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Abstract-Machine learning models have been widely deployed 
in many real-world tasks. When a non-expert data holder wants 
to use a third-party machine learning service for model training, 
it is critical to preserve the confidentiality of the training data. 
In this paper, we for the first time explore the potential privacy 
leakage in a scenario that a malicious ML provider offers data 
holder customized training code including model compression 
which is essential in practical deployment. The provider is unable 
to access the training process hosted by the secured third party, 
but could inquire models when they are released in public. As a 
result, adversary can extract sensitive training data with high 
quality even from these deeply compressed models that are 
tailored for resource-limited devices. Our investigation shows 
that existing compressions like quantization, can serve as a 
defense against such an attack, by degrading the model accuracy 
and memorized data quality simultaneously. To overcome this 
defense, we take an initial attempt to design a simple but stealthy 
quantized correlation encoding attack flow from an adversary 
perspective. Three integrated components-data pre-processing, 
layer-wise data-weight correlation regularization, data-aware 
quantization, are developed accordingly. Extensive experimental 
results show that our framework can preserve the evasiveness 
and effectiveness of stealing data from compressed models. 

I. INTRODUCTION 

Machine learning (ML), especially deep neural network 
(DNN), has nowadays become trustful and competent in appli­
cations such as image classification [1], speech recognition [2], 
and natural language processing [3]. However, training state­
of-the-art DNN models requires not only expensive hardware 
platforms with substantial memory and computing resources, 
but also ML domain knowledge. To fulfill the ever-increasing 
need of "Plug and Play" DNN services on resource-constraint 
mobile, IoT and embedded devices for daily use, a common 
practice is to have models trained and optimized in cloud 
servers and then only execute the inference on local devices. 

To develop customized ML applications, data holders can 
usually update their training dataset to the trusted third-party 
cloud servers, such as Google Cloud AI Platform [4], Amazon 
AWS [5], and Microsoft Azure ML Studio [6], and then 
select appropriate training algorithms, e.g. built-in-algorithms 
in the cloud or customized algorithms obtained from the 
open marketplace like Algorithmia [7], for model training. 
Hardware-oriented model compression techniques, such as 
quantization and pruning [8], for original model redundancy 
removal, can also be incorporated into these algorithms, to 
facilitate the fast and low-power inference on edge devices, 
where resource constraints are often enforced. Finally, the 
cloud provider will set up the training environment, assign 
computation resource, perform model training, and release 

different versions of trained models to fit various needs, e.g. 
quantized models with different levels of bit precision. 

Despite the popularity of such a service model, it also raises 
confidentiality concern for data holders' training datasets 
which could contain clients' identity images, personal med­
ical records, credit card numbers, etc., in privacy-sensitive 
applications. Many studies have revealed that the model itself 
can leak the private data during the training, such as model 
overfitting to unintentionally memorize massive information 
[9], model inversion attack to recover recognizable training 
images [10], membership inference attack to determine if the 
record belongs to the model's training dataset [11] etc. A 
recent study [12] further shows that a slight modification of the 
training algorithm (seemingly "normal") by a third-party ML 
algorithm provider can lead to stealthy and precise training 
data embedding into the model without harming the model 
performance, even the training environment and process are 
secured and isolated from such a malicious algorithm provider. 

However, most of these studies are conducted based on 
the assumption that there always exists abundant model re­
dundancy to memorize training information without accuracy 
loss. The redundancy, on the other hand, can be largely 
removed when applying hardware-oriented model compression 
techniques, which are essential to ease intensive computation 
and high memory overhead for inference on resource-limited 
platforms. As such, several interesting questions that naturally 
arise are: 1) Can existing compression techniques like 
quantization, help to prevent the training data leakage 
based on a trained model by removing the redundancy? H 
so, to what extent? 2) Is it possible to steal training data 
with high quality (effectiveness) from highly compressed 
models without accuracy loss (evasiveness)? H so, how 
will the adversary craft the seemingly normal training 
algorithm including compression to achieve this purpose? 

