
Towards Practical Multiprocessor EDF with Affinities
Stephen Tang and James H. Anderson

Department of Computer Science, University of North Carolina at Chapel Hill
{sytang|anderson}@cs.unc.edu

Abstract—A gap exists between the theory of EDF scheduling
on identical multiprocessors with arbitrary processor affini-
ties (APA) and practical EDF scheduling as embodied by the
SCHED_DEADLINE (SD) scheduler in Linux. This is because
the EDF variant proposed in theory for APA, called Strong
APA EDF, introduces affinity-related complexities that are not
applicable under global EDF, the original target of SD. SD
instead treats affinities as a secondary concern. It is shown
herein that this treatment comes at the price of causing SD
to be fundamentally broken with regard to soft real-time (SRT)-
optimality with APA. This result resolves a longstanding open
question regarding this matter. It also suggests that Strong APA
EDF, which has been proven to be SRT-optimal, is necessary for
practical EDF scheduling with APA. However, non-preemptive
sections are typically required in practice, and prior work on
Strong APA EDF is limited to fully preemptive systems. In this
paper, this prior work is extended for the first time to deal
with non-preemptivity, which introduces non-trivial nuances with
APA. As a byproduct of considering non-preemptivity, it is shown
that the SRT-optimality of EDF in this context carries over to a
significantly expanded class of schedulers

I. INTRODUCTION

Variants of earliest-deadline-first (EDF) scheduling have
been proven to be soft real-time (SRT)-optimal on various
processor models [6], [11], [13], meaning that EDF can
guarantee bounded deadline tardiness for any (sporadic) task
system that does not over-utilize the underlying multiprocessor
platform. This property makes EDF an attractive scheduler for
systems where some tardiness is permissible.

The SRT-optimality of EDF is significant enough
to have warranted mentioning in the documentation of
SCHED_DEADLINE (SD) [1], Linux’s EDF implementation.
This documentation specifically references work of Devi and
Anderson [6], who were the first to establish the SRT-
optimality of global EDF scheduling on identical multipro-
cessors. As this documentation suggests, the design of SD
reflects an initial focus on global EDF (and by extension,
clustered EDF, where global scheduling is used within each
cluster of processors), with arbitrary processor affinities (APA)
being treated as a secondary concern. This is unfortunate
because setting processor affinities (cpusets in Linux) is
useful for load balancing and cache locality. While SD may
not crash under APA, its SRT-optimality under APA has never
been established. The question of whether SD is SRT-optimal
was listed among major open problems facing Linux by Peter
Zijlstra in his ECRTS’17 keynote [14].

Work was supported by NSF grants CNS 1563845, CNS 1717589, CPS
1837337, CPS 2038855, and CPS 2038960, ARO grant W911NF-20-1-0237,
and ONR grant N00014-20-1-2698.

This open problem was partially addressed by our prior
work [11], in which we proved that an EDF variant (distinct
from SD) introduced by Cerqueira et al. called Strong APA
EDF (SAPA-EDF) [5] is SRT-optimal under APA.1 While
both SD and SAPA-EDF prioritize tasks on an EDF basis,
SAPA-EDF migrates tasks more aggressively so that the max-
imum number of high-priority tasks is scheduled at any time.
At runtime, computing which migrations to enact involves
executing graph searches. The increased overheads of such
searches and implementation complexities of SAPA-EDF are
unnecessary under global scheduling, the main target of SD.
Perhaps because of this, the maintainers of SD have not
modified it to implement SAPA-EDF, even though it is SRT-
optimal.

While SAPA-EDF is SRT-optimal in theory, other theoreti-
cal issues must be resolved before a practical implementation
of it is possible. One key issue is that its proof of SRT-
optimality requires tasks to always be preemptive [11]. This is
unrealistic because actual workloads require some degree of
non-preemptivity (for system calls, using locking protocols,
etc.). Non-preemptivity has not been a problem under global
scheduling because non-preemptive (NP) global EDF is also
SRT-optimal [6]. In contrast, no work to date on tardiness
under APA has considered non-preemptivity.

To summarize, SD and SAPA-EDF are the two natural
potential starting points for designing an EDF scheduler that
is practical under APA. However, given the aforementioned
issues with both schedulers, it is not immediately clear which,
if either, can realistically serve as a starting point.

Contributions. Towards clarifying which scheduler should be
the starting point, this paper makes four major contributions.

First, we answer Zijlstra’s open question (in the negative) by
showing that the current SD implementation is fundamentally
broken with respect to tardiness under APA. We do this by
presenting counterexamples where feasible task systems have
unbounded tardiness under an idealized version of SD without
overheads. This suggests that an aggressive migration strategy
similar to that of SAPA-EDF is necessary for SRT-optimality
under APA, leading us to argue that SAPA-EDF is a preferable
starting point for a practical EDF scheduler under APA.

Second, we demonstrate that the reliance on tasks be-
ing fully preemptive in the proof of SAPA-EDF’s SRT-
optimality [11] is not a limitation of this proof, but rather, is

1We did not realize that Strong APA EDF had already been discovered
under a hard real-time context and unfortunately presented it as IA-GEDF
in [11].

an intrinsic requirement of any work-conserving EDF variant
under APA. We show this by presenting an example task
system similar to that used to demonstrate Dhall’s effect [7],
where NP execution under APA causes tardiness to increase
unboundedly even though total utilization is just above 1.0.
Similarly to how Dhall’s effect has not rendered EDF unusable
with global scheduling, we argue that our counterexample does
not render EDF unusable under APA. Specifically, we define a
weaker notion of NP execution called progression, and argue
that progression can replace NP sections in many use cases.
We prove that SAPA-EDF fortunately can be modified to
support progression while maintaining SRT-optimality.

Third, as a byproduct of establishing the above result about
progression, we prove that variants of window-constrained
schedulers, which have been proven to be SRT-optimal un-
der global scheduling [8], are also SRT-optimal under APA.
The class of window-constrained schedulers includes com-
mon schedulers such as first-in-first-out (FIFO), least-laxity-
first (LLF), and EDF-until-zero-laxity (EDZL), so this result
greatly expands the class of known SRT-optimal schedulers
under APA. While our proof of this result leverages that per-
taining to SAPA-EDF [11], a number of non-trivial extensions
were required in our case, because certain properties of SAPA-
EDF that were instrumental in [11] are not true generally
under window-constrained schedulers.

Fourth, we present the first ever (to our knowledge) NP-
blocking analysis under APA. Real workloads will need such
analysis, as not all instances of NP execution can be replaced
with progression. Unfortunately, NP-blocking analysis under
APA introduces nuances that make computing blocking terms
more pessimistic than under global scheduling.
Organization. The rest of this paper is organized as follows.
After covering needed background in Sec. II, we demonstrate
in Sec. III that, under APA, SD is not SRT-optimal, nor is any
EDF variant with NP sections. Next, in Sec. IV, we establish
the SRT-optimality of window-constrained schedulers under
APA. We then use this result in weakening non-preemptivity
to progression in EDF in Sec. V. We conclude in Sec. VI.

II. BACKGROUND

In this section, we cover notation and necessary background.
For ease of reading, tables of notation and abbreviations used
in this work are presented in Tbls. I and II, respectively.

A. Task Model

We consider a system of n implicit-deadline sporadic tasks
τ = {τ1, τ2, . . . , τn} running on m unit-speed processors
π = {π1, π2, . . . , πm}. We assume basic familiarity with
the sporadic task model and focus on introducing notation
here. We denote the jth job released by task τi as τi,j and
index jobs starting at j = 1. Job τi,j must be completed
before job τi,j+1 is allowed to execute. We let Ci,j denote the
required execution time of τi,j , and let Ci denote the worst-
case execution time (WCET) of τi over all its jobs. We let
Ti denote the period of task τi. We denote the release time,
deadline, and completion time of job τi,j by ri,j , di,j , and

TABLE I: Notation.

Symbol Meaning

τ Task system
τi ith task of τ
τ ′ Task subset
n Number of tasks
π Multiprocessor
πi ith processor of π
m Number of processors
τi,j jth job of τi
Ci,j Execution cost of τi,j
Ci WCET of τi
Ti Period of τi
Tmax Largest period
ri,j Release time of τi,j
di,j Deadline of τi,j ; ri,j + Ti
fi,j Completion time of τi,j
Ti,j ri,j+1 − ri,j
ui Utilization of τi; Ci/Ti
umin Smallest utilization
umax Largest utilization
U(τ ′) Sum total utilization over τ ′

Ci(t) Execution cost of τi’s ready job at t
ri(t) Release time of τi’s ready job at t
di(t) Deadline of τi’s ready job at t
ci(t) Remaining execution of τi’s ready job at t
Di(t) Deadline of most recently completed job of τi by t
χi,j(t) Priority of τi,j at t
φ Window size of a window-constrained scheduler

α(τi) Processor affinity mask of τi
τG Set of migrating tasks of τ
vti(t) Virtual time of τi at t; Def. 4

Dev(τi, t) Deviation of τi at t; Def. 5
Dev(τ ′, t) Sum total deviation over τ ′; Def. 5

L Constant, usually compared against Dev

δ Quantifier variable
ε Quantifier variable
M Maximal number of processors for some τ ′

K (Tmax + 2φ)/(2umin)

Bi Blocking term of τi
Ii Largest interval over which τi may be NP blocked

npdbfi(t,∆) NP demand bound function of τi over [t, t+ ∆]

γi Worst-case NP execution time of any job of τi
ωi NP utilization of τi; γi/Ti
Γi Sum total worst-case NP execution time over τ/{τi}
Ωi Sum total NP utilization over τ/{τi}
Ri Response time bound of τi
Ri

max Largest response time bound over τ/{τi}

TABLE II: Abbreviations.

