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a b s t r a c t

Highly Principled Data Science insists onmethodologies that are: (1) scientifically justified;
(2) statistically principled; and (3) computationally efficient. An astrostatistics collabora-
tion, together with some reminiscences, illustrates the increased roles statisticians can and
should play to ensure this trio, and to advance the science of data along the way.

© 2018 Elsevier B.V. All rights reserved.

1. Proactive co-investigators/partners, not passive consultants

On March 26, 2015, I received the following email from an organizer of the 10th International Astronomical Consortium
for High-Energy Calibration (IACHEC) meeting, which contains the following question:

‘‘Systematic errors in comparing effective areas: Speaking hypothetically, if we label the instruments by numbers i = 1, . . . ,N
and each has an attribute A that is used to measure the same j = 1, . . . ,M astrophysical sources, with intrinsic attribute Fj where
Cij = AiFj are the instrumental measurements, then the question is: ‘Is there a way to decide how (or whether) to change Ai
when the values Cij/Ai do not agree with Fj to within their statistical uncertainties si. In other words, each instrument provides an
estimator fj of Fj with statistical uncertainty sj but |fj − Fj|/sj is often large, not distributed as a Gaussian with unit variance · · · .
How to estimate the systematic error on the Ai?’’

✩ This article is prepared for the special issue on ‘‘The Role of Statistics in the Era of Big Data’’ organized by Statistics and Probability Letters. I thank the
editor Laura M. Sangalli for inviting me, my Astrostatistics collaborators for making my adventure possible, Joe Blitzstein, Yang Chen, Radu Craiu, Francesca
Dominici, Vinay Kashyap, Todd Kuffner, BharmarMukherjee, Aneta Siemiginowska, Lei Sun and a reviewer for comments and encouragements, Steve Finch
for proofreading, and the US National Science Foundation (DMS-1513492) for partial financial support.

E-mail address: meng@stat.harvard.edu.
1 California Harvard Astro-Statistics Collaboration, established in 1997 by statistician David van Dyk and astrophysicists Alanna Connors (Wellesley

College), Vinay Kashyap and Aneta Siemiginowska (Harvard-Smithsonian Center for Astrophysics). I helped to lead the statistical team on the Harvard side
after David moved to the University of California at Irvine in 2003, and subsequently to Imperial College of London in 2011, which brought CHASC to the
international arena. Alanna was a driving force of CHASC’s education mission and outreach effort, helping statisticians understand science and scientists
understand statistics. She devoted herself to such causes to the very end of her life. She wrote on January 29, 2013, ‘‘My cancer is not responding to any
treatment, so I am going into Hospice (at home) today. I am very tired, so I may not be ab[l]e to participate much. I’ll try skyping in tomorrow. With many
thanks for everything’’. She passed away on February 2, 2013, after more than a decade fighting with breast cancer.
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Being a member of CHASC, I was invited to give a general statistical tutorial on April 20, 2015, at the IACHEC meeting in
Beijing. The email came just about the time I was trying to settle on my tutorial topics. Frankly, up to that point, I had not
thought very hard about how to tailor my tutorial towards the problem that IACHEC cares about, and indeed its reason of
existence, that is, building concordance among astronomical instruments operated by different teams. Knowing that I was
new to this meeting, the same organizer wrote to me a few days earlier, which highlighted this goal: ‘‘A few words on the
IACHEC: it is a gathering of astronomers involved in the calibration of X-ray instrumentation of past, present (operational) and
future missions. Our main goal is improving the mutual agreement between measurements yielded by different instruments to
increase the fidelity of the science extracted by high-energy astrophysical data. An important part of this work is the collective
setting of standards in, e.g., X-ray data analysis, that may constitute a reference for the whole astronomical community’’.

Seeing some specifics, I realized that I could contribute more than giving a tutorial. Minimally I could introduce the
concept and calculation of shrinkage estimation, and demonstrate why one needs to avoid the notoriously (to statisticians)
unstable ratio estimators, which apparently were what the IACHEC community was using. However, my decade-long
involvementwith CHASC projects taughtme that any time I see a problemwith a seemingly obvious solution, I should double
check with my scientific collaborators if they have simplified the real messy world, mostly for the benefit of statisticians
like me. Therefore, to be sure that I was not being overly confident, I wrote back to confirm my understanding: ‘‘(1) Cij are
observations, and it is safe to assume that conditioning on the *true* Ai and Fj, Cij’s are independent of each other. (2) Both the
true Ai and Fj are unknown, but you have some estimates ai for Ai and fj for Fj based on some other experiments or theoretical
models, and it would be safe to assume that (fj, ai, Cij) are all independent conditioning on the true (but unknown) values of Ai’s
and Fj’s. (3) The question is that, given the values of Cij and ai and fj, what are the best estimators of Ai for all i (better than just
using ai for Ai)?’’

