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Abstract

Pseudomonas syringae can rapidly deploy specialized functions to deal with abiotic and biotic
stresses. Host niches pose specific sets of environmental challenges driven in part byimmune
defenses. Bacteria use a “just-in-time” strategy of gene regulation, meaning that theyonly
produce the functions necessary for survival as needed. Extracytoplasmic function (ECF) sigma
factors transduce a specific set of environmental signals and change gene expression patterns
by altering RNA polymerase promoter specificity, to adjust bacterial physiology, structure,
and/or behavior to improve chances of survival. The broadly conserved ECF sigma factor, AlgU,
affects virulence in both animal and plant pathogens. Pseudomonas syringae AlgU controls
expression of more than 800 genes, some of which contribute to suppression of plant immunity
and bacterial fitness in plants. This review discusses AlgU activation mechanisms, functions
controlled by AlgU, and how these functions contribute to P. syringae survival in plants.
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Introduction

Pseudomonas syringae is a species complex divided into more than fifty pathovars, each of
which is able to grow and cause disease in a limited range of plants (Baltrus et al., 2017).P.
syringae is responsible for economically significant disease outbreaks in many crops worldwide
(Xin et al., 2018, Scortichini et al., 2012, Kennelly et al., 2007, Martin et al., 1993a). Because of
its agricultural importance and tractability, P. syringae has become a popular model organism
for understanding mechanisms of plant disease and plant immune defenses (Mansfield et al.,
2012, Xin & He, 2013).

P. syringae is adept at surviving diverse and dynamic conditions such as atmospheric, aquatic,
terrestrial, and plant host environments (Berge et al., 2014), each presenting specificchallenges
and opportunities. The ability to quickly and accurately adjust gene expression accordingto
changes in the environment underpins P. syringae’s success as a plant pathogen. Take thefoliar
invasion process as an example. P. syringae enters the apoplast by moving from leaf surfaces
through stomata or wounds using chemotaxis and flagellar motility. Flagellar synthesis is
suppressed after entering the apoplastic space, minimizing detection by the plant immune
system (Bao et al., 2020). Once in the apoplast, the bacteria also express and assemble thetype
Il secretion system (T3SS) to translocate protein effectors into plant cells to suppress plant
immunity, up-regulate production of alginate exopolysaccharide, adjust intracellular compatible
solute levels, and adjust their metabolism to utilize apoplastic nutrients (Nobori et al., 2018,
Lovelace et al., 2018, Yu et al., 2013, Nobori et al., 2020).

ECF sigma factors bridge environmental signals and transcriptional regulation

P. syringae has the ability to detect their entrance into plant tissues and make appropriate
transcriptional adjustments. This is carried out using cell-surface signaling systems thatsense
and transduce environmental information across the cytoplasmic membrane and through the
cytoplasm to adjust gene expression. ExtraCytoplasmic Function (ECF) sigma factors are oneof
the principal mechanisms that bacteria have for adjusting gene expression patterns inresponse
to external stimuli (Staron et al., 2009). Sigma factors are exchangeable subunits of RNA
polymerase (RNAP) that transiently interact with the RNAP core enzyme to coordinate binding
and transcription initiation at corresponding promoter sequences (Ishihama, 2000).
Accordingly, competition between sigma factor subunits changes the set of promoters
transcribed and the sets of functions expressed.

ECF sigma factors are a class of alternative (i.e., non-housekeeping) sigma factors thattypically
function with anti-sigma factors as part of cell surface signaling systems (Lonetto et al., 1994,
Stacey & Pritchett, 2016). Canonical anti-sigma factors are located at the cytoplasmic



Page 3 of 27

62
63
64
65
66

67
68
69
70
71
72
73
74
75
76
77
78

79

80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96

membrane and are regulated by extracellular cues. Anti-sigma factors suppress the activity of
ECF sigma factors by sequestering them from RNAP and target promoters. With appropriate
cues, ECF sigma factors are activated and released from anti-sigma factors (Potvin et al., 2008).
It is common for ECF sigma factors to be coexpressed with their cognate anti-sigma inan
operon (Figure 1).

The ECF sigma factor AlgU (synonym, RpoE in bacteria outside of Pseudomonads) is broadly
conserved among bacteria (Staron et al., 2009). The considerable variation in the naming
conventions of this sigma factor (Box 1) which stems from multiple independent discoveries
and reflects its importance in diverse bacteria. AlgU (RpoE) recognizes the consensus promoter
sequence (gGAACt-16/17-GTCnAA) among P. syringae, P. aeruginosa, and E. coli (Markel etal.,
2016, Cheng et al., 2008), and typically up-regulates expression of genes conferring tolerance to
osmotic, oxidative, and heat stresses (Table 1). In Pseudomonads, AlgU also controls the
synthesis and export of alginate, a hydroscopic exopolysaccharide composed of D-

mannuronic and L-guluronic acid polymers (Boyd & Chakrabarty, 1995). In P. syringae, AlgU
regulates between 800 and 1000 genes, and makes important contributions to the regulation of
virulence genes as well as the repression of flagellin (Markel et al., 2016, Bao et al., 2020,
Schreiber & Desveaux, 2011).