Abbreviation Full

SRT Soft Real-Time
APA Arbitrary Processor Affinities
NP Non-Preemptive
SD SCHED_DEADLINE

SAPA-EDF Strong APA EDF
WAPA-EDF Weak APA EDF
SAPA-EF Strong APA EDF-FIFO

L-SAPA-EF Link-based Strong APA EDF-FIFO

2

fi,j , respectively, where di,j = ri,j + Ti (implicit deadlines).
We let Tmax denote the maximum period over all tasks. We
denote the spacing between the releases of successive jobs
τi,j and τi,j+1 of τi by Ti,j = ri,j+1 − ri,j , where Ti,j ≥ Ti.
The utilization ui of task τi is given by Ci/Ti. We denote the
smallest (resp., largest) utilization over all tasks as umin (resp.,
umax). For a set of tasks τ ′ ⊆ τ , we let U(τ ′) denote the sum
of the utilizations of tasks in τ ′.

At time t, a job τi,j is either unreleased (t < ri,j), pending
(ri,j ≤ t < fi,j), or complete (t ≥ fi,j). If a task τi has
pending jobs at t, then its ready job at t is its earliest-released
pending job at t. If task τi has a ready job τi,j at time t, then
we define the functions Ci(t), ri(t), and di(t) to equate to
Ci,j , ri,j , and di,j , respectively. We define the function ci(t)
to equate to the remaining execution required by the ready
job τi,j at t. We define the function Di(t) to equate to the
deadline of the latest completed job of τi by time t, or 0 if no
jobs of τi have completed. If task τi has a ready job at time t,
then its priority is defined by the priority of its ready job. We
define the latter using prioritization functions later in Def. 1.

The response time of a job τi,j is defined as fi,j− ri,j . The
tardiness of τi,j is defined as max{0, fi,j−di,j}. The tardiness
of task τi is the supremum of the tardiness of its jobs. If the
tardiness of all tasks is bounded under a given scheduler, then
the task system is SRT-schedulable under the scheduler. A task
system is SRT-feasible if it is SRT-schedulable under some
scheduler. A scheduler is SRT-optimal if any SRT-feasible task
system is SRT-schedulable under it.

We assume that τ executes on π without overheads (e.g.,
scheduling code and context switches execute in zero time).
We also assume that time is continuous. This assumption does
not invalidate our results on systems where time is integral
so long as WCETs and periods are also integral. We limit
attention to non-fluid schedulers, i.e., if a job τi,j is scheduled
(resp., unscheduled) at time t, then there exists ε > 0 such
that τi,j is scheduled (resp., unscheduled) over [t, t+ ε].

B. Window-Constrained Schedulers

Leontyev and Anderson considered a class of schedulers
called “window-constrained schedulers,” showed that many
common schedulers such as EDF, FIFO, and LLF are in this
class, and proved that all schedulers in this class are SRT-
optimal under global scheduling [8]. This result is relevant
to NP scheduling because NP variants of window-constrained
schedulers are themselves window-constrained under global
scheduling. In this work, we will prove a weaker version of
this result concerning NP scheduling under APA.

The class of window-constrained schedulers is defined by
introducing the notion of a prioritization function.

Def. 1. (Def. 1 of [8]) Associated with each job τi,j is a
function of time χi,j(t), called its prioritization function. If,
at time t, χi,j(t) < χh,k(t) holds, then the priority of job
τi,j is higher than that of job τh,k at t. We assume consistent
tie-breaking if χi,j(t) = χh,k(t).

Under global scheduling, prioritization functions can serve
as abstractions of schedulers. For example, EDF is represented
by χi,j(t) = di,j , and FIFO by χi,j(t) = ri,j . Likewise, fixed-
priority (FP) scheduling can be abstracted by setting χi,j(t)
to be task τi’s priority level.

Def. 2. (Def. 5 of [8]2) A scheduling algorithm’s prioritization
functions are window-constrained if there exists finite φ such
that for any job τi,j and time t, |di,j − χi,j(t)| ≤ φ holds.

For example, the EDF and FIFO prioritization functions
above are window-constrained with φ = 0 and φ =
maxi,j{di,j−ri,j} = Tmax, respectively. On the other hand, the
FP prioritization function is not window-constrained because
di,j is unbounded for any given task τi as j →∞ (assuming
jobs are released indefinitely), while χi,j(t) is constant.

C. APA Scheduling

We denote the processor affinity mask of task τi as α(τi) ⊆
π. Common migration schemes such as global, partitioned, and
clustered scheduling can be represented using affinities. For
example, under global scheduling, α(τi) = π for every task
τi, and under partitioned scheduling, α(τi) = {πj}, where πj
denotes the processor assigned to task τi. A task τi is migrating
if |α(τi)| > 1, and fixed otherwise.

Processor affinities are often illustrated using affinity graphs.
These are undirected bipartite graphs where the nodes repre-
sent tasks and processors, and each edge is between a task τi
and a processor πj , denoting that πj is in τi’s affinity mask.

. Ex. 1. Consider a task system τ = {τ1, τ2, . . . , τ5} on
π = {π1, π2, π3}. Let α(τ1) = {π1}, α(τ2) = {π1, π2},
α(τ3) = {π2}, α(τ4) = {π2, π3}, and α(τ5) = {π3}. The
corresponding affinity graph is shown in Fig. 1(a). τ2 and τ4
are migrating while all other tasks are fixed. /

Weak vs. Strong APA. A guarantee that should be made by
any priority-based scheduler is that no preemption not taken
by the scheduler can result in scheduling a higher-priority
task. Ignoring the specifics of which task is assigned which
processor, scheduling the m highest-priority tasks is the only
way to meet this guarantee under global scheduling. Under
APA, distinct scheduling decisions may meet this guarantee.

. Ex. 2. Suppose that the system in Ex. 1 is scheduled
under EDF and that at time t, all tasks have ready jobs such
that d2(t) < d4(t) < d5(t) < d1(t) < d3(t). Consider the
scheduling decisions made in Fig. 1(b), where a highlighted
edge denotes a task being scheduled on a processor. Because
task τ5 (resp., τ3) cannot preempt τ4 (resp., τ2) on π3 (resp.,
π2) as d4(t) < d5(t) (resp., d2(t) < d3(t)), this processor
assignment meets our aforementioned guarantee. Likewise,
because tasks τ1 and τ3 cannot preempt higher-priority tasks
in Fig. 1(c), this assignment also meets the guarantee. /

2We have modified this definition to simplify our reasoning in Sec. IV.
Any window-constrained prioritization functions as defined in [8] are also
window-constrained as defined in this work and vice versa, though the size
of windows may be larger under our definition.

3

Fig. 1: Affinity graph examples.

(a) An affinity graph. (b) Weak APA (Ex. 2).

(c) Strong APA (Ex. 2).

Even though no preemption can be taken in either of the
assignments in Ex. 2, the one in Fig. 1(b) is inferior because
it schedules τ1 over τ5. As a low-priority task is scheduled
over a high-priority task, this is similar to a priority inversion.

Situations such as this motivate the question of how to
schedule under APA while avoiding such priority inversions.
Answering this led to the formalization of Weak and Strong
APA [5]. Weak APA is the invariant that scheduling decisions
are made such that no preemption that is not taken can result
in the scheduling of a higher-priority task. For example, the
assignments in Fig. 1(c) and Fig. 1(b) both maintain Weak
APA. Strong APA maintains the invariant that any shift not
taken cannot result in the scheduling of a higher-priority task.

Def. 3. An alternating path is a path in an affinity graph
between a task and either an idle processor or a different task
where every odd edge in the path connects a processor to
a task that is not scheduled on it and and every even edge
connects a processor to the task it is scheduling. Shifting [5]
is the series of migrations that results from inverting each edge
in an alternating path.

Shifting is better explained through example. Observe in
Fig. 1(b) that a path {τ5, π3, τ4, π2, τ2, π1, τ1} can be traced
from the higher-priority τ5 to the lower-priority τ1. This path
alternates between edges where the corresponding task is not
scheduled on the corresponding processor and edges where the
reverse is true. By inverting the edges in this path, one arrives
at Fig. 1(c). Because no shifts can result in the scheduling of
a higher-priority task in Fig. 1(c), this assignment satisfies
Strong APA. For convenience, any processor that is not
executing a task is considered to be executing a logical task
τ0 with infinitely low priority. This way, actual tasks can be
migrated to these processors via shifting.