To answer these questions, in this paper, we for the first 
time investigate the potential privacy breach of training dataset 
when training compressed ML models that have limited or 
almost zero parameter redundancy. Specifically, we select a 
recent proposed strong attack which could well steal informa­
tion by only correlating data with weight parameters under 
the guise of "regularization" during the training [12], and 
a representative quantization method [13], as a vehicle for 
this study. As we shall show in Table I, the quantization 
can serve as a defense mechanism to prevent such privacy 
leakage because of significantly degraded attack evasiveness 
(high model accuracy drop) and effectiveness (low quality of 
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embedded data) as the quantization bit width decreases. Based 
on this fact, we further explore whether there is any possibility 
to make such an attack still viable in deeply compressed 
ML models from an adversary perspective. Accordingly, three 
techniques which include fine-grained data pre-processing, 
layer-wise input-weight correlation regularization, and input­
distribution aware weight quantization, can be easily devel­
oped and then seamlessly integrated into the original training 
pipeline to achieve both attack evasiveness and effectiveness 
simultaneously. Finally, our experiments on CIFAR-10 [14] 
and FaceScrub [15] datasets demonstrate the feasibility of 
training data stealing in deeply compressed ML models. We 
hope our study will enable the community to examine such an 
emerging privacy concern which could widely exist in training 
compressed models for many resource-limited devices. 

II. BACKGROUND AND MOTIVATION 

A. DNN Model Compression 
Model compression could squeeze out the redundancy of a 

DNN model by pruning unimportant connections (pruning) or 
reducing the bit precision of weight parameters (quantization) 
with marginal accuracy loss, so as to fit large models into 
resource-limited platforms. Particularly, weight quantization is 
usually a "must-have" step before deploying the model into 
any hardware [8], [13]. For example, deep compression [8] 
can linearly space the centroids in the range of original 
weights to initialize the shared weights and then quantize them 
into discrete values. The recent weighted entropy quantiza­
tion [13] performs a non-linear quantization by considering 
each weight's contribution to final result and assigns more 
clusters for values that are neither too large nor too small. 
This process will involve light fine-tuning to boost accuracy. 
The method achieves adaptive quantization with flexible bit 
precision and can be easily deployed in pre-trained models. 
Without loss of generality, we select weighted entropy quan­
tization as an example compression technique in this study. 

B. Privacy Leakage 
Machine learning model can exhibit incredible capability to 

memorize training data when data holders apply a malicious 
training algorithm which could stealthily encode the data into 
model parameters during the training with marginal accuracy 
loss [12]. The adversary can then extract such secret data from 
the parameters in the trained model once it is released. 

LSB encoding attack directly replaces the least significant 
bits (LSBs) of trained model parameters with target bit string 
by leveraging model's inherent redundancy. Apparently, this 
attack can be easily defeated by the model compression (quan­
tization) because of significantly increased accuracy sensitivity 
and decreased capacity for bit replacement. 

Sign encoding attack relies on the sign bit of each pa­
rameter for bit embedding and is realized by adding a simple 
penalty term to the loss function, so as to force most sign bits 
of the parameters to follow the target secret bit string during 
the training. However, its attack efficiency is very low, as each 
parameter can only remember one bit. 

Correlated value encoding attack is the strongest attack 
among three methods. This attack adds a malicious regular­
ization term C ( 0, s) in loss function to explicitly establish the 
correlation between training data s and model parameter 0: 

C(B, s) =-Ac. I L!=l (0i - 0)(si - s)I (l) 

JL;=1 (0i - 0)2 · JL;=1 (si - s) 2 

Here Ac is the correlation rate to balance the encoded data 
quality and model accuracy. Enlarging Ac can improve the 
former but decrease the latter. 0 and s are the mean of 0 and 
s, respectively. f, represents the number of parameters. 