AlgU is kept inactive by the anti-sigma factor MucA under non-inducing conditions

AlgU (RpoE) is encoded in an operon that contains up to four regulatory genes named mucABCD
(synonym, rseABC and degP). The mucA gene is near universally associated with algU, butthe
presence of mucB, mucC, and mucD varies (Figure 1). In P. syringae pv. glycinea PG4180, the
mucC gene is absent algU and mucAB are co-transcribed. and mucD is transcribed
independently (Schenk et al., 2006). The muc genes code for proteins that determine the
strength of AlgU membrane-sequestration and activation. They are named for the mucoid
colony phenotype associated with mucA mutants, which overproduce alginate (Martin etal.,
1993b).

The anti-sigma factor MucA is a 21 kDa protein with a single transmembrane domain (Xie etal.,
1996). MucA sequesters AlgU at the cytoplasmic membrane and prevents RNAP and DNA
interactions through direct protein-protein interaction, thereby suppressing AlgU activity
(Figure 2). The N- and C-termini of MucA (RseA) are in the cytoplasm and periplasm,
respectively, in both P. geruginosa and E. coli (Mathee et al., 1997, Hayden & Ades, 2008). X-ray
crystal structure analysis shows that the P. aeruginosa MucA N-terminus interacts with the
RNAP-binding and DNA-binding domains of AlgU (Li et al., 2019). In P. aeruginosa, about 2/3 of
total AlgU are sequestered by MucA under non-inducing conditions (Rowen & Deretic, 2000). It
was proposed that remaining free AlgU allows for basal-level expression from AlgU promoters
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(Rowen & Deretic, 2000). The MucA C-termini also interacts directly with periplasmicprotein
MucB (synonym, RseB, AlgN). Crystal structures show that P. aeruginosa MucB is composed of
two domains separated by a flexible linker that form a binding pocket for MucA (Li et al., 2019).
This interaction provides an additional mechanism of environmental-sensing (discussed below)
(Cezairliyan & Sauer, 2009, Schurr et al., 1996).

Transitioning from an AlgU-inactive to an AlgU-activated state is mediated by degradation of
MucA via a regulated intramembrane proteolysis (RIP) cascade. The structure of the AlgU
(RpoE) regulatory cascade has been extensively studied in P. aeruginosa and E. coli. The high
degree of similarity in RIP regulation between these two species suggests broad conservation
(Yu et al., 1995, Schreiber & Desveaux, 2011). Under inducing conditions, the RIP cascade
eliminates MucA and releases AlgU to direct up-regulation from corresponding promoters
(Rowen & Deretic, 2000). The RIP cascade was shown to be very responsive. In P. aeruginosa,
cell wall stress can stimulate MucA degradation within ten minutes (Wood & Ohman, 2009).
The short response time is critical for surviving dynamic environments.

RIP step 1: proteolytic cleavage of MucA by AlgW

AlgU activation is carried out through a series of proteolytic cleavages that inactivate MucA and
release AlgU to interact with core RNAP and initiate transcription of its regulon. Envelope
stresses activate specific proteases and result in MucA cleavage. One well characterized
indicator of envelope stress are misfolded outer member proteins (OMPs) (Pandey et al., 2018,
Tashiro et al., 2009, de Regt et al., 2015, de Regt et al., 2014, Walsh et al., 2003, Sohn et al.,
2007, Chaba et al., 2011). Stress induced malfunction of OMP transport, folding, or assembly,
can increase unfolded OMPs in the periplasm (Walsh et al., 2003). The serine protease AlgW
(synonym, DegS) is activated through interactions with peptide motifs in the C-termini of
misfolded OMPs (Wilken et al., 2004, Bass et al., 1996, Waller & Sauer, 1996). DegS in E. coli
remains inactive until amino acid sequences (e.g., YXF motifs) exposed in misfolded proteins
interact with its periplasmic PDZ domain. This interaction converts DegS into its proteolytically
active conformation (de Regt et al., 2015).

In E. coli, the degree of DegS activation depends on the amino acid sequences upstream of the
YxF motif, providing a mechanism for fine-tuning DegS activity according to the abundanceand
diversity of unfolded OMPs present (Sohn et al., 2007, Ades et al., 1999). In addition to the YxF
motif, P. aeruginosa AlgW can also bind and be activated by C-terminal WVF, LVF, WIF, WVW
(Muck homologs), FTF (PilA%8), and GYYYTVV (internal motif of CupB5) (Qiu et al., 2007, de Regt
et al., 2014, Ryan Withers et al., 2013). An increase of misfolded OMPs can also result fromloss
of the histidine kinase KinB, the periplasmic protease MucD, or the sRNA bindingchaperon
protein Hfq (Wood & Ohman, 2009, Figueroa-Bossi et al., 2006, Damron et al., 2009b). The
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essentiality of AlgW (DegS) varies from species to species, but its function is usually related to
virulence in studied species (Mathur et al., 2007, Rowley et al., 2005, Schreiber & Desveaux,
2011).