A property satisfied by Strong-APA schedulers is that, for
any subset of tasks with highest priority, the maximum number
of tasks in this subset are scheduled. For example, in Fig. 1(c),
no other processor assignment can schedule τ1 without first
unscheduling a higher-priority task. This property of Strong
APA is key in the proof of the SRT-optimality of SAPA-EDF
in [11], and in the proof in Sec. IV.

III. SOURCES OF NON-SRT-OPTIMALITY IN SD
In this section, we highlight three sources of non-SRT-

optimality in SD under APA. The first two sources are due
to specific design choices within SD, while the third pertains
to any EDF variant. We consider an idealized version of SD
in which scheduling decisions occur atomically and instantly.
Note that sporadic releases must be exploited for tardiness to
be unbounded as in these counterexamples. Extended versions
of these counterexamples are available online [10].

The first source of non-optimality is that SD does not
comply with Weak APA. This is due to an optimization
made to speed up SD under global scheduling that prevents
certain preemptions under APA.3 Explaining how this occurs
requires a high-level description of the SD implementation.
For consistency, we refer to processes under Linux as tasks.

The design of SD is influenced by Linux’s use of per-
processor runqueues. It is required by Linux that tasks only
ever execute on the processor that owns the runqueue that
contains said task. Thus, to implement schedulers that require
migration, processors must exchange tasks between their run-
queues at runtime through operations called push (processor
sends an unscheduled task to another processor) and pull
(processor takes an unscheduled task from another processor).
Generally, pushes (resp., pulls) are triggered by job releases
(resp., completions). For example, consider a task τh that lacks
the priority to execute on its runqueue’s processor while having
sufficient priority to preempt the running task τ` on another
processor. For τh to preempt τ`, it must first be pushed from
its current runqueue to the runqueue of the target processor.

The problem arises in how SD chooses which processor
to send to in a push. When all processors in a pushed
task’s affinity mask are running other tasks, SD selects the
processor whose running task has the latest deadline among
all4 processors as the target for the push, regardless of affinity
masks. This is because the data structure (a heap called
cpu_dl) that returns the target processor with latest deadline
is oblivious to affinities. Note that this heap does not cause
problems under global scheduling, where all tasks have affinity
for all processors. Under global scheduling, usage of this heap
is faster than iterating over all processors to determine which
is running the task with the latest deadline.

If the processor chosen by a push is not in the pushed
task’s affinity mask, SD detects this and does not complete
the push. Unfortunately, it does not retry the push, so the
task remains unscheduled even if processors in its affinity
mask are running tasks with later deadlines, thereby breaking
Weak APA. The pushed task remains unscheduled until its
runqueue’s processor completes its running job or another
processor in its affinity mask completes its running job and
pulls the unscheduled task. In the worst-case, tasks may be
starved as in the following example.

3We did not discover this. This issue was recognized by the SD maintainers
in 2017 [9], but has not been patched in the Linux kernel. To our knowledge,
no one has considered this issue from a tardiness perspective.

4In truth, only the processors in the same root domain are considered;
however, all processors share the same root domain in our examples.

4

. Ex. 3. Consider the task system illustrated in Fig. 1(a).
Let (C1, T1) = (C3, T3) = (C5, T5) = (3, 6) and (C2, T2) =
(2, 2). For simplicity, assume that τ4 does not release jobs in
this example.5 This task system has bounded tardiness under
any Weak APA EDF (WAPA-EDF) scheduler,6 but may have
unbounded tardiness under SD, as shown in Fig. 2(a).
τ2 is released periodically and initially executes on π1.

Even though fixed task τ1 releases a job at t = 1, τ2 does
not migrate until τ1 has higher priority at t = 6. However,
prior to τ2’s attempt to migrate, τ3 and τ4 release jobs such
that all processors execute jobs at t = 6. Thus, SD will
mistakenly attempt to push τ2 onto π3 because it schedules
the job with the latest deadline. Because π3 is not in τ2’s
affinity mask, this push will fail, and τ2 is unscheduled until
it is pulled by π2 at t = 7. This occurs again at t = 17,
except τ3 forces τ2 to attempt to migrate. This pattern can
be repeated infinitely often, and with each occurrence, the
maximum tardiness experienced by τ2 increases by 1.0. /

We argue that even if the maintainers of SD are not
interested in implementing SAPA-EDF, SD should at least be
patched to comply with WAPA-EDF when not all tasks mi-
grate globally. It is inconvenient from a theoretical perspective
to consider SD when it does not satisfy basic invariants that
one would expect from an EDF implementation.

Unfortunately, even if SD were modified such that pushes
would only consider processors in the pushed task’s affinity
mask (thereby complying with Weak APA), unbounded tar-
diness would still be possible under feasible task systems.
The second source of non-optimality of SD is that naı̈ve
implementations of WAPA-EDF are not optimal.7

. Ex. 4. Consider the task system illustrated in Fig. 1(a). Let
(C1, T1) = (C5, T5) = (2, 6), (C2, T2) = (C4, T4) = (2, 2),
and (C3, T3) = (1, 6). This task system has bounded tardiness
under SAPA-EDF [11], but may have unbounded tardiness
under a WAPA-EDF scheduler, as shown in Fig. 2(b).
τ2 and τ4 release jobs periodically. Initially, τ2 and τ4

execute on π1 and π3, respectively. At t = 6, fixed tasks
τ1 and τ5 preempt τ2 and τ4, respectively. The only other
processor available to both τ2 and τ4 is π2, which they cannot
both use. We assume the tiebreak here favors τ2 and it is
scheduled, while τ4 does not execute until t = 8 when it
resumes execution on π3. τ2 is also forced to migrate off of
π2 by fixed task τ3 at t = 12. This repeats at t = 18, except
here τ4 is scheduled over τ2 because it is tardy by 2.0 time
units due to not being scheduled over [6, 8]. As a result, τ2 also

5τ4 is necessary in this example for the assumption made in Footnote 4
that all processors share a root domain.

6Because τ4 does not release jobs, the task system in Ex. 3 is made up
of two disjoint subsystems: τ5 running on π3 and {τ1, τ2, τ3} running on
{π1, π2}. It can be shown with minor modifications to the proof in [6]
that WAPA-EDF is SRT-optimal when m ≤ 2. Thus, both subsystems have
bounded tardiness under WAPA-EDF.

7Unbounded tardiness under a WAPA-EDF scheduler was demonstrated in
App. C of [11], but the considered EDF variant can unrealistically migrate
tasks for no reason. The modified SD that we consider in Ex. 4 is a more
realistic WAPA-EDF scheduler because tasks only migrate when preempted.

Fig. 2: Bounded tardiness counterexamples. (Longer versions
are available online [10].)

(a) SD violates Weak APA.

(b) SD with Weak APA has unbounded tardiness

(c) Non-preemptivity causes unbounded tardiness.

becomes tardy by 2.0 time units by t = 20. This pattern can
repeat indefinitely, and with each occurrence, the maximum
tardiness experienced by either τ2 or τ4 increases by 2.0. /

The final source of non-optimality we consider is the pres-
ence of NP sections. The next example shows that no work-
conserving EDF variant is SRT-optimal under APA when jobs
are fully NP. Note that there is no distinction between Strong
and Weak APA when jobs do not migrate once scheduled.

. Ex. 5. For this example, we only consider τ1, . . . , τ3 of
Fig. 1(a). Let (C1, T1) = (C3, T3) = (3, 6) and (C2, T2) =
(2, 2). Any EDF variant may have unbounded tardiness when
jobs are fully NP, as seen in Fig. 2(c).
τ2 releases jobs periodically. Initially, τ2 executes on π1.

When τ2 finishes its ready job at t = 6, it is preempted by τ1.
However, τ3 has already begun its NP execution on π2, and

5

so τ2 is unscheduled over [6, 8]. This occurs again at t = 18,
though this time τ2 is forced to migrate by τ3. This pattern
can be repeated infinitely often, and with each occurrence, the
maximum tardiness experienced by τ2 increases by 2.0.

