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Abstract— This paper presents a novel distributed mapping
algorithm for multiple resource-constrained robots operating in
a rectilinear 2D environment. The algorithm is built upon the
sparse wireframe map representation and updating framework
in [1]. We propose an exploration strategy based on the labeling
of the vertices in the wireframe map, combined with a map-
merging interrupt routine that is activated when robots enter
into communication range with one another. The maps are
not naively merged, but instead the receiving robot verifies
the received information before it is assimilated by attempting
to drive to the location where the other robot was when
communication was established. The robots do not share a
global coordinate frame, so prior to a merge the relative map
alignment is determined. This is achieved using the random
sample consensus (RANSAC) framework with a custom feature
which leverages the structure inherent in the wireframe map
representation. This results in a lower rate of false-positive
matches compared to another state-of-the-art feature used in
point cloud alignment, the 4-point congruent set (4PCS). We
show our feature to be more robust to false-positive align-
ments, a common occurrence when attempting to align sparse
structures such as wireframe maps. We present high fidelity
simulation results in a ROS-Gazebo environment with lidar-
equipped TurtleBots1 to highlight the benefits of our algorithm.

I. INTRODUCTION

In this work we present a decentralized control algorithm
for resource-constrained robots to map an indoor 2D envi-
ronment. Our algorithm builds upon the wireframe mapping
framework introduced in [1]. This prior work establishes
a scalable, memory-efficient method for a single robot to
handle large amounts of incremental data to construct a map
structured in a manner useful for navigation. This paper
builds upon the wireframe representation by proposing a
scalable cooperative exploration strategy that is fully dis-
tributed, as well as a distributed map merging algorithm
that allows robots to benefit from the maps of other robots
encountered serendipitously in the course of exploration. We
simulate the robot dynamics and sensor readings in ROS-
Gazebo to illustrate the performance of this algorithm in
realistic mapping scenarios.

All steps in the algorithm operate on map data in its sparse
wireframe form, and no processing is done on large data sets,
e.g., from raw lidar scans, occupancy grids, or dense point
clouds. Maintaining this strict adherence to sparsity enables
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Fig. 1: Above: three TurtleBots collaboratively mapping a
15m×15m maze environment in the Gazebo simulator using
our decentralized wireframe mapping strategy. Below: the
three robots’ maximum likelihood particles (i.e. wireframes).

mapping by resource-constrained agents such as microrobots
(e.g. [2]), or for the mapping of large environments by more
typical robots. Similarly, the sparsity of the wireframe map
representation leads to lower bandwidth communication re-
quirements among the robots compared to other cooperative
mapping algorithms that use occupancy grids or point cloud
map representations.

The wireframe map structure is an embedded labeled
directed graph, with vertices representing corners in the map
and edges indicating walls. The vertices are labeled based
on their occlusion status as the map is constructed, and the
edges are directed based on order of end-point detection
(which is determined by the rotation of the laser). We use
these properties both for aligning shared maps communicated
between robots, and for directing the robots’ exploration of
the environment.

One key advantage to this sparse map representation is
that, even with tight communication limitations, robots can
transmit what information they have discovered to other
robots. This ability to communicate allows the group of
robots to more efficiently map an environment than a single
robot following the same exploration algorithm. In the multi-
robot case, the cooperation is implicit—no explicit joint
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planning is performed, nor are assumptions made about the
other robot’s behavior. Upon receiving shared map data from
another robot, a robot will not immediately incorporate the
map, but instead first “verify” it by attempting to drive to the
location where the other robot was when the communication
was established. The other robot does not stay fixed for
this verification, but continues with its own exploration
algorithm, allowing for asynchronous behavior.