MucD (synonym, DegP, AlgY, HtrA), a product of the algU-muc operon, isa
periplasmic/secreted serine endoprotease (Wang et al., 2019). In P. aeruginosa, MucD
suppresses RIP activation by degrading peptides that accumulate during stress (Qiu et al.,
2007). The absence of MucD increases AlgW-dependent MucA degradation (Wood & Ohman,
2009). MucD protein levels are regulated by a mucD antisense transcript and feedback from
misfolded OMPs, as less misfolded OMPs lead to less induction of the whole algU-mucABCD
operon in P. aeruginosa (Knight et al., 2010, Tashiro et al., 2009, Yang et al., 2011). MucD plays
an important role in virulence and colonization in plants. The deletion of mucD in P.syringae
pv. tomato DC3000, P. fluorescens SBW25, and P. aeruginosa strain PA14 all reduced inplanta
growth under certain conditions (Yorgey et al., 2001, Wang et al., 2019). P. aeruginosa MucD
can degrade animal host immune factors (Okuda et al., 2011) and is required to produce aC.
elegans killing extracellular toxin (Yorgey et al., 2001), indicating that MucD has functions
beyond regulating stress signals related to RIP.

MucB interaction with MucA restricts AlgW access to MucA under non-inducing conditions. In
E. coli, RseB interaction with RseA reduces RseA degradation by 2.4-fold (Ades et al., 1999).
Under envelope stresses, outer membrane lipopolysaccharides (LPS) mislocalize to the
periplasm. The accumulated periplasmic LPS interacts with RseB and induces it to form a
tetramer, which is then released from RseA (Lima et al., 2013). In P. aeruginosa, MucB
cantetramerize via intermolecular disulfide bonds, which suggests that MucB may serve as a
redox sensor under oxidative conditions (Li et al., 2019). As a result, in both E. coli and P.
aeruginosa, the frequency of this first MucA (RseA) cleavage step is a function of MucB (RseB)
removal and AlgW (DegS) activation (Chaba et al., 2011, Kim, 2015, Mathee et al., 1997,
Desnues et al., 2003).

RIP step 2: proteolytic cleavage of MucA by MucP

After AlgW cleaves the C-terminal portion of MucA, the transmembrane portion of MucA
becomes more susceptible to cleavage by MucP (synonym, RseP). The requirement for MucP
(RseP) mediated MucA (RseA) cleavage in P. aeruginosa is similar to that in E. coli (Damron &
Yu, 2011, Qiu et al., 2007), while the biochemical aspect of MucP (RseP) is more extensively
studied in E. coli. E. coli RseP is an intramembrane zinc metalloprotease that contains two
periplasmic PDZ domains. Both the zinc-binding and protease motifs are within the
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transmembrane region on the cytoplasmic surface (Kanehara et al., 2002). The PDZ domains
can interact with the truncated RseA C-terminus exposed by DegS cleavage (Inaba et al., 2008).
This interaction activates RsePto cleave RseA within the transmembrane region, releasing the
N-terminus of RseA from the membrane to the cytoplasm (Akiyama et al., 2004). It is not clear
how intramembrane peptide bond hydrolysis takes place in a hydrophobic environment, but
the glutamic acid residue in the HEXXH Zinc-binding motif is required for hydrolysis (Kanehara
et al., 2001). In contrast to DegS, which is highly specific to RseA, RseP can degrade a diverse
variety of proteins and may have housekeeping functions (Akiyama et al., 2004). One example
is that it processes secreted proteins to remove signal peptides (Saito et al., 2011).

Another periplasmic protease, AlgO (synonym, Prc, Tsp), is also a part of the RIP process.AlgU
activation is reduced in AalgO P. aeruginosa mutants exposed to cell wall stresses (Wood etal.,
2006). AlgO cleaves MucA upstream of MucP cleavage, and an excess of MucP can compensate
for the loss of algO (Delgado et al., 2018). It is generally accepted that AlgO preferstruncated
MucA and has minimal effect on full-length MucA. However, it is not clear if AlgW cleavageis
directly upstream of AlgO recognition, or if they recognize MucA independently.

RIP final step: degradation of MucA by ClpXP

After MucP (RseP) cleavage, the remaining cytoplasmic (N-terminal) portion of MucA (RseA) s
recognized and fed to the protease ClpXP by the adaptor, SspB, in both P. aeruginosa and E. coli
(Flynn et al., 2004, Qiu et al., 2008). ClpXP is a cytoplasmic protease complex of ClpX, an AAA+
unfoldase, and ClpP, a peptidase. ClpXP is highly conserved and has a broader substrate range
than MucP. In contrast to other housekeeping proteases, ClpXP determines substrate specificity
through adaptors, like SspB, rather than universally recognizing misfolded proteins (Baker &
Sauer, 2012, Joshi & Chien, 2016). P. aeruginosa encodes two copies of ClpP, and both are
required for MucA RIP (Qiu et al., 2008). ClpXP fully degrades the remaining MucA fragment,
freeing AlgU.