This example contains a single global task with utilization
1.0 that is eventually preempted by a task that is fixed on
the processor the global task is executing on, and is then
briefly unable to execute because all other processors are
executing NP fixed tasks. While this example was limited to
two processors and two fixed tasks for simplicity, it can be
generalized for any m ≥ 2 processors and fixed tasks. Also,
increasing the fixed tasks’ periods only increases the time in
between intervals where the global task is unable to execute,
so such intervals still can occur infinitely often. This means
the global task still has unbounded tardiness even when the
utilization of every fixed task approaches 0. Thus, when jobs
are NP, for any arbitrarily small ε > 0, there exists task system
τ with U(τ) = 1 + ε such that τ has unbounded tardiness. /

We believe that SAPA-EDF is a more reasonable starting
point for a practical EDF scheduler under APA than WAPA-
EDF because under ideal conditions (i.e., no overheads or NP
sections), the former is SRT-optimal [11], while the latter has
inherent capacity loss (Ex. 4). We believe that such inherent
loss will outweigh any capacity loss caused by overheads
or NP sections in SAPA-EDF. Unfortunately, justifying this
via an overhead-aware schedulability study would require that
several theoretical and implementation-related questions be
answered. Firstly, though we have demonstrated in Ex. 4
that WAPA-EDF is not SRT-optimal, we lack a sufficient
SRT schedulability condition for WAPA-EDF, which such a
schedulability study would require. Secondly, we would also
need well-maintained implementations of WAPA-EDF (as SD
does not comply with it, as shown in Ex. 3) and SAPA-EDF
(which, to our knowledge, does not exist8) in order to measure
overheads under these respective schedulers. Lastly, we would
also need analysis techniques for accounting for overheads and
NP blocking (which some overheads can induce). Considering
all of these issues will entail work that is beyond the scope of
a single paper. Here, we begin this work by considering the
important issue of NP execution under SAPA-EDF.

IV. SRT-OPTIMALITY OF WINDOW-CONSTRAINED
SCHEDULERS

Before discussing non-preemptivity, we prove an interesting
sub-result in this section that we will make use of in our
NP-blocking analysis. We prove that the analysis in [11] for
EDF can be generalized to work for any window-constrained
scheduler under fully preemptive Strong APA scheduling. Due
to the density of notation presented in this and the following
section, we recommend the reader refer to Tbls. I and II.

Our analysis here is similar to that of [11] in that almost
every lemma, corollary, and theorem we present has an ana-
logue in [11]. The major difference is that in [11] it is assumed

8The closest that we are aware of is an implementation of Strong APA FP
under hierarchical affinities, presented in [2].

Fig. 3: Response time may increase when execution time
decreases under window-constrained scheduling.

(a) Original schedule corre-
sponding with Ex. 6.

(b) Decreasing C3,1 in-
creases f2,2.

that all tasks are periodic and that all jobs execute to their
tasks’ WCETs. Relaxing these assumptions to establish the
SRT-optimality of SAPA-EDF under the sporadic task model
(App. B of [11]) relies heavily on a sustainability property
of SAPA-EDF, namely that diminishing the execution cost of
any job does not increase the response time of any other job.
This may not hold under window-constrained scheduling.

. Ex. 6. Consider τ = {τ1, τ2, τ3} scheduled globally on
π = {π1, π2} with (C1, T1) = (C2, T2) = (C3, T3) = (2, 3).
For the first job of each task, let χ1,1(t) = 3, χ2,1(t) = 3, and
χ3,1(t) = 8. For the second job of each task, let χ1,2(t) = 6,
χ2,2(t) = 7, and χ3,2(t) = 3. Fig. 3(a) shows a potential
schedule for this system when jobs are period and execute to
their tasks’ WCET. Decreasing C3,1 from 2 to 1 results in
the schedule in Fig. 3(b). Because C3,1 was decreased, τ3,1
completes earlier at time 3. As a result, the ready job of τ3 at
time 3 is τ3,2, which has higher priority than τ2,2, τ2’s ready
job (χ3,2(3) = 3 < 7 = χ2,2(3)). Thus, τ2,2 does not begin
execution until time 5, increasing its response time. /

As the needed sustainability property may not hold in our
context, we cannot make the same assumptions as in [11]
about execution costs and periodicity. This change percolates
down into almost all proofs in this section. In eliminating these
assumptions, we actually have streamlined the proof in [11].

A. Deviation

The foundation of our proof is the concept of deviation
(Dev), which replaces the traditional notion of Lag used
in [11]. The definition of deviation depends on virtual time.

Def. 4. The virtual time of task τi at time t ≥ 0 is

vti(t) =

 ri(t) + Ti
Ci(t)− ci(t)

Ci(t) ready job
τi has (1a)

max(t,Di(t)) else (1b)
.

. Ex. 7. Consider a task τ1 with (C1, T1) = (3, 5) that
executes as depicted in Fig. 4(a) over the interval [0, 12]. Note
from Fig. 4(a) that C1,1 = 3, C1,2 = 1, and T1,1 = T1,2 = 6.
vt1(t) over [0, 12] is plotted in Fig. 4(b).

Over the interval [0, 4), τ1,1 is ready and unscheduled. Here
r1(t) = 0, C1(t) = C1,1, and c1(t) = C1,1, so vt1(t) remains
at 0. Over [4, 7), τ1,1 is scheduled, causing c1(t) to decrease at
a unit rate, and vt1(t) to increase at a rate of T1/C1(t) = 5/3.

6

Fig. 4: Virtual time example.

(a) Execution of a task corresponding with Ex. 7.

(b) Corresponding vt1(t).

At time 7, τ1,1 completes and τ1,2 becomes the ready job of
τ1. This causes r1(t), C1(t), and c1(t) to change, causing a
discontinuity at time 7. τ1,2 is completed over [7, 8), causing
vt1(t) to increase at a rate of T1/C1(t) = 5/1 over this
interval. At time 8, τ1 no longer has a ready job, and so vt1(t)
remains constant at D1(t) = 11 until time 11. Past time 11,
the time t is greater than D1(t), so vt1(t) increases at a unit
rate with time until τ1,3 is released at time 12. /

Dev compares a task’s virtual time against actual time.

Def. 5. For task τi at time t, Dev(τi, t) = ui(t− vti(t)). For
the subset of tasks τ ′, Dev(τ ′, t) =

∑
τi∈τ ′ Dev(τi, t).

Lemma 1. If Dev(τi, t) > 0, then τi has a ready job at t.

Proof. We prove the contrapositive: for every time instant t,
if task τi does not have a ready job, then Dev(τi, t) ≤ 0. By
Def. 4, vti(t) = max(t,Di(t)).

If vti(t) = Di(t), we have Di(t) ≥ t. By Def. 5, we have
Dev(τi, t) = ui(t− vti(t)) = ui(t−Di(t)) ≤ ui(t− t) = 0.

If vti(t) = t, then by Def. 5, we have Dev(τi, t) = ui(t−
vti(t)) = ui(t− t) = 0.

Lemma 2. If task τi has a ready job at time t, then

t− Dev(τi, t)

ui
< di(t) ≤ t−

Dev(τi, t)

ui
+ Ti. (2)

Proof. By Def. 4 and because τi has a ready job at t, we have
vti(t) = ri(t) + Ti

Ci(t)−ci(t)
Ci(t)

. By the definition of ci(t), we
have 0 < ci(t) ≤ Ci(t). Thus, vti(t) +Ti ≥ ri(t) +Ti

0
Ci(t)

+

Ti = ri(t) + Ti = di(t) and vti(t) < ri(t) + Ti
Ci(t)
Ci(t)

=

ri(t)+Ti = di(t). Thus, we have vti(t) < di(t) ≤ vti(t)+Ti,
which by Def. 5 is equivalent to (2).

Corollary 1. If for some L > 0 we have ∀t ≥ 0 : Dev(τi, t) ≤
L, then the tardiness of any job of τi is at most L/ui.

Proof. We prove the contrapositive: if some job of τi has
tardiness exceeding L/ui, then ∃t ≥ 0 : Dev(τi, t) > L holds.

Let τi,j be a job with tardiness exceeding L/ui. Consider
time t = di,j + L/ui. Because the tardiness of τi,j exceeds
L/ui, job τi,j is pending at t. Also, because τi’s ready job at t
cannot have been released later than τi,j , we have di(t) ≤ di,j .
Thus, by Lemma 2, t−Dev(τi, t)/ui < di,j . By the definition
of t above, this implies that Dev(τi, t) > L holds.

Lemma 3. If at time t, tasks τe and τ` have ready jobs τe,h
and τ`,k and we have

Dev(τe, t)

ue
≥ Dev(τ`, t)

u`
+ Tmax + 2φ, (3)

then χe,h(t) < χ`,k(t). (e signifies “earlier” and ` “later”.)

Proof. χe,h(t)

≤ de,h + φ {By Def. 2}
= de(t) + φ {By the definition of ready}

≤ t− Dev(τe, t)

ue
+ Te + φ {By Lemma 2}

≤ t− Dev(τe, t)

ue
+ Tmax + φ {Te ≤ Tmax}

≤ t− Dev(τ`, t)

u`
− φ {By (3)}

< d`(t)− φ {By Lemma 2}
= d`,k − φ {By the definition of ready}
≤ χ`,k(t) {By Def. 2}

Lemma 4. For τi, ε > 0, and t ≥ 0, vti(t+ ε) ≥ vti(t).

Proof. Assume without loss of generality that ε is arbitrarily
small. There are four cases to consider.

Case 4.1. τi has a ready job at both t and t+ε. For arbitrarily
small ε, τi has a ready job throughout [t, t+ ε] and the ready
job of τi changes at most once.

