1 AlgU, a conserved sigma factor regulating abiotic stress tolerance and promoting virulence in 2 Pseudomonas syringae. Haibi Wang^{1*}, Zichu Yang^{2*}, Bryan Swingle^{2,3}, Brian H Kvitko^{1,4,†} 3 4 * These authors contributed equally to this work 5 [†] Corresponding author 6 bkvitko@uga.edu 7 8 1. Department of Plant Pathology, University of Georgia, 120 Carleton St, Athens, GA, 9 30602, USA 2. Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, 10 11 Cornell University, 334 Plant Science Bldg., Ithaca, NY, 14853, USA 12 3. Emerging Pests and Pathogens Research Unit, Robert W. Holley Center, United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, 14853, USA 13 14 4. The Plant Center, University of Georgia, Athens, GA, 30602, USA 15 16 Abstract 17 Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic 18 stresses. Host niches pose specific sets of environmental challenges driven in part by immune defenses. Bacteria use a "just-in-time" strategy of gene regulation, meaning that they only 19 produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma 20 21 factors transduce a specific set of environmental signals and change gene expression patterns 22 by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, 23 and/or behavior to improve chances of survival. The broadly conserved ECF sigma factor, AlgU, 24 affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls 25 expression of more than 800 genes, some of which contribute to suppression of plant immunity 26 and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions

controlled by AlgU, and how these functions contribute to *P. syringae* survival in plants.

Introduction

28

- 29 Pseudomonas syringae is a species complex divided into more than fifty pathovars, each of
- which is able to grow and cause disease in a limited range of plants (Baltrus et al., 2017). P.
- 31 syringae is responsible for economically significant disease outbreaks in many crops worldwide
- 32 (Xin et al., 2018, Scortichini et al., 2012, Kennelly et al., 2007, Martin et al., 1993a). Because of
- its agricultural importance and tractability, *P. syringge* has become a popular model organism
- for understanding mechanisms of plant disease and plant immune defenses (Mansfield et al.,
- 35 2012, Xin & He, 2013).
- 36 P. syringae is adept at surviving diverse and dynamic conditions such as atmospheric, aquatic,
- 37 terrestrial, and plant host environments (Berge et al., 2014), each presenting specific challenges
- 38 and opportunities. The ability to quickly and accurately adjust gene expression according to
- 39 changes in the environment underpins *P. syringae's* success as a plant pathogen. Take the foliar
- 40 invasion process as an example. P. syringae enters the apoplast by moving from leaf surfaces
- 41 through stomata or wounds using chemotaxis and flagellar motility. Flagellar synthesis is
- 42 suppressed after entering the apoplastic space, minimizing detection by the plant immune
- 43 system (Bao et al., 2020). Once in the apoplast, the bacteria also express and assemble the type
- 44 III secretion system (T3SS) to translocate protein effectors into plant cells to suppress plant
- 45 immunity, up-regulate production of alginate exopolysaccharide, adjust intracellular compatible
- 46 solute levels, and adjust their metabolism to utilize apoplastic nutrients (Nobori et al., 2018,
- 47 Lovelace et al., 2018, Yu et al., 2013, Nobori et al., 2020).

48 ECF sigma factors bridge environmental signals and transcriptional regulation

- 49 *P. syringae* has the ability to detect their entrance into plant tissues and make appropriate
- 50 transcriptional adjustments. This is carried out using cell-surface signaling systems that sense
- and transduce environmental information across the cytoplasmic membrane and through the
- 52 cytoplasm to adjust gene expression. ExtraCytoplasmic Function (ECF) sigma factors are one of
- 53 the principal mechanisms that bacteria have for adjusting gene expression patterns in response
- to external stimuli (Staron et al., 2009). Sigma factors are exchangeable subunits of RNA
- 55 polymerase (RNAP) that transiently interact with the RNAP core enzyme to coordinate binding
- and transcription initiation at corresponding promoter sequences (Ishihama, 2000).
- 57 Accordingly, competition between sigma factor subunits changes the set of promoters
- 58 transcribed and the sets of functions expressed.
- 59 ECF sigma factors are a class of alternative (i.e., non-housekeeping) sigma factors that typically
- 60 function with anti-sigma factors as part of cell surface signaling systems (Lonetto et al., 1994,
- 61 Stacey & Pritchett, 2016). Canonical anti-sigma factors are located at the cytoplasmic

- 62 membrane and are regulated by extracellular cues. Anti-sigma factors suppress the activity of
- 63 ECF sigma factors by sequestering them from RNAP and target promoters. With appropriate
- cues, ECF sigma factors are activated and released from anti-sigma factors (Potvin et al., 2008).
- 65 It is common for ECF sigma factors to be coexpressed with their cognate anti-sigma in an
- 66 operon (Figure 1).
- 67 The ECF sigma factor AlgU (synonym, RpoE in bacteria outside of Pseudomonads) is broadly
- 68 conserved among bacteria (Staron et al., 2009). The considerable variation in the naming
- 69 conventions of this sigma factor (Box 1) which stems from multiple independent discoveries
- and reflects its importance in diverse bacteria. AlgU (RpoE) recognizes the consensus promoter
- sequence (gGAACt-16/17-GTCnAA) among P. syringae, P. aeruginosa, and E. coli (Markel et al.,
- 72 2016, Cheng et al., 2008), and typically up-regulates expression of genes conferring tolerance to
- osmotic, oxidative, and heat stresses (Table 1). In Pseudomonads, AlgU also controls the
- 74 synthesis and export of alginate, a hydroscopic exopolysaccharide composed of D-
- 75 mannuronic and L-guluronic acid polymers (Boyd & Chakrabarty, 1995). In P. syringae, AlgU
- regulates between 800 and 1000 genes, and makes important contributions to the regulation of
- virulence genes as well as the repression of flagellin (Markel et al., 2016, Bao et al., 2020,
- 78 Schreiber & Desveaux, 2011).

AlgU is kept inactive by the anti-sigma factor MucA under non-inducing conditions

- 80 AlgU (RpoE) is encoded in an operon that contains up to four regulatory genes named mucABCD
- 81 (synonym, rseABC and deaP). The mucA gene is near universally associated with alqU, but the
- 82 presence of mucB, mucC, and mucD varies (Figure 1). In P. syringae pv. glycinea PG4180, the
- 83 mucC gene is absent algU and mucAB are co-transcribed. and mucD is transcribed
- 84 independently (Schenk et al., 2006). The muc genes code for proteins that determine the
- 85 strength of AlgU membrane-sequestration and activation. They are named for the mucoid
- 86 colony phenotype associated with *mucA* mutants, which overproduce alginate (Martin et al.,
- 87 1993b).

- 88 The anti-sigma factor MucA is a 21 kDa protein with a single transmembrane domain (Xie et al.,
- 89 1996). MucA sequesters AlgU at the cytoplasmic membrane and prevents RNAP and DNA
- 90 interactions through direct protein-protein interaction, thereby suppressing AlgU activity
- 91 (Figure 2). The N- and C-termini of MucA (RseA) are in the cytoplasm and periplasm,
- 92 respectively, in both P. aeruginosa and E. coli (Mathee et al., 1997, Hayden & Ades, 2008). X-ray
- crystal structure analysis shows that the *P. aeruginosa* MucA N-terminus interacts with the
- 94 RNAP-binding and DNA-binding domains of AlgU (Li et al., 2019). In P. aeruginosa, about 2/3 of
- 95 total AlgU are sequestered by MucA under non-inducing conditions (Rowen & Deretic, 2000). It
- 96 was proposed that remaining free AlgU allows for basal-level expression from AlgU promoters

- 97 (Rowen & Deretic, 2000). The MucA C-termini also interacts directly with periplasmic protein
- 98 MucB (synonym, RseB, AlgN). Crystal structures show that *P. aeruginosa* MucB is composed of
- 99 two domains separated by a flexible linker that form a binding pocket for MucA (Li et al., 2019).
- 100 This interaction provides an additional mechanism of environmental-sensing (discussed below)
- 101 (Cezairliyan & Sauer, 2009, Schurr et al., 1996).
- 102 Transitioning from an AlgU-inactive to an AlgU-activated state is mediated by degradation of
- 103 MucA via a regulated intramembrane proteolysis (RIP) cascade. The structure of the AlgU
- 104 (RpoE) regulatory cascade has been extensively studied in *P. aeruginosa* and *E. coli*. The high
- degree of similarity in RIP regulation between these two species suggests broad conservation
- 106 (Yu et al., 1995, Schreiber & Desveaux, 2011). Under inducing conditions, the RIP cascade
- 107 eliminates MucA and releases AlgU to direct up-regulation from corresponding promoters
- 108 (Rowen & Deretic, 2000). The RIP cascade was shown to be very responsive. In *P. aeruginosa*,
- 109 cell wall stress can stimulate MucA degradation within ten minutes (Wood & Ohman, 2009).
- 110 The short response time is critical for surviving dynamic environments.