No global coordinate frame is assumed, so upon receiving
map information from another robot, a robot first aligns
the two maps. Since the wireframe structure is a graph in
the mathematical sense, the problem could be treated as an
instance of the subgraph isomorphism problem, which is
known to be NP-complete [3]. Therefore a heuristic must
be used. Treating the embedded vertices as a set of points
allows for any point cloud matching technique (e.g. Iterative
Closed Point) to be applied. However, most of these methods
seek a local minimum and fail if the initial alignment is not
close. Another common requirement of existing point cloud
alignment algorithms is that a local normal vector can be
found, or that there is a high density of points. Neither of
these conditions are met when matching wireframes. Fur-
thermore, when considering only point clouds, the existence
or absence of walls between the points is ambiguous, which
can lead to false-positive alignments. This paper introduces a
new feature for wireframe map alignment that leverages the
directed edges of the graph structure to achieve matches that
are rotationally invariant, and are more robust under sparsity
and symmetry than existing point cloud matching methods.

The remainder of this work is organized as follows.
Related work is discussed in Sec. II and the problem is
mathematically formalized in Sec. III. Sec. IV describes
how the robots interact as they explore the environment,
and Sec. V discusses the simulation results. Finally, our
conclusions are given in Sec. VI.

II. RELATED WORK

We use the wireframe representation for mapping, rather
than full SLAM, that is, we do not explicitly estimate the
robot trajectories, nor do we detect loop closure. However
one could formulate a full SLAM algorithm using the wire-
frame map representation. The SLAM literature is too vast to
provide an adequate survey here, however a comprehensive
overview of SLAM methods are described in [4]. Section II
of [1] details other sparse map representations and how they
differ from the wireframe.

Within the field of SLAM, there are many notable multi-
robot mapping papers including [5]–[11]. These approaches
all vary in their advantages and disadvantages, though they
all use established map representations and therefore do not
have the same sparsity and navigability benefits that result
from the wireframe framework.

The filter architecture used in both the wireframe map
update and the verification procedure for proposed map
alignments between robots is adapted from the well-known
particle filter [12]–[14]. Particle filters have been used exten-
sively for mapping, for example FastSLAM [15] which uses

a feature-based approach, and GMapping [16] which uses
an occupancy grid approach. The wireframe map is directly
compared in simulation to [16], and is shown to give a higher
quality map given equivalent memory capacity.

The wireframe representation assumes that a sensor pro-
cessing layer extracts environment corners from raw sensor
measurements, hence our measurement scan consists of noisy
environment corner locations relative to our robot. This
is implemented by post-processing the output of split and
merge, an algorithm proposed by [17] which extracts line
segments from 2D lidar scans. Alternatively, we could use
the algorithm in [18] to produce a dense depth map from
a lidar scan, and then extract the corner locations from this
dense depth map. Another method could be to use line or
corner features to extract corner locations from a monocular
camera, a stereo camera, or an RGB-D camera [19], [20].

There is also existing work related to the high-level control
algorithm proposed in this paper. The most similar work is
frontier-based exploration with multiple robots, which directs
robots to the boundary between explored and unexplored
space [21]–[23]. A small, but important, difference between
what we do and this established idea is that our “frontier
points” are at the end of line segments in our partially-
constructed map—points where we know the true map
continues beyond what we have perceived. This allows ex-
ploration without maintaining an explicit record of explored
vs. unexplored space.

To merge maps, a feature is generated for each vertex
based on the lengths and angles between relative parent,
grandparent, child, and grandchild nodes (the order of which
is determined by the scan direction). We argue that this
feature information is more discriminating than simply using
the embedded locations of the vertices such as [24]. The
authors of [25] also use a feature based on lengths and angles,
but it requires calculating the relative distance and angle
between every vertex in the graph which is not scalable. Map
alignments are then found by matching points with similar
features and determining the best correspondence (and hence
transform) through the RANSAC algorithm [26]. RANSAC
is used in many algorithms and applications.