Suppose the ready job of τi does not change over [t, t +
ε]. Because the remaining execution required by a job does
not increase with time, ci(t) ≥ ci(t + ε). By (1a) of Def. 4,
vti(t + ε) = ri(t + ε) + Ti

Ci(t+ε)−ci(t+ε)
Ci(t+ε)

. Since the ready
job of τi does not change, the latter expression equals ri(t) +

Ti
Ci(t)−ci(t+ε)

Ci(t)
≥ ri(t) + Ti

Ci(t)−ci(t)
Ci(t)

= vti(t), where the
last step follows from (1a) of Def. 4.

Otherwise, suppose τi,j is ready at t and τi,j+1 is ready
at t + ε. By (1a) of Def. 4, vti(t + ε) = ri(t + ε) +

Ti
Ci(t+ε)−ci(t+ε)

Ci(t+ε)
= ri,j+1 +Ti

Ci,j+1−ci(t+ε)
Ci,j+1

. Because ci(t+

ε) ≤ Ci,j+1, the latter expression is at least ri,j+1 +

Ti
Ci,j+1−Ci,j+1

Ci,j+1
= ri,j+1 ≥ ri,j + Ti = ri,j + Ti

Ci,j

Ci,j
≥

ri(t) + Ti
Ci(t)−ci(t)

Ci(t)
= vti(t), where the last step follows by

(1a) of Def. 4.

Case 4.2. τi has a ready job at t but not at t + ε. As τi
transitioned from having a ready job to not having one, the
ready job τi,j of τi at t completed by t + ε. This implies
di,j ≤ Di(t+ ε). Also, because τi,j is ready at t, di(t) = di,j .
By (1b) of Def. 4, vti(t + ε) = max(t + ε,Di(t + ε)) ≥
Di(t + ε) ≥ di,j = di(t) = ri(t) + Ti. Because ci(t) > 0,

7

ri(t)+Ti > ri(t)+Ti
Ci(t)−ci(t)

Ci(t)
= vti(t), where the last step

follows by (1a) of Def. 4.

Case 4.3. No job of τi is ready at both t and t + ε. For
arbitrarily small ε, no job of τi is released or completed within
[t, t+ ε]. Thus, τi never has a ready job over this interval and
Di(t+ ε) = Di(t). By (1b) of Def. 4, vti(t+ ε) = max(t+
ε,Di(t+ ε)) = max(t+ ε,Di(t)) ≥ max(t,Di(t)) = vti(t).

Case 4.4. τi has no ready job at t but does at t+ ε. Because
τi transitioned from not having a ready job to having one, the
ready job τi,j of τi at t + ε is such that t < ri,j ≤ t + ε.
Also, because jobs of τi are released at least Ti time units
apart, Di(t) ≤ ri,j . By (1a) of Def. 4, vti(t + ε) = ri(t +

ε) +Ti
Ci(t+ε)−ci(t+ε)

Ci(t+ε)
≥ ri(t+ ε), where the last step follows

from ci(t + ε) ≤ Ci(t + ε). Because τi,j is ready at t + ε,
ri(t+ ε) = ri,j ≥ max(t,Di(t)) = vti(t), where the last step
follows by (1b) of Def. 4.

For all cases, vti(t+ ε) ≥ vti(t).

Lemma 5. For any task set τ ′ ⊆ τ and time t, if ∀δ > 0 :
∃ε ∈ (0, δ] : Dev(τ ′, t+ ε) > L holds, then Dev(τ ′, t) ≥ L.

Proof. Assume, to the contrary, that ∀δ > 0 : ∃ε ∈ (0, δ] :
Dev(τ ′, t + ε) > L and Dev(τ ′, t) < L both hold. Let δ′ =
(L − Dev(τ ′, t))/(|τ ′|umax) > 0. Then, ∀δ > 0 : ∃ε ∈ (0, δ] :
Dev(τ ′, t+ ε) > L = |τ ′|umaxδ

′ + Dev(τ ′, t).
This implies that ∀δ > 0 : ∃ε ∈ (0, δ] : Dev(τ ′, t + ε) −

Dev(τ ′, t) > |τ ′|umaxδ
′ holds. By Def. 5, Dev(τ ′, t + ε) −

Dev(τ ′, t) =
∑
τi∈τ ′ (Dev(τi, t+ ε)− Dev(τi, t)). Because

the maximum of a finite set must be at least the arithmetic
mean of the set, we have ∀δ > 0 : ∃ε ∈ (0, δ] : ∃τi ∈ τ ′ :
Dev(τi, t+ ε)− Dev(τi, t) > |τ ′|umaxδ

′/|τ ′| = umaxδ
′.

Thus, ∃ε ∈ (0, δ′] : ∃τi ∈ τ ′ : Dev(τi, t+ ε)− Dev(τi, t) >
umaxδ

′. By Def. 5, Dev(τi, t + ε) − Dev(τi, t) = ui(t + ε −
vti(t+ε))−ui(t−vti(t)) = ui(ε+vti(t)−vti(t+ε)) > umaxδ

′.
Thus, ε+ vti(t)− vti(t+ ε) > (umax/ui)δ

′ ≥ δ′. Rearranging
yields vti(t + ε) − vti(t) < ε − δ′ ≤ 0, which contradicts
Lemma 4.

Lemma 6. For arbitrarily small ε > 0, if task τi is scheduled
over [t, t+ ε], then Dev(τi, t+ ε) ≤ Dev(τi, t) + ε(ui − 1).

Proof. For small enough ε, the same job of τi is scheduled
over [t, t+ ε] and this job does not complete in this interval.

By Def. 5, Dev(τi, t + ε) = ui(t + ε − vti(t + ε)).
Because τi is scheduled, it must have a ready job, therefore
only case (1a) of Def. 4 can apply. Thus, Dev(τi, t + ε) =

ui

(
t+ ε− ri(t+ ε)− Ti Ci(t+ε)−ci(t+ε)

Ci(t+ε)

)
.

As the ready job of τi at t does not change by t+ ε, ri(t+
ε) = ri(t) and Ci(t + ε) = Ci(t). Since ε units of execution

of this ready job are completed, ci(t+ ε) = ci(t)− ε. Thus,

Dev(τi, t+ ε)

= ui

(
t+ ε− ri(t)− Ti

Ci(t)− ci(t) + ε

Ci(t)

)
= ui(t− vti(t)) + uiε− ui

Ti
Ci(t)

ε {By Def. 4}

≤ Dev(τi, t) + ε(ui−1) {By Def. 5 and Ti/Ci(t) ≥ 1/ui}.

Lemma 7. For arbitrarily small ε > 0, if task τi is not
scheduled over [t, t+ε], then Dev(τi, t+ε) ≤ Dev(τi, t)+εui.

Proof. By Def. 5, Dev(τi, t+ ε) = ui(t+ ε− vti(t+ ε)). For
small enough ε, τi either has a ready job or does not over all
of [t, t+ ε].

Case 7.1. τi has a ready job over [t, t+ ε]. By (1a), we have
Dev(τi, t + ε) = ui

(
t+ ε− ri(t+ ε)− Ti Ci(t+ε)−ci(t+ε)

Ci(t+ε)

)
.

Because the ready job of τi does not change while τi is
unscheduled over [t, t + ε], we have ri(t + ε) = ri(t),
Ci(t + ε) = Ci(t), and ci(t + ε) = ci(t). Thus, by Defs. 4
and 5, Dev(τi, t + ε) = ui

(
t+ ε− ri(t)− Ti Ci(t)−ci(t)

Ci(t)

)
=

ui(t− vti(t)) + εui = Dev(τi, t) + εui.

Case 7.2. τi has no ready job over [t, t+ε]. Di(t+ε) = Di(t)
because τi is not scheduled over [t, t+ε]. Thus, Dev(τi, t+ε) =
ui(t+ε−max(t+ε,Di(t+ε))) = ui(t+ε−max(t+ε,Di(t))).
Either Di(t) ≤ t, t < Di(t) ≤ t+ ε, or Di(t) > t+ ε.

If Di(t) ≤ t, then Dev(τi, t + ε) = ui(t + ε − t − ε) ≤
ui(t−t)+εui = ui(t−max(t,Di(t)))+εui = Dev(τi, t)+εui.

If t < Di(t) ≤ t+ε, then Dev(τi, t+ε) = ui(t+ε−t−ε) =
ui(t− t− ε) + εui ≤ ui(t−Di(t)) + εui = Dev(τi, t) + εui.

If Di(t) > t+ ε, then Dev(τi, t+ ε) = ui(t+ ε−Di(t)) =
ui(t−Di(t)) + εui = Dev(τi, t) + εui.

For all cases, Dev(τi, t+ ε) ≤ Dev(τi, t) + εui.

Lemma 8 is unchanged from [11] (except being slightly
reworded), so we omit its proof. (It concerns feasibility, so it is
not impacted by focusing on window-constrained schedulers.)