111 RIP step 1: proteolytic cleavage of MucA by AlgW

- 112 AlgU activation is carried out through a series of proteolytic cleavages that inactivate MucA and
- release AlgU to interact with core RNAP and initiate transcription of its regulon. Envelope
- stresses activate specific proteases and result in MucA cleavage. One well characterized
- indicator of envelope stress are misfolded outer member proteins (OMPs) (Pandey et al., 2018,
- 116 Tashiro et al., 2009, de Regt et al., 2015, de Regt et al., 2014, Walsh et al., 2003, Sohn et al.,
- 2007, Chaba et al., 2011). Stress induced malfunction of OMP transport, folding, or assembly,
- can increase unfolded OMPs in the periplasm (Walsh et al., 2003). The serine protease AlgW
- 119 (synonym, DegS) is activated through interactions with peptide motifs in the C-termini of
- misfolded OMPs (Wilken et al., 2004, Bass et al., 1996, Waller & Sauer, 1996). DegS in E. coli
- remains inactive until amino acid sequences (e.g., YxF motifs) exposed in misfolded proteins
- interact with its periplasmic PDZ domain. This interaction converts DegS into its proteolytically
- active conformation (de Regt et al., 2015).
- 124 In E. coli, the degree of DegS activation depends on the amino acid sequences upstream of the
- 125 YxF motif, providing a mechanism for fine-tuning DegS activity according to the abundance and
- diversity of unfolded OMPs present (Sohn et al., 2007, Ades et al., 1999). In addition to the YxF
- motif, P. aeruginosa AlgW can also bind and be activated by C-terminal WVF, LVF, WIF, WVW
- 128 (MucE homologs), FTF (PilA¹⁰⁸), and GYYYTVV (internal motif of CupB5) (Qiu et al., 2007, de Regt
- et al., 2014, Ryan Withers et al., 2013). An increase of misfolded OMPs can also result from loss
- of the histidine kinase KinB, the periplasmic protease MucD, or the sRNA binding chaperon
- protein Hfq (Wood & Ohman, 2009, Figueroa-Bossi et al., 2006, Damron et al., 2009b). The

132	essentiality of AlgW (DegS) varies from species to species, but its function is usually related to
133	virulence in studied species (Mathur et al., 2007, Rowley et al., 2005, Schreiber & Desveaux,
134	2011).
135	MucD (synonym, DegP, AlgY, HtrA), a product of the algU-muc operon, is a
136	periplasmic/secreted serine endoprotease (Wang et al., 2019). In <i>P. aeruginosa,</i> MucD
137	suppresses RIP activation by degrading peptides that accumulate during stress (Qiu et al.,
138	2007). The absence of MucD increases AlgW-dependent MucA degradation (Wood & Ohman,
139	2009). MucD protein levels are regulated by a <i>mucD</i> antisense transcript and feedback from
140	misfolded OMPs, as less misfolded OMPs lead to less induction of the whole algU-mucABCD
141	operon in <i>P. aeruginosa</i> (Knight et al., 2010, Tashiro et al., 2009, Yang et al., 2011). MucD plays
142	an important role in virulence and colonization in plants. The deletion of <i>mucD</i> in <i>P. syringae</i>
143	pv. tomato DC3000, P. fluorescens SBW25, and P. aeruginosa strain PA14 all reduced in planta
144	growth under certain conditions (Yorgey et al., 2001, Wang et al., 2019). P. aeruginosa MucD
145	can degrade animal host immune factors (Okuda et al., 2011) and is required to produce a C.
146	elegans killing extracellular toxin (Yorgey et al., 2001), indicating that MucD has functions
147	beyond regulating stress signals related to RIP.
148	MucB interaction with MucA restricts AlgW access to MucA under non-inducing conditions. In
149	E. coli, RseB interaction with RseA reduces RseA degradation by 2.4-fold (Ades et al., 1999).
150	Under envelope stresses, outer membrane lipopolysaccharides (LPS) mislocalize to the
151	periplasm. The accumulated periplasmic LPS interacts with RseB and induces it to form a
152	tetramer, which is then released from RseA (Lima et al., 2013). In <i>P. aeruginosa</i> , MucB
153	cantetramerize via intermolecular disulfide bonds, which suggests that MucB may serve as a
154	redox sensor under oxidative conditions (Li et al., 2019). As a result, in both <i>E. coli</i> and <i>P.</i>
155	aeruginosa, the frequency of this first MucA (RseA) cleavage step is a function of MucB (RseB)
156	removal and AlgW (DegS) activation (Chaba et al., 2011, Kim, 2015, Mathee et al., 1997,
157	Desnues et al., 2003).
15815	8
159	RIP step 2: proteolytic cleavage of MucA by MucP
160	After AlgW cleaves the C-terminal portion of MucA, the transmembrane portion of MucA
161	becomes more susceptible to cleavage by MucP (synonym, RseP). The requirement for MucP
162	(RseP) mediated MucA (RseA) cleavage in <i>P. aeruginosa</i> is similar to that in <i>E. coli</i> (Damron &
163	Yu, 2011, Qiu et al., 2007), while the biochemical aspect of MucP (RseP) is more extensively
164	studied in E. coli. E. coli RseP is an intramembrane zinc metalloprotease that contains two
165	periplasmic PDZ domains. Both the zinc-binding and protease motifs are within the

166	transmembrane region on the cytoplasmic surface (Kanehara et al., 2002). The PDZ domains
167	can interact with the truncated RseA C-terminus exposed by DegS cleavage (Inaba et al., 2008).
168	This interaction activates RsePto cleave RseA within the transmembrane region, releasing the
169	N-terminus of RseA from the membrane to the cytoplasm (Akiyama et al., 2004). It is not clear
170	how intramembrane peptide bond hydrolysis takes place in a hydrophobic environment, but
171	the glutamic acid residue in the HEXXH Zinc-binding motif is required for hydrolysis (Kanehara
172	et al., 2001). In contrast to DegS, which is highly specific to RseA, RseP can degrade a diverse
173	variety of proteins and may have housekeeping functions (Akiyama et al., 2004). One example
174	is that it processes secreted proteins to remove signal peptides (Saito et al., 2011).
175	Another periplasmic protease, AlgO (synonym, Prc, Tsp), is also a part of the RIP process. AlgU
176	activation is reduced in $\Delta algOP$. aeruginosa mutants exposed to cell wall stresses (Wood et al.,
177	2006). AlgO cleaves MucA upstream of MucP cleavage, and an excess of MucP can compensate
178	for the loss of algO (Delgado et al., 2018). It is generally accepted that AlgO prefers truncated
179	MucA and has minimal effect on full-length MucA. However, it is not clear if AlgW cleavage is
180	directly upstream of AlgO recognition, or if they recognize MucA independently.
181	RIP final step: degradation of MucA by ClpXP
182	After MucP (RseP) cleavage, the remaining cytoplasmic (N-terminal) portion of MucA (RseA) is
183	recognized and fed to the protease ClpXP by the adaptor, SspB, in both P. aeruginosa and E. coli
184	(Flynn et al., 2004, Qiu et al., 2008). ClpXP is a cytoplasmic protease complex of ClpX, an AAA+
185	unfoldase, and ClpP, a peptidase. ClpXP is highly conserved and has a broader substrate range
186	than MucP. In contrast to other housekeeping proteases, ClpXP determines substrate specificity
187	through adaptors, like SspB, rather than universally recognizing misfolded proteins (Baker &
188	Sauer, 2012, Joshi & Chien, 2016). P. aeruginosa encodes two copies of ClpP, and both are
189	required for MucA RIP (Qiu et al., 2008). ClpXP fully degrades the remaining MucA fragment,
190	freeing AlgU.
191	AlgU/RpoE regulates stress tolerance and promotes virulence in both plant and animal
192	pathogens
193	Regulating expression of stress tolerance (and alginate production genes in Pseudomonads) are
194	core functions of AlgU (RpoE), enabling rapid physiological adaptation in a wide range of
195	bacteria. While the core role of these sigma factors is conserved, individual species and strains
196	have evolved to use AlgU (RpoE) to co-regulate accessory functions that assist growth in
197	conditions that are idiosyncratic to their specific lifestyles (Rhodius et al., 2005). Recent studies
198	show that AlgU is critical in the transition of <i>P. syringae</i> from free-living to pathogenic growth
199	within leaf tissue. In <i>P. syringae</i> pv. tomato DC3000 and <i>P. syringae</i> pv. syringae B728a, AlgU

200 regulates between 800 and 1000 genes (Yu et al., 2014, Markel et al., 2016), including the core 201 AlgU stress response functions, as well as many genes associated with colonization of plants. 202 Some of these genes are exclusively dedicated to promoting virulence in plants, such as the 203 hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS), and type III 204 secreted effector (T3Es) genes. In P. syringae pv. tomato DC3000, AlgU also contributes to 205 down-regulation of flagellar expression, which has a clear role in minimizing plant immune 206 activation through host flagellin detection (Markel et al., 2016, Bao et al., 2020). 207 The importance of AlgU in coordinating P. syringae transition to the plant niche is also 208 supported by evidence of an arms race centered on AlgU activation. Transcriptional analysis 209 suggests that AlgU activity is suppressed in P. syringae pv. tomato DC3000 during exposure to 210 pattern triggered immunity (PTI) induced by the flg22 flagellin epitope. PTI exposure correlates 211 with reduced induction of alginate synthetic and osmotolerance genes as well as reduced 212 repression of flagellar genes (Lovelace et al., 2018, Nobori et al., 2018). As described above, 213 AlgU activity is subject to an intricate control mechanism that involves protein-protein 214 interactions and proteolytic processing. MucD, a component of the regulatory cascade, is 215 degraded by Arabidopsis immunity-induced secreted aspartic proteases SAP1 and SAP2, which 216 contributes to the antimicrobial effects of PTI (Wang et al., 2019). It is worth noting that there 217 may be several distinct points where plant immune systems interfere with the AlgU signaling 218 cascade. For example, loss of mucD is associated with AlgU activation and overproduction of 219 alginate (Qiu et al., 2007, Wang et al., 2019). In contrast, PTI exposure results in reduced 220 expression of alginate production genes suggesting that the repressive effects of PTI on AlgU 221 signaling are potentially independent of MucD degradation. 222 AlgU homologs are present in most bacterial lineages. Despite accumulating evidence indicating 223 an important role in regulating virulence gene expression, the function of AlgU homologs in 224 most plant pathogenic bacteria have been understudied. However, there are a few examples 225 where the roles of AlgU homologs have been examined in plant pathogens or plant-associated 226 bacteria. In Xanthomonas campestris pv. campestris, as in P. syringae, the AlgU homolog 227 stimulates expression of T3SS and T3E genes and significantly contributes to virulence (Bordes 228 et al., 2011, Cheng et al., 2008, Yang et al., 2018). This is an interesting convergence in AlgU 229 regulation as P. syringae and X. campestris use very different regulatory cascades to control 230 expression of their respective hrp virulence regulons (Brencic & Winans, 2005). In Xylella 231 fastidiosa, the AlgU homolog is the only known ECF sigma factor. It is induced in xylem fluid and 232 contributes to heat stress tolerance, biofilm formation, and virulence in grapevines (da Silva 233 Neto et al., 2007, Shi et al., 2007). However, AlgU homologs do not contribute to plant disease 234 in all plant pathogens. In Burkholderia cepacia, the AlgU homolog does not contribute to 235 virulence on onion, or to the canonical stress responses observed in other bacteria (Devescovi

