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Abstract

A multiphase Darcy-Brinkman approach is proposed to simulate two-phase flow in hybrid systems containing both

solid-free regions and porous matrices. This micro-continuum model is rooted in elementary physics and volume

averaging principles, where a unique set of partial di fferential equations is used to represent flow in both regions

and scales. The crux of the proposed model is that it tends asymptotically towards the Navier-Stokes volume-

of-fluid approach in solid-free regions and towards the multiphase Darcy equations in porous regions. Unlike

existing multiscale multiphase solvers, it can match analytical predictions of capillary, relative permeability, and

gravitational effects at both the pore and Darcy scales. Through its open-source implementation,  hybridPorousIn-

terFoam, the proposed approach marks the extension of computational fluid dynamics (CFD) simulation packages

into porous multiscale, multiphase systems. The versatility of the solver is illustrated using applications to two-

phase flow in a fractured porous matrix and wave interaction with a porous coastal barrier.
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1. Introduction

Virtually every aspect of subsurface engineering for energy and environmental applications requires in-depth

understanding of multiphase flow within heterogeneous porous media. Examples include enhanced hydrocarbon

recovery, geologic carbon sequestration, nuclear waste storage, geothermal energy production, seasonal storage

of natural gas in geologic formations, and gas hydrate formation in sediments (Lake et al., 2014; Li and Benson,

2015; Rocco et al., 2017; Yin et al., 2018). In addition, multiphase fluid dynamics in heterogeneous porous media

play key roles in the natural fluxes of water and carbon in soils and sediments (Hassanizadeh et al., 2002; Or

et al., 2013; Maxwell et al., 2014; Scandella et al., 2017) as well as in a variety of engineering processes (Baber

et al., 2016; Jabbari et al., 2016). One largely unresolved challenge in the field is the inability to predict and

characterize multiphase flow physics within inherently multiscale structures, particularly in systems that contain

both porous and solid-free domains (Helmig et al., 2013). Although this challenge is widely recognized, there is

increased urgency in addressing it because of the need to sequester billions of tons of CO2 and to efficiently extract

hydrocarbons without causing extensive environmental damage.

Whereas single-phase flow in porous media is relatively well understood from atomistic to continuum scales,

the dynamics of systems containing multiple phases remain challenging to describe at all scales (Gray et al., 2015;

Li et al., 2018). Multiphase flow involves strong feedback between inertial, viscous, capillary, and interfacial

forces (Meakin and Tartakovsky, 2009; Datta et al., 2014). This coupling is intrinsically multiscale, as inertial

and viscous forces dominate at large pores or fractures while capillary forces and interfacial energetics dominate

within smaller porous micro-structures. The complex linkage between microscopic geometric heterogeneities and

macroscopic processes makes it necessary to consider scale-dependent processes across porous media in order to
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create truly predictive models, from the scale of microscopic interfaces (∼ µm), to pore networks and lab columns

(∼cm), all the way up to the field scale (∼km).

One complication associated with the e fforts outlined above is that there are almost as many definitions of

“multiscale” as authors that invoke this concept. Nevertheless, multiscale modeling can be sorted in three main

categories (Helmig et al., 2010): (i) the multiscale homogenization strategy, (ii) multiscale algorithm approach,

and (iii) the multiphysics approach. The first of these, the multiscale homogenization strategy, aims at deriving

large scale models rooted in elementary physical principles by using homogenization techniques including volume

averaging, mixture theory, and asymptotic expansions (Whitaker, 1999; Standnes et al., 2017; Battiato et al., 2019;

Starnoni and Pokrajac, 2020). A prime example is the seminal work of Whitaker (1986a), which demonstrates

that Darcy’s law arises from the integration of Stokes equation over a porous Representative Elementary Volume

(REV). These upscaling techniques usually uncouple each scale’s relevant physics through the scale-separation

hypothesis. This way, effective coefficients in large-scale models can be used to describe fine-scale phenomena and

geometric features. These coefficients are commonly estimated by using complementary fine-scale simulations

on REVs or sub-grid models. The second strategy, the multiscale algorithm approach, solves flow physics on

interconnected grids with different degrees of refinement. This way, each grid’s refinement level can be tuned to fit

its respective scale of interest. A portion of these algorithms primarily focus on fine-scale solutions, and thus, use

multi-scale finite volume/element solvers to speed up convergence in fine grids (Jenny et al., 2003, 2006; Efendiev

and Hou, 2007). Conversely, alternative algorithms focus on large-scale behaviors and only solve for small-scale

behavior when needed (Tomin and Lunati, 2013, 2016). The third strategy, the multiphysics approach, uses domain

decomposition to solve different physics within each scale’s sub-domain. In this method, sub-domains have their

own independent set of governing equations and only interact with each other through the implementation of

appropriate boundary conditions (Sun et al., 2012; Baber et al., 2016). A popular implementation of this approach

uses the Beavers and Joseph (1967) conditions to couple a porous domain governed by Darcy’s Law with a domain

governed by the Navier-Stokes equations.

Here, we implement concepts from all three strategies to propose an alternative solution to the multiscale

challenge. To do so, we rely on the micro-continuum approach (Soulaine and Tchelepi, 2016), whereby a single

equation is used to handle flow and transport in systems where a large scale solid-free domain coexists with a

small-scale porous domain (Figure 1). In the case of single-phase flow and transport, this approach generally relies

on the well-known Darcy-Brinkman (DB) equation –also referred to as Darcy-Brinkman-Stokes (DBS) equation–

(Brinkman, 1947) that arises from volume averaging the Stokes (or Navier-Stokes) equations in a control volume

that contains both fluids and solids (Vafai and Tien, 1981; Hsu and Cheng, 1990; Bousquet-Melou et al., 2002;

Goyeau et al., 2003). It consists in a Stokes-like momentum equation that is weighted by porosity and contains

an additional drag force term that describes the mutual friction between the fluids and solids within said control

volume. Unlike standard continuum scale equations for flow and transport in porous media such as Darcy’s law,

the DB equation remains valid in solid-free regions (see Figure 1A) where the drag force term vanishes and the DB

equation turns into the Stokes (or Navier-Stokes) equation. In porous regions (see Figure  1C), in contrast, viscous

dissipation effects are negligible compared with the drag force exerted onto the pore walls and the DB momentum

equation tends asymptotically towards Darcy’s law (Tam, 1969; Whitaker, 1986a; Auriault, 2009). Therefore, the

micro-continuum DB equation has the ability to simultaneously solve flow problems through porous regions and

solid-free regions (Neale and Nader, 1974), paving the path to hybrid scale modeling (see Figure 1B). In the case

of single phase flow, it is known to be analogous (in fact, formally equivalent) to the previously mentioned and

well-established Beavers-Joseph boundary conditions (Beavers and Joseph, 1967; Neale and Nader, 1974).

The ability of the DB equation to handle two scales simultaneously has been used to solve fluid flow in

three-dimensional images of rock samples that contain unresolved sub-voxel porosity (Knackstedt et al., 2006;

Apourvari and Arns, 2014; Scheibe et al., 2015; Soulaine et al., 2016; Kang et al., 2019; Singh, 2019). It also has

been used to simulate dissolution wormholing during acid stimulation in cores by updating the weighting porosity
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Figure 1: Schematic representations of a porous medium with two characteristic pore sizes depending on the scale of resolution: (a) full pore
scale (Navier-Stokes), (b) intermediate or hybrid scale, and (c) full continuum scale (Darcy). Our objective is to derive a framework that can
describe multiphase flow at all three scales described in the figure based on a single set of equations resolved throughout the entire system.

field through geochemical reactions (Liu et al., 1997; Golfier et al., 2002; Soulaine and Tchelepi, 2016; Tomin

and Voskov, 2018). Moreover, it has been shown that whenever low-porosity low-permeability porous regions are

present, the velocity within these regions drops to near zero, such that the micro-continuum DB framework can be

used as a penalized approach to map a solid phase onto a Cartesian grid with a no-slip boundary at the solid surface

(Angot et al., 1999; Khadra et al., 2000; Soulaine and Tchelepi, 2016). This approach tends to a full Navier-Stokes

representation of the flow physics at the pore scale and, hence, can be used to move fluid-solid interfaces efficiently

in a Cartesian grid without a re-meshing strategy. For example, Soulaine et al. (2017) used a micro-continuum

framework to predict the dissolution kinetics of a calcite crystal and successfully benchmarked their model against

state-of-the-art pore scale dissolution solvers with evolving fluid-solid interfaces (Molins et al., 2020). Another

example, presented in Carrillo and Bourg (2019), leveraged this framework to create a Darcy-Brinkman-Biot

approach capable of predicting the coupled hydrology and mechanics of soft porous media such as clays and

elastic membranes.

The micro-continuum framework outlined above was limited, until recently, to single-phase flow (Soulaine

and Tchelepi, 2016). Horgue et al. (2014) and later Soulaine et al. (2018) proposed the first two-phase micro-

continuum model by combining a two-phase variant of the DB equation with the volume of fluid (VOF) approach

(Hirt and Nichols, 1981) to two-phase flow in solid-free regions. This formulation enabled multiphase flow in

solid-free regions with imposed wettability conditions at the solid surface while describing microporous regions

as impervious, fully-saturated porous domains (Soulaine et al., 2018). Soulaine et al. (2019) later refined their

formulation to enable two-phase flow at both the pore and continuum scales, but with simplified flow physics in

the porous domain; in particular, the model could not describe the interplay of gravity and capillarity within the

microporous matrix.

In the present paper, we expand upon Soulaine et al. (2019) to propose a fully realized multiscale solver for

two-phase flow in porous media rooted in elementary physical principles and rigorously derived using the method

of the volume averaging (Whitaker, 1999). We show that there exists a single set of partial di fferential equations

that can be applied in pore, continuum, and hybrid scale representation of multiphase flow in porous media. Partic-
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ular attention is paid to the rigorous derivation of gravity and capillary effects in the porous domain. The resulting

two-phase micro-continuum framework is verified using a series of test cases where reference solutions exist.

We verify that the multiscale solver converges to the standard Darcy scale solutions (Buckley-Leverett, capillary-

gravity equilibrium, drainage in a heterogeneous reservoir) when used at the continuum scale and to the two-phase

Navier-Stokes solutions (droplet on a flat surface, capillary rise, drainage with film deposition, two-phase flow in

a complex porous structure) when used at the pore scale. The fully implemented numerical model, along with

the aforementioned verification and tutorial cases, is provided as an open-source solver (hybridPorousInterFoam)

accompanying the present article.