For numerical data like image, this method can precisely 
encode the raw data into parameters by minimizing C ( 0, s) 
(or rather the total training loss), and each pixel density can 
be decoded by simply remapping these parameters to values in 
the range of [O, 255]. Since the entire parameter can be used 
for data embedding during the training, this attack achieves the 
highest attack efficiency (more encoded data). Furthermore, it 
is possible that the established correlation can still survive after 
model compression. 
C. Motivation 

To explore whether quantization can mitigate the correlated 
value encoding attack, we apply weighted entropy quantization 
to ResNet-34 [16] trained with CIFAR-10 dataset under such 
an attack. Typical quantization bit widths (e.g. 8, 6, 4) are se­
lected, in order to guarantee their corresponding benign models 
(without correlated value encoding attack) can maintain the 
similar accuracy acceptable by users, i.e., ~ 90%. TABLE I 
reports the correlation attack model accuracy and the number 
of recognizable images by the model itself out of a total of 
151 RGB images encoded in the model under three different 
correlation rates and quantization bits. For the same correlation 
rate, the attack model accuracy can be dramatically dropped as 
the quantization bit width decreases. This is because the redun­
dancy carried by the correlation attack model is not sufficient 
when facing a very low quantization bit (e.g. 4), resulting in an 
unacceptable accuracy loss. Also, the number of recognizable 
images shows a similar trend because of encoded data quality 
drop caused by the distorted data-parameter correlation in a 
low quantization bit (visualized comparison can be observed 
from Fig. 5 using face images). The accuracy loss becomes 
more prominent for a same quantization bit width when the 
correlation rate becomes larger despite the increased number 
of recognizable images, e.g. 83.04%, 58 images at 4-bit and 
Ac= 3 v.s. 75.46%, 75 images at 4-bit and Ac= 10. Therefore, 
the quantized attack model neither maintains the accuracy 
(attack evasiveness) nor keeps the same amount of high-quality 
recognizable data (attack effectiveness). This means existing 
model compression (e.g. weighted entropy quantization) can 
defeat such an attack at low bit precision. 

TABLE I: Model accuracy and recognizable image numbers 
of correlated value encoding attack after quantization. 

Correlation Rate (~c) 3.0 5.0 10.0 
Quantization Bit Width 8 I 6 I 4 4 4 

Recognizable Images 88 I 82 I 58 59 75 
Model Accuracy 88.79% I 88.16% I 83.04% 80.35% 75.46% 
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Fig. 1: Quantized correlation encoding attack flow 

However, this does not mean that adversary is unable to con­
duct such an attack on compressed models if he or she slightly 
changes the quantization algorithm. Our key observation is 
that if the quantization process can be guided by the statistical 
information ( e.g. distribution) of target encoding data in a 
proper manner, then the quantized correlated model may not 
experience such significant parameter reshaping. As a result, 
both attack evasiveness and effectiveness can be guaranteed, 
making such an attack possible on highly compressed models. 

III. OVERVIEW 
A. Threat Model 

Our threat model is similar to, and extended from [12] . 
We assume that non-expert data holder will consume third­
party training algorithms to generate customized ML models 
using his/her own dataset, which is sensitive and private. The 
data holder will conduct the training by using the provided 
malicious algorithm and confidential data in a trusted and 
secured platform with sufficient hardware resources like GPU 
clusters. Once the training is done, the data holder will validate 
the model with a test subset to measure the model accuracy, 
and only accept it if it passes the test with satisfying accuracy. 
Then data holder will publish the model for the user. 

We assume the malicious ML training algorithm with the 
quantization process, is designed by the adversary. The training 
flow is the same as the benign routine except for very minor 
changes in the regularization and quantization that are neces­
sary in normal training. The algorithm is executed on a secured 
third party platform that the adversary has no way to control, 
communicate with the training environment, or observe the 
training data during the whole training process. 

The attack goal is to steal as much private training data 
as possible (e.g. embedding training images into the model 
with high data quality). In order to achieve this objective, the 
model needs to "memorize" the training data while passing 
the accuracy validation. Then the adversary can gain white­
box access to the model after the data holder releases it, and 
examine all model parameters for information extraction. Note 
the adversary is unable to capture any temporary information 
or hyperparameter used during the training. 
B. Attack Flow 