AlgU/RpoE regulates stress tolerance and promotes virulence in both plant and animal
pathogens

Regulating expression of stress tolerance (and alginate production genes in Pseudomonads) are
core functions of AlgU (RpoE), enabling rapid physiological adaptation in a wide range of
bacteria. While the core role of these sigma factors is conserved, individual species and strains
have evolved to use AlgU (RpoE) to co-regulate accessory functions that assist growth in
conditions that are idiosyncratic to their specific lifestyles (Rhodius et al., 2005). Recent studies
show that AlgU is critical in the transition of P. syringae from free-living to pathogenic growth
within leaf tissue. In P. syringae pv. tomato DC3000 and P. syringae pv. syringae B728a, AlgU
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regulates between 800 and 1000 genes (Yu et al., 2014, Markel et al., 2016), including the core
AlgU stress response functions, as well as many genes associated with colonization of plants.
Some of these genes are exclusively dedicated to promoting virulence in plants, such asthe
hypersensitive response and pathogenicity (hrp) type Ill secretion system (T3SS), and type lll
secreted effector (T3Es) genes. In P. syringae pv. tomato DC3000, AlgU also contributes to
down-regulation of flagellar expression, which has a clear role in minimizing plantimmune
activation through host flagellin detection (Markel et al., 2016, Bao et al., 2020).

The importance of AlgU in coordinating P. syringae transition to the plant niche is also
supported by evidence of an arms race centered on AlgU activation. Transcriptional analysis
suggests that AlgU activity is suppressed in P. syringae pv. tomato DC3000 during exposureto
pattern triggered immunity (PTI) induced by the flg22 flagellin epitope. PTI exposure correlates
with reduced induction of alginate synthetic and osmotolerance genes as well as reduced
repression of flagellar genes (Lovelace et al., 2018, Nobori et al., 2018). As described above,
AlgU activity is subject to an intricate control mechanism that involves protein-protein
interactions and proteolytic processing. MucD, a component of the regulatory cascade, is
degraded by Arabidopsis immunity-induced secreted aspartic proteases SAP1 and SAP2, which
contributes to the antimicrobial effects of PTI (Wang et al., 2019). It is worth noting that there
may be several distinct points where plant immune systems interfere with the AlgU signaling
cascade. For example, loss of mucD is associated with AlgU activation and overproduction of
alginate (Qiu et al., 2007, Wang et al., 2019). In contrast, PTI exposure results in reduced
expression of alginate production genes suggesting that the repressive effects of PTl on AlgU
signaling are potentially independent of MucD degradation.

AlgU homologs are present in most bacterial lineages. Despite accumulating evidenceindicating
an important role in regulating virulence gene expression, the function of AlgU homologsin
most plant pathogenic bacteria have been understudied. However, there are a few examples
where the roles of AlgU homologs have been examined in plant pathogens or plant-associated
bacteria. In Xanthomonas campestris pv. campestris, as in P. syringae, the AlgU homolog
stimulates expression of T3SS and T3E genes and significantly contributes to virulence (Bordes
et al,, 2011, Cheng et al., 2008, Yang et al., 2018). This is an interesting convergence in AlgU
regulation as P. syringae and X. campestris use very different regulatory cascades to control
expression of their respective hrp virulence regulons(Brencic & Winans, 2005). In Xylella
fastidiosa, the AlgU homolog is the only known ECF sigma factor. It is induced in xylem fluid and
contributes to heat stress tolerance, biofilm formation, and virulence in grapevines (da Silva
Neto et al., 2007, Shi et al., 2007). However, AlgU homologs do not contribute to plant disease
in all plant pathogens. In Burkholderia cepacia, the AlgU homolog does not contribute to
virulence on onion, or to the canonical stress responses observed in other bacteria (Devescovi
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& Venturi, 2006). This is in contrast to the AlgU homolog of B. cenocepacia and B. pseudomallei,
which contributes to stress tolerance and animal virulence (Flannagan & Valvano, 2008,
Korbsrisate et al., 2005). In the soft rot necrotroph Dickeya dadantii 3937, in vitrotranscription
of T3SS-associated promoters was not influenced by mutation of the algU homolog (Li etal.,
2010). Alphaproteobacteria are one of only a few groups of bacteria that notably often lack
AlgU family members (Staron et al., 2009). AlgU sigma factors were not identified in the
Rhizobiales oncogenic pathogen Agrobacterium tumefaciens C58 and are sporadically
distributed among related root-nodulating symbionts (e.g. Bradyrhizobium, Rhizobium,
Sinorhizobium). The phloem-limited pathogen Ca. Liberibacter asiaticus, causative agent of
Huanglongbing (yellow dragon disease, citrus greening), encodes only three sigma factors, none
of which are ECF sigma factors (Hartung et al., 2011).

The role of AlgU homologs in the physiology of human bacterial pathogens has been much
more extensively studied. In most cases, algU mutants adhere to the pattern of havingreduced
stress tolerance and reduced virulence. In P. aeruginosa, it is common for strains toaccumulate
mutations in mucA during chronic lung infection resulting in constitutive AlgU activity and
mucoid phenotype on agar media (Yu et al., 1996). In Yersinia, E. coli, and Vibrio, RpoE is
considered essential (Heusipp et al., 2003). Recovery of rpoE mutations in these strains requires
either specialized growth conditions or compensating secondary mutations. In Salmonella, rpoE
is not essential, but rpoE mutants epistatically require a functional LPS O-antigen to survive
(Amar et al., 2018).