The paper is organized as follows. In Section 2, the multi-scale governing equations are rigorously derived

using the method of volume averaging. Multi-scale parameters are then defined by asymptotic matching to the

two-phase Navier-Stokes and Darcy equations. In Section 3, we describe the numerical algorithm used to solve

the problem (governing equations, constitutive relations, and boundary conditions) and present its numerical im-

plementation as an open-source simulation platform. In Section 4, we present the model verification at the pore

and continuum scales. In Section 5, we illustrate the versatility of the proposed framework by describing two

hybrid scale applications: wave propagation in a coastal barrier and two-phase flow in a fractured porous matrix.

We close with a summary and conclusions.

2. Mathematical model

In this section, we derive the micro-continuum equations for two-phase flow. First, we consider the conser-

vation laws for multi-phase systems in the continuous physical space. Then, the micro-continuum equations are

formed by volume averaging the continuous equations over each volume of an Eulerian grid. Finally, information

below the size of the grid cell (fluid-fluid interface location and micro-structure geometry) is modeled with closure

of the multiscale parameters.

2.1. Governing equation in the continuous physical space

This section presents the basic hydrodynamic laws that govern multiphase flow at the pore scale. The domain

is decomposed into three disjoint subsets: a solid phase Vs, a wetting liquid phase Vl, and a non-wetting gas phase

Vg which is separated from Vl by the interface Alg (see Figure 2A). Although the fluids are referred to as liquid and

gas (or wetting and non-wetting), the derivation and resulting model are valid for any incompressible, immiscible

fluid pair including liquid-liquid and liquid-gas systems.

Each fluid phase is assumed to be Newtonian and incompressible. Therefore, mass conservation in each phase

dictates

∇ · vi = 0 in Vi, i = l, g, (1)

where vi is the velocity of phase i. Mass conservation at the fluid-fluid interface yields

ρl (vl − w) · nlg = ρg vg − w · nlg at Ai j, (2)

where ρi is the density of phase i, w is the velocity of the interface, and n lg is the normal vector to the fluid-fluid

interface pointing from the wetting to the non-wetting phase. In the absence of phase change, v l = vg = w at the

fluid/fluid interface.

Momentum conservation in each fluid yields

0 = −∇ pi + ρi g + ∇ · Si in Vi, i = l, g, (3)

where g is the gravity vector, Si = µ i ∇vi + ∇vT
i is the viscous stress tensor, and p i and µi are the pressure and

viscosity of phase i, respectively. In Eq. (3), the inertia terms have been neglected and the momentum balance
4



is described using the Stokes equation. This simplification is common in models of subsurface fluid flow, where

flow rates are usually very low (Bear, 1972). The Stokes equation is adopted for simplicity in the derivation of

the micro-continuum momentum equation, as the volume averaging of inertial effects at or near a porous medium

has already been described in previous studies (Vafai and Tien, 1981; Hsu and Cheng, 1990; Goyeau et al., 2003).

For completeness, inertial effects will be integrated at the end of the derivation based on the full Navier-Stokes

equation.

Finally, momentum conservation at the fluid-fluid interface yields

plI − Sl · nlg =
h
pgI − Sg

i
· nlg + σκnlg at Alg, (4)

where I is the unity tensor, σ is the fluid-fluid interfacial tension, andκ = ∇ · nlg is the interface curvature.

2.2. Volume averaging: derivation of a single-field formulation

The mathematical model introduced in the former section is defined on a continuous physical domain. Com-

mon computational procedures solve this system of equations by discretizing the continuous domain into an en-

semble of subset volumes by using the Finite Volume Method (FVM) (Patankar, 1980). In the FVM framework,

all the physical variables are averaged over each discrete volume. The averaging process and the discretization

refinement level dictate that the control volume can contain the following: one fluid, two fluids, one fluid and a

solid phase, or two fluids and a solid phase. Features with characteristic length scales below that of the averag-

ing volume (e.g., the geometry of solid-fluid and fluid-fluid interfaces and the forces exerted onto them) must be

described using sub-grid scale representations. In this section, we use volume averaging theorems to identify the

form of the multiphase micro-continuum equations.

Volume averaging and single-field variables. In the FVM, the partial di fferential equations that describe conser-

vation laws, Eqs. (1) and (3), are transformed into discrete algebraic equations by integrating them over each

discrete volume V. This operation is carried out using the volume averaging operator,

βi =
1
V

Z

Vi

βidV, (5)

where βi is a function defined in V i (i = l, g). As in standard volume averaging theory, we also define a phase

averaging operator,

βi
i =

1
Vi

Z

Vi

βidV. (6)

The averages defined by Eqs. (5) and (6) are related through the porosity fieldφand the saturation fieldαl. The

porosity field φ is defined as (Vl + Vg)/ V, i.e., the volume occupied by both fluids divided by the control volume

V, such that:

φ =





1, in solid-free regions,

]0; 1[ , in porous regions.
(7)

The porosity field is the cornerstone of micro-continuum methods because it delineates porous (0 < φ < 1) and

solid-free regions (φ = 1). It is intrinsically related to the resolution of the simulation as illustrated in Fig.  1. For

example, in image-based flow simulations, the control volume size corresponds to the imaging instrument reso-

lution and the porosity field obtained from the gray-scale is used to model sub-voxel micro-structures (Apourvari

and Arns, 2014; Soulaine et al., 2016; Scheibe et al., 2015; Singh, 2019; Abu-Al-Saud et al., 2020). By construc-

tion of micro-continuum models, all cells must have non-zero porosity (Soulaine and Tchelepi, 2016). Hence,

a pure solid phase ( φ = 0) in the micro-continuum framework is described instead as a very low-porosity, very

low-permeability domain (φ ≈ 0).
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Figure 2: Distribution of the fluid phases in (a) the continuous physical domain, (b) the discrete Eulerian grid.

The saturation field αl is defined as Vl/ (Vl + Vg), i.e., the volume of liquid divided by the volume occupied by

both fluids within the control volume, such that

αl =





0, in regions saturated with gas,

]0; 1[ , in unsaturated regions,

1, in regions saturated with liquid.

(8)

A saturation fieldαl such as that described by Eq. (8) is used in continuum scale simulations of multiphase flow in

porous media (where it represents actual saturation) and in pore scale simulations of multiphase flow in solid-free

regions that rely on the VOF representation (where it is used to track the evolution of the immiscible fluid-fluid

interface). The relationship αl +α g = 1 is always valid andαg is deduced from the knowledge ofαl. The averaging

operators defined by Eqs. (5) and (6) are related by βi = φαiβi
i

(i = l, g).

The two-phase micro-continuum approach relies on single-field variables, i.e., unique fluid pressure and ve-

locity fields that are defined throughout the entire grid regardless of the nature of the phases that occupy the cells.

The single-field pressure p and velocity v are defined as weighted sums of the pressure and Darcy velocity in each

fluid phase:

p = α l p
l
l + αg pg

g, (9)

and
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v = φ
h
αlvl

l + αgvg
g
i
, (10)

respectively. We note that the use of porosity-weighted values in Eq. (10) yields a single-field velocity equal to

the sum of the filtration (Darcy) velocities in each phase, v= vl + vg, where vi = φαivi
i.

The governing equations solving for p and v are obtained using a two-step strategy. First, the volume averaging

operator, Eq. (5), is applied to the continuity equations, Eq. (1), and to the momentum equations, Eq. (3), leading

to two pairs of partial di fferential equations solving for αi, vi
i, and p i

i (i = l, g). Second, pairs of phase-averaged

equations are added to each other to form the governing equations for the single-field variables. In the averaging

process, the volume averaging operator is applied to spatial differential operators (gradient and divergence). This

operation is not straightforward because integrals and derivatives can not be interchanged in volumes that contain

interfaces including fluid-fluid and fluid-solid interfaces. This is achieved using the spatial volume averaging

theorems (Howes and Whitaker, 1985; Whitaker, 1999),

∇βi = ∇βi +
1
V

Z

Ai j

βini jdA +
1
V

Z

Ais

βinisdA,

∇ · βi = ∇ · βi +
1
V

Z

Ai j

βi · ni jdA +
1
V

Z

Ais

βi · nisdA,
(11)

where A i j is the surface area between the two fluids, Ais is the surface area between fluid i and the solid phase,

ni j is the normal vector at the fluid-fluid interface pointing from  i to j, and nis is the normal vector at the solid

surface pointing from the fluid to the solid. The surface integral terms in these equations transform the boundary

conditions at the discontinuity between the fluid phases and at the solid surface into body forces. In others words,

the interfacial conditions are included directly in the partial di fferential equations that describe the conservation

laws in the Eulerian grid.

Mass balance and saturation equations. The application of the volume averaging theorem, Eq. (11), along with

the continuity equations, Eq. (1), yields (Whitaker, 1986b):

∂φαi

∂t
+ ∇.vi = 0, i = g, l. (12)

The two-phase micro-continuum framework developed in this paper consists of a set of partial di fferential

equations that solve for the single-field variables v, p, andαl. Because the volume-averaged continuity equations,

Eq. (12), involve averaged phase velocities v i, they must be transformed into equations in terms of the micro-

continuum single-field variables, namely a total fluid conservation equation and a saturation equation.

The total fluid conservation equation is obtained by summing the two continuity equations and assuming that

the porous structure is immobile with time, such that:

∇ · v = 0. (13)

Equation (13) is a divergence-free velocity that is commonly used together with the momentum equation to derive

the pressure equation.

The saturation equation is obtained by first introducing the concept of relative velocity:

vr = vl
l − vg

g . (14)

From the definitions of single-field and relative velocities, we can show that  vl
l = φ−1v+α gvr. Because vl = φαlvl

l,
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the saturation equation can be expressed as:

∂φαl

∂t
+ ∇ · αlv + ∇ · φαlαgvr = 0. (15)

In equation (15), the wetting phase saturation αl is advected by the single-field velocity v. The third term on the

left-hand side is an additional convection term involving the relative velocity  vr. The saturation equation, Eq. (15),

is exact, i.e., it is derived from elementary physical principles without any assumptions. However, there is no

conservation law to solve for v r and this term must be closed. In the forthcoming discussion, we will see that

different descriptions of v r are derived for solid-free ( φ = 1) and porous regions (0 ≤ φ < 1). In the first case,

the convection term involving the relative velocity serves to compress the fluid-fluid interface and ensures a sharp

transition between the immiscible phases. In the second case, v r is closed by matching Eq. (15) to the standard

saturation equation used in multi-phase Darcy flow solvers.

Momentum equation. A similar procedure is used to form the multiscale momentum equation. First, the volume

averaged equations are derived for each fluid. Then, the two resulting equations are combined to form the single-

field conservation law.