III. PROBLEM FORMULATION

We consider an arbitrary number of robots tasked with
building an environment map modeled as a wireframe. In
[1] we rigorously define the wireframe representation and
describe a framework for handling uncertainty in the map
update using a distribution over wireframes represented as a
weighted particle set. Noisy sensor data is collected as each
robot moves throughout the map and particle filters update
the map estimates over time. For this work it is assumed there
is no separate odometry error, only noise in the sensing. To
reduce drift due to odometry error, the technique described
in the prior work of using the shift between each new scan
and the existing map to update the robot’s estimated position
can be applied. The robots do not share a global coordinate
frame, and the alignment of maps is achieved in a distributed
manner. Each robot has a limited communication range
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Fig. 2: Complete Wireframe Map - The walls are shown as
directed black lines. The embedding in R2 of each point
(φ(i) = pi) is shown at the point location. Since this is
a complete map, the labels of all points are nominal and
denoted by red circles. For comparison, Fig. 3 shows a
section of incomplete map with various point types.

 

Fig. 3: Visible walls are drawn in green, the robot’s field of
view is blue, and walls that are occluded are black dashed
lines. The nominal point is shown as a red circle (left) and
occlusion points and frontier points are shown as triangles
and squares respectively (right). Note that frontier points are
not corners in the environment, but are a result of partial
occlusions that occur along an edge.

through which the robot’s unique ID, maximum likelihood
particle (i.e. wireframe map), and current position (in its own
frame) are transmitted.

A. Wireframe Map

As detailed in [1], a wireframe is a labeled embedded
graph. Specifically, it is a 4-tuple W = {VW , EW , φ, λ},
where VW = {1, 2, . . . , n} is a set of n vertices. The
edge set consists of pairs of connected vertices, EW =
{. . . , (i, j), . . .}, where (i, j) ∈ EW denotes an edge be-
tween vertices i and j. Each index i ∈ VW is mapped to a
point in space pi = φ(i) where function φ : VW → R2. See
Fig. 2 for an example.

Let L be the set of possible labels for the nodes.
Each index is mapped to a label li = λ(i) where func-
tion λ : V → L. The set of possible labels is L =
{nominal, occlusion, frontier}. Note that partially oc-
cluded edges (or edges truncated by a limited field of view)
end in a vertex labeled as frontier (see Fig. 3). These
vertices will not appear in the final map but are artifacts of
the limited view. In the previous work these labels assisted
with building the map, but now are also leveraged to direct
the exploration strategy as described further in Sec. IV.

B. Wireframe Particle Filter

The errors that occur in the wireframe representation are
due to both continuous and discrete sources. The corner
positions may be shifted by noise from where their ground
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Fig. 4: The feature vector for point vi is defined by 4 lengths
and 3 angles calculated from it’s 2-hop neighbors. For this
example fi = [L1, L2, L3, L4, a1, a2, a3].

truth locations are (continuous), while edges may be mistak-
enly introduced or left out (discrete). In [1], a particle filter
framework is used to handle both types of errors. Unlike a
traditional particle filter, the wireframe map itself is treated
as a particle and the weighted set of particles approximates
the belief over the space of all possible wireframes. The
traditional steps for calculating the likelihood of scans,
updating the weights, and resampling were customized to
accommodate this unique type of particle. This process
of maintaining a hypothesis and updating its weight as
new measurements are taken will play a key role in the
verification of proposed map alignments.

C. Wireframe Feature

The core idea behind the wireframe representation is to
minimize the stored detail while maximizing the utility (e.g.
for navigation). The fact that points are indistinguishable
from each other makes the correspondence problem chal-
lenging, especially without an estimate of the initial map
alignment. In order to align shared map information between
robots, a rotation-invariant feature is needed. Furthermore
since many indoor environments are heavily symmetrical the
feature must be robust to false positive matches.

To create a feature with these properties, the direction of
the edges are leveraged to differentiate between otherwise
identical vertices. For each vertex vi a feature vector of
length 7 is constructed. The wireframe structure is a directed
graph so the ordered list of nodes within two hops can
be found: (vgrandparent, vparent, vi, vchild, vgrandchild). The
first four elements in the feature vector are the distances be-
tween each pair of consecutive points (i.e. the edge lengths).
The angles formed between each consecutive edge are the
last 3 feature vector values bringing the length up to 7 (see
Fig. 4). To compare feature vectors fi and fj they are first
subtracted. The difference in angle or length is “discounted”
for each generational step away from the labeled vertex to
allow for the compounded effect of noise (see Algo. 2).

