlier in a table can come to life when used for a discussion surrounding failed experimental 153 

trials and the personal story that the researcher went through when collecting data. Similarly, 154 

results that run contrary to predictions deepen our curiosity about how the world works and 155 

motivates scientists to pursue unanticipated research paths and ask new questions. Therefore, an 156 

important outcome of science education should be for students to come away with an 157 

understanding of the nature of scientific knowledge as not a fixed truth, but something constantly 158 

being updated to include recent discoveries (Duschl, 1990; Dasgupta et al., 2014; Strode, 2015).  159 

Research has shown that students benefit from explicit instruction concerning the nature 160 

of science (Moss, 2001; Khishfe & Abd-El-Khalick, 2002; Schwartz et al., 2004) and that 161 

promoting a student’s curiosity from an early age can lead to increased achievement in math and 162 

reading (Shah et al., 2018). Educators can use authentic, messy data to introduce the nature of 163 

science and promote associated habits of mind (Box 1). For example, highlighting the non-linear, 164 

cyclical process of science can help students understand that scientists must often reexamine and 165 

revise their thinking about a system before fully understanding it. Additionally, by exploring 166 

when to remove outliers from a dataset based on statistical parameters or their biological 167 

relevance, instructors can bring up issues of data ethics. Finally, instructors can emphasize the 168 

value of focusing on what data as evidence tells us, over trying to confirm previously held beliefs 169 

(Hogan & Maglienti, 2001). These types of discussions may lead students to think scientifically 170 
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and can help normalize the messy aspects of research, resulting in a classroom culture that values 171 

uncertainty.  172 

Inquiry investigations are a mechanism for students to put scientific habits of mind into 173 

action with first-hand experience collecting data. However, without previous experience with 174 

messy data, students may not be familiar with many of the skills and concepts necessary for 175 

working with complex data, and therefore may become frustrated if they face them all at once 176 

during their first inquiry experience (Kanari & Millar, 2004; Langen et al., 2014). Without prior 177 

exposure to messy data and the process of science, students may be led to the misconception that 178 

they have “messed up” when they see variation around their sample means or collect data that go 179 

against their predictions and does not support their hypothesis (Séré et al., 2001). This leads 180 

students to not trust the data they have collected, and leaves them unable to challenge what is 181 

accepted in the field or critique the findings of others (Holmes et al., 2015). Students often 182 

believe that the data they have collected are of lower quality than those collected by experts in 183 

the field (Allie et al., 1998), when in fact data collected by scientists are often as messy as 184 

student-collected data (Gould et al., 2014). However, when given opportunities to practice 185 

working with messy data before conducting inquiry investigations, students have greater 186 

confidence in data they collect themselves and are more likely to challenge an accepted model 187 

based on their findings (Holmes et al., 2015).  188 

 189 

First- and second-hand data 190 

Scientists use a variety of data types, including data from their own research, collected by 191 

their collaborators, and archived in online repositories. Similarly for students, authentic data will 192 

ideally come from many sources, including data they collect themselves during inquiry projects; 193 



9 

guided use of online data repositories; reading peer-reviewed journals; or classroom activities 194 

designed to scaffold students as they work with data.  195 

These data sources fall into two general categories: first-hand data collected by students 196 

directly, and second-hand data obtained by students or teachers from outside sources (NRC, 197 

1996; Palincsar & Magnusson, 2001; Magnusson et al., 2004). Using a variety of data sources 198 

during instruction can deepen student understanding of science content (Duschl, 1990). 199 

Therefore, when selecting data-centric activities for the classroom, it is important to consider that 200 

first- and second-hand data may lead to two different learning experiences for students, and the 201 

use of both in the classroom may be complementary (Hug & McNeill, 2008).  202 

When collecting first-hand data, students are better able to question the strengths and 203 

weaknesses of the dataset, having directly experienced where uncertainty and variability entered 204 

during data collection (Kastens et al., 2015). When working with data they collected themselves 205 

students are more likely to see how the source and quality of data are important for what claims 206 

can be made, discuss limitations such as measurement error, and cite the sources from which the 207 

data came (Hug & McNeill, 2008). In addition, students may feel a personal connection to first-208 

hand data, better understand the real-world significance behind the values, and be able to more 209 