AlgU-regulated pathways in P. syringae

Osmotic stress response: The AlgU regulon in P. syringae pv. tomato DC3000 is enriched for
genes whose functions pertain to responding to and surviving osmotic stress (Markel etal.,
2016). Osmotic stress, in the form of an abundance of solutes or lack of water, results inwater
loss from the cytoplasm, which is deleterious to cellular function and potentially lethal. To cope
with osmotic stress, bacteria increase the concentration of compatible solutes like trehalose or
glycine betaine through biosynthesis or increased uptake (Wood, 2015). These compatible
solutes are useful osmoprotectants because they can accumulate to high concentrations in the
cytoplasm without interfering with cellular functions. The use of certain compatible solutes
such as glycine betaine is conserved across kingdoms (Csonka, 1989, Roesser & Muller, 2001).
In P. syringae, AlgU up-regulates the intake or synthesis of three compatible solutes: the
guaternary ammonium compound (QAC) glycine betaine, the dipeptide N-
acetylglutaminylglutamine amide (NAGGN) (Kurz et al., 2010) and the disaccharide trehalose (a-
d-glucopyranosyl-a-d-glucopyranoside) (Freeman et al., 2010, Markel et al., 2016). Betaine
based osmotic protection is hypothesized to be part of the acute osmotic stress responsewhich
is later replaced by NAGGN based protection (Li et al., 2013). P. syringae strains vary intheir
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capacity for both synthesis and uptake of compatible solutes and their degrees of
osmotolerance. These variations in osmotolerance differentially affect epiphytic fitness of
strains on the leaf surface (Chen et al., 2013, Yu et al., 2013). Accumulation of specific
compatible solutes in the bacterial cytoplasm contributes to in planta fitness in a strainspecific
manner (Freeman et al., 2010, Freeman et al., 2013, Kurz et al., 2010).

Alginate production: Regulation of alginate production by AlgU has been extensively studiedin
Pseudomonads (Keith & Bender, 1999, Keith et al., 2003, Schenk et al., 2008, Markel et al.,
2016). Alginate (co-polymer of O-acetylated beta-1,4-linked D-mannuronic acid and L-guluronic
acid) is an exopolysaccharide that was first described in brown algae and its productionis
conserved across many Pseudomonas species (Fett et al., 1986, Muhammadi & Ahmed, 2007).
Alginate is considered a virulence factor in some plant and animal pathogens (Boyd &
Chakrabarty, 1995, Yu et al., 1999, Keith et al., 2003), however its specific role in virulence is
variable (Markel et al., 2016).

In the human pathogen P. aeruginosa, alginate is a principal component of the capsule, which
provides a passive defense layer that protects against detection by immune cells and oxidative
bursts (Boyd & Chakrabarty, 1995), enhances initial adhesion to surfaces, and protectsfrom
dehydration (Boyd et al., 1987). However, the general defensive role of alginate for plant
pathogens in apoplastic spaces remains an open question. It is possible that alginate protects
bacterial cells from osmotic stress as well as oxidative stress associated with immune ROS
signaling and accumulation (Keith et al., 2003, Chang et al., 2007). Alginate has also been
proposed to interfere with plant immune elicitation by chelating and suppressing calciuminflux,
a key component of the immune signaling cascade (Aslam et al., 2008, Scrase-Field & Knight,
2003). Alginate appears to make strain variable contributions to epiphytic colonization and
apoplastic virulence among P. syringae strains. In P. syringae pv. syringae 3525, alginate
production promotes survival during epiphytic colonization of non-host tomato (Yu etal.,
1999). Conversely, alginate synthesis genes were not observed to make major contributions to
bean leaf epiphytic fitness of P. syringae pv. syringae B728a on bean but are associated with
decreased apoplastic fitness (Helmann et al., 2019). However, alginate production in P. syringae
pv. tomato DC3000 and P. syringae pv. glycinea PG4180 were not associated withreduced
virulence phenotypes in tomato or soybean, respectively (Markel et al., 2016, Schenk et al.,
2008, Ishiga et al., 2018).

De-flagellation: Interestingly, AlgU can also indirectly coordinate down-regulation of gene
expression. In the case of Pseudomonads, AlgU coordinates down-regulation of genesinvolved
in motility and assembly of the flagella. Peptide epitopes within flagellin monomersare
detected by both plant and animal immune pattern recognition receptors and can trigger an
immune response (Hajam et al., 2017, Hybiske et al., 2004). In P. aeruginosa, down-regulation
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of flagellar biosynthesis is thought to correlate with avoidance of host immune detection (Tart
et al., 2006, Amiel et al., 2010, Moradali et al., 2017). Most plants encode pattern recognition
receptors that recognize various flagellin epitopes and activate PTI (Zipfel et al., 2004). Wild-
type P. syringae pv. tomato DC3000 has a similar apoplastic virulence as fliC mutants or
mutants with reduced fliC expression, suggesting that P. syringae pv. tomato DC3000 may
undergo de-flagellation during its interactions with plants (Pfeilmeier et al., 2016, Bao et al.,
2020). The importance of the AlgU signaling cascade for de-flagellation was observed in P.
syringae pv. maculicola ES4236, where Tn inactivation of AlgW resulted in decreased AlgU
activity and increased expression of flagella as well as reduced in planta growth anddisease
(Schreiber & Desveaux, 2011). AlgU-driven repression of flagellin in P. syringae pv.tomato
DC3000 reduces PTI activation and promotes bacterial fitness in tomato (Bao et al., 2020).