Map alignment could alternatively be achieved using the 4-
Points Congruent Set (4PCS) method [24]. Here each feature
is made up of 4 points so alignments can be calculated
from a single feature (so only one is drawn each RANSAC
iteration). If 4 points fall within a certain radius a feature is
formed based on the relative lengths from each point to the
intersection. The authors develop a method to quickly find
matches between two groups of these 4-point sets. While
very quick, this method suffers from many false positives
when matching wireframes. See Fig. 5 which demonstrates
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Fig. 5: The blue map on the right is the result of the red and
cyan maps merging with a bad alignment due to 4PCS being
“fooled” by the high degree of symmetry. The vertices on
the right side of the wall (in the cyan map) are mistaken for
those on the left side (in the red map). The dashed lines show
the mistaken correspondences. The addition of directed edge
information in the proposed feature prevents these mistakes.

where the 4PCS makes a ”perfect” alignment between the
chosen vertices, but not between the maps.

IV. ALGORITHM

The goal of this algorithm is to provide a way for the
robots to completely explore the map while sharing informa-
tion in a scalabale way. The wireframe map construction nat-
urally embeds information about unexplored areas through
the vertex labeling—frontier points are known to not be true
vertices but simply markers of where we have seen up to
along a wall that continues. The high-level control flow is
shown in Algo. 1.

Algorithm 1 Control Flow for Robot ri
1: Robots in communication range, C
2: Queue of robots with proposed map alignments, Z
3: List of stored transformations T
4: C ← getNearbyRobots(r)
5: Z ← Z

⋃
alignMaps(C \ Z)

6: if map is empty then // EMPTY MAP
7: drive forward
8: else if Z not empty then // MAP VERIFICATION
9: drive towards first robot in Z , rj

10: if ‖position(ri)− position(rj)‖2 < thresh then
11: bAccept ← judgeMapAlignment(Z .pop())
12: if bAccept then
13: mergeWireframes(ri, rj)
14: else if frontier point set not empty then
15: // EXPLORATION STATE
16: drive towards closest frontier point
17: else// DEFAULT STATE
18: Drive to edge with lowest likelihood

The robot moves straight until it finds a wall. The robot
will then simply move towards the closest frontier point,
which by nature of the map updating will “lead” the robot
into unexplored area. Each merging of the scan will push
the frontier point further away, until it vanishes when the
contour is fully viewed. Eventually there will be no more
frontier points and at this stage the robot can choose among

several options - driving across the map to a vertex randomly
sampled from its current map, “sweep” through empty area
looking for previously unseen interior obstacles, follow the
outer perimeter, or seek out areas of the map that have
low-likelihood edges. The last approach is what is currently
implemented in our simulations, though there are advantages
to the sweep/ perimeter following if this work is extended
to topological mapping. This is discussed further in Sec.VI.

If a robot enters into communication range it transmits
its unique ID, maximum-likelihood particle (i.e. map with
the highest relative weight), and current position in its
own coordinate frame. The receiving robot will attempt to
determine the transformation between the two maps, and if
successful will use this to estimate the location of the other
robot. The aligning robot will then drive to where it has
estimated the other robot to be. This will take the robot to a
location that is common to both maps. This way, if the map
alignment is a false positive, it is highly likely conflicts will
be detected along the way. By going a little out of its way
the robot can ensure the map to be merged does not conflict
with its own map.

If there are multiple robots in communication range, or if
another robot is encountered while the first robot’s alignment
is being verified, then the information received from these
additional robots are stored in a queue to be verified one at
a time. No action is required by the transmitting robot for
verification so this process is asynchronous (though the other
robot may be doing the same process in reverse, depending
on its current state). The most recent verified transformation
is stored for each robot encountered.

Due to the randomness inherent in the RANSAC process,
a robot might finish aligning and verifying another’s map
before the other robot has done the same. This is not a
problem because the process is asynchronous, though if
the robots happen to still be in communication range this
transform is shared with the other robot to hot-start their
next RANSAC procedure.