easily visualize what the variables represent in the natural world (Hug & McNeill, 2008). First-210 

hand data may, therefore, be particularly helpful when students are learning to be critical users of 211 

data. However, first-hand data also come with limitations, such as the types of phenomena that 212 

can be studied in a classroom setting and the amount of time required to conduct in-depth 213 

investigations (Hug & McNeill, 2008). 214 

When working with second-hand data, students have the opportunity to extend beyond 215 

what is possible when working with their own data (Palincsar & Magnusson, 2001). For 216 
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example, they can explore long-term environmental patterns like climatic variations, or a diverse 217 

set of genomes from DNA sequences. These second-hand datasets can supplement first-hand 218 

investigations by serving as models of data organization and methods used for data collection 219 

(Palincsar & Magnusson, 2001). However, the use of this broader pool of data has some potential 220 

drawbacks. For example, when students work with large datasets from online repositories they 221 

may lack a full understanding of the variables without proper metadata. Or, students may distrust 222 

second-hand data without proper identification of the interest groups and methods behind its 223 

collection (Langen et al., 2014; Kastens et al., 2015). Therefore, both first- and second-hand data 224 

provide rich opportunities for students, but it is important to explicitly guide students’ 225 

interactions with various forms of data to draw out the most productive experiences. 226 

 227 

Using authentic data in the classroom 228 

The importance of practice and scaffolding 229 

The use of messy data can be a challenge for students of all ages, especially those that 230 

have few inquiry or research experiences of their own. To build student comfort and confidence, 231 

educators can provide opportunities for repeated exposure to messy data and the research process 232 

in multiple settings (Germann & Aram, 1996). A study by Holmes and colleagues (2015) 233 

emphasized the importance of repetition - students who were repeatedly asked to make decisions 234 

using data showed increased sophistication in their reasoning, were better prepared to identify 235 

limitations in data or study designs, and were more likely to propose changes to improve their 236 

own investigations. With numerous experiences working through diverse datasets, students will 237 

be able to develop the tools and habits of mind to independently use and interpret data (Konold 238 

& Higgins, 2003).  239 
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Without proper guidance, students often feel overwhelmed when left to independently 240 

perform data-centric activities, but too much structure can cause students to lose motivation and 241 

the curiosity that originally inspired them (Konold & Higgins, 2003). Scaffolding strategies can 242 

be used to support students as they develop their understanding of data-centric practices. 243 

Scaffolding is defined as instructional techniques that guide students to greater independence and 244 

understanding of concepts and processes. The “fading”, or gradual removal, of these scaffolds 245 

can build students’ abilities to perform tasks on their own (McNeill et al., 2006). Faded 246 

scaffolding can help students perform tasks independently and make connections across contexts, 247 

and has been shown to be more effective than providing a scaffold and removing it all at once 248 

(McNeill et al., 2006). Examples of faded scaffolding strategies for authentic data include (1) 249 

providing decision making tools to help students identify appropriate statistics for analyzing data 250 

or the selection of the appropriate graph type for data representation (Angra & Gardner, 2016), 251 

(2) initially providing, and then slowly removing, graph features when helping students construct 252 

graphs (Schultheis & Kjelvik, 2015), or (3) providing a structure for student explanations, 253 

ensuring they include all necessary evidence and elements (McNeill et al., 2006).  254 

 255 

Features of data-centric activities and example lesson sequence 256 

 257 
To help educators categorize and compare qualities of data-centric activities we previously 258 

identified a list of features that can be varied to increase complexity in classroom activities using 259 

data - selection, curation, scope, size, and messiness (Kjelvik & Schultheis, 2019). In this paper, 260 

we focus on the feature of “messiness” and describe a potential sequence of classroom activities 261 

to demonstrate one way in which various data-centric activities can be used to scaffold students’ 262 

interactions with messy data (Table 1 ). Although explicit instruction is needed to move students 263 
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from simple to complex interactions with data, there are many diverse paths educators can take. 264 

In this section we describe one potential sequence of classroom activities and associated focal 265 

topics for each (Activity Type A-E, Table 1). 266 

To begin, students can be introduced to the interpretation of simple data tables or 267 

visualizations by examining datasets that have already been curated or graphed for classroom 268 

use. These are commonly found in textbooks, lectures, or other educational activities (Activity 269 

