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16 Abstract 

 
17 Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic 

18 stresses. Host niches pose specific sets of environmental challenges driven in part by immune 

19 defenses. Bacteria use a “just-in-time” strategy of gene regulation, meaning that they only 

20 produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma 

21 factors transduce a specific set of environmental signals and change gene expression patterns 

22 by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure, 

23 and/or behavior to improve chances of survival. The broadly conserved ECF sigma factor, AlgU, 

24 affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls 

25 expression of more than 800 genes, some of which contribute to suppression of plant immunity 

26 and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions 

27 controlled by AlgU, and how these functions contribute to P. syringae survival in plants. 
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28 Introduction 

 
29 Pseudomonas syringae is a species complex divided into more than fifty pathovars, each of 

30 which is able to grow and cause disease in a limited range of plants (Baltrus et al., 2017). P. 

31 syringae is responsible for economically significant disease outbreaks in many crops worldwide 

32 (Xin et al., 2018, Scortichini et al., 2012, Kennelly et al., 2007, Martin et al., 1993a). Because of 

33 its agricultural importance and tractability, P. syringae has become a popular model organism 

34 for understanding mechanisms of plant disease and plant immune defenses (Mansfield et al., 

35 2012, Xin & He, 2013). 

 

36 P. syringae is adept at surviving diverse and dynamic conditions such as atmospheric, aquatic, 

37 terrestrial, and plant host environments (Berge et al., 2014), each presenting specific challenges 

38 and opportunities. The ability to quickly and accurately adjust gene expression according to 

39 changes in the environment underpins P. syringae’s success as a plant pathogen. Take the foliar 

40 invasion process as an example. P. syringae enters the apoplast by moving from leaf surfaces 

41 through stomata or wounds using chemotaxis and flagellar motility. Flagellar synthesis is 

42 suppressed after entering the apoplastic space, minimizing detection by the plant immune 

43 system (Bao et al., 2020). Once in the apoplast, the bacteria also express and assemble the type 

44 III secretion system (T3SS) to translocate protein effectors into plant cells to suppress plant 

45 immunity, up-regulate production of alginate exopolysaccharide, adjust intracellular compatible 

46 solute levels, and adjust their metabolism to utilize apoplastic nutrients (Nobori et al., 2018, 

47 Lovelace et al., 2018, Yu et al., 2013, Nobori et al., 2020). 

 
48 ECF sigma factors bridge environmental signals and transcriptional regulation 

 
49 P. syringae has the ability to detect their entrance into plant tissues and make appropriate 

50 transcriptional adjustments. This is carried out using cell-surface signaling systems that sense 

51 and transduce environmental information across the cytoplasmic membrane and through the 

52 cytoplasm to adjust gene expression. ExtraCytoplasmic Function (ECF) sigma factors are one of 

53 the principal mechanisms that bacteria have for adjusting gene expression patterns in response 

54 to external stimuli (Staron et al., 2009). Sigma factors are exchangeable subunits of RNA 

55 polymerase (RNAP) that transiently interact with the RNAP core enzyme to coordinate binding 

56 and transcription initiation at corresponding promoter sequences (Ishihama, 2000). 

57 Accordingly, competition between sigma factor subunits changes the set of promoters 

58 transcribed and the sets of functions expressed. 

 
59 ECF sigma factors are a class of alternative (i.e., non-housekeeping) sigma factors that typically 

60 function with anti-sigma factors as part of cell surface signaling systems (Lonetto et al., 1994, 

61 Stacey & Pritchett, 2016). Canonical anti-sigma factors are located at the cytoplasmic 
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62 membrane and are regulated by extracellular cues. Anti-sigma factors suppress the activity of 

63 ECF sigma factors by sequestering them from RNAP and target promoters. With appropriate 

64 cues, ECF sigma factors are activated and released from anti-sigma factors (Potvin et al., 2008). 

65 It is common for ECF sigma factors to be coexpressed with their cognate anti-sigma in an 

66 operon (Figure 1). 

 
67 The ECF sigma factor AlgU (synonym, RpoE in bacteria outside of Pseudomonads) is broadly 

68 conserved among bacteria (Staron et al., 2009). The considerable variation in the naming 

69 conventions of this sigma factor (Box 1) which stems from multiple independent discoveries 

70 and reflects its importance in diverse bacteria. AlgU (RpoE) recognizes the consensus promoter 

71 sequence (gGAACt-16/17-GTCnAA) among P. syringae, P. aeruginosa, and E. coli (Markel et al., 

72 2016, Cheng et al., 2008), and typically up-regulates expression of genes conferring tolerance to 

73 osmotic, oxidative, and heat stresses (Table 1). In Pseudomonads, AlgU also controls the 

74 synthesis and export of alginate, a hydroscopic exopolysaccharide composed of D- 

75 mannuronic and L-guluronic acid polymers (Boyd & Chakrabarty, 1995). In P. syringae, AlgU 

76 regulates between 800 and 1000 genes, and makes important contributions to the regulation of 

77 virulence genes as well as the repression of flagellin (Markel et al., 2016, Bao et al., 2020, 

78 Schreiber & Desveaux, 2011). 

 
79 AlgU is kept inactive by the anti-sigma factor MucA under non-inducing conditions 

 
80 AlgU (RpoE) is encoded in an operon that contains up to four regulatory genes named mucABCD 

81 (synonym, rseABC and degP). The mucA gene is near universally associated with algU, but the 

82 presence of mucB, mucC, and mucD varies (Figure 1). In P. syringae pv. glycinea PG4180, the 

83 mucC gene is absent algU and mucAB are co-transcribed. and mucD is transcribed 

84 independently (Schenk et al., 2006). The muc genes code for proteins that determine the 

85 strength of AlgU membrane-sequestration and activation. They are named for the mucoid 

86 colony phenotype associated with mucA mutants, which overproduce alginate (Martin et al., 

87 1993b). 