- & Venturi, 2006). This is in contrast to the AlgU homolog of *B. cenocepacia* and *B. pseudomallei*,
- 237 which contributes to stress tolerance and animal virulence (Flannagan & Valvano, 2008,
- 238 Korbsrisate et al., 2005). In the soft rot necrotroph *Dickeya dadantii* 3937, *in vitro* transcription
- of T3SS-associated promoters was not influenced by mutation of the algU homolog (Li et al.,
- 240 2010). Alphaproteobacteria are one of only a few groups of bacteria that notably often lack
- 241 AlgU family members (Staron et al., 2009). AlgU sigma factors were not identified in the
- 242 Rhizobiales oncogenic pathogen Agrobacterium tumefaciens C58 and are sporadically
- 243 distributed among related root-nodulating symbionts (e.g. Bradyrhizobium, Rhizobium,
- 244 Sinorhizobium). The phloem-limited pathogen Ca. Liberibacter asiaticus, causative agent of
- 245 Huanglongbing (yellow dragon disease, citrus greening), encodes only three sigma factors, none
- of which are ECF sigma factors (Hartung et al., 2011).
- The role of AlgU homologs in the physiology of human bacterial pathogens has been much
- 248 more extensively studied. In most cases, algU mutants adhere to the pattern of having reduced
- stress tolerance and reduced virulence. In *P. aeruginosa,* it is common for strains to accumulate
- 250 mutations in *mucA* during chronic lung infection resulting in constitutive AlgU activity and
- 251 mucoid phenotype on agar media (Yu et al., 1996). In Yersinia, E. coli, and Vibrio, RpoE is
- 252 considered essential (Heusipp et al., 2003). Recovery of *rpoE* mutations in these strains requires
- 253 either specialized growth conditions or compensating secondary mutations. In Salmonella, rpoE
- 254 is not essential, but *rpoE* mutants epistatically require a functional LPS O-antigen to survive
- 255 (Amar et al., 2018).

AlgU-regulated pathways in P. syringae

- 257 *Osmotic stress response:* The AlgU regulon in *P. syringae* pv. tomato DC3000 is enriched for
- 258 genes whose functions pertain to responding to and surviving osmotic stress (Markel et al.,
- 259 2016). Osmotic stress, in the form of an abundance of solutes or lack of water, results in water
- loss from the cytoplasm, which is deleterious to cellular function and potentially lethal. To cope
- 261 with osmotic stress, bacteria increase the concentration of compatible solutes like trehalose or
- 262 glycine betaine through biosynthesis or increased uptake (Wood, 2015). These compatible
- solutes are useful osmoprotectants because they can accumulate to high concentrations in the
- 264 cytoplasm without interfering with cellular functions. The use of certain compatible solutes
- such as glycine betaine is conserved across kingdoms (Csonka, 1989, Roesser & Muller, 2001).
- 266 In P. syringae, AlgU up-regulates the intake or synthesis of three compatible solutes: the
- 267 quaternary ammonium compound (QAC) glycine betaine, the dipeptide N-
- acetylglutaminylglutamine amide (NAGGN) (Kurz et al., 2010) and the disaccharide trehalose (α-
- d-glucopyranosyl-α-d-glucopyranoside) (Freeman et al., 2010, Markel et al., 2016). Betaine
- 270 based osmotic protection is hypothesized to be part of the acute osmotic stress response which
- is later replaced by NAGGN based protection (Li et al., 2013). P. syringae strains vary in their

272 capacity for both synthesis and uptake of compatible solutes and their degrees of 273 osmotolerance. These variations in osmotolerance differentially affect epiphytic fitness of 274 strains on the leaf surface (Chen et al., 2013, Yu et al., 2013). Accumulation of specific 275 compatible solutes in the bacterial cytoplasm contributes to in planta fitness in a strain specific 276 manner (Freeman et al., 2010, Freeman et al., 2013, Kurz et al., 2010). 277 Alginate production: Regulation of alginate production by AlgU has been extensively studied in 278 Pseudomonads (Keith & Bender, 1999, Keith et al., 2003, Schenk et al., 2008, Markel et al., 279 2016). Alginate (co-polymer of O-acetylated beta-1,4-linked D-mannuronic acid and L-guluronic 280 acid) is an exopolysaccharide that was first described in brown algae and its production is 281 conserved across many *Pseudomonas* species (Fett et al., 1986, Muhammadi & Ahmed, 2007). 282 Alginate is considered a virulence factor in some plant and animal pathogens (Boyd & 283 Chakrabarty, 1995, Yu et al., 1999, Keith et al., 2003), however its specific role in virulence is 284 variable (Markel et al., 2016). 285 In the human pathogen P. aeruginosa, alginate is a principal component of the capsule, which 286 provides a passive defense layer that protects against detection by immune cells and oxidative 287 bursts (Boyd & Chakrabarty, 1995), enhances initial adhesion to surfaces, and protects from 288 dehydration (Boyd et al., 1987). However, the general defensive role of alginate for plant 289 pathogens in apoplastic spaces remains an open question. It is possible that alginate protects bacterial cells from osmotic stress as well as oxidative stress associated with immune ROS 290 291 signaling and accumulation (Keith et al., 2003, Chang et al., 2007). Alginate has also been 292 proposed to interfere with plant immune elicitation by chelating and suppressing calcium influx, 293 a key component of the immune signaling cascade (Aslam et al., 2008, Scrase-Field & Knight, 294 2003). Alginate appears to make strain variable contributions to epiphytic colonization and 295 apoplastic virulence among P. syringae strains. In P. syringae pv. syringae 3525, alginate 296 production promotes survival during epiphytic colonization of non-host tomato (Yu et al., 297 1999). Conversely, alginate synthesis genes were not observed to make major contributions to 298 bean leaf epiphytic fitness of P. syringae pv. syringae B728a on bean but are associated with 299 decreased apoplastic fitness (Helmann et al., 2019). However, alginate production in *P. syringae* 300 pv. tomato DC3000 and P. syringae pv. glycinea PG4180 were not associated with reduced 301 virulence phenotypes in tomato or soybean, respectively (Markel et al., 2016, Schenk et al., 302 2008, Ishiga et al., 2018). 303 **De-flagellation:** Interestingly, AlgU can also indirectly coordinate down-regulation of gene 304 expression. In the case of Pseudomonads, AlgU coordinates down-regulation of genes involved 305 in motility and assembly of the flagella. Peptide epitopes within flagellin monomers are 306 detected by both plant and animal immune pattern recognition receptors and can trigger an 307 immune response (Hajam et al., 2017, Hybiske et al., 2004). In P. aeruginosa, down-regulation

308 of flagellar biosynthesis is thought to correlate with avoidance of host immune detection (Tart 309 et al., 2006, Amiel et al., 2010, Moradali et al., 2017). Most plants encode pattern recognition 310 receptors that recognize various flagellin epitopes and activate PTI (Zipfel et al., 2004). Wild-311 type P. syringae pv. tomato DC3000 has a similar apoplastic virulence as fliC mutants or 312 mutants with reduced fliC expression, suggesting that P. syringae pv. tomato DC3000 may 313 undergo de-flagellation during its interactions with plants (Pfeilmeier et al., 2016, Bao et al., 314 2020). The importance of the AlgU signaling cascade for de-flagellation was observed in P. 315 syringae pv. maculicola ES4236, where Tn inactivation of AlgW resulted in decreased AlgU 316 activity and increased expression of flagella as well as reduced in planta growth and disease 317 (Schreiber & Desveaux, 2011). AlgU-driven repression of flagellin in P. syringae pv. tomato 318 DC3000 reduces PTI activation and promotes bacterial fitness in tomato (Bao et al., 2020). 319 Although AlgU-dependent down-regulation of flagellar expression is conserved across plant 320 pathogenic, plant-associated, and animal pathogenic Pseudomonads, there are surprising 321 mechanistic differences in how flagellar down-regulation is coordinated among these bacteria. 322 In P. aeruginosa and P. fluorescens, AlgU up-regulates the transcriptional regulator AmrZ (AlgZ), 323 which in turn suppresses motility by down-regulating FleQ, the master regulator of flagellar and 324 chemotaxis gene expression (Tart et al., 2006, Tart et al., 2005, Muriel et al., 2019, Martinez-325 Granero et al., 2012). In both P. syringae and P. stutzeri, AlgU also up-regulates AmrZ 326 expression. However, in these bacteria AmrZ acts as a positive regulator of motility rather than 327 a negative regulator (Baltrus et al., 2018, Prada-Ramirez et al., 2016). Additionally, as fleQis 328 not AlgU-regulated in P. syringae (Markel et al., 2016, Baltrus et al., 2018), the role of AlgU in P. 329 syringae de-flagellation likely occurs downstream of FleQ in the flagellar regulatory network. 330 Regardless of these differences in the flagellar regulatory networks, the final output of 331 increased AlgU-driven expression in P. syringae is reduced flagellar expression (Schreiber & 332 Desveaux, 2011, Bao et al., 2020). The differences in AlgU-dependent flagellar regulatory 333 mechanisms suggest that AlgU-mediated de-flagellation may have emerged multiple times 334 independently among Pseudomonads. 335 T3SS/T3SEs and other virulence factors: Successful colonization of plants is a multifaceted and 336 dynamic process. Avoiding plant immunity is a major part of this process, and mounting 337 evidence supports a key role for AlgU in helping P. syringae survive in that context. In addition 338 to suppressing flagellin expression (Schreiber & Desveaux, 2011, Bao et al., 2020), AlgU alsoup-339 regulates expression of many genes dedicated to actively suppressing plant immunity and 340 promoting successful colonization and disease (Markel et al., 2016). The mechanistic details of 341 AlgU-dependent regulation of these virulence systems are not fully understood, but appear to 342 include up-regulation of hrpL expression, which is the master regulator of pathogenicity in P. 343 syringae. HrpL is itself an ECF sigma factor, which recognizes and helps initiate transcription

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366 367

368

369

370

371

372

373

374

375

376

377

378 **379**

380

381

from *hrp* box promoters, up-regulating expression *hrp/hrc* T3SS structural genes that code for the injectisome and the T3SS secreted effector proteins. Based on Chip-seq analysis AlgU likely up-regulates *hrpL* expression indirectly, presumably by directly driving expression of *hrpR* and *hrpS*, the regulators immediately upstream of HrpL (Markel et al., 2016). For a more comprehensive review of P. syringae T3SS regulation, we would point the reader to Xie et al., 2019(Xie et al., 2019).