Type A). These tasks can be woven in to supplement other course activities by using a dataset to 270 

make a clear point connecting data to scientific content. Although the dataset may not contain 271 

messiness, the use of these simplified datasets can increase awareness of how data are used to 272 

disseminate research results and support scientific principles. An example of this type of activity 273 

is having students work with data already summarized in a simple table, or visualized for them in 274 

a graph. These materials can be used for a lesson designed to hone in on data interpretation. 275 

Teachers looking for this type of resource can use Data Nuggets, resources designed to scaffold 276 

student abilities when graphing. Each Data Nugget comes in three graphing levels, where the 277 

simplest provides the graph to students as a way to practice data interpretation (Box 2). 278 

Following these curated examples, teachers can introduce lessons designed to involve 279 

students in some aspects of dataset curation and summarization. These datasets can leave some 280 

data curation steps to the students, such as summarizing data by calculating averages across 281 

groups (Activity Type B). Typically, data summarization simplifies messiness within a dataset 282 

and eases interpretation. For example, simplified datasets used in textbooks, scientific journals, 283 

and news and media sources have likely gone through some level of data summarization. 284 

However, data summarization can also be used to hide messiness in a dataset to mislead or 285 

misrepresent results. By practicing components of data summarization, students can learn how 286 
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changes can be made to datasets to illustrate particular concepts. In general, Data Nuggets (Box 287 

2) are designed to highlight messiness and reveal some of the iterative research components of 288 

the scientific process. As a part of this process, some Data Nuggets provide a data table, but 289 

leave some form of mathematical calculation (e.g. means, total counts, converting to ratios or 290 

percentages) to the students to perform data summarization. These resources, which pair 291 

interpretation of messy data and the stories about unexpected or unclear results, have proven 292 

useful for teachers (Schultheis & Kjelvik, 2015). Students can use the same dataset to compare 293 

several different ways the data can be represented and how that might affect interpretation. 294 

Giving students opportunities to practice data summarization in a variety of contexts can give 295 

them insight into how data are presented and to think through how the data may have been 296 

modified to produce the variables displayed.  297 

Next, students can move from examining well-structured problems to more complex 298 

inquiry investigations (Activity Type C). From our own experience, we’ve found that scaffolding 299 

inquiry experiences by sharing the true stories and messy datasets behind scientific research has 300 

given students a better understanding of how unanticipated results are a common occurrence in 301 

the process of science. Additionally, to help students move into inquiry, Data Nuggets can be 302 

used to introduce students to a scientific topic and study system. After students examine the 303 

dataset provided by the scientist, they are asked to generate their own questions that resulted 304 

from analyzing the highlighted data. This can be a way to provide a base for students to launch 305 

their own inquiry questions.  306 

As students begin to ask their own questions and consider different ways to collect data, 307 

inquiry will require more creativity on their part (Konold et al., 2000; Kastens et al., 2015). By 308 

transitioning to inquiry, students can begin to step out into the unknown by collecting their own 309 
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data and engaging in the practices of science (Activity Type C). Importantly, first-hand data 310 

collection and inquiry projects are often how students are first introduced to the various ways 311 

messiness can enter a dataset. Whether through natural variability or experimental error, students 312 

often must grapple with unexpected results. The sources of variability and the nature of scientific 313 

investigations is an important discussion topic at this step. Students must be guided to think 314 

through variation and that it represents more than “human error” during data collection. Having 315 

prior experience with messy datasets that resulted from scientists’ research can help students 316 

realize that messiness is a key part of how researchers learn about the world.  317 

Finally, educators can transition students from datasets that they can interact with and 318 

summarize by hand, to ones where digital tools are necessary, such as online visualization 319 

platforms or statistical programs (Activity types D, E). Working with smaller datasets at first can 320 

help students buy-in to the activity, providing them with the motivation to use a larger second-321 

hand dataset to answer additional follow-up questions (Schultheis & Kjelvik, 2015). To facilitate 322 

this process we’ve created Digital Data Nuggets where students can start by working with the 323 

pencil and paper activity, and then move onto a digital platform to explore both larger versions 324 

of the same data, and bring in new variables (Box 2). This process accurately represents the 325 

nature of science and how scientists often begin their own investigations by looking at 326 

summarized data published in studies, and working with data hosted in online repositories. 327 