 

88 The anti-sigma factor MucA is a 21 kDa protein with a single transmembrane domain (Xie et al., 

89 1996). MucA sequesters AlgU at the cytoplasmic membrane and prevents RNAP and DNA 

90 interactions through direct protein-protein interaction, thereby suppressing AlgU activity 

91 (Figure 2). The N- and C-termini of MucA (RseA) are in the cytoplasm and periplasm, 

92 respectively, in both P. aeruginosa and E. coli (Mathee et al., 1997, Hayden & Ades, 2008). X-ray 

93 crystal structure analysis shows that the P. aeruginosa MucA N-terminus interacts with the 

94 RNAP-binding and DNA-binding domains of AlgU (Li et al., 2019). In P. aeruginosa, about 2/3 of 

95 total AlgU are sequestered by MucA under non-inducing conditions (Rowen & Deretic, 2000). It 

96 was proposed that remaining free AlgU allows for basal-level expression from AlgU promoters 
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97 (Rowen & Deretic, 2000). The MucA C-termini also interacts directly with periplasmic protein 

98 MucB (synonym, RseB, AlgN). Crystal structures show that P. aeruginosa MucB is composed of 

99 two domains separated by a flexible linker that form a binding pocket for MucA (Li et al., 2019) . 

100 This interaction provides an additional mechanism of environmental-sensing (discussed below) 

101 (Cezairliyan & Sauer, 2009, Schurr et al., 1996). 

 
102 Transitioning from an AlgU-inactive to an AlgU-activated state is mediated by degradation of 

103 MucA via a regulated intramembrane proteolysis (RIP) cascade. The structure of the AlgU 

104 (RpoE) regulatory cascade has been extensively studied in P. aeruginosa and E. coli. The high 

105 degree of similarity in RIP regulation between these two species suggests broad conservation 

106 (Yu et al., 1995, Schreiber & Desveaux, 2011). Under inducing conditions, the RIP cascade 

107 eliminates MucA and releases AlgU to direct up-regulation from corresponding promoters 

108 (Rowen & Deretic, 2000). The RIP cascade was shown to be very responsive. In P. aeruginosa, 

109 cell wall stress can stimulate MucA degradation within ten minutes (Wood & Ohman, 2009). 

110 The short response time is critical for surviving dynamic environments. 

 
111 RIP step 1: proteolytic cleavage of MucA by AlgW 

 
112 AlgU activation is carried out through a series of proteolytic cleavages that inactivate MucA and 

113 release AlgU to interact with core RNAP and initiate transcription of its regulon. Envelope 

114 stresses activate specific proteases and result in MucA cleavage. One well characterized 

115 indicator of envelope stress are misfolded outer member proteins (OMPs) (Pandey et al., 2018, 

116 Tashiro et al., 2009, de Regt et al., 2015, de Regt et al., 2014, Walsh et al., 2003, Sohn et al., 

117 2007, Chaba et al., 2011). Stress induced malfunction of OMP transport, folding, or assembly, 

118 can increase unfolded OMPs in the periplasm (Walsh et al., 2003). The serine protease AlgW 

119 (synonym, DegS) is activated through interactions with peptide motifs in the C-termini of 

120 misfolded OMPs (Wilken et al., 2004, Bass et al., 1996, Waller & Sauer, 1996). DegS in E. coli 

121 remains inactive until amino acid sequences (e.g., YxF motifs) exposed in misfolded proteins 

122 interact with its periplasmic PDZ domain. This interaction converts DegS into its proteolytically 

123 active conformation (de Regt et al., 2015). 

 
124 In E. coli, the degree of DegS activation depends on the amino acid sequences upstream of the 

125 YxF motif, providing a mechanism for fine-tuning DegS activity according to the abundance and 

126 diversity of unfolded OMPs present (Sohn et al., 2007, Ades et al., 1999). In addition to the YxF 

127 motif, P. aeruginosa AlgW can also bind and be activated by C-terminal WVF, LVF, WIF, WVW 

128 (MucE homologs), FTF (PilA108), and GYYYTVV (internal motif of CupB5) (Qiu et al., 2007, de Regt 

129 et al., 2014, Ryan Withers et al., 2013). An increase of misfolded OMPs can also result from loss 

130 of the histidine kinase KinB, the periplasmic protease MucD, or the sRNA binding chaperon 

131 protein Hfq (Wood & Ohman, 2009, Figueroa-Bossi et al., 2006, Damron et al., 2009b). The 
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132 essentiality of AlgW (DegS) varies from species to species, but its function is usually related to 

133 virulence in studied species (Mathur et al., 2007, Rowley et al., 2005, Schreiber & Desveaux, 

134 2011). 