Lemma 8. (Lemma 35 of [11]) If a task system τ is feasible,
then for any set of tasks τ ′ ⊆ τ , the maximum number of
processors M that tasks of τ ′ may be simultaneously scheduled
upon is such that M ≥ U(τ ′).

Corollary 2. Let τ be a feasible task system. Under a Strong
APA scheduler, at any time instant t, for any set of tasks
τ ′ ⊆ τ with ready jobs such that the tasks of τ ′ have highest
priority out of all tasks with ready jobs, ∃δ > 0 : ∀ε ∈ (0, δ] :
Dev(τ ′, t) ≥ Dev(τ ′, t+ ε) holds.

Proof. Let M be the number of processors scheduling tasks of
τ ′ at t. M is maximal due to Strong APA. Let δ be arbitrarily
small such that any task scheduled (resp., unscheduled) at t
is scheduled (resp., unscheduled) over [t, t + δ]. Let τ s ⊆ τ ′

be the subset of tasks in τ ′ that are scheduled over [t, t+ δ].

8

Because ε ∈ (0, δ], these tasks are also the tasks scheduled
over [t, t+ ε]. Thus,

Dev(τ ′, t+ ε)

= Dev(τ s, t+ ε) + Dev(τ ′ \ τ s, t+ ε)

≤ Dev(τ s, t) + ε(U(τ s)− |τ s|) + Dev(τ ′ \ τ s, t)
+ εU(τ ′ \ τ s) {By Lemmas 6 and 7}

= ε(U(τ ′)−M) + Dev(τ ′, t) {Def. of M and U(τ ′)}
≤ Dev(τ ′, t) {By Lemma 8}.

B. Modified Invariant

The rest of the proof entails proving that the vector-
valued function 〈Dev(τ1, t),Dev(τ2, t), . . . ,Dev(τn, t)〉 stays
in a bounded region of Rn for all t ≥ 0. The same approach
is used in [11], though we have used Dev instead of Lag. The
proof in [11] relied on the fact that Lag is continuous, which
is not true of Dev. We show that continuity is not necessary;
that Dev satisfies Lemma 5 is sufficient for our proof. Our
bounded region is also larger than in [11] since we consider
window-constrained prioritizations instead of only EDF.

Lemma 9. For any feasible task system and Strong APA
window-constrained scheduler, ∀t ≥ 0,

∀τ ′ ⊆ τ : Dev(τ ′, t) ≤ β(τ ′) (4)

where β(τ ′) is defined as

∀τ ′ ⊆ τ : β(τ ′) =
Tmax + 2φ

2umin
U(τ ′)(2U(τ)− U(τ ′)). (5)

Proof. As a shorthand, let K = (Tmax + 2φ)/(2umin) > 0. By
Def. 5 and (5), (4) is true at t = 0. Assuming (4) is falsified,
let tb (b for “boundary”) be the last time instant such that (4)
is true over [0, tb). We prove the lemma by contradicting the
definition of tb.

I Claim 9.1. (4) is true over [0, tb].

Proof. We will prove by contradiction that (4) holds at tb.
Assume, to the contrary, that (4) is true over [0, tb) but not
at tb. Let ε = (Dev(τ ′, tb) − β(τ ′))/(|τ ′|umax) > 0 and t′ ∈
(max(tb − ε, 0), tb). Then t′ ∈ [0, tb). Thus, Dev(τ ′, t′) ≤
β(τ ′), and so Dev(τ ′, tb)−Dev(τ ′, t′) ≥ Dev(τ ′, tb)− β(τ ′).
By the definition of ε, Dev(τ ′, tb)− Dev(τ ′, t′) ≥ ε|τ ′|umax.

By Def. 5,
∑
τi∈τ ′ ui(tb − vti(tb)− t′ + vti(t

′)) ≥
ε|τ ′|umax. Because the maximum of a finite set must be at
least the arithmetic mean of the set, we have ∃τi ∈ τ ′ :
ui(tb−vti(tb)−t′+vti(t′)) ≥ ε|τ ′|umax/|τ ′| = εumax. Because
umax ≥ ui, tb − vti(tb)− t′ + vti(t

′) ≥ ε. Rearranging yields
vti(t

′)− vti(tb) ≥ ε− tb + t′. Because t′ > max(tb − ε, 0) ≥
tb − ε, vti(t′) − vti(tb) > ε − tb + tb − ε = 0. Thus,
vti(t

′) > vti(tb). As t′ < tb, this contradicts Lemma 4. J

I Claim 9.2. At time tb,

∀τ ′ ⊆ τ : Dev(τ ′, tb) ≤ β(τ ′), (6)

∃τ b ⊆ τ : ∀δ > 0 : ∃ε ∈ (0, δ] : Dev(τ b, tb + ε) > β(τ b) (7)

∧ Dev(τ b, tb) = β(τ b). (8)

Proof. (6) follows from Claim 9.1.
If (7) is false, then ∀τ b ⊆ τ : ∃δ > 0 : ∀ε ∈ (0, δ] :

Dev(τ b, tb + ε) ≤ β(τ b). This means that (4) is true over
(tb, tb + δ], which contradicts the definition of tb.

(8) follows from (6), (7), and Lemma 5. J

Let τ b be any of the task subsets known to exist by (7).

I Claim 9.3. For any task τe ∈ τ b,

Dev(τe, tb) ≥ K(2U(τ)− 2U(τ b) + ue)ue > 0.

Proof.Dev(τe, tb)

= Dev(τ b, tb)− Dev(τ b \ {τe}, tb)
≥ β(τ b)− β(τ b \ {τe}) {By (6) and (8)}
= KU(τ b)(2U(τ)− U(τ b))−

KU(τ b \ {τe})(2U(τ)− U(τ b \ {τe})) {By (5)}
= K(2U(τ)− 2U(τ b) + ue)ue

> 0 {U(τ) ≥ U(τ b)}J

I Claim 9.4. Any task τe in τ b has a ready job at tb.

Proof. Follows from Lemma 1 and Claim 9.3. J

I Claim 9.5. For any task τ` /∈ τ b,

Dev(τ`, tb) ≤ K(2U(τ)− 2U(τ b)− u`)u`

Proof. Dev(τ`, tb)

= Dev(τ b ∪ {τ`}, tb)− Dev(τ b, tb)

≤ β(τ b ∪ {τ`})− β(τ b) {By (6) and (8)}
= KU(τ b ∪ {τ`})(2U(τ)− U(τ b ∪ {τ`}))−

KU(τ b)(2U(τ)− U(τ b)) {By (5)}
=K(2U(τ)− 2U(τ b)− u`)u` J

I Claim 9.6. For any tasks τe ∈ τ b and τ` /∈ τ b, if τ` has a
ready job at tb, then τe has higher priority than τ` at tb.

Proof. Dev(τe, tb)

ue
− Dev(τ`, tb)

u`
≥ K(ue + u`) {By Claims 9.3 and 9.5}
≥ Tmax + 2φ {ue + u` ≥ 2umin}

The claim follows from Claim 9.4 and Lemma 3. J

By Claim 9.6, Corollary 2, and (8), there exists δ > 0 such
that for all ε ∈ (0, δ], Dev(τ b, tb + ε) ≤ Dev(τ bi , tb) = β(τ b).
This contradicts (7). Thus, tb does not exist, implying that (4)
is true over [0,∞). �

Theorem 1. For any feasible task system τ , the tardiness
of any task τi under any Strong APA window-constrained
scheduler is at most

Tmax + 2φ

2umin
(2U(τ)− ui). (9)

Proof. By Lemma 9, Dev(τi, t) ≤ Tmax+2φ
2umin

ui(2U(τ)− ui) for
all t ≥ 0. By Corollary 1, the bound in (9) follows.

9

Corollary 3. For any system as in Thm. 1, the tardiness of
any task is at most

m(Tmax + 2φ)/umin. (10)

Proof. Because m ≥ U(τ) (by Lemma 8), m > (2U(τ) −
ui)/2 for any task τi. Thus, the expression in (10) is greater
than that in (9) from Thm. 1.

Using (10) over (9) will simplify the NP-blocking analysis
presented later.

As a brief aside, much like how [11] considered identical
multiprocessors under APA and uniform multiprocessors, our
proof of Thm. 1 also applies to uniform multiprocessors
with minor modifications. These modifications are detailed
online [10].

V. NON-PREEMPTIVITY

In this section, we define progression, a notion that can
replace NP execution in some instances. We use Thm. 1 to
show that, unlike NP execution, progression does not lead to
capacity loss. For instances where NP execution is required
in its strictest sense, we present modifications to SAPA-EDF
under which we can compute blocking terms.

A. Progression

We begin by formally defining progression.

Def. 6. A portion of a job is guaranteed progression if, once
the portion is first scheduled, it is always scheduled on some
processor until the portion ends.

We do not consider time spent migrating as unscheduled
time. Thus, progression is weaker than true NP execution
because the considered job may migrate.