An important practical consideration to avoid robots get-
ting stuck in a behavior loop is demonstrated by the follow-
ing scenario. Consider two robots that enter into communi-
cation range with maps that are prone to mis-alignment. The
bad alignment is calculated, which changes the path the robot
was going to follow so it can instead verify this alignment.
After a few steps, the verification procedure rejects the
map and the robot changes its target back to its previous
destination. However, the robot is still in communication
range with the other, and it will immediately repeat this bad
alignment and again be forced to deviate from its path to
verify the alignment. To avoid this undesirable behavior loop
the robots store any rejected alignments with other robots for
a short period of time. Any future proposed alignments that
are too similar are immediately rejected.

A. Map Alignment

Two pairs of corresponding points are required to define
a 2D transformation. In practice, three points is much more
robust to noise especially with respect to the rotation. If the
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Fig. 6: Correct alignment is found using our custom feature
with RANSAC, overcoming significant symmetry in point
locations and noisy scan measurements that resulted in
spurious line segments in both the blue and red maps.

initial shift and rotation are known to be small then optimiza-
tions that find local minima such as iterative closest point
[27] can be used. However no assumptions are made about
the relative transformation between the robots so a different
approach is employed. The RANSAC framework is used in
conjunction with the custom wireframe feature described in
Sec. III-C. Each vertex is labeled with seven values, four
lengths and three angles, with an order determined by the
direction of the wireframe edges.

For each pair of points, the infinity norm of the weighted
difference between the two vectors (‖w◦(f1−f2)‖∞) is com-
pared to a threshold to determine if two features match. Here
w is a vector of weights which is elementwise multiplied
with the subtracted feature vectors to discount the elements
that are more hops in the graph away from the vertex. E.g. the
difference between the edge length of the child-to-grandchild
node is penalized less than the vertex-to-child node distance.
Sets of three are drawn from the resulting pool of potential
matches, and based on these correspondences the rotation
and translation is found [28]. After applying this candidate
transformation the number of overlapping vertices between
the aligned maps are counted to give a measure of the quality
of map alignment. This is repeated for several iterations and
the transformation corresponding to the largest number of
matched points is returned. An example of two maps merged
with this technique is shown in Fig. 6.

After an alignment is verified, it is stored for that robot.
The next time these robots encounter one another, this saved
transform is used to hot-start the RANSAC search for map
alignment. Future alignments are only verified and merged if
the proposed merge would increase the number of edges or
push the bounds of the robot’s map. The previously stored
transform is not assumed to be perfect, and other transforms
are still considered and compared which allows for mistakes
to be corrected. However the previous “best” transform is
always at least considered.

B. Map Merge Verification

The wireframe alignment algorithm returns the best trans-
form found, but since each RANSAC iteration only evaluates
a subset of the features it may be incorrect. To prevent a
poor alignment from introducing catastrophic map errors, the
receiving robot first travels to the location of the other robot
which is estimated based on the transform from the map

Algorithm 2 Align Maps

1: Given maps W1 and W2 to align
2: γ discount factor for second hops
3: w = [γ, 1, 1, γ, γ, 1, γ] weight vector
4: β threshold for accepting match
5: F1, F2 sets of feature vectors
6: for each map Wi do // Match Features
7: for each vertex v in Wi do
8: if 2-hop neighbors exist then
9: Fi.add(getFeature(v)) // see Fig. 4

10: for all fi in F1 do
11: for all fj in F2 do
12: if ‖w◦(fi−fj)‖∞ < β then // compare features
13: matches.append(f1, f2)

14: for N iterations do // RANSAC
15: (V pair1, V pair2, V pair3)← draw3(matches)
16: Tf ← findTransform(V pair1, V pair2, V pair3)
17: count = countOverlap(Tf,W1,W2)
18: if count > maxCount then
19: maxCount = count
20: Tfbest = Tf

21: return Tfbest

Fig. 7: Here two maps were incorrectly aligned. Due to many
overlapping walls no path to the other robot’s position could
be found and this map merge was subsequently rejected.

alignment as well as the communicated position in the other
robot’s local frame. If no path to the other robot exists, this
immediately identifies the map alignment as incorrect (see
Fig. 7 for an example where this would occur). Otherwise,
the measurements taken en route will provide evidence in
favor or against accepting the map alignment. The evaluation
is performed with the tools we already developed to judge
the current particles in a probabilistic fashion.