Fig. 1 depicts an overview of our proposed quantized 
correlation encoding attack flow, which consists of three com­
mon steps often integrated in a training algorithm: data pre­
processing, training with regularization, and quantization. Note 
the quantization will involve fine-tuning to compensate for the 
accuracy loss. The data pre-processing aims to guarantee the 
encoded data quality at the beginning by selecting a subset 

of the training dataset whose statistical information (e.g. pixel 
density distribution) can be similar to that of model parameter 
under correlation attack. It occurs automatically when the 
algorithm gets access to the training data. In the second 
step, a customized regularization term, of which different 
correlation rates >. are assigned to different layers based on 
their importance to accuracy and data encoding in correlation 
encoding attack, is proposed and included in the training loss. 
The last step is model quantization, which takes the statistical 
information of encoded training data into consideration during 
quantization to produces a compressed model that could pre­
serve the secret data encoded in the training while maintaining 
the accuracy level required by the validation. 

IV. DESIGN 
In this section, we present the proposed techniques in details 

following the attack flow. 
A. Data Pre-processing 

Since the basic idea of the correlated value encoding attack 
is to maximize the correlation between model weights and the 
target data, we expect that the distribution of trained weights 
under such an attack will be pushed towards a correlated 
distribution of the target dataset. Therefore, at the data pre­
processing stage, the training algorithm should automatically 
select a subset of training data that follows a similar distribu­
tion for data embedding. 

In this procedure, the algorithm will first cluster images 
based on the standard deviation (std) of the image pixel 
values as it can roughly represent the overall characteristic 
of an image. The mean of the standard deviation of the whole 
training dataset (stdmean) will also be calculated. Then a 
value range with length d around (stdmean ) will be given: 
stdmin = L stdmeanJ , stdmax = L stdmeanJ + d. Image i that 
satisfies stdmin < stdi < stdmax will be included in the 
candidate set S. The number of images that can be encoded (n) 
will be estimated based on the parameter amount and image 
size. Finally, the correlation target T will consist of n images 
randomly selected from the candidate set S . 

Fig. 2(a) compares the weight distribution of the benign 
ResNet-34 model (without attack), and two malicious models 
with different correlation rates, and Fig. 2(b) shows the pixel 
value distributions of CIFAR-10 dataset with different std 
ranges. Based on Fig. 2(a), we observe that once the attack 
is launched, the distribution of the benign model (blue line in 
Fig. 2(a)) is significantly reshaped, and it is forced to be similar 
to the correlation targets' distribution (yellow line of Fig. 2(b)) 
as the correlation rate increases from 1 to 10. ff we choose the 
candidate set range as [50, 55] (stdmean = 50.36), the selected 
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Fig. 2: (a) Parameter distributions of models with different 
correlation rates. (b) Pixel value distributions of images with 
different standard deviations. 

target set exhibits a similar distribution as that of malicious 
models, e.g. yellow line of Fig. 2(b) v.s. orange (gray) line of 
Fig. 2(a). However, images with too large std (> 70) or too 
small std ( < 30) have very different distributions. 

B. Layer-wise Correlation Training Regularization 

Once suitable encoding candidates from the training dataset 
are identified, the next step is to train the model with a fine­
grained regularization term which assigns layer-wise correla­
tion rate, to precisely embed these selected data into the model 
parameter with minimized accuracy loss. 

Our observation is that each layer should have different 
contributions to final classification results, and the layers 
that are closer to the input, especially convolution layers 
for feature extraction, carry more importance than others 
in terms of accuracy. The weight distribution of each layer 
generally follows a Gaussian distribution, but each has a 
different weight value range for accuracy purpose. On the 
contrary, the correlated value encoding attack with a uniform 
correlation rate attempts to reshape the weights the same as 
the target data's distribution with the same value range. This 
leads to the conflict between model accuracy and encoding 
data quality. The problem becomes more aggravated after the 
model quantization. Therefore, we propose the following reg­
ularization term with customized correlation rates at different 
layer groups: 

C(0,s) = _ f (Ak. II::~1~ ; -0k)(s; -sk)I . Pk) 
k=l JI::'::1 (0; -0k)2 ·/'E:'::1 (s;-sk)2 

(2) 
For each layer group k E m, we have Ak as the correlation 
rate, Pk = Ck/£ is the ratio of group k's number of weights 
Ck to the total correlated weights amount£ . 0k and sk are the 
mean value of the vector of secret values s and the weights 
0 at group k, respectively. In the extreme case, we can set 
Ak = 0 for layers that are more sensitive to the modification 
of weights and not favorable for encoding. Consequently, both 
model accuracy and encoding quality can be improved by 
slightly reducing the total amount of encoded images. 