The application of the volume averaging theorem, Eq. (11), to the Stokes momentum conservation equation

for fluid i, Eq. (3), yields (Whitaker, 1986b; Lasseux et al., 1996; Ishii and Hibiki, 2011):

0 = −∇ φαi pi
i + φαiρi g + ∇ · φαiSi

i
+ Dis + Di j, i = g, l, (16)

where the last two terms on the right-hand side,

Dik =
1
V

Z

Aik

nik · (− piI + Si) dA, (17)

are the drag forces exerted by phase k on phase i. In short, Dis reflects the friction of fluid i on the solid surface

and D i j reflects interfacial shear between the two fluids. These terms accounts for shear that occurs at scales

below that of a control volume; therefore, the description of these terms must di ffer depending on whether the

computational cells contain a porous solid structure (0 ≤ φ < 1) or fluids only (φ = 1). These drag forces will be

derived later on in Section 2.3; for the time being, they are kept in their integral forms.

The sum of the two phase-averaged momentum conservation equations yields:

0 = −∇ (φp) + φρg + ∇ · φS + Dls + Dgs + Dlg + Dgl, (18)

where S is the single-field shear stress
h
S = µ ∇v + ∇vT

i
and µ is the average fluid viscosity

h
µ = α lµl + αgµg

i
.

To form the multiscale momentum equation, we express the sum of the average shear stress at the fluid-solid and

fluid-fluid interfaces as the sum of two independent terms, a drag forceµk−1v and a surface tension force Fc:

− µk−1v + Fc = φ−1
h
Dls + Dgs + Dlg + Dgl

i
. (19)

Eventually, if the porous structure is immobile, the porosity φ can be removed from the derivatives and the

multiscale single-field momentum equation becomes:

0 = −∇ p + ρg + ∇ · S − µk−1v + Fc. (20)

Summary of the derivation. The single-field micro-continuum model for incompressible, immiscible two-phase

flow in a rigid porous medium, derived above using volume averaging theory, consists of a set of three partial

differential equations, namely a total mass balance equation, Eq. (13), a saturation equation, Eq. (15), and a
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momentum equation, Eq. (20), that can be solved for the single-field pressure p, the single-field velocity v, and

the wetting fluid saturation αl:

∇ · v = 0,
∂φαl

∂t
+ ∇ · αlv + ∇ · φαlαgvr = 0, (21)

1
φ

 
∂ρv
∂t

+ ∇ ·
 
ρ
φ

v̄v̄

!!
= −∇ p + ρg + ∇ · S − µk−1v + Fc.

In Eq. (21), the momentum equation has been modified from Eq. (20) to include the inertial e ffects that were

neglected above in the interest of clarity and because their volume averaging procedure is well established. The

derivation with these inertial e ffects follows the same averaging procedure as described above, starting from the

Navier-Stokes (rather than Stokes) equation (Vafai and Tien, 1981; Hsu and Cheng, 1990; Bousquet-Melou et al.,

2002; Goyeau et al., 2003). The numerical implementation described in Section 3 for solving Eq. (21) accounts

for the inertial effects.

The set of equations presented above is valid throughout the computational domain regardless of the content

of a cell. This characteristic is a fundamental aspect of our multiscale solver. It means that the same equations for

multiphase flow and transport can be used in both solid-free and porous regions, unlike in the case of multi-physics

solvers that involve mortars (Sun et al., 2012; Baber et al., 2016). This feature allows the proposed solver to be

applied in media where the pore space is fully resolved and flow is described using the Navier-Stokes equations

(pore scale modeling), in media where pores are not resolved and flow is described using Darcy’s law (continuum

scale modeling), and in intermediate situations that include both fully resolved solid-free regions and porous

regions (hybrid scale modeling) as illustrated in Figure 1.

A critical feature of the multiscale solver developed in this paper is that it tends asymptotically to the solution

of the two-phase Navier-Stokes equations when used as a pore scale model and to the solution of the two-phase

Darcy equations when used as a continuum scale model. This is achieved by defining the relative velocity vr, the

drag force µk−1v, and the surface tension force F c. These terms are referred to as multiscale parameters because

they describe sub-grid scale information such as the location of the fluid-fluid interface and the hydrodynamic

impact of the porous micro-structure. They have a di fferent meaning and a di fferent formulation depending on

whether the computational grid blocks contain solid material or not.

2.3. Closure and multi-scale parameters

In the following, we show how the multiscale parameters vr, µk−1, and Fc can be derived by matching Eq. (21)

to its two desired asymptotic models: in the pore scale limit, the algebraic Volume-of-Fluid method; in the con-

tinuum scale limit, the multiphase form of Darcy’s law.

Algebraic Volume-of-Fluid model in the pore scale limit. In CFD, the Volume of Fluid (VOF) method (Hirt and

Nichols, 1981) is a standard approach to track the interface movement of two immiscible fluids in a fixed Eulerian

grid. This approach is known to approximate the solution of the physical problem, Eqs. (1)-(4), using a Finite

Volume grid. In the VOF approach, a phase indicator representing the volume of fluid in each grid block is used

to track the distribution of the fluid phases in the computational domain as illustrated in the upper part of Figure

2B. This phase indicator has the same form as the saturation field αl defined in the two-phase multiscale micro-

continuum model. In cells saturated by the wetting phase,αl = 1. In cells that contain the non-wetting phase only,

αl = 0. Finally, 0 < α l < 1 in cells that contain the immiscible interface between both fluids. The VOF approach

relies on a single-field formulation of the Navier-Stokes equations to compute the two-phase flow. If a cell of the

Finite Volume grid is considered as a control volume, then all the derivation introduced in the previous section can

be used to derive the VOF momentum, mass balance, and saturation equations (Maes and Soulaine, 2019).
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In the standard VOF approaches, the cells do not contain solid ( φ = 1). The mass balance and saturation

equations, Eqs. (13) and (15), remain, therefore, unchanged. The saturation equation with φ = 1 is the equation

used in algebraic VOF solvers such as interFoam, the VOF solver of the open-source CFD code OpenFOAM R .

There, the relative velocity v r is used as a compression term to force the fluid-fluid interface to be as sharp as

possible (Rusche, 2002). This compression velocity acts in the direction normal to the interface. In the VOF

framework, the normal to the fluid-fluid interface is computed using the gradient of the saturation.  Rusche (2002)

proposes a relative velocity oriented in the direction normal to interface with a value based on the maximum

magnitude of v:

vr = Cα max v nlg, (22)

where Cα is a model parameter used to control the compression of the interface and nlg is mean normal vector.

For low values of Cα, the interface di ffuses. For higher values, the interface is sharper, but excessive values are

known to introduce parasitic velocities and lead to unphysical solutions. In practice, Cα is often chosen between

0 and 4. The mean normal vector n lg is computed by using the gradient of the phase indicator function αl. The

relation between these two vectors can be obtained by applying Eq. (11) to the liquid phase indicator function 1 l

(a function equal to 1 in Vl and 0 elsewhere) in solid-free regions such that (Quintard and Whitaker, 1994),

∇α l = −
1
V

Z

Alg

nlgdA. (23)

Therefore,

nlg = −
∇α l

|∇α l|
, (24)

is a unit vector defined at the cell centers that describes the mean normal to the fluid-fluid interface in a control

volume.

Another consequence of the absence of solid in the VOF equations is that the forces describing the shear

stresses of the fluids onto the solid surface are null, hence D ls = Dgs = 0. Therefore, the Darcy term in the

momentum equation vanishes:

µk−1v = 0. (25)

The integration of the shear boundary condition at the fluid-fluid interface, Eq. (4), yields a relationship be-

tween the mutual shear between the two fluids and the surface integral of the surface tension effects:

Dlg + Dgl = φFc =
1
V

Z

Alg

nlg · σκdA. (26)

This equation cannot be used directly, because the terms under the volume integral require the location and curva-

ture of the fluid-fluid interface within a grid block. This information is unknown in a grid-based formulation for

which all the physical variables and forces are averaged on control volumes. In the VOF method, the curvature

of the interface κ is approximated by a mean interface curvature κ. Brackbill et al. (1992) assumes that the mean

curvature of the interface can be approximated by calculating the divergence of the mean normal vector,κ = ∇· nlg.

Because κ and σ are constant within a control volume, they can be extracted from the integral in Eq. (26) to obtain

(after applying Eq. (23)) the so-called Continuum Surface Force (CSF) formulation (Brackbill et al., 1992):

Fc = φ−1σ∇ ·
 

∇α l

|∇α l|

!
∇α l. (27)

Standard two-phase Darcy model in the continuum scale limit. In this section, we recall the formulation of the

standard two-phase Darcy model that is classically used to describe two-phase flow in porous media at the con-

tinuum scale (Muskat, 1949; Miller et al., 1998; Pinder and Gray, 2008). The model can be derived by applying
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the volume averaging operators on a Representative Elementary Volume of the porous structure (Whitaker, 1986b;

Lasseux et al., 1996), along the same lines of the derivation in Section 2.2. Unlike the present micro-continuum

model, the two-phase Darcy model is a two-field model, meaning that instead of one velocity field describing the

flow, there are two velocities (vi with i = g, l) with separate pressure fields (pi with i = g, l).

The incompressible, immiscible two-phase Darcy model consists of a saturation equation for the wetting phase,

∂φαl

∂t
+ ∇.vl = 0, (28)

a mass balance equation,

∇.v = 0, (29)

and two momentum balance equations, one for each phase,

vi = φαivi
i = −

k0kr,i

µi
∇ pi

i − ρi g , i = g, l,

= − Mi ∇ pi
i − ρi g , i = g, l, (30)

these can also be written as,

0 = −∇ pi
i + ρi g − M−1

i vi, i = g, l, (31)

where k0 is the absolute permeability of the porous structure, kr,l and kr,g are the relative permeabilities with respect

to each fluid (classically represented here as functions of water saturation; more complex formulations exist that

account for viscous coupling between the two fluids or for the Klinkenberg effect in the gas phase (Standnes et al.,

2017; Picchi and Battiato, 2018)), and Mi = k0kr,i
µi

are the fluid mobilities. These momentum equations arise from

further simplification of the volume averaged Stokes equations, Eq. (16), where the drag forces are combined and

described as a Darcy term. Moreover, Whitaker (1986a) showed that the viscous dissipative term, ∇ · αiS
i
i is

negligible in comparison to the drag forces whenever the system’s macroscopic length scale is significantly larger

than the length scale of that averaging volume. This feature is a fundamental aspect of the multiscale micro-

continuum framework because it means that even though the viscous dissipative term is retained in the single-field

momentum equation, it naturally vanishes when the computational cells contain solid content. This allows the

continuity of stresses between porous and solid-free domains (Neale and Nader, 1974).

Because it involves four equations and five unknown variables, the two-phase Darcy model is complemented

by the definition of macroscopic capillary pressure pc, which provides an additional relationship between the two

averaged pressure fields:

pc (αl) = pg
g − pl

l . (32)

This equation has been theoretically derived through homogenization techniques (Whitaker, 1986b; Torres, 1987).