 

135 MucD (synonym, DegP, AlgY, HtrA), a product of the algU-muc operon, is a 

136 periplasmic/secreted serine endoprotease (Wang et al., 2019). In P. aeruginosa, MucD 

137 suppresses RIP activation by degrading peptides that accumulate during stress (Qiu et al., 

138 2007). The absence of MucD increases AlgW-dependent MucA degradation (Wood & Ohman, 

139 2009). MucD protein levels are regulated by a mucD antisense transcript and feedback from 

140 misfolded OMPs, as less misfolded OMPs lead to less induction of the whole algU-mucABCD 

141 operon in P. aeruginosa (Knight et al., 2010, Tashiro et al., 2009, Yang et al., 2011). MucD plays 

142 an important role in virulence and colonization in plants. The deletion of mucD in P. syringae 

143 pv. tomato DC3000, P. fluorescens SBW25, and P. aeruginosa strain PA14 all reduced in planta 

144 growth under certain conditions (Yorgey et al., 2001, Wang et al., 2019). P. aeruginosa MucD 

145 can degrade animal host immune factors (Okuda et al., 2011) and is required to produce a C. 

146 elegans killing extracellular toxin (Yorgey et al., 2001), indicating that MucD has functions 

147 beyond regulating stress signals related to RIP. 

 
148 MucB interaction with MucA restricts AlgW access to MucA under non-inducing conditions. In 

149 E. coli, RseB interaction with RseA reduces RseA degradation by 2.4-fold (Ades et al., 1999). 

150 Under envelope stresses, outer membrane lipopolysaccharides (LPS) mislocalize to the 

151 periplasm. The accumulated periplasmic LPS interacts with RseB and induces it to form a 

152 tetramer, which is then released from RseA (Lima et al., 2013). In P. aeruginosa, MucB 

153 cantetramerize via intermolecular disulfide bonds, which suggests that MucB may serve as a 

154 redox sensor under oxidative conditions (Li et al., 2019). As a result, in both E. coli and P. 

155 aeruginosa, the frequency of this first MucA (RseA) cleavage step is a function of MucB (RseB) 

156 removal and AlgW (DegS) activation (Chaba et al., 2011, Kim, 2015, Mathee et al., 1997, 

157 Desnues et al., 2003). 

 
158 158 

 
159 RIP step 2: proteolytic cleavage of MucA by MucP 

 
160 After AlgW cleaves the C-terminal portion of MucA, the transmembrane portion of MucA 

161 becomes more susceptible to cleavage by MucP (synonym, RseP). The requirement for MucP 

162 (RseP) mediated MucA (RseA) cleavage in P. aeruginosa is similar to that in E. coli (Damron & 

163 Yu, 2011, Qiu et al., 2007), while the biochemical aspect of MucP (RseP) is more extensively 

164 studied in E. coli. E. coli RseP is an intramembrane zinc metalloprotease that contains two 

165 periplasmic PDZ domains. Both the zinc-binding and protease motifs are within the 
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166 transmembrane region on the cytoplasmic surface (Kanehara et al., 2002). The PDZ domains 

167 can interact with the truncated RseA C-terminus exposed by DegS cleavage (Inaba et al., 2008). 

168 This interaction activates RsePto cleave RseA within the transmembrane region, releasing the 

169 N-terminus of RseA from the membrane to the cytoplasm (Akiyama et al., 2004). It is not clear 

170 how intramembrane peptide bond hydrolysis takes place in a hydrophobic environment, but 

171 the glutamic acid residue in the HEXXH Zinc-binding motif is required for hydrolysis (Kanehara 

172 et al., 2001). In contrast to DegS, which is highly specific to RseA, RseP can degrade a diverse 

173 variety of proteins and may have housekeeping functions (Akiyama et al., 2004). One example 

174 is that it processes secreted proteins to remove signal peptides (Saito et al., 2011). 

 
175 Another periplasmic protease, AlgO (synonym, Prc, Tsp), is also a part of the RIP process. AlgU 

176 activation is reduced in ΔalgO P. aeruginosa mutants exposed to cell wall stresses (Wood et al., 

177 2006). AlgO cleaves MucA upstream of MucP cleavage, and an excess of MucP can compensate 

178 for the loss of algO (Delgado et al., 2018). It is generally accepted that AlgO prefers truncated 

179 MucA and has minimal effect on full-length MucA. However, it is not clear if AlgW cleavage is 

180 directly upstream of AlgO recognition, or if they recognize MucA independently. 

 
181 RIP final step: degradation of MucA by ClpXP 

 
182 After MucP (RseP) cleavage, the remaining cytoplasmic (N-terminal) portion of MucA (RseA) is 

183 recognized and fed to the protease ClpXP by the adaptor, SspB, in both P. aeruginosa and E. coli 

184 (Flynn et al., 2004, Qiu et al., 2008). ClpXP is a cytoplasmic protease complex of ClpX, an AAA+ 

185 unfoldase, and ClpP, a peptidase. ClpXP is highly conserved and has a broader substrate range 

186 than MucP. In contrast to other housekeeping proteases, ClpXP determines substrate specificity 

187 through adaptors, like SspB, rather than universally recognizing misfolded proteins (Baker & 

188 Sauer, 2012, Joshi & Chien, 2016). P. aeruginosa encodes two copies of ClpP, and both are 

189 required for MucA RIP (Qiu et al., 2008). ClpXP fully degrades the remaining MucA fragment, 

190 freeing AlgU. 