AlgU also up-regulates expression of *P. syringae* pv. *tomato* DC3000 coronatine biosynthetic genes (Ishiga et al., 2018). Coronatine is a phytotoxin sporadically distributed among *P. syringae* strains, with multiple roles in promoting interactions with plants. Coronatine contributes to visible disease symptoms, causing the characteristic chlorotic halos (coronas) around necrotic specks (Bender et al., 1999). Coronatine is a potent structural analog of the plant defense hormone jasmonyl isoleucine that biases defenses to counter necrotrophic pathogens (Geng et al., 2014). Coronatine also drives the reopening of stomata, which close in response to the presence of bacterial flagellin, thus aiding further pathogen invasion into leaf tissues (Geng et al., 2014, Melotto et al., 2017). However, as coronatine expression in *P. syringae* pv. *tomato* DC3000 is itself HrpL-regulated, it is unclear if the role of AlgU on coronatine gene expression is direct or acts indirectly through activation of *hrpL* expression (Sreedharan et al., 2006).

Concluding remarks

The ECF sigma factor AlgU (RpoE) and its regulatory cascade represent an evolutionarily ancestral and broadly conserved response pathway for stress tolerance in bacteria. The capacity of MucB and AlgW to respond to different environmental stress cues presumably allows robust and tuned regulation of the RIP cascade to appropriately control the level of free AlgU in response to multiple signals. Some bacteria appear to have tailored their AlgU (RpoE)mediated signaling responses in ways that promote virulence during the process of adaptation to a pathogenic lifestyle. In the case of P. syringae, AlgU contributes to multiple hostinteraction pathways including host attack via the T3SS, immune evasion through deflagellation and niche acclimation through the regulation of alginate and compatible solute concentrations. However, key questions remain. What is the apoplastic environmental cue that leads to efficient activation of AlgU in P. syringae? What is the full regulatory cascade in P. syringae for AlgU driven deflagellation? How does PTI interfere with AlgU activity? A deeper mechanistic understanding of AlgU (RpoE) as a key control point for bacterial-host interactions will provide useful insights into bacterial adaptation to, and modulation of, the host niche. These insights have great potential to inform novel management strategies for bacterial diseases of plants and potentially human diseases as well.

Acknowledgements

This work was supported by NSF PBI Grant # 1844861 to BK. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific

information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Gene

names

alqU

mucA

тисВ

mucC

mucD

algW

mucP

algO

synonymous or

analogous genes

degP, algY, htrA

rpoE, algT

rseB, alqN

rseA

rseC

degS

rseP

prc, tsp

383 384

382

385

386	Box 1: Naming conventions and synonyms for
387	AlgU/RpoE signaling pathways. There is
388	considerable confusion in the naming
389	conventions of AlgU and RpoE sigma factors,
390	reflecting both their importance and multiple
391	independent discoveries in different bacteria.
392	The AlgU name is mainly used in the

392

393 Pseudomonadales based on its alginate-

394 associated phenotypes (Flynn & Ohman, 1988,

395 Cochran et al., 2000). AlgU was also named AlgT

(DeVries & Ohman, 1994). Outside of 396

397

Pseudomonadales, the RpoE name is typically
applied (Erickson & Gross, 1989). AlgU and RpoE are also called sigma E or \textit{sigE} (σ^{E}) to denote its
function as a sigma factor. Based on molecular weight-based naming conventions AlgU and
RpoE were also known as either sigma 22 (σ^{22}) in <i>P. aeruginosa</i> (Mathee et al., 1997) or sigma

401 24 (σ^{24}) in *E. coli* (Raina et al., 1995). In Gram positive *Bacillus subtilis*, the AlgU homolog sigma

402 factor is named sigma W (σ^W , sigW) (Schobel et al., 2004). Anti-sigma factors follow their own

403 naming conventions reflecting independent discovery in P. aeruginosa and E. coli. The

404 Pseudomonadales anti-sigma factors and signal cascade components are often named "muc" or

405 "alg" based on the mucoid alginate-associated phenotypes of corresponding mutants (Schurr et

406 al., 1994). Enterobacterales anti-sigma factors are typically named rse (regulator of sigma E) (De

Las Penas et al., 1997), and the Bacillus subtilis cognate anti-sigma factor is rsiW (regulator of 407

408 sigma W) (Schobel et al., 2004).

409409

398

399 400

410410

411411

412412

413413

414 **Tables**

415 Table 1. AlgU/RpoE involvement in various cellular response pathways in different bacteria.

	osmotic stress ^a	envelope stress	oxidative stress	heat shock	biofilm formatio n	stationary phase survival
P. aeruginosa	√b (Harty et al., 2019, Behrend s et al., 2010) x ^c (Wood et al.,	√ (Wood et al., 2006, Harty et al., 2019)	√ (Yu et al., 1996) x (Wood et al., 2006, Damron et al., 2009a)	√ (Schur r et al., 1995)	√ (Bazire et al., 2010)	√ (Behrends et al., 2010, Harty et al., 2019, Waite et al., 2006)
	2006)					
P. syringae	√ (Keith & Bender, 1999, Markel et al., 2016)	na ^d	√ (Keith & Bender, 1999, Markel et al., 2016)	√ (Keith & Bende r, 1999)	√ (Laue et al., 2006)	na
E. coli	√ (Kochar unchitt et al., 2014)	√ (Xue et al., 2015)	√ (Egler et al., 2005, Desnues et al., 2003)	√ (Hirats u et al., 1995)	√ (Serra et al., 2016)	√ (Costanzo & Ades, 2006)
S. enterica (Shi et al., 2018, Amar et al., 2018)	V	V	V	Xd	V	V
Y. enterocolitica (Heusipp et al., 2003)	V	Х	na	Х	na	na
X. campestris (Bordes et al., 2011)	Х	Х	V	V	na	V
X. fastidiosa (da Silva Neto et al., 2007)	X	V	Х	V	na	Х
B. pseudomallei (Korbsrisate et al., 2005)	V	V	V	na	V	V
B. cepacia (Devescovi & Venturi, 2006)	X	na	Х	V	Х	na

417 ^a

^a *In vitro* inducers commonly used. Osmotic stress: NaCl, sorbitol; envelope stress: ethanol, penicillin G, zinc (Mellies et al., 2012); oxidative stress: paraquat, H₂O₂, copper (Thurman et al., 1989); heat shock:up to 50°C.

- 421 b √ : AlgU is required or up-regulated in association with this condition.

 422 c x : AlgU is either not required or not up-regulated under this condition.

 423 d na : no applicable literature was identified.

 424

 425

 426 Figure legends

 427 Figure 1. Genetic arrangement of the algU (rpoE) operons in selected plant and animal
- pathogens and related bacteria. In the Enterobacteriales, deaP is encoded separately from the rpoE operon. Gene names or locus numbers are listed as annotated in their corresponding GenBank accession records. Paer = Pseudomonas aeruginosa PAO1; NC 002516. Pstz = Pseudomonas stutzeri 28a24; NZ CP007441. Pfl = Pseudomonas fluorescens F113; NC 016830. Pto = Pseudomonas syringae pv. tomato DC3000; NC 004578. Psy = Pseudomonas syringae pv. syringae B728a; NC 007005. Pmac = Pseudomonas syringae pv. maculicola ES4326; CP047260. Pgly = Pseudomonas savastanoi pv. alycinea race 4; NZ AEGH01000079. Eco = Escherichia coli K-12 substr. MG1655; NC 000913. Dda = Dickeya dianthicola ME23; CP031560. Patr = Pectobacterium atrosepticum SCRI1043; BX950851. Eamy = Erwinia amylovora ATCC 49946; FN666575. Pns = Pantoea stewartii subsp. stewartii DC283; CP017581. Xcc = Xanthomonas campestris pv. campestris ATCC 33913; NC 003902. Xev = Xanthomonas euvesicatoria 85-10; CP017190. Xylf = Xylella fastidiosa Temecula1; AE009442. Rsol = Ralstonia solanacearum GMI1000; NC 003295. Brkc = Burkholderia cepacia ATCC 25416; NZ CP007746. Acv = Acidovorax citrulli AAC00-1; NC 008752. Homologous genes have been assigned the same

color.

Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from *E. coli* and *P. aeruginosa*) and several outcomes of AlgU activation in plants. MucD degrades stress peptides but it is not known if they are the same unfolded envelope proteins that activate AlgW. AlgW forms trimers, one monomer is shown in the cartoon. Upon ligand binding to the PDZ domain, AlgW undergoes a conformational change and the peptidase domain adopts an activated form. The ligand can be C-termini of several different types of unfolded proteins, including OMPs, MucE, and type IV pilin. Activators of the MucP PDZ domain are less understood. MucA N- and C-termini are marked as N and C. Percentages indicate approximate amino acid position relative to full length MucA, 100% at the C-terminus. *P. aeruginosa* MucA is 194 amino acids long, and AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large and small domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP-binding domain and DNA-binding domain are labeled as R and D. ClpXP consist of ClpX, an unfoldase, and ClpP, a protease. SspB is an adaptor for ClpXP that determines substrate specificity for the MucA cytoplasmic cleavage product. After AlgU is released from MucA, it interacts with RNA polymerase and guides the induction of stress response and virulence

pathways. The capsulation and osmotic stress response help bacteria survive in plantapoplastic environment, while suppression of PAMP expression and activation of virulence factors counteract the plant immune system.

References Cited

- 1. Ades SE, Connolly LE, Alba BM, Gross CA, 1999. The *Escherichia coli* sigma(E)-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an antisigma factor. *Genes Dev* **13**, 2449-61.
- 2. Akiyama Y, Kanehara K, Ito K, 2004. RseP (YaeL), an *Escherichia coli* RIP protease, cleaves transmembrane sequences. *EMBO J* 23, 4434-42.
- 3. Amar A, Pezzoni M, Pizarro RA, Costa CS, 2018. New envelope stress factors involved in sigma(E) activation and conditional lethality of *rpoE* mutations in *Salmonella enterica*. *Microbiology* **164**, 1293-307.
- 4. Amiel E, Lovewell RR, O'toole GA, Hogan DA, Berwin B, 2010. *Pseudomonas aeruginosa* evasion of phagocytosis is mediated by loss of swimming motility and is independent of flagellum expression. *Infect Immun* **78**, 2937-45.
- 5. Aslam SN, Newman MA, Erbs G, et al., 2008. Bacterial polysaccharides suppress induced innate immunity by calcium chelation. *Curr Biol* **18**, 1078-83.
- 6. Baker TA, Sauer RT, 2012. ClpXP, an ATP-powered unfolding and protein-degradation machine. *Biochim Biophys Acta* **1823**, 15-28.
- 7. Baltrus DA, Dougherty K, Diaz B, Murillo R, 2018. Evolutionary Plasticity of AmrZ Regulation in *Pseudomonas. mSphere* **3**.
- 8. Baltrus DA, Mccann HC, Guttman DS, 2017. Evolution, genomics and epidemiology of *Pseudomonas syringae*: Challenges in Bacterial Molecular Plant Pathology. *Mol Plant Pathol* **18**, 152-68.
- 9. Bao Z, Wei HL, Ma X, Swingle B, 2020. *Pseudomonas syringae* AlgU downregulates flagellin gene expression, helping evade plant immunity. *J Bacteriol* **202**.
- 10. Bass S, Gu Q, Christen A, 1996. Multicopy suppressors of *prc* mutant *Escherichia coli* include two HtrA (DegP) protease homologs (HhoAB), DksA, and a truncated R1pA. *J Bacteriol* **178**, 1154-61.
- 11. Bazire A, Shioya K, Soum-Soutera E, et al., 2010. The sigma factor AlgU plays a key role in formation of robust biofilms by nonmucoid *Pseudomonas aeruginosa*. *J Bacteriol* **192**, 3001-10.
- 12. Behrends V, Ryall B, Wang X, Bundy JG, Williams HD, 2010. Metabolic profiling of *Pseudomonas aeruginosa* demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance. *Mol Biosyst* **6**, 562-9.
- 13. Bender CL, Alarcón-Chaidez F, Gross DC, 1999. *Pseudomonas syringae* phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. *Microbiology and molecular biology reviews* **63**, 266-92.
- 14. Berge O, Monteil CL, Bartoli C, et al., 2014. A user's guide to a data base of the diversity of *Pseudomonas syringae* and its application to classifying strains in this phylogenetic complex. *PLoS One* **9**, e105547.

15. Bordes P, Lavatine L, Phok K, et al., 2011. Insights into the extracytoplasmic stress
 response of *Xanthomonas campestris* pv. campestris: role and regulation of sigma(E) dependent activity. *Journal of bacteriology* 193, 246-64.

- 16. Boyd A, Chakrabarty AM, 1995. *Pseudomonas aeruginosa* biofilms: role of the alginate exopolysaccharide. *J Ind Microbiol* **15**, 162-8.
- 17. Boyd D, Manoil C, Beckwith J, 1987. Determinants of membrane protein topology. *Proc. Natl. Acad. Sci. USA* **84**, 8525-9.
- 18. Brencic A, Winans SC, 2005. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria. *Microbiology and molecular biology reviews* **69**, 155-+.
- 19. Cezairliyan BO, Sauer RT, 2009. Control of *Pseudomonas aeruginosa* AlgW protease cleavage of MucA by peptide signals and MucB. *Mol Microbiol* **72**, 368-79.
- 20. Chaba R, Alba BM, Guo MS, et al., 2011. Signal integration by DegS and RseB governs the σE-mediated envelope stress response in *Escherichia coli*. *Proc Natl Acad Sci U S A* **108**, 2106-11.
- 21. Chang WS, Van De Mortel M, Nielsen L, Nino De Guzman G, Li X, Halverson LJ, 2007. Alginate production by *Pseudomonas putida* creates a hydrated microenvironment and contributes to biofilm architecture and stress tolerance under water-limiting conditions. *J Bacteriol* **189**, 8290-9.
- 22. Chen C, Li S, Mckeever DR, Beattie GA, 2013. The widespread plant-colonizing bacterial species *Pseudomonas syringae* detects and exploits an extracellular pool of choline in hosts. *Plant J* **75**, 891-902.
- 23. Cheng CY, Shieh SY, Hsu CC, Yang MT, 2008. Characterization and transcriptional analysis of an ECF sigma factor from *Xanthomonas campestris* pv. *campestris*. *Fems Microbiology Letters* **289**, 250-7.
- 24. Cochran WL, Suh SJ, Mcfeters GA, Stewart PS, 2000. Role of RpoS and AlgT in *Pseudomonas aeruginosa* biofilm resistance to hydrogen peroxide and monochloramine. *J Appl Microbiol* **88**, 546-53.
- 25. Costanzo A, Ades SE, 2006. Growth phase-dependent regulation of the extracytoplasmic stress factor, sigmaE, by guanosine 3',5'-bispyrophosphate (ppGpp). *J Bacteriol* **188**, 4627-34.
- 26. Csonka LN, 1989. Physiological and genetic responses of bacteria to osmotic stress. *Microbiol Rev* **53**, 121-47.
- 27. Da Silva Neto JF, Koide T, Gomes SL, Marques MV, 2007. The single extracytoplasmic-function sigma factor of *Xylella fastidiosa* is involved in the heat shock response and presents an unusual regulatory mechanism. *J Bacteriol* **189**, 551-60.
- 28. Damron FH, Napper J, Teter MA, Yu HD, 2009a. Lipotoxin F of *Pseudomonas aeruginosa* is an AlgU-dependent and alginate-independent outer membrane protein involved in resistance to oxidative stress and adhesion to A549 human lung epithelia. *Microbiology* **155**, 1028-38.
- 29. Damron FH, Qiu D, Yu HD, 2009b. The *Pseudomonas aeruginosa* sensor kinase KinB
 negatively controls alginate production through AlgW-dependent MucA proteolysis. *J Bacteriol* 191, 2285-95.

- 30. Damron FH, Yu HD, 2011. Pseudomonas aeruginosa MucD regulates the alginate
 pathway through activation of MucA degradation via MucP proteolytic activity. *J Bacteriol* 193, 286-91.
 - 31. De Las Penas A, Connolly L, Gross CA, 1997. The sigmaE-mediated response to extracytoplasmic stress in *Escherichia coli* is transduced by RseA and RseB, two negative regulators of sigmaE. *Mol Microbiol* **24**, 373-85.
 - 32. De Regt AK, Baker TA, Sauer RT, 2015. Steric clashes with bound OMP peptides activate the DegS stress-response protease. *Proc Natl Acad Sci U S A* **112**, 3326-31.
 - 33. De Regt AK, Yin Y, Withers TR, et al., 2014. Overexpression of CupB5 activates alginate overproduction in *Pseudomonas aeruginosa* by a novel AlgW-dependent mechanism. *Molecular microbiology* **93**, 415-25.
 - 34. Delgado C, Florez L, Lollett I, et al., 2018. *Pseudomonas aeruginosa* regulated intramembrane proteolysis: protease MucP can overcome mutations in the AlgO periplasmic protease to restore alginate production in nonmucoid revertants. *Journal of bacteriology* **200**.
 - 35. Desnues B, Cuny C, Gregori G, Dukan S, Aguilaniu H, Nystrom T, 2003. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable *Escherichia coli* cells. *EMBO Rep* **4**, 400-4.
 - 36. Devescovi G, Venturi V, 2006. The *Burkholderia cepacia rpoE* gene is not involved in exopolysaccharide production and onion pathogenicity. *Can J Microbiol* **52**, 260-5.
 - 37. Devries CA, Ohman DE, 1994. Mucoid-to-nonmucoid conversion in alginate-producing *Pseudomonas aeruginosa* often results from spontaneous mutations in *algT*, encoding a putative alternate sigma factor, and shows evidence for autoregulation. *J Bacteriol* **176**, 6677-87.
 - 38. Egler M, Grosse C, Grass G, Nies DH, 2005. Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of *Escherichia coli*. *J Bacteriol* **187**, 2297-307.
 - 39. Erickson JW, Gross CA, 1989. Identification of the sigma E subunit of *Escherichia coli* RNA polymerase: a second alternate sigma factor involved in high-temperature gene expression. *Genes Dev* **3**, 1462-71.
 - 40. Fett WF, Osman SF, Fishman ML, Siebles TS, 1986. Alginate production by plant-pathogenic pseudomonads. *Appl Environ Microbiol* **52**, 466-73.
 - 41. Figueroa-Bossi N, Lemire S, Maloriol D, Balbontin R, Casadesus J, Bossi L, 2006. Loss of Hfq activates the sigmaE-dependent envelope stress response in *Salmonella enterica*. *Mol Microbiol* **62**, 838-52.
 - 42. Flannagan RS, Valvano MA, 2008. *Burkholderia cenocepacia* requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. *Microbiology* **154**, 643-53.
 - 43. Flynn JL, Ohman DE, 1988. Cloning of genes from mucoid *Pseudomonas aeruginosa* which control spontaneous conversion to the alginate production phenotype. *J Bacteriol* **170**, 1452-60.
 - 44. Flynn JM, Levchenko I, Sauer RT, Baker TA, 2004. Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. *Genes Dev* **18**, 2292-301.