We still use ResNet-34 and CIFAR-10 dataset for a case 
study. The layers are clustered based on the range of the 
weights. We choose the first 12 layers as group 1 and 13 to 16 
layer as group 2, and the weights of these two groups encode 
the first 12% of images. The rest layers are categorized as 
group 3 to encode the remaining 88% of the images. TABLE 

TABLE II: Number/Percentage of reconstructed images (bad, 
MAPE > 20) for models with different correlation rates 

Correlation Total Group 1 Group2 Group 3 
Rate (.Xe) (453) (27) (28) (398) 

3.0 158 (34.9%) 27 (100%) 21 (75%) 110 (27.6%) 
5.0 111 (24.5%) 20 (74.1 %) 10 (35.7%) 81 (20.4%) 
10.0 82 (18.1 %) 13 (48.1%) 9 (32.1 %) 60 (15.1%) 

II shows the percentage of badly encoded images distributed 
among the three groups with different correlation rates Ac-3, 
5 and 10. Here a badly encoded image is counted if the mean 
absolute pixel error (MAPE) between the decoded and original 
images is larger than 20. 100% images in group 1 and 75% 
images in group 2 are badly encoded at Ac = 3. Increasing Ac 
from 3 to 10 cannot improve the encoding efficiency for group 
1, e.g. the percentage of bad images only drops from 100% 
to 48.1 %, which is still much worse than that of group 3. 
This indicates that the weights of group 1 and 2 are naturally 
less correlated to the target data despite of a large correlation 
rate, and are difficult to change because of their importance 
to preserve the accuracy. In our final evaluation, we set the 
correlation rate of group 1 and 2 to O and use a different 
correlation rate for group 3, in order to achieve higher accuracy 
and better encoding quality in compressed models. 

C. Target Correlated Quantization 
The first two steps provide a well-trained attack model by 

establishing a strong correlation between the target data and 
model parameters. However, the weight quantization may still 
destroy the attack as discussed in Sec. II-C. Therefore, we 
further propose a quantization algorithm that can correlate the 
model parameters with target data's distribution. 

Algorithm 1 shows the details of the proposed target 
correlation quantization. For a log2 [-bit precision (i.e., the 
quantization level is l) quantized model, we use correlated 
target information to decide the cluster boundary index of the 
weights. We first divide the pixel values of the correlated target 
image set into l clusters and count the histogram H (line3). 
Then H is used to determine the relative quantity of each 
cluster for the weights and the cluster boundary index bo to b1 
(line 4 to 7). After obtaining the boundary index, the weights 
are sorted (line 8) and used to calculate the representative 
weight value ri as well as the boundary weight value vi for 

Algorithm 1: Image-based Weight Quantization 
1: Input: Correlation targets set T , Quantization level l, Total number of weights e, 

weight list [wo : we-1] 
2 : Output: Quantized weight list [qo : Qe- i] 
3: H +- hist(T, l) 
4: bo = 0 
5: for i = 1 to l do 
6: b; +- b;-1 + H[i - 1] x £ 
7: end for 
8: S +- sort([wo, ... , we-1 ]) 
9: for i = 0 to l - l do 

~:!c";,1-1 S(j] 
10: r; +- bi+ l - b; 

II: V ; +- S[b;] 
12: end for 
13: vi+- oo 
14: for i = 0 toe - 1 do 
15: q; +- Jq(w; , [ro : rz - 1] , [vo : vi]) 
16: end for 
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each cluster Ci (line 9 to 13), so that in each cluster Ci, weight 
value w satisfies Vi ~ w < Vi+i · Finally, we allocate all 
weights [w0 : wc-i] to the corresponding cluster Ck based on 
the boundary value [v0 : vi] and assign representative weight 
value rk into the quantization list [q0 : qc-i] (line 14 to 16). 