 
191 AlgU/RpoE regulates stress tolerance and promotes virulence in both plant and animal 

192 pathogens 

 
193 Regulating expression of stress tolerance (and alginate production genes in Pseudomonads) are 

194 core functions of AlgU (RpoE), enabling rapid physiological adaptation in a wide range of 

195 bacteria. While the core role of these sigma factors is conserved, individual species and strains 

196 have evolved to use AlgU (RpoE) to co-regulate accessory functions that assist growth in 

197 conditions that are idiosyncratic to their specific lifestyles (Rhodius et al., 2005). Recent studies 

198 show that AlgU is critical in the transition of P. syringae from free-living to pathogenic growth 

199 within leaf tissue. In P. syringae pv. tomato DC3000 and P. syringae pv. syringae B728a, AlgU 
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200 regulates between 800 and 1000 genes (Yu et al., 2014, Markel et al., 2016), including the core 

201 AlgU stress response functions, as well as many genes associated with colonization of plants. 

202 Some of these genes are exclusively dedicated to promoting virulence in plants, such as the 

203 hypersensitive response and pathogenicity (hrp) type III secretion system (T3SS), and type III 

204 secreted effector (T3Es) genes. In P. syringae pv. tomato DC3000, AlgU also contributes to 

205 down-regulation of flagellar expression, which has a clear role in minimizing plant immune 

206 activation through host flagellin detection (Markel et al., 2016, Bao et al., 2020). 

 
207 The importance of AlgU in coordinating P. syringae transition to the plant niche is also 

208 supported by evidence of an arms race centered on AlgU activation. Transcriptional analysis 

209 suggests that AlgU activity is suppressed in P. syringae pv. tomato DC3000 during exposure to 

210 pattern triggered immunity (PTI) induced by the flg22 flagellin epitope. PTI exposure correlates 

211 with reduced induction of alginate synthetic and osmotolerance genes as well as reduced 

212 repression of flagellar genes (Lovelace et al., 2018, Nobori et al., 2018). As described above, 

213 AlgU activity is subject to an intricate control mechanism that involves protein-protein 

214 interactions and proteolytic processing. MucD, a component of the regulatory cascade, is 

215 degraded by Arabidopsis immunity-induced secreted aspartic proteases SAP1 and SAP2, which 

216 contributes to the antimicrobial effects of PTI (Wang et al., 2019). It is worth noting that there 

217 may be several distinct points where plant immune systems interfere with the AlgU signaling 

218 cascade. For example, loss of mucD is associated with AlgU activation and overproduction of 

219 alginate (Qiu et al., 2007, Wang et al., 2019). In contrast, PTI exposure results in reduced 

220 expression of alginate production genes suggesting that the repressive effects of PTI on AlgU 

221 signaling are potentially independent of MucD degradation. 

 
222 AlgU homologs are present in most bacterial lineages. Despite accumulating evidence indicating 

223 an important role in regulating virulence gene expression, the function of AlgU homologs in 

224 most plant pathogenic bacteria have been understudied. However, there are a few examples 

225 where the roles of AlgU homologs have been examined in plant pathogens or plant-associated 

226 bacteria. In Xanthomonas campestris pv. campestris, as in P. syringae, the AlgU homolog 

227 stimulates expression of T3SS and T3E genes and significantly contributes to virulence (Bordes 

228 et al., 2011, Cheng et al., 2008, Yang et al., 2018). This is an interesting convergence in AlgU 

229 regulation as P. syringae and X. campestris use very different regulatory cascades to control 

230 expression of their respective hrp virulence regulons(Brencic & Winans, 2005). In Xylella 

231 fastidiosa, the AlgU homolog is the only known ECF sigma factor. It is induced in xylem fluid and 

232 contributes to heat stress tolerance, biofilm formation, and virulence in grapevines (da Silva 

233 Neto et al., 2007, Shi et al., 2007). However, AlgU homologs do not contribute to plant disease 

234 in all plant pathogens. In Burkholderia cepacia, the AlgU homolog does not contribute to 

235 virulence on onion, or to the canonical stress responses observed in other bacteria (Devescovi 
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236 & Venturi, 2006). This is in contrast to the AlgU homolog of B. cenocepacia and B. pseudomallei, 

237 which contributes to stress tolerance and animal virulence (Flannagan & Valvano, 2008, 

238 Korbsrisate et al., 2005). In the soft rot necrotroph Dickeya dadantii 3937, in vitro transcription 

239 of T3SS-associated promoters was not influenced by mutation of the algU homolog (Li et al., 

240 2010). Alphaproteobacteria are one of only a few groups of bacteria that notably often lack 

241 AlgU family members (Staron et al., 2009). AlgU sigma factors were not identified in the 

242 Rhizobiales oncogenic pathogen Agrobacterium tumefaciens C58 and are sporadically 

243 distributed among related root-nodulating symbionts (e.g. Bradyrhizobium, Rhizobium, 

244 Sinorhizobium). The phloem-limited pathogen Ca. Liberibacter asiaticus, causative agent of 

245 Huanglongbing (yellow dragon disease, citrus greening), encodes only three sigma factors, none 

246 of which are ECF sigma factors (Hartung et al., 2011). 

 
247 The role of AlgU homologs in the physiology of human bacterial pathogens has been much 

248 more extensively studied. In most cases, algU mutants adhere to the pattern of having reduced 

249 stress tolerance and reduced virulence. In P. aeruginosa, it is common for strains to accumulate 

250 mutations in mucA during chronic lung infection resulting in constitutive AlgU activity and 

251 mucoid phenotype on agar media (Yu et al., 1996). In Yersinia, E. coli, and Vibrio, RpoE is 

252 considered essential (Heusipp et al., 2003). Recovery of rpoE mutations in these strains requires 

253 either specialized growth conditions or compensating secondary mutations. In Salmonella, rpoE 

254 is not essential, but rpoE mutants epistatically require a functional LPS O-antigen to survive 

255 (Amar et al., 2018). 