For simplicity, we follow the classical approximation that pc depends only on saturation (Leverett, 1940; Brooks

and Corey, 1964; van Genuchten, 1980). Alternative formulations have been proposed to account for observed

disequilibrium and hysteretic effects in the macroscopic capillary pressure (Hassanizadeh et al., 2002; Gray et al.,

2015; Li et al., 2018; Miller et al., 2019; Starnoni and Pokrajac, 2020).

As the two-phase Darcy model explicitly represents the two phase-averaged velocities, it can be used to derive

an expression for the relative velocity vr in the porous region. Before going through the derivation, we note that

the application of the gradient operator to the definition of the single-field pressure  p, Eq. (9), along with the

definition of capillary pressure, Eq. (32), results in:

∇ pl
l = ∇ p − ∇ αg pc ,

∇ pg
g = ∇ p + ∇ (αl pc) . (33)
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Based on the equations presented above, the multi-phase Darcy model implies the following expression for  vr:

vr = vl
l − vg

g ,

= −
Ml

φαl
∇ pl

l − ρl g +
Mg

φαg
∇ pg

g − ρg g ,

= φ−1

"
−

Ml

αl
∇pl

l +
Mg

αg
∇ pg

g +
 
ρl

Ml

αl
− ρg

Mg

αg

!
g

#
,

= φ−1

"
−

 
Ml

αl
−

Mg

αg

!
∇ p +

 
ρl

Ml

αl
− ρg

Mg

αg

!
g +

Ml

αl
∇ αg pc +

Mg

αg
∇ (αl pc)

#
,

= φ−1

"
−

 
Ml

αl
−

Mg

αg

!
∇ p +

 
ρl

Ml

αl
− ρg

Mg

αg

!
g +

 
Ml

αg

αl
+ Mg

αl

αg

!
∇ pc −

 
Ml

αl
−

Mg

αg

!
pc∇α l

#
. (34)

In Soulaine et al. (2019) only the term involving the single-field pressure gradient, φ−1 − Ml
αl

− Mg

αg
∇p , was

considered. As such, the model could not account for gravity or capillary e ffects within the porous domain. The

comprehensive formulation presented in Eq. (34) overcomes these limitations.

A two-phase Darcy model for the single-field velocity v is then formed to derive the continuum scale formula-

tion of the drag force µk−1v and capillary force Fc. This is achieved by summing both phase velocities, Eq. (30),

and using the pressure gradient relationship, Eq. (33). We obtain:

v = vl + vg,

= − Mg∇pg
g − Ml∇ pl

l + ρg Mg + ρl Ml g, (35)

= − Mg + Ml ∇ p + ρg Mg + ρl Ml g +
h
Ml∇ αg pc − Mg∇ (αl pc)

i
,

The previous equation can be recast into:

0 = −∇ p + ρ∗ g − M−1v + M−1
h
Ml∇ αg pc − Mg∇ (αl pc)

i
, (36)

where M = Ml + Mg is the total mobility and ρ∗ = ρlMl + ρg Mg / Ml + Mg is a mobility-weighted average

fluid density. This single-field two-phase Darcy equation matches the two-phase micro-continuum momentum

equation, Eq. (20), if the drag coefficient and the capillary force equal

µk−1 = M−1 = k−1
0

 
µl

krl
+

µg

krg

!−1

, (37)

and

Fc = M−1
h
Ml∇ αg pc − Mg∇ (αl pc)

i
,

=
"
M−1 Mlαg − Mgαl

 
∂pc

∂αl

!
− pc

#
∇α l, (38)

respectively. The single-field relative permeability, Eq. (37), is a harmonic average of the two-phase mobilities, in

agreement with the proposal of Wang and Beckermann (1993) and Soulaine et al. (2019).

Finally, we note that in Eq. (36), the single-field fluid density ρ∗ in the buoyant term is a weighted average

based on the fluid mobilities, or more exactly, the fractional flow functions, MiM−1. This is a classic concept in

multiphase flow in porous media. As shown in Appendix B, a strictly equivalent solution can be derived whereρ∗

is replaced by ρ in Eq. (36) and the capillary force expression is replaced by:

Fc = M−1 Mlαg − Mgαl [(ρl − ρg) g+ ∇ pc] − pc∇α l (39)
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Condition at the interface between a clear fluid region and a porous domain. The multiscale parameters are

derived above for solid-free and porous regions. In hybrid scale simulations, however, both regions can exist

concomitantly in the computational grid (see Fig. 1B). Here, a condition at the interface between porous and

solid-free domains is proposed.

First, we note that for single-phase flow the DB equation captures the slip length induced by the continuity of

stresses between the two regions (Neale and Nader, 1974). If the porous matrix has sufficiently low permeability,

fluid velocities in the porous domain are near zero and a no-slip condition is recovered at the interface between

solid-free and porous regions (Angot et al., 1999; Khadra et al., 2000; Soulaine and Tchelepi, 2016). This enables

the use of micro-continuum simulations at the pore scale using a penalized approach, i.e., the solid phase is

described as a low-permeability porous medium.

For two-phase flow, the discontinuity in porosity leads to a change in the form of the surface tension force.

Here, we treat this discontinuity by assuming that the fluid-fluid interface of a droplet on a porous substrate forms

a contact angle θ with the solid surface (see Fig. 3). The contact angle is an upscaled parameter that depends

on various sub-grid scale properties including interfacial energies, surface roughness, and the presence of thin

precursor films (Wenzel, 1936; Cassie and Baxter, 1944; Meakin and Tartakovsky, 2009). In the present model,

the contact angle is imposed by locally modifying the orientation of the fluid-fluid interface relative to the solid

surface (Horgue et al., 2014; Soulaine et al., 2018, 2019). This is achieved by replacing the mean normal vector

nlg at the interface between the clear fluid and the porous regions by a locally modified normal, n̂lg, that satisfies

the condition,

n̂lg = cos θnwall + sin θtwall, (40)

where nwall and twall are the normal and tangent vectors to the porous surface, respectively. The numerical strategy

to implement Eq. (40) is described in details in Horgue et al. (2014) and Soulaine et al. (2018). The effectiveness

of this interfacial condition is demonstrated in Section 4.2.

Summary of the multiscale parameters. The multiscale parameters v̄r, µk−1, and F c were derived by asymptotic

matching to the VOF method in solid-free regions and to the multiphase Darcy model in porous regions. The

resulting parameters, therefore, have different forms in di fferent regions. In the porous domains, the multiscale

parameters depend on concept such as relative permeability  k r,i (also described in terms of fluid mobility, Mi =
k0kr,i/µ i) and capillary pressure pc (αl).

The relative velocity follows the relation:

v̄r =





Cα max v ∇α l
|∇α l|, in clear fluid regions,

φ−1 − Ml
αl

− Mg

αg
∇ p + ρl Ml

αl
− ρg Mg

αg
g + Mlαg

αl
+ Mgαl

αg
∇ pc − Ml

αl
− Mg

αg
pc∇α l , in porous regions.

(41)

The single-field relative permeability is given by:

µk−1 =





0, in solid-free regions,

k−1
0

kr,l
µl

+ kr,g
µg

−1

, in porous regions.
(42)

The body force Fc describes the capillary forces within a computational cell using:

Fc =





−φ−1σ∇. n̂lg ∇α l, in solid-free regions,
h
M−1 Mlαg − Mgαl

 ∂pc

∂αl
− pc

i
∇α l, in porous regions,

(43)
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Figure 3: Conceptual Representation of the multiphase DB micro-continuum approach. Here θ represents the contact angle and REV is a
Representative Elementary Volume. The stated relationship between the averaging volume’s length scale L V and the porous length scale LP is
required for the creation of a REV.

where the modified normal at the fluid-fluid interface is:

n̂lg =





− ∇α l

|∇α l|, in solid-free regions,

cos θnwall + sin θtwall, at the interface between solid-free and porous regions.
(44)

Finally, the single-field fluid density is expressed as:

ρ =





ρlαl + ρgαg, in solid-free regions,

ρgMg + ρlMl M−1, in porous regions.
(45)

The derivation of the multiphase micro-continuum equations, Eq. (21), and of their respective multiscale

parameters, Eqs. (41)-(45), represents the main theoretical contribution of this paper.

3. Numerical implementation

The two-phase multi-scale micro-continuum model proposed above is implemented in the open-source CFD

platform OpenFOAM R version 7.0 from https: //www.openfoam.org. This code is a C ++ library that solves

partial differential equations with the finite-volume method. It handles complex structured and unstructured three

dimensional grids by default and has demonstrated a good scalability for parallel computing of flow in porous

media (Orgogozo et al., 2014; Horgue et al., 2015; Guibert et al., 2015). One of its features is that it solves the

coupled equations using sequential approaches. The present section details the solution algorithm developed in

this paper. Particularly close attention is paid to the description of the velocity-pressure coupling.

3.1. Discretization of the equations

The momentum equation, Eq. (21), is transformed into a set of algebraic equations after application of the

finite-volume discretization procedure. The nonlinearity introduced by the advection term is dealt with by lineariz-
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ing around the latest velocity field. The momentum equation is expressed in semi-discrete form (with successive

time levels denoted by k and k + 1) using a Euler implicit difference scheme:

V


ρk+1vk+1

P − ρkvk
P

δt


 = −a

0

Pvk+1
P +

X

NP

a
0

NP vk+1
NP − ∇ p + ρg + Fc − K f sv

k+1
P . (46)

In equation (46), V and δt stand for the cell volume and time step, respectively. The subscript  P indicates values

at the cell center. The coefficients a
0

NP account for the influence of neighboring control volumes and primarily

include convective and diffusive fluxes across cell faces. K f s corresponds to the exchange of momentum of the

fluids with the solid, i.e., the Darcy term in Eq. (21). The pressure gradient, buoyancy term, and capillary force

are not discretized at this stage.

All explicit source terms other than the pressure gradient, buoyancy term, and capillary force are combined

into a single vector, S = Vρ kvk
P

δt . Eq. (46) can then be rearranged as:

 
Vρ k+1

δt
+ a

0

P + K f s

!
vk+1

P =
X

NP

a
0

NP vk+1
NP + S − ∇ p + ρg + Fc. (47)

This equation forms a matrix system that results from the momentum equation discretization. The term a P =
Vρ k+1

δt + a
0

P + K f s represents the diagonal term of this matrix. Following OpenFOAMR internal notations (Jasak,

1996), the operator H (X) =
P

NP a
0

NP XNP + S is introduced and Eq. (47) becomes:

aPvk+1
P = H vk+1 − ∇ p + ρg + Fc. (48)

This semi-discretized form of the momentum balance is used to form the pressure equation. This is usually

achieved by dividing Eq. (48) by the diagonal coe fficient, aP, and substituting the semi-discretized form of v k+1

into the overall mass balance, Eq. (13), which is a divergence free velocity in the absence of phase change. Finally,

the pressure equation can be written as:

∇.