Though progression is weaker than NP execution, it is
sufficient in many use cases. Locking protocols are a good
example. An NP FIFO spin-lock ensures O(m) blocking on
m processors because NP execution guarantees that the lock’s
spin queue may contain at most m tasks. Progression provides
this same guarantee. Of course, other use cases, such as NP
execution that occurs within certain OS system calls, may be
intolerant of the migrations permitted by progression.

Code sections that require progression can be realized under
SAPA-EDF by prioritizing a job by its release time instead
of its deadline while within such a section. We call this new
scheduler Strong APA EDF-FIFO (SAPA-EF) because it uses
a combination of EDF and FIFO priorities. These priorities
are window-constrained, with φ = Tmax, so by Thm 1, SAPA-
EF is SRT-optimal with tardiness at most 3mTmax/umin.

SAPA-EF guarantees progression for the same reason that
global FIFO ensures NP execution. It is impossible for any
newly released job to preempt an executing job under global
FIFO because the newly released job must have a later release
time than any executing job. Recall that under Strong APA, a
job is unscheduled when it is at the end of a shifting path that
begins with a higher-priority job. Similarly to global FIFO, it
is impossible for any newly released job to have an earlier
deadline than the release time of any job already executing.

Thus, no job release can cause an executing job whose priority
is its release time to be unscheduled via shifting. Such an
executing job can, however, be caused to migrate, a behavior
that true NP execution would disallow.

B. Link-Based Scheduling

Fig. 5: NP execution
(denoted with dashes)
breaks progression.

As noted above, true NP exe-
cution may be required in some
use cases. Unfortunately, SAPA-
EF does not guarantee progression
if NP sections exist.

. Ex. 8. Consider τ1, . . . , τ3 in
Fig. 1(a) executing on π1 and π2.
Let (C1, T1) = (1, 2), (C2, T2) =
(6, 20), and (C3, T3) = (2, 10).
Consider the schedule in Fig. 5.
Initially, τ2 releases a job at t = 0
and is scheduled upon π1. τ2 im-
mediately begins executing an NP
section. τ2 also immediately requests progression for the entire
duration of its job, changing its priority from 20 to 0. Fixed
task τ1 releases a job at t = 1, but is unable to execute because
τ2 is in an NP section on π1. Meanwhile, τ3 releases a job at
t = 4, and immediately begins executing on π2, which was
idle. τ3 requests progression at t = 4, changing its priority
from 14 to 4. However, at t = 5, τ2 completes its NP section.
Because it requested progression for its entire job, τ1 and
τ2 have the highest-priority jobs (with priorities of 0 and 3,
compared to 4 for τ3). Moreover, τ1 can now execute on π1.
Thus, at t = 5, τ1 shifts via path {τ1, π1, τ2, π2, τ3} and τ3 is
unscheduled, violating its progression guarantee. /

There is little value in trying to replace some instances
of non-preemptivity with progression if the remaining NP
sections break progression. To support NP sections and pro-
gression simultaneously, we adapt link-based scheduling [3],
[4] for SAPA-EF. Under link-based scheduling, a distinction is
made between what task is actually scheduled on a processor
(the scheduled task) and what task would have been scheduled
on this processor (the linked task) if NP sections were ignored.
The linked task of every processor is updated whenever a task
changes its priority (e.g., job releases or completions or via a
prioritization function) and is based purely on these priorities,
while actual scheduling decisions will only match linked tasks
if doing so will not migrate a job in an NP section.

We assume that every job requires progression throughout
its execution. This will be necessary to guarantee that any job
is NP-blocked at most once, which is desirable because NP-
blocking is fundamentally more pessimistic under APA than
under global scheduling, as will be demonstrated in Ex. 10.
Formally, our link-based SAPA-EF (L-SAPA-EF) scheduler
is defined by the following rules.

R1 The priority of job τi,j is initially di,j , and permanently
changes to ri,j the instant it is first linked.

10

R2 Tasks are linked onto processors such that if every
processor scheduled its linked task, the scheduler would
maintain Strong APA.

R3 A processor executing a job continues executing said
job until it either completes or is scheduled by another
processor, at which point the processor becomes idle.

R4 An idle processor with a linked task schedules the ready
job of its linked task and ceases to be idle, unless said
task is executing an NP section on another processor.

Our assumption that every job requires progression is re-
flected in R1. This assumption is guaranteed by R3.

. Ex. 9. We find it easier to demonstrate linking by examining
affinity graphs rather than schedules. Consider Fig. 6. Initially,
τ3 is the first to release a job. τ3 becomes linked to π2. By R4,
π2 begins executing τ3’s job. τ3 then enters a NP section,
which reflects the first affinity graph in Fig. 6.

After this, τ2 releases a job. Because τ3 is already linked
on π2, τ2 is linked to π1. By R4, π1 begins executing τ2’s job.
This job also enters an NP section.

Next, τ1 releases a job. As τ2 is linked on π1 and τ3 is linked
on π2, there is a path {τ1, π1, τ2, π2, τ3, π3, τ0} over which a
shift in links may occur. By R2, this shift is taken such that
τ1 is linked on π1, τ2 is linked on π2, and τ3 is linked on π3.
However, as π1 and π2 are still executing non-preemptively,
no migrations occur. This reflects the third graph.

Next, τ2 finishes its NP section. By R3, π1 continues
executing τ2 even though its linked task is now τ1. Note that
since τ3 is executing an NP section on π2, having π1 schedule
τ1 at this time would have broken progression for τ2. This
reflects the fourth graph.

Lastly, τ3 completes its NP section. By R4, π3 schedules
its linked task τ3, thereby making π2 idle. Thus, π2 schedules
its linked task τ2, thereby making π1 idle. This makes π1
schedule its linked task τ1. This reflects the fifth graph. /

Besides R1 and R2, which are specific to EDF-FIFO and
APA scheduling, respectively, link-based scheduling under R3
and R4 differs slightly from how it is defined in [3]. Under R3,
a processor may continue executing a task besides the one it
is linked to, even if neither it nor its linked task are executing
NP sections. Additionally, under R4, processors only attempt
to schedule their linked tasks when they become idle. This is
distinct from the original definition, where a processor will
reschedule as soon as its current task is no longer its linked
task and neither its current nor its linked task is executing an
NP section. This change to the original definition is necessary
to avoid breaking progression, which was not a concern in [3].

Under global scheduling, linking ensures that a job is
blocked for at most one NP section [3]. In our context, each
job is similarly blocked at most once. However, in our case, the
length of blocking may be due to a sequence of NP sections.

. Ex. 10. Consider the assignments in Fig. 7. Assume that
tasks are prioritized on an EDF basis and for any time t
considered in this example, d2(t) < d3(t) < d4(t) <
d5(t) < d1(t). Initially, τ5 is unable to shift over the path

{τ5, π3, τ4, π2, τ2, π1, τ1} because τ4 is executing an NP sec-
tion on π3. Thus, τ5 is NP blocked for the length of τ4’s
NP section, but before this NP section completes, τ2 begins
an NP section on π2. Thus, even after τ4 completes its NP
section, τ5 cannot execute on π3 without unscheduling τ4,
which has higher priority. This pattern may continue to the
end of the shifting path, forcing τ5 to wait for a sequence of
NP sections. /

C. Blocking Analysis

We now present blocking analysis for L-SAPA-EF. Due to
space constraints and our usage of fairly standard blocking-
analysis techniques, we cover this analysis at a high level and
defer formal details to the online version of this work [10].

It is common practice to account for NP blocking by adding
a blocking term Bi to the WCET of every task τi, where Bi
upper bounds the duration that task τi can be NP blocked.
Because links reflect tasks’ priorities, NP blocking occurs
when a task is linked while unscheduled.

Observe in the rightmost affinity graph in Fig. 6 that
whenever no jobs are executing NP sections, every linked task
is scheduled. This is true generally due to R1–R4. By R1,
R2, and the fact that SAPA-EF guarantees progression, any
linked task continues to be linked on some processor until its
ready job completes. Additionally, by R4, only linked tasks
are ever scheduled for execution, and, by R3, any scheduled
task executes until its ready jobs complete. Thus, all scheduled
task are also linked tasks. Now suppose some linked task is
unscheduled while no job is executing an NP section. By R4,
the processor the task is linked on must be executing some
other task that, because all scheduled tasks are linked, must
be linked on some other processor that, by R4, must also be
executing some other linked task, and so forth. As the task
system is not infinite, it must be that all linked tasks are
scheduled when no job is executing an NP section.

Let Ii denote the largest interval in which, at any time, some
job not from τi (a task does not NP block itself) is executing
an NP section. Because all linked tasks are scheduled when no
jobs are executing an NP section, the duration a task τi can be
continuously linked and unscheduled is upper bounded by |Ii|.
Furthermore, because L-SAPA-EF guarantees progression for
all jobs, any job can be linked and unscheduled (and hence,
NP blocked) at most once. Thus, it is sufficient if Bi ≥ |Ii|.