Vinay (who was cc’ed on my emails), a member of both CHASC and IACHEC, confirmed my suspicion that the problem is
harder than it appears to be: ‘‘The goal of IACHEC was to make these measurements of Cij (counts from source j observed with
instrument i), and given a knowledge of source spectrum fj (often incomplete, but usually known to better than a few percent),
to adjust the instrument response ai so that all analyses produce consistent results. This has been surprisingly difficult to achieve.
Part of the problem is that C, a, and f are all functions of energy, and the overlap between the different instruments is not 100%,
and some instruments are more reliable at some energies compared to others’’.

These few email exchanges turned out to be the beginning of hundreds (and counting) of communications – emails,
skypes, in-person meetings, workshop exchanges, etc. – in the past two years among a group of astrophysicists and
statisticians. This type of exchanges, in terms of both their frequencies and nitty-gritty nature, should come as no surprise
to anyone who has engaged in serious interdisciplinary collaborations on challenging problems. Challenging problems are
unsolvable in a few consultation sessions. This almost tautological statement lies at the heart of how we statisticians can
increase our direct impact on advancing science through data, concurrent with advancing the science of data.

Ages ago, I served for three years as the Director of the Consulting Program shortly after I joined The University of Chicago
as an assistant professor. I encouraged all students, when they met with their clients, to ask as many questions as possible
about the data collection process, emphasizing that nothing is more important than the data quality. Whereas that was the
right emphasis, something I would stress evenmore in this age of big-messy data, I had no experiencemyself about effective
communication with those who were seeking statistical help. Inevitably, some clients felt that we were overly critical but
not very helpful, to the extent that one of them told us that ‘‘I am here for consultation, not for insultation’’.

As I grew professionally, I came to realize, albeit gradually, that the issue went deeper than communication skills. Being
overly critical but not constructive is a telling sign of lacking the feeling of ownership or accountability, neither of which
helps to entice the consultants to invest time or energy as they would for solving their own problems. Nor would the
clients feel the urge to inform the consultants about their investigation processes. Indeed, a sizable number of clients to
the consulting program then wanted quick answers to questions such as ‘‘What’s the p-value for this test that a reviewer
asked me to perform?’’. Historically, such attitudes towards statistical analysis had led to decisions to avoid setting up such
a program (e.g., Chan, 2001, 641–642).

Both the scientific and statistical communities have come a long way since then in seeing the need of working together,
not as consultants and clients, but as genuine partners and co-investigators in scientific investigations. To make this
partnership truly effective, andmutually beneficial, will require investing time and energy on both sides to understand each
other’s language, perspectives, andmodus operandi. For statisticians, to listen and ask critical – but constructive – questions
from the very beginning is a crucial first step towards a fruitful collaboration. The IACHEC concordance project reminds me
once more of the job, and joy, of a statistician in this partnership. It also helped me to crystallize the meaning of conducting
highly-principled data science, as I shall elaborate below. But a disclaimer before proceeding: the opinions expressed below
and my choices of the expressions are neither (entirely) new nor (completely) final, and they are inherently idiosyncratic as
individual opinions always are. Disagreements are greatly encouraged, as a part of our collective brainstorming about how
we can simultaneously broaden our horizons, being a pillar of data science, and deepen our foundations, to earn and ensure
our fundamental roles in scientific inquires and discoveries.

2. Scientifically justified, not merely motivated

Years ago, a Chicago colleague told me a story that must sound ridiculous now. Sometime in 1960s, a colleague at his
previous institution wrote a grant proposal to a national defense agency, which started with ‘‘Let X1, . . . , Xn be an i.i.d.
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sample, where X , for example, is the size of a tank’’. And that’s the end of the military involvement. Whether that was
designed to test the agency’s review capacity beyond the first sentence, or to provide a historical testimony to the deep
division between theory and applications, we surely have passed the era of focusing on justifying the practical relevance
of statistics (though, unfortunately, I cannot add ‘‘or statisticians’’ yet). An obvious benefit for us statisticians to take on a
co-investigator role in any collaborative project is that we no longer need to defend our choices of topics with a battalion of
tanks.