 
256 AlgU-regulated pathways in P. syringae 

 
257 Osmotic stress response: The AlgU regulon in P. syringae pv. tomato DC3000 is enriched for 

258 genes whose functions pertain to responding to and surviving osmotic stress (Markel et al., 

259 2016). Osmotic stress, in the form of an abundance of solutes or lack of water, results in water 

260 loss from the cytoplasm, which is deleterious to cellular function and potentially lethal. To cope 

261 with osmotic stress, bacteria increase the concentration of compatible solutes like trehalose or 

262 glycine betaine through biosynthesis or increased uptake (Wood, 2015). These compatible 

263 solutes are useful osmoprotectants because they can accumulate to high concentrations in the 

264 cytoplasm without interfering with cellular functions. The use of certain compatible solutes 

265 such as glycine betaine is conserved across kingdoms (Csonka, 1989, Roesser & Muller, 2001). 

266 In P. syringae, AlgU up-regulates the intake or synthesis of three compatible solutes: the 

267 quaternary ammonium compound (QAC) glycine betaine, the dipeptide N- 

268 acetylglutaminylglutamine amide (NAGGN) (Kurz et al., 2010) and the disaccharide trehalose (α- 

269 d-glucopyranosyl-α-d-glucopyranoside) (Freeman et al., 2010, Markel et al., 2016). Betaine 

270 based osmotic protection is hypothesized to be part of the acute osmotic stress response which 

271 is later replaced by NAGGN based protection (Li et al., 2013). P. syringae strains vary in their 
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272 capacity for both synthesis and uptake of compatible solutes and their degrees of 

273 osmotolerance. These variations in osmotolerance differentially affect epiphytic fitness of 

274 strains on the leaf surface (Chen et al., 2013, Yu et al., 2013). Accumulation of specific 

275 compatible solutes in the bacterial cytoplasm contributes to in planta fitness in a strain specific 

276 manner (Freeman et al., 2010, Freeman et al., 2013, Kurz et al., 2010). 

 
277 Alginate production: Regulation of alginate production by AlgU has been extensively studied in 

278 Pseudomonads (Keith & Bender, 1999, Keith et al., 2003, Schenk et al., 2008, Markel et al., 

279 2016). Alginate (co-polymer of O-acetylated beta-1,4-linked D-mannuronic acid and L-guluronic 

280 acid) is an exopolysaccharide that was first described in brown algae and its production is 

281 conserved across many Pseudomonas species (Fett et al., 1986, Muhammadi & Ahmed, 2007). 

282 Alginate is considered a virulence factor in some plant and animal pathogens (Boyd & 

283 Chakrabarty, 1995, Yu et al., 1999, Keith et al., 2003), however its specific role in virulence is 

284 variable (Markel et al., 2016). 

 
285 In the human pathogen P. aeruginosa, alginate is a principal component of the capsule, which 

286 provides a passive defense layer that protects against detection by immune cells and oxidative 

287 bursts (Boyd & Chakrabarty, 1995), enhances initial adhesion to surfaces, and protects from 

288 dehydration (Boyd et al., 1987). However, the general defensive role of alginate for plant 

289 pathogens in apoplastic spaces remains an open question. It is possible that alginate protects 

290 bacterial cells from osmotic stress as well as oxidative stress associated with immune ROS 

291 signaling and accumulation (Keith et al., 2003, Chang et al., 2007). Alginate has also been 

292 proposed to interfere with plant immune elicitation by chelating and suppressing calcium influx, 

293 a key component of the immune signaling cascade (Aslam et al., 2008, Scrase-Field & Knight, 

294 2003). Alginate appears to make strain variable contributions to epiphytic colonization and 

295 apoplastic virulence among P. syringae strains. In P. syringae pv. syringae 3525, alginate 

296 production promotes survival during epiphytic colonization of non-host tomato (Yu et al., 

297 1999). Conversely, alginate synthesis genes were not observed to make major contributions to 

298 bean leaf epiphytic fitness of P. syringae pv. syringae B728a on bean but are associated with 

299 decreased apoplastic fitness (Helmann et al., 2019). However, alginate production in P. syringae 

300 pv. tomato DC3000 and P. syringae pv. glycinea PG4180 were not associated with reduced 

301 virulence phenotypes in tomato or soybean, respectively (Markel et al., 2016, Schenk et al., 

302 2008, Ishiga et al., 2018). 

 

303 De-flagellation: Interestingly, AlgU can also indirectly coordinate down-regulation of gene 

304 expression. In the case of Pseudomonads, AlgU coordinates down-regulation of genes involved 

305 in motility and assembly of the flagella. Peptide epitopes within flagellin monomers are 

306 detected by both plant and animal immune pattern recognition receptors and can trigger an 

307 immune response (Hajam et al., 2017, Hybiske et al., 2004). In P. aeruginosa, down-regulation 
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308 of flagellar biosynthesis is thought to correlate with avoidance of host immune detection (Tart 

309 et al., 2006, Amiel et al., 2010, Moradali et al., 2017). Most plants encode pattern recognition 

310 receptors that recognize various flagellin epitopes and activate PTI (Zipfel et al., 2004). Wild- 

311 type P. syringae pv. tomato DC3000 has a similar apoplastic virulence as fliC mutants or 

312 mutants with reduced fliC expression, suggesting that P. syringae pv. tomato DC3000 may 

313 undergo de-flagellation during its interactions with plants (Pfeilmeier et al., 2016, Bao et al., 

314 2020). The importance of the AlgU signaling cascade for de-flagellation was observed in P. 