H vk+1 + ρg + Fc

aP


 − ∇.

 
1

aP
∇pk+1

!
= 0. (49)

Further details regarding the discretization procedure in OpenFOAM R can be found in Jasak (1996) and

Weller et al. (1998). The saturation equation, Eq. (15), is discretized with a Van Leer limiter function for the

convection term and a forward Euler scheme for time discretization.

3.2. Solution algorithm

The discretized equations are solved using OpenFOAM R in a segregated way. In particular, the pressure-

velocity coupling formed by Eqs. (48) and (49) is handled by a predictor-corrector algorithm along the same

lines as the Pressure Implicit Splitting-Operator (PISO) algorithm originally designed by Issa (1985) to solve

the transient Navier-Stokes equations. It is built on the top of the OpenFOAM R VOF solver interFoam. The

numerical scheme uses the following sequence of steps. First, the saturation equation, Eq. (15), is solved explicitly

using the OpenFOAM R implementation of the Flux Corrected Transport (FCT) theory (Rudman, 1997) called

Multidimensional Universal Limiter with Explicit Solution (MULES). Details regarding the MULES algorithm

can be found in the Chapter 5 of Damian (2013). Second, the boundary values of v and vr are updated according to

Eqs. (10) and (14). Third, the single-field relative permeability kk+1, density ρk+1, and viscosity µk+1 are updated

using the new value of the saturation field, αk+1
l . The surface tension force, Fk+1

c , is computed using Eq. (43).
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Fourth, the velocity field v∗ is calculated by solving implicitly the momentum equation,

aPv∗
P = H (v∗ ) + ρk+1 g + Fk+1

c − ∇ pk, (50)

where the gradient of the pressure field is evaluated from the values computed at the previous time step. This stage

is called the momentum predictor. Fifth, the predicted velocity v∗ (which does not satisfy the continuity equation,

Eq. (13)) is corrected. This is achieved by finding (v∗∗ , p∗ ) that obeys,

v∗∗
P =

1
aP

h
H (v∗ ) + ρk+1 g + Fk+1

c − ∇ p∗
i
, (51)

∇.v∗∗ = 0. (52)

Based on these two equations, the pressure equation is formulated as

∇.
 

H (v∗ ) + ρk+1 g + Fk+1
c

aP

!
− ∇.

 
1

aP
∇ p∗

!
= 0, (53)

and solved implicitly with a generalized method of Geometric-Algebraic Multi-Grid (GAMG) embedded in

OpenFOAM R . The corrected velocity v ∗∗ is then computed point-wise from Eq. (51). This step (the PISO

loop) may be repeated several times to ensure convergence. Issa (1985) demonstrated that at least two itera-

tions are required to ensure that the solution of the pressure-velocity (v, p) coupling satisfies mass conservation.

The resulting values are set to (v k+1, pk+1) and, then, the algorithm marches in time as dictated by the imposed

Courant-Friedrichs-Lewy (CFL) number.

3.3. Open-Source Toolbox: hybridPorousInterFoam

The accompanying open-source toolbox follows the implementation described above and consists of four dis-

tinct parts: a main directory that includes the licence files, instructional files, release notes, and automated com-

pilation procedures along with three main toolbox sub-directories. The three sub-directories consist of a Solver

sub-directory that includes the code for the hybridPorousInterFoam solver; a Tutorials sub-directory that includes

all the verification and example cases presented in this paper; and a Libraries sub-directory that includes both the

dynamically linked libraries used in the implementation of the penalized contact angle and, also, the  Brooks and

Corey (1964) and van Genuchten (1980) porous media models used to calculate the required sub-voxel description

of the fluid-fluid interface in terms of relative permeability and capillary pressures (see Appendix A). This last li-

brary was obtained from the open-source toolbox published in Horgue et al. (2015). The hybridPorousInterFoam

toolbox can be accessed from the lead author’s repository (https://github.com/Franjcf).

4. Verification

In this section, the two-phase micro-continuum model is used in various situations for which reference solu-

tions exist. The objective is to verify that the multiscale solver converges e ffectively towards its two asymptotic

limits, namely the two-phase Darcy model at the continuum scale and the VOF formulation at the pore scale.

4.1. Darcy scale validation

The model’s ability to predict multiphase flow at the Darcy scale is validated against three well-known analyt-

ical and semi-analytical solutions. Together, these assessments test for the correct implementation of the relative

permeability, gravity, and capillary terms derived in section 2.3. This validation follows the steps outlined in

Horgue et al. (2015) for the development and validation of their own multiphase Darcy scale solver:  impesFoam.

A complete list of parameters used is provided in Tables 1 and 2.
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Property Value

Water Density 1000 kg m−3

Water Viscosity 1 × 10−3 Pa s

Air Density 1 kg m−3

Air Viscosity 1.76 × 10−5 Pa s

Oil Density 800 kg m−3

Oil Viscosity 0.1 Pa s

Gravity 9.81 m s−2

Table 1: Table of Fluid Properties

Model Parameter Value

p0 100 Pa
m (Van Genuchten) 0.5
m (Brooks-Corey) 3
β (Brooks-Corey) 0.5

Table 2: Table of Model Parameters

Figure 4: Comparison of the time-dependent saturation profiles calculated from our numerical framework and Buckley-Leverett’s semi-
analytical solution for water injection into air-saturated (B) and oil-saturated (C) reservoirs. Figure A is a visual representation of the water
saturation in the reservoir over time. Figures B and C show the semi-analytical (lines) and numerical (symbols) solutions of the system when
using the Brooks-Corey and Van Genuchten relative permeability models, respectively.

4.1.1. Buckley-Leverett

We first consider the well-established Buckley-Leverett semi-analytical solution for two-phase flow in a hor-

izontal one-dimensional system with no capillary e ffects (4 m long, 2000 cells, φ = 0.5, k−1
0 = 1 × 1011 m−2). In

this case, water is injected into an air-saturated reservoir at a constant flow rate with the following boundary con-

ditions: vwater = 1 × 10−5 m s−1, ∂pinlet

∂x = 0 Pa m−1, and p outlet = 0 Pa. As water flows into the reservoir, it creates

a saturation profile that is characterized by a water shock at its front, an effective shock velocity, and a saturation

gradient behind said front. Figure 4 shows that a good agreement is observed between our numerical solutions and

the semi-analytical solutions presented in Leverett (1940) for all three features regardless of the chosen relative

permeability model.

4.1.2. Gravity dominated Buckley-Leverett

We then tested the exact same air-saturated system, but this time with the addition of gravity in the same

direction of the water injection velocity (see Figure 5). Under these conditions, gravity becomes the dominating

driving force and the following equation can be used to calculate the water saturation at the front (Horgue et al.,
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Figure 5: Comparison of the time-dependent saturation profiles calculated from our numerical framework and the semi-analytical solution
presented in section 4.1.2. Figure A is a visual representation of water saturation in the reservoir over time. Figures B and C show the
semi-analytical (lines) numerical (symbols) solutions of the systems parametrized through the Brooks & Corey and Van-Genuchten relative
permeability models, respectively.

2015):

vl
l −

k0kr,l(α f ront
l )

µl
ρl g = 0, (54)

where the symbols are consistent with the ones presented in previous sections. Given the parameters presented in

Tables 1 and 2, Eq. (54) is solved iteratively to obtain α f ront
l = 0.467 and α f ront

l = 0.753 when using the Brooks-

Corey and Van Genuchten relative permeability (kr,l) models, respectively (Appendix A). Figure 5 shows that our

numerical solutions agree with the semi-analytical solutions.

4.1.3. Gravity-capillarity equilibrium

Lastly, we tested the validity of the capillary pressure term derived in Eqs. (34) and (38) by solving for the

steady state saturation profile of a one-dimensional porous column filled with water and air (1 m tall, 1500 cells,

φ = 0.5, k−1
0 = 1 × 1011 m−2). Here, the initial water saturation of the column is set far from its thermodynamic

equilibrium in a step-wise fashion: the lower half is partially saturated with water (S water = 0.5) while the upper

half is initially dry as shown in Figure 6A. To ensure proper equilibriation, both fluids are allowed to flow freely

through the column’s top boundary, but not through its lower one:
∂vtop

∂y = 0 m s−1 m−1, ∂ptop

∂y = 0 Pa m−1, vbottom =
0 m s−1, pbottom = 0 Pa. For this simplified case, the theoretical steady-state can be described as the balance be-

tween capillary and gravitational forces, where gravity pulls the heavier fluid (water) downwards while capillarity

pulls it upwards. This behaviour can be described by the following equation (Horgue et al., 2015):

∂pc

∂y
= (ρg − ρl)gy, (55)

which can be rearranged to yield:
∂αl

∂y
=

(ρg − ρl)gy

∂pc

∂αl

. (56)
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Figure 6: Comparison of the steady state water saturation profiles calculated from our numerical framework and the analytical solution shown
in equation 56. Figure A is a visual representation of the initial and final water saturation profiles in the reservoir. Figures B and C show the
steady state saturation profiles and the resulting equilibrium saturation gradients for both implemented capillary pressure models, respectively.

This last expression allows for the explicit calculation of the equilibrium water saturation gradient by using the

closed-form Brooks-Corey or Van Genuchten capillary pressure models to obtain ∂pc

∂αl
(Appendix A). Figure 6

shows that our numerical model accurately replicates the results obtained from Eq. (56) regardless of the chosen

capillary pressure model.

4.1.4. Darcy scale application: Oil drainage in a heterogeneous reservoir

As an illustration of the applicability of our model to more complex systems at the Darcy scale, we sim-

ulate water injection into a heterogeneous oil-saturated porous medium (1 by 0.4 m, 2000 by 800 grid, water

injection velocity = 1 × 10−4 m s−1, poutlet = 0 Pa). Oil drainage is commonly used in the energy sector, partic-

ularly as a form of enhanced oil recovery (Alvarado and Manrique, 2010). Although analytical solutions such

as the ones presented above are useful approximations for simple systems, they become greatly inaccurate when

modeling complex multi-dimensional systems with spatially heterogeneous permeability. To illustrate this ef-

fect, we initialize our reservoir’s permeability field as grid of 0.25 by 0.1 m blocks with  k 0 values ranging from

1 × 10−13 to 4 × 10−13 m2 (see Figure 7). The relative permeabilities within the reservoir are modeled through the

Van Genuchten model with negligible capillary effects (Table 2). We note that this case was originally presented in

Horgue et al. (2015) for the development of impesFoam, a solver that uses the Implicit Pressure Explicit Saturation

(IMPES) algorithm to solve the two-phase Darcy model, making it a convenient benchmark for comparison with

hybridPorousInterFoam.