Of course, there is no free lunch — we face a much more demanding task: help to ensure the process and product of our
investigation are scientifically justified. Early on, I naturally regarded that as the responsibility of my scientific collaborators,
and my job was to translate their goals and knowledge into statistical models and then help on the analyses. I can never
have their scientific insights, just as they perhaps would never feel comfortable to question the validity of my statistical
methods or results. But gradually I realized that if translation and analysis is all we do, then we have not really gone beyond
a consultative mindset. More importantly, as much as this may sound to be a professional self-promotion, we statisticians
can and should help to also ensure and enhance scientific justifications.

This is because virtually all scientific investigations are about separating signals fromnoises, figuratively and literally, and
about updating previous understanding and consensus in the presence of new information or ideas or both. But these are
the very processes concerning which we statisticians are trained to think deeply, broadly, and rigorously. In a grand scheme
of things, the only difference between a domain expert and a statistician is that the former engages in these processes with
the goal to advance a substantive field, whereas for the latter the goal and the field is to advance these processes themselves,
with or without reference to applications in specific substantive fields. We statisticians therefore are uniquely equipped to
be investigative partners with our scientific collaborators, not merely for the data analysis process. We can and should play
increasingly more proactive roles in problem formulation (e.g., define what should constitute as signals and what should be
regarded as noises), data collection (e.g., promote efficient experiment designs), result communication (e.g., help to interpret
ambiguous findings), and research explorations (e.g., formulate directions for further investigations).

In such a fully integrated and engaged partnership, we can bring to the enterprise of scientific justification a valuable
disinterested –in its original sense as in ‘‘giving a disinterested advice’’ – perspective. Disinterested is not uninterested (though
unfortunately the former is oftenmisused tomean the latter). I just argued that statisticians should feel the same ownership
and accountability as our scientific collaborators, and few can sustain such a feeling without having some genuine interests
in the problems themselves. A disinterested perspective builds upon insights and lessons from similar issues but manifested
in different settings, and it provides us with the freedom to explore and scrutinize without being overly attached to the
specifics of the problem at hand. An appropriate amount of detachment helps us to reduce the chance of getting onto one of
many ‘‘over-paths’’: over-fitting, over-interpreting, over-adjusting, etc.

A good analogy here is how teachers and parents work together effectively in child education. A teacher typically does
not know a child nearly as comprehensively as the child’s parents, who invest in their child, emotionally and otherwise, far
more than a teacher possibly can even if the teacher wants to. Nevertheless, a teacher sometimes can be more effective in
diagnosing, and remedying, a child’s learning problems than the parents can precisely because of the teacher’s freedom to
place the child at a suitable distance, and in the broader context of similar problems of other children. This helps the teacher
to gain a clearer and larger picture, which in turn can help to form and implement a better remedial strategy.

As a small illustration, if I considered my job as merely being a passive translator and analyst, then I would not bother to
ask for the justification of themodel Cij = AiFj in the concordance problem. Here Ai is the effective area of the ith instrument,
which roughly speaking is the (equivalent) geometric area of an instrument (e.g., telescope) that is effective for collecting
photons; and Fj is the flux of the jth source (e.g., a remnant of a supernova), which, in layman’s terms, is a measure of
brightness. I’d then go ahead to fit the Poisson model to data, which are photon counts {cij} with mean Cij = AiFj, and make
inference about Ai and Fj using either the likelihood approach or Bayesian approach, both of which are statistically principled
(Section 3). This, however, does not guarantee that my results are scientifically justified, since that depends on whether they
can be discredited by known scientific knowledge.

Having worked on other astrophysical and geophysical projects (e.g., Weatherhead et al., 1998), I possess a reasonable
amount of prior knowledge that the so-called ‘‘hard physics models’’ often have soft spots. In this case, the multiplicative
model amounts to assuming that there is no interaction effect, on the log-scale, between instruments and sources. This
assumption reduces the number of unknown mean parameters from N × M to N + M . Whereas this is a crucial reduction
that makes the problemmuch more manageable, this very fact also suggests that our conclusions would be rather sensitive
to its validity. A double check is therefore in order.