315 syringae pv. maculicola ES4236, where Tn inactivation of AlgW resulted in decreased AlgU 

316 activity and increased expression of flagella as well as reduced in planta growth and disease 

317 (Schreiber & Desveaux, 2011).  AlgU-driven repression of flagellin in P. syringae pv. tomato 

318 DC3000 reduces PTI activation and promotes bacterial fitness in tomato (Bao et al., 2020). 

 
319 Although AlgU-dependent down-regulation of flagellar expression is conserved across plant 

320 pathogenic, plant-associated, and animal pathogenic Pseudomonads, there are surprising 

321 mechanistic differences in how flagellar down-regulation is coordinated among these bacteria. 

322 In P. aeruginosa and P. fluorescens, AlgU up-regulates the transcriptional regulator AmrZ (AlgZ), 

323 which in turn suppresses motility by down-regulating FleQ, the master regulator of flagellar and 

324 chemotaxis gene expression (Tart et al., 2006, Tart et al., 2005, Muriel et al., 2019, Martinez- 

325 Granero et al., 2012). In both P. syringae and P. stutzeri, AlgU also up-regulates AmrZ 

326 expression. However, in these bacteria AmrZ acts as a positive regulator of motility rather than 

327 a negative regulator (Baltrus et al., 2018, Prada-Ramirez et al., 2016). Additionally, as fleQ is 

328 not AlgU-regulated in P. syringae (Markel et al., 2016, Baltrus et al., 2018), the role of AlgU in P. 

329 syringae de-flagellation likely occurs downstream of FleQ in the flagellar regulatory network. 

330 Regardless of these differences in the flagellar regulatory networks, the final output of 

331 increased AlgU-driven expression in P. syringae is reduced flagellar expression (Schreiber & 

332 Desveaux, 2011, Bao et al., 2020). The differences in AlgU-dependent flagellar regulatory 

333 mechanisms suggest that AlgU-mediated de-flagellation may have emerged multiple times 

334 independently among Pseudomonads. 

 
335 T3SS/T3SEs and other virulence factors: Successful colonization of plants is a multifaceted and 

336 dynamic process. Avoiding plant immunity is a major part of this process, and mounting 

337 evidence supports a key role for AlgU in helping P. syringae survive in that context. In addition 

338 to suppressing flagellin expression (Schreiber & Desveaux, 2011, Bao et al., 2020), AlgU also up- 

339 regulates expression of many genes dedicated to actively suppressing plant immunity and 

340 promoting successful colonization and disease (Markel et al., 2016). The mechanistic details of 

341 AlgU-dependent regulation of these virulence systems are not fully understood, but appear to 

342 include up-regulation of hrpL expression, which is the master regulator of pathogenicity in P. 

343 syringae. HrpL is itself an ECF sigma factor, which recognizes and helps initiate transcription 
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344 from hrp box promoters, up-regulating expression hrp/hrc T3SS structural genes that code for 

345 the injectisome and the T3SS secreted effector proteins. Based on Chip-seq analysis AlgU likely 

346 up-regulates hrpL expression indirectly, presumably by directly driving expression of hrpR and 

347 hrpS, the regulators immediately upstream of HrpL (Markel et al., 2016). For a more 

348 comprehensive review of P. syringae T3SS regulation, we would point the reader to Xie et al., 

349 2019(Xie et al., 2019). 

 

350 AlgU also up-regulates expression of P. syringae pv. tomato DC3000 coronatine biosynthetic 

351 genes (Ishiga et al., 2018). Coronatine is a phytotoxin sporadically distributed among P. syringae 

352 strains, with multiple roles in promoting interactions with plants. Coronatine contributes to 

353 visible disease symptoms, causing the characteristic chlorotic halos (coronas) around necrotic 

354 specks (Bender et al., 1999). Coronatine is a potent structural analog of the plant defense 

355 hormone jasmonyl isoleucine that biases defenses to counter necrotrophic pathogens (Geng et 

356 al., 2014). Coronatine also drives the reopening of stomata, which close in response to the 

357 presence of bacterial flagellin, thus aiding further pathogen invasion into leaf tissues (Geng et 

358 al., 2014, Melotto et al., 2017). However, as coronatine expression in P. syringae pv. tomato 

359 DC3000 is itself HrpL-regulated, it is unclear if the role of AlgU on coronatine gene expression is 

360 direct or acts indirectly through activation of hrpL expression (Sreedharan et al., 2006). 

 
361 Concluding remarks 

 
362 The ECF sigma factor AlgU (RpoE) and its regulatory cascade represent an evolutionarily 
363 ancestral and broadly conserved response pathway for stress tolerance in bacteria. The 
364 capacity of MucB and AlgW to respond to different environmental stress cues presumably 
365 allows robust and tuned regulation of the RIP cascade to appropriately control the level of free 
366 AlgU in response to multiple signals. Some bacteria appear to have tailored their AlgU (RpoE)- 
367 mediated signaling responses in ways that promote virulence during the process of adaptation 
368 to a pathogenic lifestyle. In the case of P. syringae, AlgU contributes to multiple host- 
369 interaction pathways including host attack via the T3SS, immune evasion through de- 
370 flagellation and niche acclimation through the regulation of alginate and compatible solute 
371 concentrations. However, key questions remain. What is the apoplastic environmental cue that 
372 leads to efficient activation of AlgU in P. syringae? What is the full regulatory cascade in P. 
373 syringae for AlgU driven deflagellation? How does PTI interfere with AlgU activity? A deeper 
374 mechanistic understanding of AlgU (RpoE) as a key control point for bacterial-host interactions 
375 will provide useful insights into bacterial adaptation to, and modulation of, the host niche. 
376 These insights have great potential to inform novel management strategies for bacterial 
377 diseases of plants and potentially human diseases as well. 
378 
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386 Box 1: Naming conventions and synonyms for 

387 AlgU/RpoE signaling pathways. There is 

388 considerable confusion in the naming 

389 conventions of AlgU and RpoE sigma factors, 

390 reflecting both their importance and multiple 

391 independent discoveries in different bacteria. 