Although AlgU-dependent down-regulation of flagellar expression is conserved across plant
pathogenic, plant-associated, and animal pathogenic Pseudomonads, there are surprising
mechanistic differences in how flagellar down-regulation is coordinated among these bacteria.
In P. aeruginosa and P. fluorescens, AlgU up-regulates the transcriptional regulator AmrZ (AlgZ),
which in turn suppresses motility by down-regulating FleQ, the master regulator of flagellarand
chemotaxis gene expression (Tart et al., 2006, Tart et al., 2005, Muriel et al., 2019, Martinez-
Granero et al., 2012). In both P. syringae and P. stutzeri, AlgU also up-regulates AmrZ
expression. However, in these bacteria AmrZ acts as a positive regulator of motility ratherthan
a negative regulator (Baltrus et al., 2018, Prada-Ramirez et al., 2016). Additionally, as fleQis
not AlgU-regulated in P. syringae (Markel et al., 2016, Baltrus et al., 2018), the role of AlgU in P.
syringae de-flagellation likely occurs downstream of FleQ in the flagellar regulatory network.
Regardless of these differences in the flagellar regulatory networks, the final output of
increased AlgU-driven expression in P. syringae is reduced flagellar expression (Schreiber &
Desveaux, 2011, Bao et al., 2020). The differences in AlgU-dependent flagellar regulatory
mechanisms suggest that AlgU-mediated de-flagellation may have emerged multiple times
independently among Pseudomonads.

T3SS/T3SEs and other virulence factors: Successful colonization of plants is a multifaceted and
dynamic process. Avoiding plant immunity is a major part of this process, and mounting
evidence supports a key role for AlgU in helping P. syringae survive in that context. In addition
to suppressing flagellin expression (Schreiber & Desveaux, 2011, Bao et al., 2020), AlgU alsoup-
regulates expression of many genes dedicated to actively suppressing plant immunity and
promoting successful colonization and disease (Markel et al., 2016). The mechanistic details of
AlgU-dependent regulation of these virulence systems are not fully understood, but appearto
include up-regulation of hrpL expression, which is the master regulator of pathogenicity in P.
syringae. HrpL is itself an ECF sigma factor, which recognizes and helps initiate transcription
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from hrp box promoters, up-regulating expression hrp/hrc T3SS structural genes that codefor
the injectisome and the T3SS secreted effector proteins. Based on Chip-seq analysis AlgU likely
up-regulates hrpL expression indirectly, presumably by directly driving expression of hrpRand
hrpS, the regulators immediately upstream of HrpL (Markel et al., 2016). For a more
comprehensive review of P. syringae T3SS regulation, we would point the reader to Xie et al.,
2019(Xie et al., 2019).

AlgU also up-regulates expression of P. syringae pv. tomato DC3000 coronatine biosynthetic
genes (Ishiga et al., 2018). Coronatine is a phytotoxin sporadically distributed among P. syringae
strains, with multiple roles in promoting interactions with plants. Coronatine contributes to
visible disease symptoms, causing the characteristic chlorotic halos (coronas) around necrotic
specks (Bender et al., 1999). Coronatine is a potent structural analog of the plant defense
hormone jasmonyl isoleucine that biases defenses to counter necrotrophic pathogens (Genget
al., 2014). Coronatine also drives the reopening of stomata, which close in response to the
presence of bacterial flagellin, thus aiding further pathogen invasion into leaf tissues (Genget
al., 2014, Melotto et al., 2017). However, as coronatine expression in P. syringae pv.tomato
DC3000 is itself HrpL-regulated, it is unclear if the role of AlgU on coronatine gene expressionis
direct or acts indirectly through activation of hrpL expression (Sreedharan et al., 2006).

Concluding remarks

The ECF sigma factor AlgU (RpoE) and its regulatory cascade represent anevolutionarily
ancestral and broadly conserved response pathway for stress tolerance in bacteria. The
capacity of MucB and AlgW to respond to different environmental stress cues presumably
allows robust and tuned regulation of the RIP cascade to appropriately control the level of free
AlgU in response to multiple signals. Some bacteria appear to have tailored their AlgU (RpoE)-
mediated signaling responses in ways that promote virulence during the process of adaptation
to a pathogenic lifestyle. In the case of P. syringae, AlgU contributes to multiple host-
interaction pathways including host attack via the T3SS, immune evasion through de-
flagellation and niche acclimation through the regulation of alginate and compatible solute
concentrations. However, key questions remain. What is the apoplastic environmental cue that
leads to efficient activation of AlgU in P. syringae? What is the full regulatory cascade in P.
syringae for AlgU driven deflagellation? How does PTl interfere with AlgU activity? A deeper
mechanistic understanding of AlgU (RpoE) as a key control point for bacterial-hostinteractions
will provide useful insights into bacterial adaptation to, and modulation of, the host niche.
These insights have great potential to inform novel management strategies for bacterial
diseases of plants and potentially human diseases as well.
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392 The AlgU name is mainly used in the