Another way to scaffold this transition for students, a potential strategy is to “nest” student-328 

collected datasets within larger online datasets. This is a common strategy when engaging 329 

students in citizen science projects where they collect small amounts of data themselves, but then 330 

contribute these data into a larger pool that they can then analyze and interpret. This scaffolding 331 

step can be used to help students see their first-hand data as part of a bigger picture, which could 332 
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help support a strengthened connection to what might otherwise be an overwhelming dataset 333 

(Lehrer & Schauble, 2004).  334 

Within the context of online learning platforms, there are opportunities for students to be 335 

more involved in the scientific question of interest, selection of the variables to be explored, and 336 

curation of the dataset and resulting visual representation. Students can start by working in 337 

platforms designed specifically for educational settings, such as Digital Data Nuggets, that 338 

provide guidance and direction (Activity Type D). As students gain familiarity with digital tools, 339 

they can progress towards processing and pulling larger datasets out of online repositories or 340 

even building their own dataset that brings together several sources of data (Activity type E). By 341 

moving students to a digital data environment, students will be given opportunities to explore 342 

and discuss messiness at a different scale. The ability to examine large datasets will provide 343 

students with opportunities to apply what they have learned about messiness from the previous 344 

activity types that had much more limited datasets. 345 

  346 

Conclusion 347 

Experiences working with messy data provide opportunities to increase students’ content 348 

knowledge while simultaneously increasing their understanding of the nature of science and the 349 

scientific enterprise (Mourad et al., 2012; Langen et al., 2014). While student data literacy is 350 

currently low (Steen, 1999; NCED, 2001; Wilkins, 2010; Manyika et al., 2011; Oceans of Data 351 

Institute, 2014), it can improve when given opportunities to interact with authentic data (Duschl, 352 

1990; Gould et al., 2014; Kastens et al., 2015). This value has been recognized by educators and 353 

curriculum reform efforts, which comes at a perfect time to tap into the resources made available 354 

through freely available datasets and educational resources (Picone et al., 2007; Metz, 2008; 355 
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Gould et al., 2014; Schultheis & Kjelvik, 2015; Harsh & Schmitt-Harsh, 2016; Angra & 356 

Gardner, 2017). 357 

Just as the messiness and complexity of authentic datasets makes their use intimidating 358 

for students and teachers, it also has the potential to bring about learning opportunities not 359 

possible when messiness is hidden. Because messy data are a product of true scientific 360 

endeavors, they have the potential to immerse students in the practice of science and the habits of 361 

mind of a scientist. Science is about exploring the unknown, and this often results in surprising 362 

results. Datasets from scientific research contain artifacts from study methodology and true 363 

variability that hints to the complexity of our world. Students working with these data will be 364 

given a window to see how science works and may hopefully feel inspired and confident in their 365 

own ability to ask questions and tap into their desire to understand “why?”.  366 

 367 
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Box 1: Example data literacy learning objectives and habits of mind 533 

Below we have detailed just some of the opportunities for rich learning experiences, 534 
conversations that can be had with students, and some of the dispositions that may develop when 535 
using authentic data and research in the classroom.  536 
 537 
Student outcomes and quantitative reasoning learning objectives for using messy data in the 538 
classroom:  539 

● Discuss sources of variation found in data (natural, experimental) 540 
● Differentiate instances when data does or does not provide support for a hypothesis  541 
● Analyze and interpret results beyond what may have been expected from predictions 542 
● Explain that science is an iterative process and does not follow a linear methodology 543 
● Apply mathematical thinking to answer scientific questions 544 
● Understand that there are limitations to scientific studies and data collection, often 545 

impacting the design of research studies 546 
● Critique whether a dataset is appropriate evidence to answer a scientific question 547 
● Construct a claim that is supported by data as evidence 548 

 549 
Habits of mind that characterize data literacy: 550 

● Belief and capability: Confidence in one’s ability to perform data skills such as analyzing 551 
data, interpreting trends and patterns, and critically reviewing claims supported by 552 
evidence. 553 