Lo and behold, this assumption turns out to be a convenient approximation, because the true mean intensity should be
written as Cij = TijAiFj, which of course is a tautology without restriction on Tij. Besides the obvious and known factors such
as the exposure time, Tij also contains ad hoc factors used, for example, to adjust for the ‘‘pileup’’ effect, which refers to
the situation where several photons hit the detector at the same time, invalidating the aforementioned Poisson model. The
astrophysicists are well aware of this issue, and hence any analysis without addressing it, when it is known to affect the data,
would not be considered by them as scientifically justified. In general, few of our scientific collaborators would knowingly
ignore any major defects in the data, but they may not always feel the necessity to disclose such issues or their methods
for corrections (the so-called preprocessing), especially in the early stages of collaborations. This is where a statistician’s
proactive mindset is much needed, because preprocessing is a very messy business with costly consequences (e.g., Blocker
and Meng, 2013).
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Using ad hoc adjustment factors, such as Tij, to correct for defects in the data (or model) is a popular practice in scientific
studies, because of their simplicity in implementation and interpretation. Simplicity is of great importance in practice, but
these ad hoc adjustment factors often come with uncertainties and errors in themselves, which are typically ignored before
we statisticians get involved, for a practical reason. To properly take into account such preprocessing uncertainties and
inaccuracies typically requires statistical sophistication that is no less than implementing statistically principled methods
– instead of relying on ad hoc adjustments – for handling data defects in the first place. Hence, many non-statisticians feel
uncomfortable executing such methods on their own, or may not see the need to do so. They understand the potential
consequences of not distinguishing between estimated and known quantities, but theymay not have seen enough examples
in a variety of settings to fully appreciate the extent of the damage that can be caused by ignoring the uncertainty and errors
in many seemingly intuitive ad hoc adjustments. Being more proactive means that we should always ask our collaborators
about the soft spots in their models and the preprocessing of their data, before getting busy with translating what they told
us. Although my experiences are of sample size of one, I yet need to encounter a case where my inquiries (plural intended)
did not result in ‘‘Well, Xiao-Li, since you really want to know ...’’ or alike.

Before I report the principled statistical methods used for the concordance project and how the understanding of
preprocessing impacted my modeling strategy, I want to stress that the term ‘‘scientifically justified’’ is used here to
contrast not merely ‘‘scientifically unjustified,’’ but also ‘‘scientifically ideal’’. Since scientific justifications are evidence-
based (permitting both past and current evidences), they are inevitably limited by the present theory, understanding or
consensus. A scientifically verifiable improvement constitutes a scientific justification, even if the improvement itself is
known to be an approximation at the best or even fundamentally flawed in some aspects. Hence ‘‘scientifically justified’’ is
not a political or grant-seeking rhetorical. Rather, it is about not letting either the bad or the perfect be the enemy of the
good, so that we can advance sciences in effective and efficient ways.

3. Statistically principled, not just verified

An astute reader may have noticed a confusion between the notation Cij in Section 1, where it represents an observation,
and in Section 3, where it represents its expectation, with the observation denoted by cij. In statistics, this confusion would
qualify to be a dis-qualifier of deserving the title of ‘‘statistician’’. But outside of statistics, the distinction between estimates
and estimands is not alwaysmade or understood, and indeed sometimes it is dismissed as an academic complication created
by statisticians. I once overheard an engineer becoming rather frustrated with a statistician: ‘‘What do you mean that there
is an underlying real mean? What I observe is real and that’s all I have and care about!’’

This confusion/frustration reflects a profound defect in our current education system worldwide: starting from kinder-
garten, and for at least a decade after that, we infuse almost all developingmindswith deterministic thinking and operations.
Only after student brains are fully developed do our curricula start to include courses with stochastic thinking as their foci.
But even then, uncertainties are perceived, and indeed often taught, as annoying ‘‘noise’’ rather than being the essences
of nature, human, and everything in between. Rarely do we emphasize that uncertainties and information, a.k.a., noises
and signals, are the two sides of the same coin: variations. At the same time, being comfortable, and ideally fluent, in
probabilistic language is essential for conducting principled statistical analysis.Without understanding variations, howcould
anydeterministicmind comprehend the fact that the best regression line for predictingY fromX isY = α+βX , yet predicting
X from Y by reversing this relationship, that is, X = (Y − α)/β , is a telling sign of being statistically challenged?