Fig. 3 compares the weight distributions of the quantized 
attack model using the original weighted entropy quantiza­
tion and our target-correlated quantization method. The orig­
inal weighted entropy quantization significantly reshapes the 
weight distribution w.r.t. malicious models (Fig. 2(a)), thereby 
degrades the model accuracy to the degree that cannot be 
compensated by a retraining process. On the other hand, our 
method can well approximate the original distribution, which 
results in a well-maintained model accuracy and encoded data 
quality after the quantization. 

V. EVALUATION 
A. Experiment Setup 

Dataset and DNN Model: We adopt CIFAR-10 [14] and 
Facescrub [15] datasets in our experiment. CIFAR-10 consists 
of 60K 32x32 color images in 10 classes for image classifica­
tion. For a comprehensive evaluation, its converted gray scale 
version is also included. Facescrub has 450 classes and more 
than 40K images for celebrity face recognition. 

We use ResNet-34 [12] for CIFAR-10 image classification 
by following a similar configuration from [16]. The Inception­
Resnet-vl model [17] with modified softmax training algo­
rithm is adopted in Facescrub recognition [18]. 

Methodology and Measurement: We integrate all our de­
veloped methods, including quantization, to establish the com­
pressed correlation encoding attack flow. To create compressed 
models, we apply the proposed target correlated quantization 
and weighted entropy quantization with different bit precision. 

We use the mean absolute pixel error (MAPE) to measure 
the quality of reconstructed image x' w.r.t. the original u­
pixel image x: MAPE = t I::~=1 lxi - x~I- A lower MAPE 
value means better data quality. In addition, the structural 
similarity index (SSIM) [19] is used in our face recognition 
task to measure the reconstructed human face texture. Both 
model accuracy and recognized image amount are reported to 
evaluate the attack evasiveness and effectiveness. 
B. Results 

CIFAR-10 Classification. We target the images with std 
in [50, 55] and encode them into 17-34th layer (group 3) 
with three different correlation rates A3 = 3, 5, 10, and set 
A1 , A2 = 0 for the I-12th layer (group 1) and 13-16th layer 
(group 2) (see Sec. IV-B). TABLE III compares the model 
accuracy, MAPE, and recognized image amount (color image 
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Fig. 3: Weight distributions of the quantized correlated value 
encoding attack model on 32 quantization levels: (a) Weighted 
Entropy Quantization (b) Target Image correlated Quantization 

only) among the original attack model and our quantized attack 
model with different correlation rates and quantization bits. 
In most cases, our method can always maintain the accuracy 
of aggressively compressed models (even from 8 to 4 bits) 
at a similar level as that of uncompressed attack models for 
both gray and RGB versions. We also found that our method 
sometimes offers better accuracy, e.g. from 88.05% (original 
attack model with Ac= 5.0) to 88.54% (8-bit quantized model 
with A3 = 10). This is because the improvement brought 
by data-preprocessing and layer-wise regularization can easily 
offset accuracy drop incurred by less aggressive quantization 
(e.g. 8-bit), leaving some margin to further enhance encoded 
data quality with a larger correlation rate. 

Although our method sacrifices some layers' capacity for 
data encoding due to introducing a zero correlation rate (e.g., 
131 RGB images v.s. the original 151 RGB images), the 
encoding quality improvement guarantees that our encoded 
data can be as informative as that of the original attack 
models in almost all cases. For example, the recognizable 
image amount is similar to the uncompressed model, and 
sometimes even greater when the correlation rate is small, e.g. 
111 vs. 98 with A3 , Ac = 3. Moreover, the significant MAPE 
reduction on reconstructed images can also be observed on our 
quantized DNN model for both gray and RGB images across 
all correlation rates. These results indicate that our method can 
not only secure the evasiveness of the attack with a guaranteed 
accuracy, but also improve the encoding efficiency with more 
informative data, while producing highly compressed models. 

Fig. 4 compares the MAPE, accuracy and recognizable 
image amount among the original correlation attack model 
without quantization, with default 4-bit weighted entropy 
quantization, and our integrated attack flow with 4-bit quan­
tization. We observe that the original correlation attack is 
not compression oriented. It suffers from significant accuracy 
degradation with weighted entropy quantization (red line with 
middle bar in all columns). The problem becomes even worse 
at a high correlation rate, as evidenced by the obvious accuracy 

TABLE III: Results for original uncompressed attack models and our attack models under different configurations. 