392 The AlgU name is mainly used in the 

393 Pseudomonadales based on its alginate- 

394 associated phenotypes (Flynn & Ohman, 1988, 

395 Cochran et al., 2000). AlgU was also named AlgT 

396 (DeVries & Ohman, 1994). Outside of 

397 Pseudomonadales, the RpoE name is typically 

398 applied (Erickson & Gross, 1989). AlgU and RpoE are also called sigma E or sigE (σE) to denote its 

399 function as a sigma factor. Based on molecular weight-based naming conventions AlgU and 

400 RpoE were also known as either sigma 22 (σ22) in P. aeruginosa (Mathee et al., 1997) or sigma 

401 24 (σ24) in E. coli (Raina et al., 1995) . In Gram positive Bacillus subtilis, the AlgU homolog sigma 

402 factor is named sigma W (σW, sigW) (Schobel et al., 2004). Anti-sigma factors follow their own 

403 naming conventions reflecting independent discovery in P. aeruginosa and E. coli. The 

404 Pseudomonadales anti-sigma factors and signal cascade components are often named “muc” or 

405 “alg” based on the mucoid alginate-associated phenotypes of corresponding mutants (Schurr et 

406 al., 1994). Enterobacterales anti-sigma factors are typically named rse (regulator of sigma E) (De 

407 Las Penas et al., 1997), and the Bacillus subtilis cognate anti-sigma factor is rsiW (regulator of 

408 sigma W) (Schobel et al., 2004). 

 
409 409 

 
410 410 

411 411 

412 412 

413 413 

414 Tables 

415 Table 1. AlgU/RpoE involvement in various cellular response pathways in different bacteria. 

Gene 

names 

synonymous or 

analogous genes 

algU rpoE, algT 

mucA rseA 

mucB rseB, algN 

mucC rseC 

mucD degP, algY, htrA 

algW degS 

mucP rseP 

algO prc, tsp 
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osmotic 
stressa 

envelope 
stress 

oxidative 
stress 

heat 
shock 

biofilm 
formatio 
n 

stationary 
phase 
survival 

P. aeruginosa √b √ √ √ √ √ 
(Harty et (Wood et (Yu et al., (Schur (Bazire et (Behrends et 

al., al., 2006, 1996) r et al., al., 2010) al., 2010, 
2019, Harty et x 1995)  Harty et al., 
Behrend al., 2019) (Wood et   2019, Waite et 
s et al.,  al., 2006,   al., 2006) 
2010)  Damron    

 xc 

(Wood 
 et al., 

2009a) 

   

 et al.,      

 2006)      

P. syringae √ nad √ √ √ na 
 (Keith &  (Keith & (Keith (Laue et  

 Bender,  Bender, & al., 2006)  

 1999,  1999, Bende   

 Markel  Markel et r,   

 et al.,  al., 2016) 1999)   

 2016)      

E. coli √ √ √ √ √ √ 
 (Kochar (Xue et (Egler et (Hirats (Serra et (Costanzo & 
 unchitt al., 2015) al., 2005, u et al., 2016) Ades, 2006) 
 et al.,  Desnues al.,   

 2014)  et al., 1995)   

   2003)    

S. enterica √ √ √ xd √ √ 
(Shi et al., 2018,       

Amar et al., 2018)       

Y. enterocolitica √ x na x na na 
(Heusipp et al.,       

2003)       

X. campestris x x √ √ na √ 
(Bordes et al.,       

2011)       

X. fastidiosa x √ x √ na x 
(da Silva Neto et       

al., 2007)       

B. pseudomallei √ √ √ na √ √ 
(Korbsrisate et al.,       

2005)       

B. cepacia x na x √ x na 
(Devescovi &       

Venturi, 2006)       

 
 
 

 

416 416 
417 a In vitro inducers commonly used. Osmotic stress: NaCl, sorbitol; envelope stress: ethanol, penicillin G, 

418 zinc (Mellies et al., 2012); oxidative stress: paraquat, H2O2, copper (Thurman et al., 1989); heat shock: up 

419 to 50°C. 

420 
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421 b √ : AlgU is required or up-regulated in association with this condition. 

422 c x : AlgU is either not required or not up-regulated under this condition. 

423 d na : no applicable literature was identified. 

424 

425 

426 Figure legends 

427 Figure 1. Genetic arrangement of the algU (rpoE) operons in selected plant and animal 

428 pathogens and related bacteria. In the Enterobacteriales, degP is encoded separately from the 

429 rpoE operon. Gene names or locus numbers are listed as annotated in their corresponding 

430 GenBank accession records. Paer = Pseudomonas aeruginosa PAO1; NC_002516. Pstz = 

431 Pseudomonas stutzeri 28a24; NZ_CP007441. Pfl = Pseudomonas fluorescens F113; NC_016830. 

432 Pto = Pseudomonas syringae pv. tomato DC3000; NC_004578. Psy = Pseudomonas syringae pv. 

433 syringae B728a; NC_007005. Pmac = Pseudomonas syringae pv. maculicola ES4326; CP047260. 