Undoubtedly it will take decades if not centuries for our education system to embrace a ‘‘stochastic first, deterministic
second’’ curricula, or the kidstogram approach (Meng, 2018). Meanwhile, we statisticians can all take a more active role
in communicating statistical principles whenever opportunities arise, including during research collaborations. Realizing
how confused I was by the notation of Cij myself in the initial communications, I started my IACHEC presentation, which
by then had became a research proposal instead of a tutorial, with an emphasis on distinguishing between deterministic
estimands (e.g., Cij, Ai, Fj) and random estimators/data (e.g., cij, ai, fj); and the aforementioned ‘‘regression paradox’’ was
used to illustrate why this distinction is critical. Seeing how the deterministic relationship Cij = AiFj had led to the ratio
estimator fj = cij/ai as conveyed in the first email cited above (where the notation Cij/Ai was used), I further emphasized
that the deterministic relationship among the parameters such as log Cij = log Ai + log Fj does not imply an analogous
regressionmodel at the data level. That is, we cannot write log cij = log ai + log fj +ϵij, and assume that ϵij hasmean zero and
is independent of {ai, fj}.Whereas this point is rather obvious to statisticians, itmay not be so to thosewho are uncomfortable
with thinking about stochastic relationships or conditional independence.

While taking logarithms to turnmultiplication into addition is a standard strategy, in this case there is a deeper statistical
principle to support considering the log transformation. If the aforementionedmultiplicative factor Tij, as in Cij = TijAiFj, can
be regarded as known because its variability has no appreciable impact on the concordance results, then we can simply
fit the aforementioned Poisson model. However, astrophysicists do not have such confidence, nor do they assure me that
the adjustment Tij as they provide has captured all the important interactions between instrument i and source j, beyond
those that are captured by AiFj. The Poisson model is then too restrictive, and indeed the preprocessed data in the form of
c ′

ij = cij/T̂ij are no longer even counts. These considerations led to the adoption of a log-normal model, especially because
the counts in the concordance problems tend to be large. The separation of the mean and variance parameters in the log
normal model is better suited for adhering to the principle of incorporating as many as possible known and potentially
influential uncertainties in a statistical model. The normality has the added benefit of computational efficiency (Section 4).
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Using normal (albeit not log-normal) to approximate Poisson counts is a common practice in the astrophysical community,
so the log-normal approach did not appear to be too exotic to my astrophysicist collaborators.

The ‘‘half-variance correction’’ (HVC) proposed in my IACHEC presentation, however, was a bit exotic initially to
the audience. Again, it was driven by a statistical modeling principle: model flexibilities for capturing uncertainties or
imperfection should not come at the expense of justified scientific constraints. For the concordance project, we need to
ensure that the log-normal model will respect the multiplicative nature of the mean on the original scale. This is the type
of modeling considerations that we statisticians are trained to provide. For example, we know well that if log y ∼ N(µ, σ 2),
then the mean of y is not eµ, but rather eµ+0.5σ2

. Consequently, if we want to model log c as N(µ, σ 2) but still to ensure
E(c) = TAF , then we must set µ = log T + log A + log F − 0.5σ 2, hence the HVC.

The dramatically increased amount and complexity of data in our society has encouraged many to develop and apply
a host of methods that are justified solely through simulation studies and empirical validations. Whereas simulations and
empirical studies are indispensable, their scope is inherently limited, and as such they comewith prize andprice. A principled
methodmay also need empirical validation, and itmay not outperform an ad hoc one in any particular application, especially
when the evaluative metric is of ‘‘instant gratification’’ nature, such as short-term predictions. But just as we tend to trust a
seasoned surgeonwith our lives more than a rookie one, even if the latter has a higher overall success rate (due to Simpson’s
paradox), we have a much higher chance of avoiding irreplicable research findings when we push ourselves as hard as we
can to follow principled methods, i.e., those come with theoretical understanding ofwhy and when, in addition to how, they
work.

Being principled is by no means a decree to straitjacket ourselves with traditions and established rules. To the contrary,
major methodological advances occur when we develop sound theory and principles to explain and improve seemingly ad
hoc methods that appear to work well from empirical evidence. Indeed, it is virtually impossible to find a time-honored
statistical method with unknown rationale or scope of its applicability and limitations. The current quest for a deep
understanding of deep learning is a reflection of our time-honored desire to be principled.