Model >.c: 3.0 >.1, >-2-0, >.s=3; std in [50, 55] >.c:5.0 >.1, >-2=0, >-s=5; std in [50, 55] >.c: 10.0 >.1, >-2-0, >.3 -10; std in [50, 55] 
Bit Width Ori 8 6 4 Ori 8 6 4 Ori 8 6 4 

MAPE (GRAY) 20.22 12.42 12.68 13.24 17.10 10.56 10.89 11.93 14.98 8.62 8.96 10.26 
Accuracy (GRAY) 89.75% 89.72% 89.56% 88.31% 88.05% 88.73% 88.15% 87.81% 85.91% 88.54% 88.15% 87.31% 

MAPE (RGB) 22.56 11.36 11.55 18.78 14.83 11.22 11.405 14.85 13.56 8.96 9.19 13.47 
Accuracy (RGB) 89.82% 89.63% 89.52% 87.94% 88.16% 88.47% 88.19% 88.02% 86.69% 87.56% 87.50% 85.80% 

Recognized Image 98 111 111 102 112 116 115 105 127 119 115 110 
Amount / Percent (64.90%) (84.73%) (84.73%) (77.86%) (74.17%) (88.55%) (87.79%) (80.15%) (84.11%) (90.84%) (87.79%) (83.97%) 
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drop: from ~ 90% to ~ 83%, ~ 80% and ~ 75% with Ac = 3, 
5, 10, respectively. In contrast, our method can better address 
this issue, by restoring the testing accuracy and significantly 
increasing the number of recognizable images (right orange 
bar v.s. middle orange bar in each group), even comparable 
with the uncompressed attack model (left orange bar in each 
group). These results show that the slight change of training 
pipeline with our method could make the training data stealing 
from highly compressed models possible. 

Facescrub Recognition. Fig. 5 compares the reconstructed 
human face images with our quantized attack method and the 
original attack using default weighted entropy quantization. 
The visualized results clearly show that our method can well 
preserve the textures of the human face even on the 3-bit 
quantized model with only eight grayscale levels, significantly 
surpassing the original quantization (top row v.s. bottom row). 
Our method can reduce MAPE from 28.6 to 22.7 and increase 
the accuracy by 1.1 % simultaneously, as TABLE IV shows. 
We also observe that more high-quality images (MAPE<20) 
can be reconstructed using our method. Besides, SSIM is used 
to better explain the visual texture difference in Fig. 5. As 
TABLE IV reports, with our method, more than 1/3 of the 
reconstructed images (310 out of 924) can achieve SSIM>0.5, 
while there are only 12 such images with the original method. 

VI. CONCLUSION 

This work is the first to show it is feasible to steal high­
quality information from securely trained compressed ML 
models for resource-limited devices. Our exploration shows 
that users' training data can be encoded into the model param­
eters with high quality, even on the extremely quantized DNN 
models, without compromising model accuracy. We propose 

Fig. 5: Top row: Face images extracted from quantized model 
by our method; Bottom row: Face images extracted from 
quantized model by original weighted entropy method. 

TABLE IV: Face recognition model with Ac 
quantization to 3-bits. 

Model Accuracy MAPE MAPE <20 Mean 
Image Amount SSIM 

Uncompressed 95.30% 15.8 644 0.7088 
Proposed 94.80% 22.7 468 0.4115 Quantization 
Original 93.70% 28.6 216 0.2976 Quantization 

10.0 and 

SSIM >0.5 
Image Amount 

718 

310 

12 

the quantized correlation encoding attack flow and develop 
a set of quantization oriented techniques to demonstrate its 
feasibility through an end-to-end attack scenario. Our results 
show that the proposed method can maintain model accuracy, 
steal massive informative data from compressed models, and 
sometimes outperform the existing uncompressed attack rou­
tine. We hope our work can attract more follow up work to 
examine this emerging threat. 
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