Under the aforementioned parametric conditions and with equivalent numerical setups (i.e. same grid, time-

stepping, and solver tolerances), Figure 8 shows that the simulations performed with hybridPorousInterFoam and

impesFoam develop very similar, yet not perfectly equivalent, saturation profiles. Of particular interest is the

development of fingering instabilities that form due to the viscosity di fference between the two fluids (Sa ffman

and Taylor, 1988; Chen and Wilkinson, 1985). These instabilities are know to greatly reduce the e fficiency of
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Figure 7: Simulation setup for oil drainage within a heterogeneous reservoir. The di fferent colored blocks represent the spatially variable
permeability field.

Figure 8: Oil drainage in a heterogeneous porous medium solved at the continuum scale using hybridPorousInterFoam or impesFoam. The
white rectangular grid represent the blocks with k 0 values ranging from 1 × 10−13 to 4 × 10−13 m2 as shown in the previous figure.

enhanced oil recovery, as they essentially trap residual oil behind the main water saturation front (Figure  8). Pre-

vious numerical studies have shown that the evolution of viscous fingering is highly dependent on the model’s

hyper-parameters, grid refinement, and/or solution algorithms (Ferrari and Lunati, 2013; Riaz and Tchelepi, 2006;

Horgue et al., 2015; Chen and Meiburg, 1998; Holzbecher, 2009). This characteristic explains why hybridPorous-

InterFoam and impesFoam develop slightly different viscous fingering instabilities despite having virtually perfect

agreement with the previously-presented analytical solutions: the two solvers rely on entirely distinct sets of

governing equations, boundary conditions, discretization schemes, and pressure-solving algorithms (PISO vs IM-

PES). Nevertheless, this example application shows that our solver can readily simulate complex porous systems

that have traditionally been modeled using conventional single-scale Darcy solvers.

4.2. Pore scale validation

Having validated all aspects of the model within the porous domain, we now test our model’s ability to recover

known multiphase Navier-Stokes solutions within a non-porous domain. This validation follows the steps used in

previous validations of multi-phase CFD solvers by Horgue et al. (2014), Xu et al. (2017), and Maes and Soulaine
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(2019) and involves testing the implementation of the imposed contact angle boundary condition against several

well-known numerical and analytical cases. Some of the simulation results obtained with our multi-scale solver

are compared with simulations performed using interFoam, the algebraic VOF solver of OpenFOAM R . In the

following simulations, we implement a static contact angle as an approximate description of multiphase behaviour

at solid interfaces, while noting the existence of more sophisticated formulations including dynamic contact angles

with viscous bending or surface roughness (Wenzel, 1936; Cassie and Baxter, 1944; Voinov, 1976; Cox, 1986;

Whyman et al., 2008; Meakin and Tartakovsky, 2009).

4.2.1. Contact angle on a flat plate

We first test the implementation of the penalized contact angle within  hybridPorousInterFoam by initializing

several “square” water droplets on a 2-D flat porous plate with negligible permeability (6 by 2.4 mm, 480 by 192

cells, k−1
0 = 1 × 1020 m−2) and allowing them to reach equilibrium for di fferent prescribed contact angles ( θwater

= 60◦, 90◦, 150◦). These tests are compared against equivalent droplets initialized on conventional non-porous

boundaries and solved through interFoam. Figure 9A shows excellent agreement between the numerical simula-

tions and the target equilibrium contact angle θwater . The lack of a perfectly sharp interface (an intrinsic feature of

the VOF method) makes it difficult to accurately measure the contact angle at the solid interface. However, we can

confidently state that all our results are within 5◦ of the target equilibrium contact angle. These tests are virtually

identical to the ones shown in Horgue et al. (2014) and are consistent with their results.

4.2.2. Capillary rise

As a second classic test for the correct implementation of multiphase flow at the pore-scale, we model water

capillary rise in an air-filled tube (1 by 20 mm, 40 by 400 cells,θwater = 45◦) and measure the steady-state position

of the water meniscus. To ensure a proper numerical setup, the tube’s lower boundary is modeled as an infinite

water reservoir and its upper boundary as open to the atmosphere. To prevent initialization bias, the meniscus is

initialized about 2 mm lower than the theoretical equilibrium height of 10 mm, which is given by the following

equation (Jurin, 1719):

heq. =
σcos(θ)
Rρlgy

, (57)

where R is the tube’s radius. We then numerically simulate the system with hybridPorousInterFoam and in-

terFoam, using impermeable porous boundaries with the former (k −1
0 = 1 × 1020 m−2) and conventional sharp

boundaries with the latter. Figure 9B shows the steady state configurations of both cases, which have a meniscus

height of 8.8 mm. According to Eq. (57), this height is equivalent to an imposed contact angle of 52 ◦, a small

yet significant di fference to the imposed contact angle of 45 ◦. We are not the first to note that interFoam (the

standard pore scale multiphase flow solver in OpenFOAMR presents minor inaccuracies in its ability to impose a

prescribed contact angle (Horgue et al., 2014; Gründing et al., 2019). The comparisons presented here show that

our solver’s accuracy in this regard is similar to that of interFoam.

4.2.3. Taylor film

We now model the drainage of ethanol (µeth. =1.2 × 10−3 Pa s, ρeth. = 789 kg m−3) by air in a 2-D micro-

channel (800 by 100 µm, 280 by 116 cells, θeth. = 20◦, injection velocity U = 0.4 m/s, poutlet = 0 Pa). Under these

circumstances, a film forms at the channel’s boundaries as a result of competing viscous and capillary forces at

the solid interface (see Figure 9C). The height of this film is given by the following analytical solution, which we

use as a benchmark to verify our numerical simulations (Aussillous et al., 2000),

h f ilm

R
=

1.34Ca2/ 3

1 + 3.35Ca2/ 3
, (58)
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Figure 9: Compilation of all test cases performed for the verification of the solver within the Navier-Stokes domain. Parts A, B, and C refer
to the experiments described in sections 4.2.1, 4.2.2, and 4.2.3, respectively. When present, the shaded walls show the porous boundaries used
in hybridPorousInterFoam, as opposed to the standard boundary (no-slip boundary condition at an impermeable wall) using in interFoam.For
reference and easy comparison, the white lines in Part A show the input equilibrium contact angle.

where Ca is the capillary number defined as Ca = µeth.U
σ . We can solve Eq. (58) with the given simulation param-

eters to obtain a film thickness of 4.35 µm. Simulations of this system performed using hybridPorousInterFoam

with impermeable porous boundaries (k −1
0 = 1 × 1020 m−2) and interFoam with conventional boundaries yield a

value of 4.50 µm, representing a relative error of about 3% or 0.15µm. These tests and their results are consistent

with numerical simulations reported by Graveleau et al. (2017) and Maes and Soulaine (2019) using interFoam.

4.2.4. Pore scale application: Oil drainage in a complex pore network

As we did at the end of the Darcy scale verification section, we now illustrate our model’s applicability to

more complex systems by presenting a simulation of oil drainage, this time at the pore scale. The relevance of

the simulated system follows from our previous illustrative problem, as this is simply its un-averaged equivalent

at a smaller scale. The complexity of the simulated system (1.7 by 0.76 mm, 1700 by 760 cells, water injection

velocity = 0.1 m/s, θoil = 45◦, poutlet = 0 Pa) stems from the initialization of a heterogeneous porosity field as a

representation of a cross-section of an oil-wet rock. Here, the porosity is set to one in the fluid-occupied space

and close to zero in the rock-occupied space (See Fig. 10A). This allows for the solid grains to act as virtually

impermeable surfaces (k−1
0 = 1 × 1020 m−2) with wettability boundary condition (Horgue et al., 2014). To verify

the accuracy of our solver, we solved an equivalent system with  interFoam by removing the rock-occupied cells

from the mesh and imposing the same contact angle at these new boundaries through conventional methods.

Figure 10 shows that the results of the two simulations are practically identical, down to the creation of the

same preferential fluid paths and the same droplet snap-o ff at 5 ms. Nevertheless, there are minor di fferences in

the results, where some interfaces are displaced at slightly di fferent rates than their counterparts (see the upper

right corner at 10 ms). We attribute these slight differences to the differing implementations of the contact angle

at the solid boundaries. We invite interested readers to find this case in the accompanying toolbox and to refer to

the extensive literature on this topic for further discussion on numerical and experimental studies of drainage and

imbibition (Lenormand et al., 1988; Ferrari and Lunati, 2013; Datta et al., 2014; Roman et al., 2016; Zacharoudiou

et al., 2018; Liu et al., 2019; Singh, 2019) .

22



Figure 10: Oil drainage in a complex porous medium solved at the pore scale using hybridPorousInterFoam and interFoam. The shaded
sections represent solid grains (modeled using φ = 0.001 and k −1

0 = 1 × 1020 m−2 in hybridPorousInterFoam) and the blue and red colors
represent oil and water, respectively.

5. Hybrid Scale Applications

The complete body of work presented in the previous two sections verifies the capability of our model to

perform simulations of multiphase flow in complex porous media at the pore and continuum scales. We now show

how hybridPorousInterFoam makes the simulation of hybrid scale multiphase systems a fairly straightforward

endeavor, a process that has proven quite challenging to perform with conventional methods. The main challenge

when modeling these systems can be summarized by the following question: How can we rigorously model

the porous interface between coupled Navier-Stokes and Darcy scale domains? Although this is still an open

question, we attempt to approximate an answer by guaranteeing three of its necessary components in the present

micro-continuum framework: first, mass conservation across the interface; second, continuity of stresses across

the interface and; third, a wettability formulation at the interface. The first two components are intrinsic features of

the solver which have been proven necessary and sufficient to accurately model single phase flow in hybrid scale

simulations (Neale and Nader, 1974) and have been used as closure conditions in previous multiphase models

(Lacis et al., 2017; Zampogna et al., 2019). The latter, as explained in the pore scale validation section, is roughly

approximated through a constant contact angle boundary condition. We recognize that these components represent

an approximation to the complete description of the boundary. Nevertheless, to the best of our knowledge, there

does not exist a better way to model this interfacial behavior, a testament to the novelty and potential of the

proposed modeling framework.

The following illustrative cases are used to show our model’s capability to simulate multiphase systems at the

hybrid scale. They are also included as tutorial cases in the accompanying toolbox.
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5.1. Wave propagation in a coastal barrier

Coastal barriers are used throughout the world to prevent flooding, regulate water levels, and protect against

inclement weather (Morton, 2002). Accurate simulation of water interaction with these barriers is challenging as

it requires predicting the behavior of open water at large scales (Navier-Stokes) while also resolving small-scale

multiphase effects within the barrier itself (Darcy flow).