589 45. Freeman BC, Chen C, Beattie GA, 2010. Identification of the trehalose biosynthetic loci of *Pseudomonas syringae* and their contribution to fitness in the phyllosphere. *Environ Microbiol* **12**, 1486-97.

- 46. Freeman BC, Chen C, Yu X, Nielsen L, Peterson K, Beattie GA, 2013. Physiological and transcriptional responses to osmotic stress of two *Pseudomonas syringae* strains that differ in epiphytic fitness and osmotolerance. *J Bacteriol* **195**, 4742-52.
- 47. Geng X, Jin L, Shimada M, Kim MG, Mackey D, 2014. The phytotoxin coronatine is a multifunctional component of the virulence armament of *Pseudomonas syringae*. *Planta* **240**, 1149-65.
- 48. Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH, 2017. Bacterial flagellin-a potent immunomodulatory agent. *Exp Mol Med* **49**, e373.
- 49. Hartung JS, Shao J, Kuykendall LD, 2011. Comparison of the '*Ca. Liberibacter asiaticus*' genome adapted for an intracellular lifestyle with other members of the *Rhizobiales*. *PLoS One* **6**, e23289.
- 50. Harty CE, Martins D, Doing G, et al., 2019. Ethanol stimulates trehalose production through a SpoT-DksA-AlgU-dependent pathway in *Pseudomonas aeruginosa*. *J Bacteriol* **201**.
- 51. Hayden JD, Ades SE, 2008. The extracytoplasmic stress factor, sigmaE, is required to maintain cell envelope integrity in *Escherichia coli*. *PLoS One* **3**, e1573.
- 52. Helmann TC, Deutschbauer AM, Lindow SE, 2019. Genome-wide identification of *Pseudomonas syringae* genes required for fitness during colonization of the leaf surface and apoplast. *Proc Natl Acad Sci U S A* **116**, 18900-10.
- 53. Heusipp G, Schmidt MA, Miller VL, 2003. Identification of *rpoE* and *nadB* as host responsive elements of *Yersinia enterocolitica*. *Fems Microbiology Letters* **226**, 291-8.
- 54. Hiratsu K, Amemura M, Nashimoto H, Shinagawa H, Makino K, 1995. The *rpoE* gene of *Escherichia coli*, which encodes sigma E, is essential for bacterial growth at high temperature. *J Bacteriol* 177, 2918-22.
- 55. Hybiske K, Ichikawa JK, Huang V, Lory SJ, Machen TE, 2004. Cystic fibrosis airway epithelial cell polarity and bacterial flagellin determine host response to *Pseudomonas aeruginosa*. *Cell Microbiol* **6**, 49-63.
- 56. Inaba K, Suzuki M, Maegawa K-I, Akiyama S, Ito K, Akiyama Y, 2008. A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of 621 *Escherichia coli. Journal of Biological Chemistry* **283**, 35042-52.
- 57. Ishiga T, Ishiga Y, Betsuyaku S, Nomura N, 2018. AlgU contributes to the virulence of *Pseudomonas syringae* pv. *tomato* DC3000 by regulating production of the phytotoxin coronatine. *Journal of General Plant Pathology* **84**, 189-201.
- 58. Ishihama A, 2000. Functional modulation of *Escherichia coli* RNA polymerase. *Annu Rev Microbiol* **54**, 499-518.
- 59. Joshi KK, Chien P, 2016. Regulated proteolysis in bacteria: *Caulobacter. Annual review of genetics* **50**, 423-45.
- 60. Kanehara K, Akiyama Y, Ito K, 2001. Characterization of the *yaeL* gene product and its S2P-protease motifs in *Escherichia coli*. *Gene* **281**, 71-9.
- 61. Kanehara K, Ito K, Akiyama Y, 2002. YaeL (EcfE) activates the sigma(E) pathway of stress response through a site-2 cleavage of anti-sigma(E), RseA. *Genes Dev* **16**, 2147-55.

- 62. Keith LM, Bender CL, 1999. AlgT (sigma22) controls alginate production and tolerance to environmental stress in *Pseudomonas syringae*. *J Bacteriol* **181**, 7176-84.
 - 63. Keith RC, Keith LMW, Hernandez-Guzman G, Uppalapati SR, Bender CL, 2003. Alginate gene expression by *Pseudomonas syringae* pv. *tomato* DC3000 in host and non-host plants. *Microbiology* **149**, 1127-38.
 - 64. Kennelly MM, Cazorla FM, De Vicente A, Ramos C, Sundin GW, 2007. *Pseudomonas syringae* diseases of fruit trees: progress toward understanding and control. *Plant Disease* **91**, 4-17.
 - 65. Kim DY, 2015. Two stress sensor proteins for the expression of sigmaE regulon: DegS and RseB. *J Microbiol* **53**, 306-10.
 - 66. Knight C, Zhang X, Gunn A, et al., 2010. Testing temperature-induced proteomic changes in the plant-associated bacterium *Pseudomonas fluorescens* SBW25. *Environmental microbiology reports* **2**, 396-402.
 - 67. Kocharunchitt C, King T, Gobius K, Bowman JP, Ross T, 2014. Global genome response of *Escherichia coli* O157:H7 Sakai during dynamic changes in growth kinetics induced by an abrupt downshift in water activity. *PLoS One* **9**, e90422.
 - 68. Korbsrisate S, Vanaporn M, Kerdsuk P, et al., 2005. The Burkholderia pseudomallei RpoE (AlgU) operon is involved in environmental stress tolerance and biofilm formation. Fems Microbiology Letters **252**, 243-9.
 - 69. Kurz M, Burch AY, Seip B, Lindow SE, Gross H, 2010. Genome-driven investigation of compatible solute biosynthesis pathways of *Pseudomonas syringae* pv. *syringae* and their contribution to water stress tolerance. *Appl Environ Microbiol* **76**, 5452-62.
 - 70. Laue H, Schenk A, Li H, et al., 2006. Contribution of alginate and levan production to biofilm formation by *Pseudomonas syringae*. *Microbiology* **152**, 2909-18.
 - 71. Li S, Lou X, Xu Y, et al., 2019. Structural basis for the recognition of MucA by MucB and AlgU in *Pseudomonas aeruginosa*. *FEBS J* **286**, 4982-94.
 - 72. Li S, Yu X, Beattie GA, 2013. Glycine betaine catabolism contributes to *Pseudomonas syringae* tolerance to hyperosmotic stress by relieving betaine-mediated suppression of compatible solute synthesis. *J Bacteriol* **195**, 2415-23.
 - 73. Li Y, Yamazaki A, Zou L, et al., 2010. ClpXP protease regulates the type III secretion system of *Dickeya dadantii* 3937 and is essential for the bacterial virulence. *Molecular Plant-Microbe Interactions* 23, 871-8.
 - 74. Lima S, Guo MS, Chaba R, Gross CA, Sauer RT, 2013. Dual molecular signals mediate the bacterial response to outer-membrane stress. *Science* **340**, 837-41.
 - 75. Lonetto MA, Brown KL, Rudd KE, Buttner MJ, 1994. Analysis of the *Streptomyces* coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. *Proc Natl Acad Sci U S A* **91**, 7573-7.
 - 76. Lovelace AH, Smith A, Kvitko BH, 2018. Pattern-triggered immunity alters the transcriptional regulation of virulence-associated genes and induces the sulfur starvation response in *Pseudomonas syringae* pv. *tomato* DC3000. *Mol Plant Microbe Interact* **31**, 750-65.
 - 77. Mansfield J, Genin S, Magori S, et al., 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. *Mol Plant Pathol* **13**, 614-29.

78. Markel E, Stodghill P, Bao Z, Myers CR, Swingle B, 2016. AlgU controls expression of virulence genes in *Pseudomonas syringae* pv. *tomato* DC3000. *J Bacteriol* **198**, 2330-44.