434 Pgly = Pseudomonas savastanoi pv. glycinea race 4; NZ_AEGH01000079. Eco = Escherichia coli 

435 K-12 substr. MG1655; NC_000913. Dda = Dickeya dianthicola ME23; CP031560. Patr = 

436 Pectobacterium atrosepticum SCRI1043; BX950851. Eamy = Erwinia amylovora ATCC 49946; 

437 FN666575. Pns = Pantoea stewartii subsp. stewartii DC283; CP017581. Xcc = Xanthomonas 

438 campestris pv. campestris ATCC 33913; NC_003902. Xev = Xanthomonas euvesicatoria 85-10; 

439 CP017190. Xylf = Xylella fastidiosa Temecula1; AE009442. Rsol = Ralstonia solanacearum 

440 GMI1000; NC_003295. Brkc = Burkholderia cepacia ATCC 25416; NZ_CP007746. Acv = 

441 Acidovorax citrulli AAC00-1; NC_008752. Homologous genes have been assigned the same 

442 color. 

443 

444 Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from E. coli and P. 

445 aeruginosa) and several outcomes of AlgU activation in plants. MucD degrades stress peptides 

446 but it is not known if they are the same unfolded envelope proteins that activate AlgW. AlgW 

447 forms trimers, one monomer is shown in the cartoon. Upon ligand binding to the PDZ domain, 

448 AlgW undergoes a conformational change and the peptidase domain adopts an activated form. 

449 The ligand can be C-termini of several different types of unfolded proteins, including OMPs, 

450 MucE, and type IV pilin. Activators of the MucP PDZ domain are less understood. MucA N- and 

451 C-termini are marked as N and C. Percentages indicate approximate amino acid position relative 

452 to full length MucA, 100% at the C-terminus. P. aeruginosa MucA is 194 amino acids long, and 

453 AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large 

454 and small domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP- 

455 binding domain and DNA-binding domain are labeled as R and D. ClpXP consist of ClpX, an 

456 unfoldase, and ClpP, a protease. SspB is an adaptor for ClpXP that determines substrate 

457 specificity for the MucA cytoplasmic cleavage product. After AlgU is released from MucA, it 

458 interacts with RNA polymerase and guides the induction of stress response and virulence 
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459 pathways. The capsulation and osmotic stress response help bacteria survive in plant apoplastic 

460 environment, while suppression of PAMP expression and activation of virulence factors 

461 counteract the plant immune system. 

462 
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Figure 1. Genetic arrangement of the algU (rpoE) operons in selected plant and animal pathogens and 

related bacteria. In the Enterobacteriales, degP is encoded separately from the rpoE operon. Gene names or 
locus numbers are listed as annotated in their corresponding GenBank accession records. Paer = 

Pseudomonas aeruginosa PAO1; NC_002516. Pstz = Pseudomonas stutzeri 28a24; NZ_CP007441. Pfl = 
Pseudomonas fluorescens F113; NC_016830. Pto = Pseudomonas syringae pv. tomato DC3000; 

NC_004578. Psy = Pseudomonas syringae pv. syringae B728a; NC_007005. Pmac = Pseudomonas syringae 
pv. maculicola ES4326; CP047260. Pgly = Pseudomonas savastanoi pv. glycinea race 4; 

NZ_AEGH01000079. Eco = Escherichia coli K-12 substr. MG1655; NC_000913. Dda = Dickeya dianthicola 
ME23; CP031560. Patr = Pectobacterium atrosepticum SCRI1043; BX950851. Eamy = Erwinia amylovora 
ATCC 49946; FN666575. Pns = Pantoea stewartii subsp. stewartii DC283; CP017581. Xcc = Xanthomonas 
campestris pv. campestris ATCC 33913; NC_003902. Xev = Xanthomonas euvesicatoria 85-10; CP017190. 
Xylf = Xylella fastidiosa Temecula1; AE009442. Rsol = Ralstonia solanacearum GMI1000; NC_003295. Brkc 

= Burkholderia cepacia ATCC 25416; NZ_CP007746. Acv = Acidovorax citrulli AAC00-1; 
NC_008752.Homologous genes have been assigned the same color. 
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Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from E. coli and P. aeruginosa) and 
several outcomes of AlgU activation in plants. MucD degrades stress peptides but it is not known if they are 
the same unfolded envelope proteins that activate AlgW. AlgW forms trimers, one monomer is shown in the 

cartoon. Upon ligand binding to the PDZ domain, AlgW undergoes a conformational change and the 
peptidase domain adopts an activated form. The ligand can be C-termini of several different types of 

unfolded proteins, including OMPs, MucE, and type IV pilin. Activators of the MucP PDZ domain are less 
understood. MucA N- and C-termini are marked as N and C. Percentages indicate approximate amino acid 
position relative to full length MucA, 100% at the C-terminus. P. aeruginosa MucA is 194 amino acids long, 
and AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large and small 

domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP-binding domain and 
DNA-binding domain are labeled as R and D. ClpXP consist of ClpX, an unfoldase, and ClpP, a protease. SspB 

is an adaptor for ClpXP that determines substrate specificity for the MucA cytoplasmic cleavage product. 
After AlgU is released from MucA, it interacts with RNA polymerase and guides the induction of stress 

response and virulence pathways. The capsulation and osmotic stress response help bacteria survive in plant 
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apoplastic environment, while suppression of PAMP expression and activation of virulence factors counteract 
the plant immune system. 
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