● Resiliency: Understand that the process of science is not complete with a single study and 554 
have the associated persistence to continue to seek out answers. Acknowledge and accept 555 
that often a study yields more questions than answers.  556 

● Humility: Awareness of the limits of scientific knowledge; what we know today can 557 
always be overturned by new data.  558 

● Ethical: Removal of personal bias. Self-awareness regarding potential assumptions.  559 
● Flexibility: Comfort with messiness, uncertainty, and the ability to accept failure. Open to 560 

the challenging of beliefs and able to place trust in the scientific process. 561 
● Inventiveness: Develop testable questions and creative ways to find solutions.  562 
● Curiosity: Drive for knowledge and understanding that leads to an inquiry mindset. 563 

Seeing creative possibilities and new ways to represent data. 564 
● Critical Thinking: Ability to connect scientific principles to the numbers and patterns 565 

found in datasets. Actively question data and the evidence used to support claims.  566 
 567 
Box 2: Data Nuggets provide opportunities for repeated practice with authentic data 568 

Data Nuggets are K-16 classroom activities, co-designed by scientists and teachers, designed to 569 
bring contemporary research and authentic data into the classroom (Schultheis & Kjelvik, 2015; 570 
http://datanuggets.org). Within each activity, students engage in the practices of science as they 571 
read scientific text, visualize and interpret data, construct explanations based on evidence, and 572 
ask questions. Each activity is written by the scientists themselves and provides the story of the 573 
people behind the research and what first inspired them to ask questions and pursue their passion. 574 
Because the authenticity of the research process is maintained, students often face unexpected 575 
results, including messy data that do not support original hypotheses.  576 
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  577 
Data Nuggets can be used to scaffold students as they build confidence in their quantitative 578 
abilities. Each activity is assigned a Content Level (1-4) according to the difficulty of the 579 
reading, vocabulary, and scientific concepts. Additionally, each Data Nugget activity is available 580 
in three Graph Types (A-C), according to the graphing skills required. Type A activities provide 581 
the graph for the students, allowing a focus on interpretation and using data to support scientific 582 
explanations. Type B activities provide scale and axis labels, but requires students to graph the 583 
data. Type C provides an unlabeled grid on which students create their own visualization of the 584 
data, allowing more flexibility and opportunities to determine appropriate representations. 585 
 586 
To further the quantitative skills and abilities represented in Data Nuggets, we created Digital 587 
Data Nuggets to scaffold student data literacy abilities. Students can explore smaller datasets by 588 
hand using Data Nuggets, and then move onto Digital Data Nuggets where datasets are larger 589 
and need tools to help with visualization and curation. These activities are built in collaboration 590 
with existing online data visualization platforms that are designed to allow students to easily 591 
explore large datasets, construct graphs, do statistics, and more. Using these data visualization 592 
platforms allow students to visualize and explore big data, while not requiring them to develop 593 
data science skills simultaneously. 594 
 595 
 596 
 597 
 598 
Table 1599 

 600 

Table 1. Potential sequence of classroom activities that advance in the complexity and sophistication of 
students’ interactions with authentic messy data. 

Data Characteristics Potential Focal Topics 

Activity Type A. Simplified second-
hand data, summarized, curated to 
display a clear trend. 

Easily illustrate a specific scientific concept (e.g. NGSS 
Disciplinary Core Idea) and how scientific results are 
disseminated. 

Activity Type B. Second-hand data that 
includes some level of messiness (e.g. 
variation, outliers, does not follow 
predictions) or curation by student. 

Introduce students to statistical concepts, curation, how to 
interpret data with variation and unexpected results, how data 
can be modified and displayed in different ways. 

Activity Type C. First-hand data 
collected from classroom labs or 
inquiry projects. 

Asking scientific questions, how to quantify variables, 
importance of experimental design (e.g. replicates, controls), 
give students ownership and a personal connection to data. 

Activity Type D. Large, second-hand 
online datasets with guided instruction. 

Introduction to computational tasks and data visualization 
techniques, examines variability at a larger scale. 

Activity Type E. Large, second-hand 
online datasets open to student inquiry 
investigation. 

Organizing data, finding and selecting appropriate variables, 
building knowledge from multiple sources. 

 

 