- 79. Martin DW, Holloway BW, Deretic V, 1993a. Characterization of a locus determining the mucoid status of Pseudomonas aeruginosa: AlgU shows sequence similarities with a Bacillus sigma factor. *J.Bacteriol.* **175**, 1153-64.
- 80. Martin DW, Schurr MJ, Mudd MH, Deretic V, 1993b. Differentiation of *Pseudomonas aeruginosa* into the alginate-producing form: inactivation of *mucB* causes conversion to mucoidy. *Mol.Microbiol.* **9**, 497-506.
- 81. Martinez-Granero F, Navazo A, Barahona E, Redondo-Nieto M, Rivilla R, Martin M, 2012. The Gac-Rsm and SadB signal transduction pathways converge on AlgU to downregulate motility in *Pseudomonas fluorescens*. *PLoS One* **7**, e31765.
- 82. Mathee K, Mcpherson CJ, Ohman DE, 1997. Posttranslational control of the *algT* (*algU*)-encoded sigma22 for expression of the alginate regulon in *Pseudomonas aeruginosa* and localization of its antagonist proteins MucA and MucB (AlgN). *J Bacteriol* 179, 3711-20.
- 83. Mathur J, Davis BM, Waldor MK, 2007. Antimicrobial peptides activate the *Vibrio cholerae* sigmaE regulon through an OmpU-dependent signalling pathway. *Mol Microbiol* **63**, 848-58.
- 84. Mellies JL, Thomas K, Turvey M, et al., 2012. Zinc-induced envelope stress diminishes type III secretion in enteropathogenic *Escherichia coli*. *BMC Microbiol* **12**, 123.
- 85. Melotto M, Zhang L, Oblessuc PR, He SY, 2017. Stomatal Defense a Decade Later. *Plant Physiol* **174**, 561-71.
- 86. Moradali MF, Ghods S, Rehm BH, 2017. *Pseudomonas aeruginosa* lifestyle: a paradigm for adaptation, survival, and persistence. *Front Cell Infect Microbiol* **7**, 39.
- 87. Muhammadi, Ahmed N, 2007. Genetics of bacterial alginate: alginate genes distribution, organization and biosynthesis in bacteria. *Curr Genomics* **8**, 191-202.
- 88. Muriel C, Blanco-Romero E, Trampari E, et al., 2019. The diguanylate cyclase AdrA regulates flagellar biosynthesis in *Pseudomonas fluorescens* F113 through SadB. *Sci Rep* **9**. 8096.
- 89. Nobori T, Velasquez AC, Wu J, et al., 2018. Transcriptome landscape of a bacterial pathogen under plant immunity. *Proc Natl Acad Sci U S A* **115**, E3055-E64.
- 90. Nobori T, Wang Y, Wu J, et al., 2020. Multidimensional gene regulatory landscape of a bacterial pathogen in plants. *Nat Plants* **6**, 883-96.
- 91. Okuda J, Hayashi N, Tanabe S, Minagawa S, Gotoh N, 2011. Degradation of interleukin 8 by the serine protease MucD of *Pseudomonas aeruginosa*. *J Infect Chemother* **17**, 782-92.
- 92. Pandey S, Delgado C, Kumari H, Florez L, Mathee K, 2018. Outer-membrane protein LptD (PA0595) plays a role in the regulation of alginate synthesis in *Pseudomonas aeruginosa*. *J Med Microbiol* **67**, 1139-56.
- 93. Pfeilmeier S, Saur IM, Rathjen JP, Zipfel C, Malone JG, 2016. High levels of cyclic-di-GMP in plant-associated *Pseudomonas* correlate with evasion of plant immunity. *Mol Plant Pathol* **17**, 521-31.
- 94. Potvin E, Sanschagrin F, Levesque RC, 2008. Sigma factors in *Pseudomonas aeruginosa*.
 FEMS Microbiol Rev 32, 38-55.

- 95. Prada-Ramirez HA, Perez-Mendoza D, Felipe A, et al., 2016. AmrZ regulates cellulose production in *Pseudomonas syringae* pv. tomato DC3000. *Mol Microbiol* **99**, 960-77.
 - 96. Qiu D, Eisinger VM, Head NE, Pier GB, Yu HD, 2008. ClpXP proteases positively regulate alginate over-expression and mucoid conversion in *Pseudomonas aeruginosa*. *Microbiol.* in press.
 - 97. Qiu D, Eisinger VM, Rowen DW, Yu HD, 2007. Regulated proteolysis controls mucoid conversion in *Pseudomonas aeruginosa*. *Proc. Natl. Acad. Sci. U.S.A.* **104**, 8107-12.
 - 98. Raina S, Missiakas D, Georgopoulos C, 1995. The *rpoE* gene encoding the sigma E (sigma 24) heat shock sigma factor of *Escherichia coli*. *EMBO J* **14**, 1043-55.
 - 99. Rhodius VA, Suh WC, Nonaka G, West J, Gross CA, 2005. Conserved and variable functions of the σ E stress response in related genomes. *PLOS biol* **4**, e2.
 - 100. Roesser M, Muller V, 2001. Osmoadaptation in bacteria and archaea: common principles and differences. *Environ Microbiol* **3**, 743-54.
 - 101. Rowen DW, Deretic V, 2000. Membrane-to-cytosol redistribution of ECF sigma factor AlgU and conversion to mucoidy in *Pseudomonas aeruginosa* isolates from cystic fibrosis patients. *Mol Microbiol* **36**, 314-27.
 - 102. Rowley G, Stevenson A, Kormanec J, Roberts M, 2005. Effect of inactivation of degS on Salmonella enterica serovar typhimurium in vitro and in vivo. Infect Immun 73, 459-63.
 - 103. Ryan Withers T, Heath Damron F, Yin Y, Yu HD, 2013. Truncation of type IV pilin induces mucoidy in *Pseudomonas aeruginosa* strain PAO579. *Microbiologyopen* **2**, 459-70.
 - 104. Saito A, Hizukuri Y, Matsuo E-I, et al., 2011. Post-liberation cleavage of signal peptides is catalyzed by the site-2 protease (S2P) in bacteria. *Proceedings of the National Academy of Sciences* **108**, 13740-5.
 - 105. Schenk A, Berger M, Keith LM, Bender CL, Muskhelishvili G, Ullrich MS, 2006. The algT gene of Pseudomonas syringae pv. glycinea and new insights into the transcriptional organization of the algT-muc gene cluster. *J Bacteriol* **188**, 8013-21.
 - 106. Schenk A, Weingart H, Ullrich MS, 2008. The alternative sigma factor AlgT, but not alginate synthesis, promotes in planta multiplication of *Pseudomonas syringae* pv. *glycinea*. *Microbiology* **154**, 413-21.
 - 107. Schobel S, Zellmeier S, Schumann W, Wiegert T, 2004. The *Bacillus subtilis* sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. *Mol Microbiol* **52**, 1091-105.
 - 108. Schreiber KJ, Desveaux D, 2011. AlgW regulates multiple *Pseudomonas syringae* virulence strategies. *Mol Microbiol* **80**, 364-77.
 - 109. Schurr MJ, Martin DW, Mudd MH, Deretic V, 1994. Gene cluster controlling conversion to alginate-overproducing phenotype in *Pseudomonas aeruginosa*: functional analysis in a heterologous host and role in the instability of mucoidy. *J. Bacteriol.* **176**, 3375-82.
 - 110. Schurr MJ, Yu H, Boucher JC, Hibler NS, Deretic V, 1995. Multiple promoters and induction by heat shock of the gene encoding the alternative sigma factor AlgU (sigma E) which controls mucoidy in cystic fibrosis isolates of Pseudomonas aeruginosa. *J Bacteriol* **177**, 5670-9.

111. Schurr MJ, Yu H, Martinez-Salazar JM, Boucher JC, Deretic V, 1996. Control of AlgU, a member of the sigma E-like family of stress sigma factors, by the negative regulators MucA and MucB and *Pseudomonas aeruginosa* conversion to mucoidy in cystic fibrosis. *J Bacteriol* **178**, 4997-5004.

- 112. Scortichini M, Marcelletti S, Ferrante P, Petriccione M, Firrao G, 2012. Pseudomonas syringae pv. actinidiae: a re-emerging, multi-faceted, pandemic pathogen. Mol Plant Pathol 13, 631-40.
- 113. Scrase-Field SA, Knight MR, 2003. Calcium: just a chemical switch? *Curr Opin Plant Biol* **6**, 500-6.
- 114. Serra DO, Mika F, Richter AM, Hengge R, 2016. The green tea polyphenol EGCG inhibits *E. coli* biofilm formation by impairing amyloid curli fibre assembly and downregulating the biofilm regulator CsgD via the sigma(E) -dependent sRNA RybB. *Mol Microbiol* **101**, 136-51.
- 115. Shi C, Li M, Muhammad I, et al., 2018. Combination of berberine and ciprofloxacin reduces multi-resistant *Salmonella* strain biofilm formation by depressing mRNA expressions of *luxS*, *rpoE*, and *ompR*. *J Vet Sci* **19**, 808-16.
- 116. Shi XY, Dumenyo CK, Hernandez-Martinez R, Azad H, Cooksey DA, 2007. Characterization of regulatory pathways in *Xylella fastidiosa*: genes and phenotypes controlled by *algU*. *Applied and environmental microbiology* **73**, 6748-56.
- 117. Sohn J, Grant RA, Sauer RT, 2007. Allosteric activation of DegS, a stress sensor PDZ protease. *Cell* **131**, 572-83.
- 118. Sreedharan A, Penaloza-Vazquez A, Kunkel BN, Bender CL, 2006. CorR regulates multiple components of virulence in *Pseudomonas syringae* pv. *tomato* DC3000. *Mol Plant Microbe Interact* **19**, 768-79.
- 119. Stacey SD, Pritchett CL, 2016. *Pseudomonas aeruginosa* AlgU contributes to posttranscriptional activity by increasing *rsmA* expression in a *mucA22* strain. *JBacteriol* **198**, 1812-26.
- 120. Staron A, Sofia HJ, Dietrich S, Ulrich LE, Liesegang H, Mascher T, 2009. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) sigma factor protein family. *Mol Microbiol* **74**, 557-81.
- 121. Tart AH, Blanks MJ, Wozniak DJ, 2006. The AlgT-dependent transcriptional regulator AmrZ (AlgZ) inhibits flagellum biosynthesis in mucoid, nonmotile *Pseudomonas aeruginosa* cystic fibrosis isolates. *J Bacteriol* **188**, 6483-9.
- 122. Tart AH, Wolfgang MC, Wozniak DJ, 2005. The alternative sigma factor AlgT represses *Pseudomonas aeruginosa* flagellum biosynthesis by inhibiting expression of *fleQ. J Bacteriol* **187**, 7955-62.
- 123. Tashiro Y, Sakai R, Toyofuku M, et al., 2009. Outer membrane machinery and alginate synthesis regulators control membrane vesicle production in *Pseudomonas aeruginosa*. *Journal of bacteriology* **191**, 7509-19.
- 124. Thurman RB, Gerba CP, Bitton G, 1989. The molecular mechanisms of copper and silver ion disinfection of bacteria and viruses. *Critical reviews in environmental science and technology* **18**, 295-315.