) ) mucD degP, algY, htrA
393  Pseudomonadales based on its alginate-
. algWw deg$

394  associated phenotypes (Flynn & Ohman, 1988,

mucP rseP
395 Cochran et al., 2000). AlgU was also named AlgT 0 ;
396  (DeVries & Ohman, 1994). Outside of a9 Pre, B5p
397  Pseudomonadales, the RpoE name is typically
398 applied (Erickson & Gross, 1989). AlgU and RpoE are also called sigma E or sigE (of) to denoteits
399 function as a sigma factor. Based on molecular weight-based naming conventions AlgU and
400 RpoE were also known as either sigma 22 (0%2) in P. aeruginosa (Mathee et al., 1997) or sigma
401 24 (0®*)in E. coli (Raina et al., 1995) . In Gram positive Bacillus subtilis, the AlgU homologsigma
402  factor is named sigma W (", sigW) (Schobel et al., 2004). Anti-sigma factors follow theirown
403  naming conventions reflecting independent discovery in P. aeruginosa and E. coli. The
404  Pseudomonadales anti-sigma factors and signal cascade components are often named “muc” or
405 “alg” based on the mucoid alginate-associated phenotypes of corresponding mutants (Schurret
406  al., 1994). Enterobacterales anti-sigma factors are typically named rse (regulator of sigma E)(De
407 Las Penas et al., 1997), and the Bacillus subtilis cognate anti-sigma factor is rsiW (regulator of
408 sigma W) (Schobel et al., 2004).
409409
410410
411411
412412
413413
414 Tables
415 Table 1. AlgU/RpoE involvement in various cellular response pathways in different bacteria.
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osmotic envelope oxidative heat biofilm stationary
stress?  stress stress shock formatio phase
n survival
P. aeruginosa b N V V V vV
(Hartyet (Woodet (Yuetal, (Schur (Bazireet (Behrends et
al., al.,, 2006, 1996) retal., al,2010) al, 2010,
2019, Harty et X 1995) Harty et al.,
Behrend al., 2019) (Wood et 2019, Waite et
setal., al., 2006, al., 2006)
2010) Damron
XC et al.,
(Wood 2009a)
et al.,
2006)
P. syringae v nad \ \ \ na
(Keith & (Keith & (Keith  (Laue et
Bender, Bender, & al., 2006)
1999, 1999, Bende
Markel Markel et r,
etal., al.,, 2016) 1999)
2016)
E. coli v v v v v v

(Kochar  (Xue et (Egler et (Hirats (Serraet  (Costanzo &
unchitt al.,, 2015) al, 2005, uet al.,, 2016) Ades, 2006)

et al., Desnues al.,
2014) etal, 1995)
2003)

S. enterica N N N xd N v
(Shi et al., 2018,
Amar et al., 2018)
Y. enterocolitica X na X na na
(Heusipp et al.,
2003)
X. campestris X X \ \ na N
(Bordes et al.,
2011)
X. fastidiosa X N X \ na X
(da Silva Neto et
al., 2007)
B. pseudomallei \ \ na N \
(Korbsrisate et al.,
2005)
B. cepacia X na X N X na

(Devescovi &
Venturi, 2006)

41641
417  2In vitro inducers commonly used. Osmotic stress: NaCl, sorbitol; envelope stress: ethanol, penicillin G,
418 zinc (Mellies et al., 2012); oxidative stress: paraquat, H202, copper (Thurman et al., 1989); heat shock: up
419 to50°C.
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by : AlgU is required or up-regulated in association with this condition.
¢x : AlgU is either not required or not up-regulated under this condition.
dna : no applicable literature was identified.

Figure legends

Figure 1. Genetic arrangement of the algU (rpoE) operons in selected plant and animal
pathogens and related bacteria. In the Enterobacteriales, degP is encoded separately fromthe
rpoE operon. Gene names or locus numbers are listed as annotated in their corresponding
GenBank accession records. Paer = Pseudomonas aeruginosa PAO1; NC_002516. Pstz =
Pseudomonas stutzeri 28a24; NZ_CP007441. Pfl = Pseudomonas fluorescens F113; NC_016830.
Pto = Pseudomonas syringae pv. tomato DC3000; NC_004578. Psy = Pseudomonas syringae pv.
syringae B728a; NC_007005. Pmac = Pseudomonas syringae pv. maculicola ES4326; CP047260.
Pgly = Pseudomonas savastanoi pv. glycinea race 4; NZ_AEGH01000079. Eco = Escherichia coli
K-12 substr. MG1655; NC_000913. Dda = Dickeya dianthicola ME23; CP031560. Patr =
Pectobacterium atrosepticum SCRI11043; BX950851. Eamy = Erwinia amylovora ATCC 49946;
FN666575. Pns = Pantoea stewartii subsp. stewartii DC283; CP017581. Xcc = Xanthomonas
campestris pv. campestris ATCC 33913; NC_003902. Xev = Xanthomonas euvesicatoria 85-10;
CP017190. Xylf = Xylella fastidiosa Temeculal; AE009442. Rsol = Ralstonia solanacearum
GMI1000; NC_003295. Brkc = Burkholderia cepacia ATCC 25416; NZ_CP007746. Acv =
Acidovorax citrulli AAC00-1; NC_008752. Homologous genes have been assigned the same
color.

Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from E. coli and P.
aeruginosa) and several outcomes of AlgU activation in plants. MucD degrades stress peptides
but it is not known if they are the same unfolded envelope proteins that activate AlgW. AlgW
forms trimers, one monomer is shown in the cartoon. Upon ligand binding to the PDZ domain,
AlgW undergoes a conformational change and the peptidase domain adopts an activated form.
The ligand can be C-termini of several different types of unfolded proteins, including OMPs,
MuckE, and type IV pilin. Activators of the MucP PDZ domain are less understood. MucA N-and
C-termini are marked as N and C. Percentages indicate approximate amino acid position relative
to full length MucA, 100% at the C-terminus. P. aeruginosa MucA is 194 amino acids long, and
AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large
and small domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP-
binding domain and DNA-binding domain are labeled as R and D. CIpXP consist of ClpX, an
unfoldase, and ClpP, a protease. SspB is an adaptor for ClpXP that determines substrate
specificity for the MucA cytoplasmic cleavage product. After AlgU is released from MucA, it
interacts with RNA polymerase and guides the induction of stress response and virulence
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pathways. The capsulation and osmotic stress response help bacteria survive in plantapoplastic
environment, while suppression of PAMP expression and activation of virulence factors
counteract the plant immune system.
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Figure 1. Genetic arrangement of the algU (rpoE) operons in selected plant and animal pathogens and
related bacteria. In the Enterobacteriales, degP is encoded separately from the rpoE operon. Gene names or
locus numbers are listed as annotated in their corresponding GenBank accession records. Paer =
Pseudomonas aeruginosa PAO1; NC_002516. Pstz = Pseudomonas stutzeri 28a24; NZ_CP007441. Pfl =
Pseudomonas fluorescens F113; NC_016830. Pto = Pseudomonas syringae pv. tomato DC3000;
NC_004578. Psy = Pseudomonas syringae pv. syringae B728a; NC_007005. Pmac = Pseudomonas syringae
pv. maculicola ES4326; CP047260. Pgly = Pseudomonas savastanoi pv. glycinea race 4;
NZ_AEGH01000079. Eco = Escherichia coli K-12 substr. MG1655; NC_000913. Dda = Dickeya dianthicola
ME23; CP031560. Patr = Pectobacterium atrosepticum SCRI1043; BX950851. Eamy = Erwinia amylovora
ATCC 49946; FN666575. Pns = Pantoea stewartii subsp. stewartii DC283; CP017581. Xcc = Xanthomonas
campestris pv. campestris ATCC 33913; NC_003902. Xev = Xanthomonas euvesicatoria 85-10; CP017190.
Xylf = Xylella fastidiosa Temeculal; AE009442. Rsol = Ralstonia solanacearum GMI1000; NC_003295. Brkc
= Burkholderia cepacia ATCC 25416; NZ_CP007746. Acv = Acidovorax citrulli AAC00-1;
NC_008752.Homologous genes have been assigned the same color.
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Figure 2. A graphic summary of the AlgU (RpoE) RIP pathway model (from E. coli and P. aeruginosa) and
several outcomes of AlgU activation in plants. MucD degrades stress peptides but it is not known if they are
the same unfolded envelope proteins that activate AlgW. AlgW forms trimers, one monomer is shown in the

cartoon. Upon ligand binding to the PDZ domain, AlgW undergoes a conformational change and the
peptidase domain adopts an activated form. The ligand can be C-termini of several different types of
unfolded proteins, including OMPs, MucE, and type IV pilin. Activators of the MucP PDZ domain are less
understood. MucA N- and C-termini are marked as N and C. Percentages indicate approximate amino acid
position relative to full length MucA, 100% at the C-terminus. P. aeruginosa MucA is 194 amino acids long,
and AlgW cuts between A136 and G137. MucA binds to MucB and AlgU at 1:1:1 ratio. MucB large and small
domains are indicated as L and S. MucB protects the AlgW cleavage site. AlgU RNAP-binding domain and
DNA-binding domain are labeled as R and D. ClpXP consist of ClpX, an unfoldase, and CIpP, a protease. SspB
is an adaptor for CIpXP that determines substrate specificity for the MucA cytoplasmic cleavage product.
After AlgU is released from MucA, it interacts with RNA polymerase and guides the induction of stress
response and virulence pathways. The capsulation and osmotic stress response help bacteria survive in plant
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apoplastic environment, while suppression of PAMP expression and activation of virulence factors counteract
the plant immune system.
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