We created a three-dimensional coastal barrier (8.3 by 2.7 m by 0.25 m, 1660 by 540 by 50 cells) by initializing

a heterogeneous porosity field in the shape of a barrier (k−1
0 = 5 × 107 m−2, φbarrier = 0.5) and by setting the water

level such that it partially covers the barrier (see Figure 11). In this particular case, we chose not to impose

a contact angle at the barrier-water interface as its e ffects would be minimal when compared to macroscopic

gravitational e ffects (Bond Number = ∆ρ(Length Scale)2gy

σ >> 1). To ensure proper initialization, we allowed the

water saturation profile on the above-water section of coastal barrier to reach its capillary-induced steady state

(similarly to the capillary rise simulation presented in section 4.1.3). This process was modeled using the Van

Genuchten relative permeability and capillary pressure models (m = 0.8, p0 = 1000 Pa). After equilibration, we

started the simulation by initializing a wave as a rectangular water extrusion above the water surface. To ensure

proper wave propagation behavior, we tuned the simulation’s numerical parameters (discretization schemes, linear

solvers, time stepping strategy) according to the guidelines established in Larsen et al. (2019).

The results from this simulation show that we can simultaneously model coupled wave and Darcy dynamics in

three dimensions. The snapshots shown in Figure 11 illustrate how water saturation within the porous domain is

controlled by the crashing of waves, gravity, and capillary effects. The associated wave absorption and dissipation

cycle brought about by the porous structure is repeated every few seconds with lowering intensity until the initial

configuration is eventually recovered. To the best of our knowledge, Figure 11 shows the first existing numerical

simulation coupling multiphase flow with real capillary effects at two different scales without the use of different

meshes, solvers, or complex interfacial conditions. Other models such as olaFlow have been developed to simulate

similar wave dynamics with coastal barriers (Higuera et al., 2013). Many of these models rely on the assumption

that the pores within the coastal barrier are large ( >10 cm), meaning that they can reasonably ignore capillary

effects within the porous medium. Contrastingly, our model makes no such assumption, meaning it can also be

used to model coastal barriers with arbitrarily small pores (such as in sand or gravel structures) and also should be

applicable to other types of groundwater-surface water interaction (Maxwell et al., 2014).

5.2. Drainage and imbibition in a fractured microporous matrix

A second conceptually similar, yet completely di fferent hybrid scale application of hybridPorousInterFoam

involves the injection of fluids into fractured porous materials. Accurately capturing the fluid behavior in these

systems is especially challenging due to the fact that it requires accounting for multiphase e ffects simultaneously

within the fracture (Navier-Stokes), in the surrounding microporous matrix (Darcy), and at the porous boundary

(the contact angle implementation).

Here, we model drainage and imbibition in a water-wet fracture system, where we inject air into a 90% water-

saturated microfracture in the former and we inject water into a 90 % air-saturated microfracture in the latter (1.2

by 0.5 mm, 1200 by 500 cells, θwater = 45◦, fluid injection velocity = 0.1 m s −1, poutlet = 0 Pa). The relative

permeabilities and capillary pressures in the heterogeneously-initiated porous domain ( φf racture = 0.5, k−1
0 =

4 × 1012 m−2) are modeled through the Brooks-Corey model with m = 3, p0 = 100 Pa, and β = 0.5.

Figure 12 presents the results of these simulations and illustrates how strongly multi-scale wettability e ffects

can influence simulations results. In both cases, the injected fluid is able to invade the microporous matrix, but

the mechanism through which it does is completely di fferent. In the case of water-injection (imbibition), the

wetting contact angle boundary condition encourages complete water saturation of the whole fracture such that air

is completely displaced by time = 125 ms. Furthermore, throughout the whole process, the microporous capillary
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Figure 11: Coastal barrier simulation at di fferent times. The thin black line represents the boundary of the porous solid: φ and k−1
0 are set to

0.5 and 5 × 107 m−2 below said line and to 1 and 0 above it, respectively. The 2-D representation shows a plane that cuts through the middle
of the 3-D simulation.
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Figure 12: Drainage and imbibition in a microporous fracture. Shades of blue and red represent of the degree of air and water saturation,
respectively. The thin white line shows the fracture outline (i.e. the fluid-solid interface), which separates the open fracture ( φ = 1, k−1

0 = 0)
from the porous fracture walls (φ = 0.5, k−1

0 = 4 × 1012 m−2) located above and below it.

pressure acts as an additional driving force for water invasion into the surrounding microporous matrix, leading to

the almost complete saturation of the whole system by time = 500 ms.

The drainage case is slightly less intuitive, yet conceptually more interesting. Here, the contact angle and

microporous capillary pressures act against the invasion of air into the fracture and into the surrounding porous

material, respectively. The result is that the air cannot e ffectively displace water from the fracture, leading to

the trapping of water droplets in fracture ridges. Initially, these droplets act as barriers that prevent air entry

into the porous matrix (see time = 125 ms). However, as the flow-induced pressure gradient pushes air into the

porous matrix, the water saturation in the pores surrounding the droplets decreases. The system then responds by

increasing the capillary pressure at the porous interface, which eventually leads the water droplets to imbibe into

the matrix. Lastly, we highlight the clear time scale separation between the imbibition and drainage cases, as the

invading interface progresses about three times more slowly within the microporous matrix in the latter case.

Several similar dual porosity models have been proposed to model the types of effects illustrated in Figure 12,

but never in this way or to this degree of detail (Douglas et al., 1991; Di Donato et al., 2003). Many of these models

rely on a description of fractures as single-dimensional features with high porosity and permeability values within

a pure Darcy scale simulation (Nandlal and Weijermars, 2019; Yan et al., 2016). Although very useful, many of

these simulations ignore the geometric capillary e ffects and non-linear couplings presented above. Our approach

can therefore be seen as the missing link between pore-scale modeling and Discrete Fracture Networks (Karimi-

Fard and Durlofsky, 2016) and as a useful tool for refining the transfer functions used in these large scale models.
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6. Conclusion

We have successfully derived, implemented, tested, and verified a multiscale model for two-phase flow in

porous media. This modeling framework and its open-source implementation hybridPorousInterFoam can be

used to simultaneously model multiphase flow at two di fferent length scales: a Darcy Scale where sub-voxel

fluid-fluid interactions within a porous medium are modeled through relative permeability and capillary pressure

constitutive models and a pore scale (or Navier-Stokes scale) where the solid material is non-porous and fluid-fluid

interactions are modeled through a continuum representation of the Young-Laplace equation. Furthermore, our

model is able to do this through the use of a single momentum conservation equation without the need to define

different meshes, separate solvers /domains, or complex interfacial conditions. The proposed framework is an

accurate and straightforward way to introduce the physics of two-phase flow in porous media in CFD softwares.

The core derivation of our micro-continuum framework relies solely on fundamental principles and uses the

the methods of volume averaging and asymptotic matching to modify and expand the Navier-Stokes equations.

Through this study, we showed that our model can successfully simulate multiphase Darcy and Navier-Stokes

flow to the same standard (and with the same assumptions and limitations) as conventional single-scale solvers

impesFoam and interFoam. The coupling between the two scales at porous interfaces is handled by ensuring mass

conservation and continuity of stresses at said boundary, as well as by implementing a constant contact angle

wettability condition. We then leveraged all these features to show that our model can be used to model hybrid

scale systems such as wave interaction with a porous coastal barrier and drainage and imbibition in a fractured

porous matrix.

Although the proposed formulation represents a significant advance in the simulation of multiscale multiphase

systems, we note that further study is required in particular to properly and rigorously model the multi-scale

porous interface. The implemented interface, as it stands, has been shown to accurately predict single phase flow

into porous media (Neale and Nader, 1974), impose static contact angles over porous boundaries (Horgue et al.,

2014), and approximate multiphase flow in porous media (Lacis et al., 2017). However, its accuracy when model-

ing multiphase flow at rough porous interfaces is still an open question, as there does not currently exist a rigorous

formulation to model such behaviour. The derivation, implementation, and verification of such a boundary condi-

tion and the inclusion of erosion, chemical reactions (Soulaine et al., 2017, 2018), and solid mechanics (Carrillo

and Bourg, 2019) into this framework will be the focus of subsequent papers.
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List of Symbols

αg Saturation of the non-wetting phase

αl Saturation of the wetting phase

β Brooks and Corey Coefficient

Dik Drag force exerted by phase k on phase i (Pa/ m)

Fc Surface tension force in the grid-based domain (Pa.m−1)
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g Gravity vector (m.s−2)

nlg Normal vector to the fluid-fluid interface in the continuous physical space

nwall Normal vector to the porous surface

twall Tangent vector to the porous surface

vi Velocity of phase i in the continuous physical space (m/ s)

w Velocity of the fluid-fluid interface in the continuous physical space (m/ s)

κ Interfacial curvature in the continuous physical space (m−1)

I Unity tensor

S Single-field viscous stress tensor in the grid-based domain (Pa)

Si Viscous stress tensor of phase i in the continuous physical space (Pa)

µ Single-field viscosity (Pa.s)

µi Viscosity of phase i (Pa.s)

nlg Mean normal to the fluid-fluid interface in the grid-based domain

vi Superficial velocity of phase i in the grid-based domain (m/ s)

vi
i Phase-averaged velocity of phase i in the grid-based domain (m/ s)

vr Relative velocity in the grid-based domain (m/ s)

v Single-field velocity in the grid-based domain (m/ s)

Si
i

Viscous stress tensor of phase i in the grid-based domain (Pa)

p Single-field pressure in the grid-based domain (Pa)

pi
i Pressure of phase i in the grid-based domain (Pa)

φ Porosity field

ρ Single-field density (kg/ m3)

ρi Density of phase i (kg/ m3)

σ Interfacial tension (Pa.m)

θ Contact angle

Ai j Interfacial area between phase i and j (m2)

Cα Parameter for the compression velocity model

k Apparent permeability (m2)

k0 Absolute permeability (m2)

kr,i Relative permeability with respect to phase i
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M Total mobility (kg−1m3s−1)

m Van Genuchten Coefficient

Mi Mobility of phase i (kg−1m3s−1)

p0 Entry Capillary Pressure (Pa)

pc Capillary pressure (Pa)

pi Pressure of phase i in the continuous physical space (Pa)

V Volume of the averaging-volume (m3)

Vi Volume of phase i in the averaging-volume (m3)
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Orgogozo, L., Renon, N., Soulaine, C., Hénon, F., Tomer, S., Labat, D., Pokrovsky, O., Sekhar, M., Ababou, R., Quintard, M., 2014. An open

source massively parallel solver for richards equation: Mechanistic modelling of water fluxes at the watershed scale. Computer Physics

Communications 185 (12), 3358 – 3371.