- 806 125. Waite RD, Paccanaro A, Papakonstantinopoulou A, et al., 2006. Clustering of 807 Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and 808 mature biofilms reveals distinct expression profiles. BMC Genomics 7, 162.
 - 126. Waller PR, Sauer RT, 1996. Characterization of *degQ* and *degS*, *Escherichia coli* genes encoding homologs of the DegP protease. *J Bacteriol* **178**, 1146-53.
 - 127. Walsh NP, Alba BM, Bose B, Gross CA, Sauer RT, 2003. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. *Cell* **113**, 61-71.
 - 128. Wang Y, Garrido-Oter R, Wu J, et al., 2019. Site-specific cleavage of bacterial MucD by secreted proteases mediates antibacterial resistance in *Arabidopsis*. *Nat Commun* **10**, 2853.
 - 129. Wilken C, Kitzing K, Kurzbauer R, Ehrmann M, Clausen T, 2004. Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. *Cell* **117**, 483-94.
 - 130. Wood JM, 2015. Bacterial responses to osmotic challenges. *J Gen Physiol* **145**, 381-8.
 - 131. Wood LF, Leech AJ, Ohman DE, 2006. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in *Pseudomonas aeruginosa*: Roles of sigma (AlgT) and the AlgW and Prc proteases. *Mol Microbiol* **62**, 412-26.
 - 132. Wood LF, Ohman DE, 2009. Use of cell wall stress to characterize sigma(22) (AlgT/U) activation by regulated proteolysis and its regulon in *Pseudomonas aeruginosa*. *Molecular microbiology* **72**, 183-201.
 - 133. Xie YP, Shao XL, Deng X, 2019. Regulation of type III secretion system in Pseudomonas syringae. *Environmental Microbiology* **21**, 4465-77.
 - 134. Xie ZD, Hershberger CD, Shankar S, Ye RW, Chakrabarty AM, 1996. Sigma factoranti-sigma factor interaction in alginate synthesis: inhibition of AlgT by MucA. *J Bacteriol* **178**, 4990-6.
 - 135. Xin XF, He SY, 2013. *Pseudomonas syringae* pv. *tomato* DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. *Annu Rev Phytopathol* **51**, 473-98.
 - 136. Xin XF, Kvitko B, He SY, 2018. *Pseudomonas syringae*: what it takes to be a pathogen. *Nat Rev Microbiol* **16**, 316-28.
 - 137. Xue Y, Osborn J, Panchal A, Mellies JL, 2015. The RpoE stress response pathway mediates reduction of the virulence of enteropathogenic *Escherichia coli* by zinc. *Appl Environ Microbiol* **81**, 3766-74.
 - 138. Yang L-Y, Yang L-C, Gan Y-L, et al., 2018. Systematic functional analysis of sigma (σ) factors in the phytopathogen *Xanthomonas campestris* reveals novel roles in the regulation of virulence and viability. *Frontiers in Microbiology* **9**, 1749.
 - 139. Yang Z, Jin X, Rao X, Hu F, 2011. A natural antisense transcript regulates *mucD* gene expression and biofilm biosynthesis in *Pseudomonas aeruginosa*. *Microbiology* **80**, 768-74.
- 140. Yorgey P, Rahme LG, Tan MW, Ausubel FM, 2001. The roles of *mucD* and alginate in the virulence of *Pseudomonas aeruginosa* in plants, nematodes and mice. *Mol Microbiol* **41**, 1063-76.

Yu H, Boucher JC, Hibler NS, Deretic V, 1996. Virulence properties of
 Pseudomonas aeruginosa lacking the extreme-stress sigma factor AlgU (sigmaE). Infect
 Immun 64, 2774-81.

- 142. Yu H, Schurr MJ, Deretic V, 1995. Functional equivalence of *Escherichia coli* sigma E and *Pseudomonas aeruginosa* AlgU: *E. coli rpoE* restores mucoidy and reduces sensitivity to reactive oxygen intermediates in *algU* mutants of *P. aeruginosa. J Bacteriol* **177**, 3259-68.
- 143. Yu J, Penaloza-Vazquez A, Chakrabarty AM, Bender CL, 1999. Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of *Pseudomonas syringae* pv. *syringae*. *Mol Microbiol* **33**, 712-20.
- 144. Yu X, Lund SP, Greenwald JW, et al., 2014. Transcriptional analysis of the global regulatory networks active in *Pseudomonas syringae* during leaf colonization. *MBio* **5**, e01683-14.
- 145. Yu X, Lund SP, Scott RA, et al., 2013. Transcriptional responses of *Pseudomonas* syringae to growth in epiphytic versus apoplastic leaf sites. *Proc Natl Acad Sci U S A* **110**, E425-34.
- 146. Zipfel C, Robatzek S, Navarro L, et al., 2004. Bacterial disease resistance in *Arabidopsis* through flagellin perception. *Nature* **428**, 764-7.

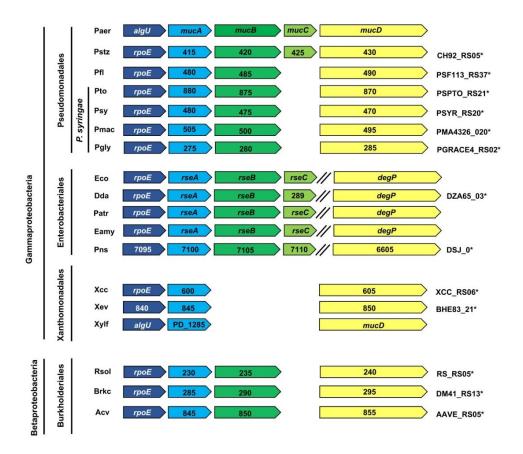


Figure 1. Genetic arrangement of the *algU* (*rpoE*) operons in selected plant and animal pathogens and related bacteria. In the *Enterobacteriales*, *degP* is encoded separately from the *rpoE* operon. Gene names or locus numbers are listed as annotated in their corresponding GenBank accession records. Paer = *Pseudomonas aeruginosa* PAO1; NC_002516. Pstz = *Pseudomonas stutzeri* 28a24; NZ_CP007441. Pfl = *Pseudomonas fluorescens* F113; NC_016830. Pto = *Pseudomonas syringae* pv. *tomato* DC3000; NC_004578. Psy = *Pseudomonas syringae* pv. *syringae* B728a; NC_007005. Pmac = *Pseudomonas syringae* pv. *maculicola* ES4326; CP047260. Pgly = *Pseudomonas savastanoi* pv. *glycinea* race 4; NZ_AEGH01000079. Eco = *Escherichia coli* K-12 substr. MG1655; NC_000913. Dda = *Dickeya dianthicola* ME23; CP031560. Patr = *Pectobacterium atrosepticum* SCRI1043; BX950851. Eamy = *Erwinia amylovora* ATCC 49946; FN666575. Pns = *Pantoea stewartii* subsp. *stewartii* DC283; CP017581. Xcc = *Xanthomonas campestris* pv. *campestris* ATCC 33913; NC_003902. Xev = *Xanthomonas euvesicatoria* 85-10; CP017190. Xylf = *Xylella fastidiosa* Temecula1; AE009442. Rsol = *Ralstonia solanacearum* GMI1000; NC_003295. Brkc = *Burkholderia cepacia* ATCC 25416; NZ_CP007746. Acv = *Acidovorax citrulli* AAC00-1; NC_008752.Homologous genes have been assigned the same color.

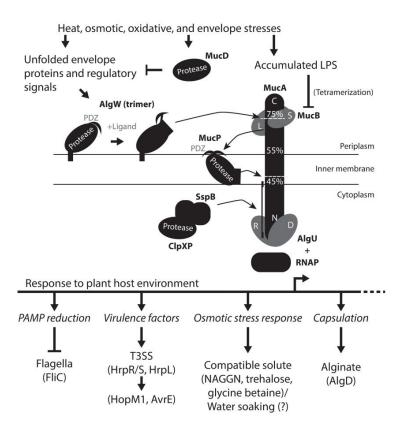


Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from *E. coli* and *P. aeruginosa*) and several outcomes of AlgU activation in plants. MucD degrades stress peptides but it is not known if they are the same unfolded envelope proteins that activate AlgW. AlgW forms trimers, one monomer is shown in the cartoon. Upon ligand binding to the PDZ domain, AlgW undergoes a conformational change and the peptidase domain adopts an activated form. The ligand can be C-termini of several different types of unfolded proteins, including OMPs, MucE, and type IV pilin. Activators of the MucP PDZ domain are less understood. MucA N- and C-termini are marked as N and C. Percentages indicate approximate amino acid position relative to full length MucA, 100% at the C-terminus. *P. aeruginosa* MucA is 194 amino acids long, and AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large and small domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP-binding domain and DNA-binding domain are labeled as R and D. ClpXP consist of ClpX, an unfoldase, and ClpP, a protease. SspB is an adaptor for ClpXP that determines substrate specificity for the MucA cytoplasmic cleavage product. After AlgU is released from MucA, it interacts with RNA polymerase and guides the induction of stress response and virulence pathways. The capsulation and osmotic stress response help bacteria survive in plant

apoplastic environment, while suppression of PAMP expression and activation of virulence factors counteract the plant immune system.

215x279mm (300 x 300 DPI)