For τi, let the NP demand bound function npdbfi(t,∆) be
the maximum amount of NP execution required by jobs not
from τi that are pending at some point in [t, t+ ∆). Note that
maxt≥0 (npdbfi(t, |Ii|)) ≥ |Ii|, else it is impossible for some
job to be executing an NP section at every time instant in Ii.

If a function g(∆) and ∆′ ≥ 0 exist such that g(∆) upper
bounds npdbfi(t,∆) and ∀∆ > ∆′ : g(∆) < ∆, then |Ii| ≤
∆′. The set of jobs of task τk 6= τi considered by npdbfi(t,∆)
includes jobs released in [t, t+ ∆) and jobs released prior to
t that are incomplete at t. The former is upper bounded by
d∆/Tke. Assuming the response time of any job is at most

11

Fig. 6: Linking example.

Fig. 7: Example of simultaneous NP blocking.

Rk = Tk + 3mTmax/umin,9 the latter is bounded by dRk/Tke.
Let γk denote the maximum amount of time any job of τk
will execute non-preemptively and let ωk = γk/Tk. Let

Rimax = max
τk∈τ\{τi}

(Rk), Γi =
∑

τk∈τ\{τi}

γk, (11)

Ωi =
∑

τk∈τ\{τi}

ωk.

npdbfi(t,∆) can be upper bounded by a linear function
g(∆) = Ωi∆ + ΩiR

i
max + 2Γi. If Ωi < 1, then ∆′ =

(ΩiR
i
max + 2Γi)/(1− Ωi).

Because ∆′ ≥ |Ii| if Ωi < 1 and it is sufficient that Bi ≥
|Ii|, it is sufficient if Bi = (ΩiR

i
max + 2Γi)/(1 − Ωi). Thus,

for the task system τ , if maxτi∈τ (Ωi) < 1 and τ is feasible
when Ci is inflated by Bi, then τ is SRT-schedulable under
L-SAPA-EF with tardiness at most 3mTmax/umin.

D. Refining the Blocking Analysis

For simplicity, several over-approximations have been
made in this section. For example, the tardiness bound of
3mTmax/umin shown for preemptive SAPA-EF can be reduced
to 2mTmax/umin by specifying unique upper and lower bounds
on χi,j(t) for each τi (as in [8]) and modifying the proof of
Thm. 1 accordingly. This has the twofold effect of reducing
Rk for each τk in (11), which reduces Bi, and reducing the
tardiness bound under L-SAPA-EF. In the same vein, we made
use of (10) as a tardiness bound instead of the tighter (9).
This is because (9) depends on U(τ) while (10) does not.
If tardiness depends on U(τ), then it also depends on the
WCET inflation caused by Bi, while Bi in turn also depends
on tardiness due to Rk in (11). This circular dependence would
require that Bi be deduced via some iterative procedure. In
this case, the condition required would no longer be Ωi < 1,
but rather that the procedure converges. Such an iterative
procedure would yield less pessimistic Bi terms. It is also
not necessary to consider Rimax instead of each individual Rk.

9Assuming that tardiness is bounded may seem like circular reasoning.
In the formal version of this analysis, the value of Bi is proven through
induction on the jobs of τ . Part of the induction hypothesis is that prior jobs
have bounded tardiness, which allows us to make this assumption about Rk .

A more substantial over-approximation is our assumption
that all tasks in τ besides τi contribute to npdbfi(t,∆), causing
the sums in (11) to be over all such tasks. Fixed tasks do not
need to be considered in these sums, as they do not cause NP
blocking. This is intuitive, as for them, progression, which
does not cause capacity loss, is equivalent to NP execution. In
practice, many tasks would likely be fixed as this maximizes
cache locality for most tasks. Even if this is not the case, it was
proven in [12] that for any feasible task system, it is possible
to remove processors from tasks’ affinity masks until at most
m− 1 tasks are not fixed without affecting feasibility.

VI. CONCLUSION

We have demonstrated fundamental faults in SD regarding
bounded tardiness under APA scheduling. The natural alterna-
tive is SAPA-EDF, which has attractive theoretical properties,
but is hindered by complexities in its implementation and
analysis. We have addressed complexities introduced by non-
preemptivity and proposed a weaker form of it, progression. In
practice, true NP sections (which cause capacity loss) would
likely be used only when such sections are short (as in an
OS kernel), with progression (which causes no loss) sufficing
in other cases. As a side effect of obtaining these results, we
greatly expanded the space of SRT-optimal APA schedulers.

Several other issues with SAPA-EDF must be resolved
before it can be made into a practical EDF scheduler under
APA. From an implementation point of view, we must consider
how to balance scheduler efficiency with correctness, else we
risk introducing scheduling glitches such as those possible
under SD. From an analytical point of view, it remains an
open problem how to account for suspensions, as well as how
to implement suspension-based locking protocols under APA.

While we have demonstrated that SD may be unsuitable for
APA, we believe that small modifications to SD are sufficient
to yield SRT-optimality under special cases of processor
affinities beyond just global or clustered scheduling. Given
that SD is not SRT-optimal, identifying these special cases
and the corresponding required modifications is likely the
most complete answer we can give for the problem of how
to provide real-time guarantees for SD with affinity masks.

12

REFERENCES

[1] Deadline task scheduling. https://github.com/torvalds/linux/blob/master/
Documentation/scheduler/sched-deadline.rst. Online; accessed 03 June
2020.

[2] V. Bonifaci, B. B. Brandenburg, G. DAngelo, and A. Marchetti-
Spaccamela. Multiprocessor real-time scheduling with hierarchical
processor affinities. In 2016 28th Euromicro Conference on Real-Time
Systems (ECRTS), pages 237–247, July 2016.

[3] B. B. Brandenburg. Scheduling and Locking in Multiprocessor Real-
time Operating Systems. PhD thesis, Chapel Hill, NC, USA, 2011.
AAI3502550.

[4] B. B. Brandenburg and J. H. Anderson. A clarification of link-based
global scheduling. Technical Report MPI-SWS-2014-007, November
2014.

[5] F. Cerqueira, A. Gujarati, and B. B. Brandenburg. Linux’s processor
affinity api, refined: Shifting real-time tasks towards higher schedulabil-
ity. In 2014 IEEE Real-Time Systems Symposium, pages 249–259, Dec
2014.

[6] U. M. C. Devi and J. H. Anderson. Tardiness bounds under global edf
scheduling on a multiprocessor. In 26th IEEE International Real-Time
Systems Symposium (RTSS’05), pages 12 pp.–341, 2005.

[7] S. K. Dhall and C. L. Liu. On a real-time scheduling problem.
Operations Research, 26(1):127–140, 1978.

[8] H. Leontyev and J. H. Anderson. Generalized tardiness bounds for
global multiprocessor scheduling. In 28th IEEE International Real-Time
Systems Symposium (RTSS 2007), pages 413–422, 2007.

[9] B. Park. Return the best satisfying affinity and dl in cpudl find. https:
//lkml.org/lkml/2017/3/23/171, March 2017. Online; accessed 03 June
2020.

[10] S. Tang and J. H. Anderson. Towards practical multiprocessor EDF with
affinities (full version). In 41st IEEE Real-Time Systems Symposium
(RTSS 2020), 2020. Available at http://jamesanderson.web.unc.edu/
papers/.

[11] S. Tang, S. Voronov, and J. H. Anderson. GEDF tardiness: Open
problems involving uniform multiprocessors and affinity masks resolved.
In Sophie Quinton, editor, 31st Euromicro Conference on Real-Time Sys-
tems (ECRTS 2019), volume 133 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 13:1–13:21, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[12] S. Voronov and J. H. Anderson. An optimal semi-partitioned scheduler
assuming arbitrary affinity masks. In 2018 IEEE Real-Time Systems
Symposium (RTSS), pages 408–420, 2018.

[13] K. Yang and J. H. Anderson. On the soft real-time optimality of global
edf on uniform multiprocessors. In 2017 IEEE Real-Time Systems
Symposium (RTSS), pages 319–330, Dec 2017.

[14] P. Zijlstra. An update on real-time scheduling on linux. https://www.
ecrts.org/archives/index7520.html?id=284, June 2017. Online; accessed
09 June 2020.

13

https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://github.com/torvalds/linux/blob/master/Documentation/scheduler/sched-deadline.rst
https://lkml.org/lkml/2017/3/23/171
https://lkml.org/lkml/2017/3/23/171
http://jamesanderson.web.unc.edu/papers/
http://jamesanderson.web.unc.edu/papers/
https://www.ecrts.org/archives/index7520.html?id=284
https://www.ecrts.org/archives/index7520.html?id=284

	Introduction
	Background
	Task Model
	Window-Constrained Schedulers
	APA Scheduling

	Sources of Non-SRT-Optimality in SD
	SRT-Optimality of Window-Constrained Schedulers
	Deviation
	Modified Invariant

	Non-preemptivity
	Progression
	Link-Based Scheduling
	Blocking Analysis
	Refining the Blocking Analysis

	Conclusion
	References