URL http://www.sciencedirect.com/science/article/pii/S0010465514002719
Patankar, S. V., 1980. Numerical Heat Transfer And Fluid Flow. Taylor & Francis, Washington, DC.

31



Picchi, D., Battiato, I., 2018. The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media. Water

Resources Research 54, 6683–6707.

Pinder, G. F., Gray, W. G., 2008. Essentials of Multiphase Flow and Transport in Porous Media. John Wiley & Sons.

Quintard, M., Whitaker, S., 1994. Convection, dispersion, and interfacial transport of contaminants: Homogeneous porous media. Advances

in Water Resources 17 (4), 221 – 239.

Riaz, A., Tchelepi, H. A., 2006. Numerical simulation of immiscible two-phase flow in porous media. Physics of Fluids 18 (1).

Rocco, S., Woods, A. W., Harrington, J., Norris, S., 2017. An experimental model of episodic gas release through fracture of fluid confined

within a pressurized elastic reservoir. Geophysical Research Letters 44, 751–759.

Roman, S., Soulaine, C., AlSaud, M. A., Kovscek, A., Tchelepi, H., 2016. Particle velocimetry analysis of immiscible two-phase flow in

micromodels. Advances in Water Resources 95, 199–211.

Rudman, M., 1997. Volume-tracking methods for interfacial flow calculations. International journal for numerical methods in fluids 24 (7),

671–691.

Rusche, H., 2002. Computational fluid dynamics of dispersed two-phase flows at high phase fractions. Ph.D. thesis, Imperial College of

Science, Technology & Medicine Department of Mechanical Engineering Exhibition Road, London SW7 2BX.

Saffman, P., Taylor, G., 1988. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Dynamics

of Curved Fronts 245 (1242), 155–174.

URL http://rspa.royalsocietypublishing.org/content/royprsa/245/1242/312.full.pdf
Scandella, B. P., Delwiche, K., Hemond, H. F., Juanes, R., 2017. Persistence of bubble outlets in soft, methane-generating sediments. Journal

of Geophysical Research: Biogeosciences 122, 1298–1320.

Scheibe, T. D., Perkins, W. A., Richmond, M. C., McKinley, M. I., Romero-Gomez, P. D. J., Oostrom, M., Wietsma, T. W., Serkowski, J. A.,

Zachara, J. M., 2015. Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column. Water Resources

Research 51 (2), 1023–1035.

URL http://dx.doi.org/10.1002/2014WR015959
Singh, K., 2019. How hydraulic properties of organic matter control e ffective liquid permeability of mudrocks. Transport in Porous Media,

1–17.

Soulaine, C., Creux, P., Tchelepi, H. A., 2019. Micro-continuum Framework for Pore-Scale Multiphase Fluid Transport in Shale Formations.

Transport in Porous Media 127 (1), 85–112.

URL https://doi.org/10.1007/s11242-018-1181-4
Soulaine, C., Gjetvaj, F., Garing, C., Roman, S., Russian, A., Gouze, P., Tchelepi, H., May 2016. The impact of sub-resolution porosity of

x-ray microtomography images on the permeability. Transport in Porous Media 113 (1), 227–243.

Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H. A., 2017. Mineral dissolution and wormholing from a pore-scale perspective. Journal of

Fluid Mechanics 827, 457–483.

URL https://www.cambridge.org/core/product/identifier/S0022112017004992/type/journal{_}article
Soulaine, C., Roman, S., Kovscek, A., Tchelepi, H. A., 2018. Pore-scale modelling of multiphase reactive flow. Application to mineral

dissolution with production of CO2. Journal of Fluid Mechanics 855, 616–645.

Soulaine, C., Tchelepi, H. A., 2016. Micro-continuum approach for pore-scale simulation of subsurface processes. Transport In Porous Media

113, 431–456.

Standnes, D. C., Evje, S., Andersen, P. O., 2017. A novel relative permeability model based on mixture theory approach accounting for

solid-fluid and fluid-fluid interactions. Transport in Porous Media 119, 707–738.

Starnoni, M., Pokrajac, D., 2020. On the concept of macroscopic capillary pressure in two-phase porous media flow. Advances in Water

Resources 135, 103487.

Sun, T., Mehmani, Y., Balhoff, M. T., 2012. Hybrid multiscale modeling through direct substitution of pore-scale models into near-well

reservoir simulators. Energy & Fuels 26 (9), 5828–5836.

Tam, C. K., 1969. The drag on a cloud of spherical particles in low reynolds number flow. Journal of Fluid Mechanics 38 (03), 537–546.

Tomin, P., Lunati, I., 2013. Hybrid multiscale finite volume method for two-phase flow in porous media. Journal of Computational Physics

250 (0), 293 – 307.

URL http://www.sciencedirect.com/science/article/pii/S0021999113003513
Tomin, P., Lunati, I., 2016. Investigating darcy-scale assumptions by means of a multiphysics algorithm. Advances in water resources 95,

80–91.

Tomin, P., Voskov, D., sep 2018. Robust and accurate formulation for modeling of acid stimulation. In: 16th European Conference on the

Mathematics of Oil Recovery, ECMOR 2018. pp. 1–16.

URL http://www.earthdoc.org/publication/publicationdetails/?publication=93867
Torres, F. E., aug 1987. Closure of the governing equations for immiscible, two-phase flow: A research comment. Transport in Porous Media

2 (4), 383–393.

URL https://link.springer.com/article/10.1007/BF00136443
Vafai, K., Tien, C., 1981. Boundary and inertia e ffects on flow and heat transfer in porous media. International Journal of Heat and Mass

Transfer 24 (2), 195–203.

van Genuchten, M. T., 1980. A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of

32



America Journal 44 (5), 892–898.

Voinov, O., 1976. Hydrodynamics of wetting. Fluid dynamics 11 (5), 714–721.

Wang, C.-Y., Beckermann, C., 1993. A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-i. formulation.

International journal of heat and mass transfer 36, 2747–2747.

Weller, H. G., Tabor, G., Jasak, H., Fureby, C., NOV/DEC 1998. A tensorial approach to computational continuum mechanics using object-

oriented techniques. Computers In Physics 12 (6), 620–631.

Wenzel, R. N., aug 1936. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry 28 (8), 988–994.

Whitaker, S., 1986a. Flow in porous media i: A theoretical derivation of darcy’s law. Transport in Porous Media 1, 3–25, 10.1007/BF01036523.

URL http://dx.doi.org/10.1007/BF01036523
Whitaker, S., 1986b. Flow in porous media ii: The governing equations for immiscible, two-phase flow. Transport in porous media 1 (2),

105–125.

Whitaker, S., 1999. The method of volume averaging, theory and applications of transport in porous media, 1st Edition. Springer Netherlands.

Whyman, G., Bormashenko, E., Stein, T., jan 2008. The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis

of the contact angle hysteresis phenomenon. Chemical Physics Letters 450 (4-6), 355–359.

Xu, Z., Liu, H., Valocchi, A. J., may 2017. Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve e ffect in porous

media. Water Resources Research 53 (5), 3770–3790.

URL http://doi.wiley.com/10.1002/2017WR020373
Yan, B., Wang, Y., Killough, J. E., feb 2016. Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs.

Computational Geosciences 20 (1), 69–91.

Yin, Z., Khurana, M., Tan, H. K., Linga, P., 2018. A review of gas hydrate growth kinetic models. Chemical Engineering Journal 342, 9–29.

Zacharoudiou, I., Boek, E. S., Crawshaw, J., dec 2018. The impact of drainage displacement patterns and Haines jumps on CO2 storage

efficiency. Scientific Reports 8 (1).
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Appendix A. Relative Permeability and Capillary Pressure Models

Appendix A.1. Relative Permeability Models

The two implemented relative permeability models rely on a definition of the effective saturation of the wetting

fluid, αl,e f f , as a function of each fluid’s irreducible saturationαi,irr :

αl,e f f =
αl − αl,irr

1 − αg,irr − αl,irr
(A.1)

The model proposed by Brooks and Corey (1964) relates the relative permeability of each phase to the effective

saturation through the following relation, where m is a non-dimensional coefficient dictated by porous media

properties:

krg = (1 − αl,e f f )
m (A.2)

krl = αm
l,e f f (A.3)

Alternatively, the van Genuchten (1980) model relates the relative permeabilities to the wetting fluid’s e ffective

saturation in the following way:

kr,g = (1 − αl,e f f )
1/ 2(1 − α1/ m

l,e f f )
2m (A.4)

kr,l = α1/ 2
l,e f f (1 − (1 − α1/ m

l,e f f )
m)2 (A.5)

Appendix A.2. Capillary Pressure Models

The implemented capillary pressure models rely on slightly di fferent formulations for the e ffective wetting

fluid saturation, αl,pc:

αl,pc =
αl − αpc,irr

αpc,max − αpc,irr
(A.6)

where αpc,max is the maximum saturation of the wetting fluid and αpc,irr is its irreducible saturation. The Brooks

and Corey (1964) model uses the following expression to calculate capillary pressure within a porous medium:

pc = pc,0α−β
l,pc (A.7)

where pc,0 is the entry capillary pressure and 1/β is a parameter that can be calculated from the pore size distribu-

tion. Alternatively, the van Genuchten (1980) model uses the relation:

pc = pc,0(α−1/ m
l,pc − 1)1−m (A.8)

Appendix B. Alternative formulation of multi-scale parameters

For consistency with Eq. 20, we can recast Eq. 36 as follows

0 = −∇ p + ρg − M−1v + (ρ∗ − ρ) g+ M−1
h
Ml∇ αg pc − Mg∇ (αl pc)

i
, (B.1)

The capillary force Fc, then, includes a term in (ρ∗ − ρ) g. After some manipulation, we obtain the following
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expression (instead of Eq. 38)

Fc = (ρ∗ − ρ) g+ M−1
h
Ml∇ αg pc − Mg∇ (αl pc)

i

= M−1 Mlαg − Mgαl (ρl − ρg) g+ M−1 Mlαg − Mgαl ∇ pc − pc∇α l

= M−1 Mlαg − Mgαl [(ρl − ρg) g+ ∇ pc] − pc∇α l (B.2)

At equilibrium (vl = vg = 0), the multiphase Darcy’s law yields (ρl − ρg) g+ ∇ pc = 0. Therefore, the equation

presented above is consistent with the expectation that at equilibrium the capillary term should be independent of

the fluid mobilities and the overall momentum equation should reduce to 0 = −∇ p + ρg − pc∇α l. The preceding

derivation suggests an alternative formulation where density is defined identically in the clear fluid and porous

regions (ρ = ρlαl + ρgαg) while the expression for Fc becomes

Fc =





σ∇. n̂lg ∇α l, in solid-free regions,

M−1 Mlαg − Mgαl [(ρl − ρg) g+ ∇ pc] − pc∇α l, in porous regions.
(B.3)
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