The rewards, and hence the joy, for being statistically principled are not just better science, but also richer statistical
methods and insight. As a small example, HVC forces the mean of the log normal to depend on (but not determine) its
variance. This leads to intriguing new shrinkage phenomena. For instance, under the hierarchical log-normal model with
HVC, not only the maximum likelihood estimators of the means are of the shrinkage forms, but also the variance estimator
itself. However, the latter is in unfamiliar self-weighted shrinkage form, σ̂ 2

= RS2y , where R =
2

1+
√
1+S2y

≤ 1 and S2y is in the

formof the usual regression residual variance in the absence of HVC (Chen et al., 2017). This provides a new statistical insight
on how such model works: there is a self-balancing act. A small S2y indicates little need of HVC, and hence little modification
to S2y itself is called for: R ↑ 1 as S2y ↓ 0. A large S2y indicates the need of HVC, which then should reduce the residual variance.
However, this in turnwould reduce the estimator ofσ 2, which then should trigger a smallerHVC,which then could lead to too
large a residual variance if we over-correct.Whereaswe could engage ourselves in this indefinite and heuristic balancing act,
the precise form of R here tells us exactly what the optimal shrinkage factor should be. Such non-linear and self-weighting
factors would be hard to construct without following principled methods such as MLE. Indeed, even if R were conjured up
by an ingenious mind, a principled justification would still be needed in order to ensure that it is optimal, or even just to
convince ourselves (and others) why such an exotic looking factor makes sense at all.

4. Computationally efficient, not simply reproducible

The growing demand for handling large and complex data sets has increased sharply the awareness in our statistical
community that our students needmore training in computer science, fromdata processing to data curation and to algorithm
design and implementations. Our traditional training is simply inadequate for dealing with the volume, variety and velocity
of the data as we now see every day, or rather every second. I, for one, can testify to the inadequacy of such training at least
for my generation. Although 1/3 of my thesis was on the EM-type of algorithms, and roughly 1/3 of my research has been
on statistical computing, my ability for data processing or algorithm implementation has regressed to the level that I simply
do not even try, because that would waste everyone’s time, not just mine. Having never taken a course in computer science,
I struggled through by learning from fellow students and by doing things in ad hoc ways. A vivid example was when I was
taking my Ph.D. qualifying exam, I had to use three different languages/packages (Minitab, Gauss, and Fortran 77), because I
knew how to use each only for some specific tasks. Thank God that my professors were in the same camp, in the sense that
all they cared about was the correctness of my output, not about how I computed them.

The long-term consequence, however, is not of the thank-God nature. If not for my many wonderful students and co-
authors, I’d not be able to contribute (directly) to any project involving a decent amount of data. Indeed, without two very
able Ph.D. students who joined the concordance project, the half variance correction would remain as a half baked idea.
Having two students working on the same project is a luxury that not everyone can afford, but for those who can, I highly
recommend it. This is not merely about having more brains and hands, but about independent verifications using different
algorithms/packages/programming languages. With such independent verifications, the assurance of computational repro-
ducibility, as a minimal requirement for scientific replicability, is greatly increased.

The existence of multiple algorithms for the same problem, which is almost always the case for fitting statistical models,
opens the door for better efficiency. Traditional considerations for computational efficiency in statistics include convergence
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rates and number of iterations, CPU time, storage space, and occasionally human time (e.g., for programming); there are
also considerations for computational stabilities (e.g., Van Dyk and Meng, 2010). The arrival of Big Data, however the term
is defined, has reconfirmed the values of these considerations. But more pressingly, it brought additional ones, such as
scalability, transportability, and parallelizability, terms that I can write about only with wiki-depth. And I doubt I am a
minority among my contemporaries in this regard. To avoid such inadequacy for the future generations, those of us who
have the responsibilities and opportunities to design curriculum, should encourage, or even require, our students to take
courses from our computer science colleagues.

Meanwhile, we can still do our best to ensure the computation for our collaborative projects is carried out as efficiently as
possible, wheneverwe have to do it ourselves. The process of searching for themost efficient algorithms itself can servemul-
tiple purposes. For example, computational difficulties often reflect modeling challenges (such as near-nonidentifiability),
known as a The Folk Theorem of Statistical Computing (http://andrewgelman.com/2008/05/13/the_folk_theore). Recognizing
this tendencywould lead naturally to increased effort to improve the statisticalmodel itself. Efficient computation also helps
future investigations and investigators of similar problems. Furthermore, it provides very valuable training for our students,
in terms of establishing healthy research mindsets (e.g., seeking the best possible method, instead of the least-publishable
unit), as well as building richer andmore rigorous research processes. It can also provide unexpected but potentially fruitful
research topics.

For the aforementioned log-normal model, there are at least four algorithms to fit it Bayesianly. Three of them were
implemented in Chen et al. (2017): a vanilla Gibbs sampler, an improved Block Gibbs, and a Hamiltonian Monte Carlo
(HMC) algorithm. As it is well-known, Gibbs samplers tend to save human time, being easy to implement with little tuning,
but at the expense of running time. HMC is the opposite, requiring careful tuning, but runs fast once tuned properly. Both
phenomena occurred for the concordance project, but the nearly identical output from the Block Gibbs and HMC endowed
us with greater confidence in their validity than would be possible if only one of them had been implemented.

Most intriguingly, the fourth algorithm was discovered accidentally during our proof of the propriety of the posterior
under an improper prior. Such proof should always be required as a part of our overall emphasis on being statistically
principled. During the proof,wediscovered a simple bound for implementing standard rejection sampling to sample from the
marginal posterior of the variance parameters. Because the conditional posterior of the mean parameters given the variance
parameters is multivariate Gaussian, we can then bypass MCMC entirely, and produce the ideal i.i.d. draws. This findingmay
have implications to other problems involving multiplicative signals but additive noises.

Indeed, CHASC has a history of turning implementation tricks from a project into a general computational strategy. For
example, Yu and Meng (2011) documented how a seemingly simple idea for fitting a Cox process model (for studying a
neutron/quark star) led to a general interweaving strategy for improving MCMC, sometimes dramatically. A very successful
case, the ancillary-sufficient interweaving strategy (ASIS), was identified because of the principled statistical thinking via
classical concepts such as ancillarity and sufficiency, as well as the ‘‘regression paradox’’ mentioned in Section 3 (Xu et al.,
2013). ASIS has helped (astro)physicists to study sources such as black holes and quasars (e.g., Kelly et al., 2013; Krawczyk
et al., 2015). More encouragingly, ASIS enabled a modeling fitting in finance that was otherwise infeasible, as reported
by Kastner and Frühwirth-Schnatter (2014) and Kastner (2016).

Most recently, an effort to improveMCMC for fitting a latent Ornstein–Uhlenbeck processmodel for accessing time delays
led to a new kind of Metropolis algorithm that is more effective for multi-modal distributions: the Repelling-Attracting
Metropolis (RAM) algorithm, and its utility and potential has been explored beyond astrophysical applications, as detailed
in Tak et al. (2018). Seeing scientific applications turn into methodological advances is always a joy, at least for those of us
who care about advancing the science of data, concurrent with advancing science through data.

5. Principled corner cutting, not cutting principles

Conducting highly principled data science cannot be rushed. Hence it is not for those who seek fast publications — a
mantra for such researchers is always that ‘‘hard to publish, but impossible to unpublish.’’ It however helps to advance science
at a faster pace. Unreplicable results not only waste resources and erode the public trust in science, but most damagingly
they can seriously mislead and even derail scientific advancement itself. Research speed can be gained by principled corner
cutting (Meng, 2018), but not by cutting principles. That is, we seek compromises and shortcuts only after we understand
their consequences, and know how to put the corners back, and in what order, when more time or resources become
available. As we statisticians become main players on the central scientific stages, it is essential for us to hold a very high
bar for ourselves, just as great scientists always do. The tribute Vinay and Aneta wrote for Alanna reminds us how great
scientists devote their lives to being principled, which I quote below both to pay my respects to Alanna and to thank my
CHASC collaborators for their many years of inspirations and patience with me, as I aim to grow from a consultant to a
co-investigator.

‘‘Alanna was a gamma-ray astrophysicist, and was at the forefront of Astrostatistics and Astroinformatics. She was a strong
advocate for principled analyses, and was a pioneer in the development and application of Bayesian methods to Astrophysical
problems. She was a pivotal and founding member of our international Astrostatistics collaboration. She was instrumental in
organizing dozens of workshops to bring the awareness and knowledge of new ideas to the community. She was our beloved friend
and admired colleague. We will greatly miss her presence, her wisdom, and her determination’’.

http://andrewgelman.com/2008/05/13/the_folk_theore
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