Each robot already maintains a set of N weighted particles
used for rejecting errors in the map. The core idea is that
these particles, each of which is a map hypothesis, are used
to predict the scan, and how well the particle matches the
measurement strengthens/weakens our confidence that this
particle is accurate. This same process can be used to judge
the merged map. As shown in Fig. 8, the merged map can
be treated as an additional special particle that is separate
from the “regular” particles. This special particle will not be
resampled (i.e. mixed with the others), nor will it be updated
(i.e. new measurements will not be merged into this map
hypothesis). Instead, its weight will be adjusted as future
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Fig reee:  Each robot maintains N particles each with a weight during its 

exploration of the environment. After attempting to align maps with 

another robot, these are merged into an extra particle shown on the right. 
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weights does not not change.  However, the merged weights will update 
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Fig. 8: On the left of the dashed line each circle represents a
single particle (Wi). Each particle maintains 2 weights. The
first (wi) is used for the standard particle filter update. The
second (w′

i), is referred to as the merge weight, is used to
judge the map alignment. On the right of the dashed line is
the single merge particle. It only has a merge weight.

scans support/contradict the information contained in this
special particle as the robot travels the map.

The weight of a particle is only informative relative to the
weights of all the other particles. Since we do not want this
special particle affecting the “regular” particle filter, a second
set of weights (called merge weights) is introduced. There
will be N + 1 merge weights and the weight for the special
particle is called wmerge. The form of the weight update is
wi = ηwip(S|Wi), where η is a normalization factor and
p(S|Wi) is our likelihood function which is a measure of
how well the scan is explained by the ith particle.

Unlike the “regular” particles the merged particle is never
resampled and therefore its weight is never reset. Instead it
is updated by wmerge = ηmergewmergep(S|Wmerge). This
normalization factor is one over the sum of all the merge
weights. Each iteration all merge weights corresponding to
the N “regular” particles are set to (1−wmerge)/N . In other
words, the remaining probability is split among the regular
particles. In practice this means that the merge particle’s
weight is boosted when predictions based on its map prove
correct and penalized when not, similar to the process for the
regular particle filter. This value is normalized by the relative
performance of the regular particles, whose merge weights
provide a measure against which to judge the merged maps.

Upon arriving at the other robot’s stored location the
merge particle’s weight is judged relative to the other merge
weights. The alignment is accepted if the merge particle’s
weight is no smaller than the maximum merge weight. The
other robot’s shared map is then simply treated as a new scan
and is merged into each real particle. The merged particle
and all the merged weights are discarded.

There is an important practical consideration regarding
the likelihood function. It is not desired to treat newly
explore area as a contradiction to the existing map, even
though newly discovered edges are not predicted. Directions
from the robot with no known edges are called “gaps”, and
edges/vertices appearing in the scans that fall into these
gaps are not penalized as false positives. Otherwise any new
exploration by the robot would be immediately penalized.
However, this has the effect of putting the merge particle
at a disadvantage. There will always be some noise in the
locations of edge endpoints, and there are almost always
more edges in the merged particle. This means the regular
particles are not penalized for unanticipated edges in gaps
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Fig. 9: A typical scan artifact (beveled corner) resulting from
realistic sensor limitations. The scan is red and the true walls
are black. The circle shows the sensor’s field of view.

while in the merge particle these edges may be expected
and therefore subject to a likelihood penalty due to noise.
To prevent this, only the Bernoulli distribution (based on the
existence/non-existence of edges) is used for calculating the
likelihood when updating the merge weights. Only the binary
prediction about the existence of edges affects this weight,
not the offset of vertices that is usually due to noise. Since
even relatively small map misalignments, like the one shown
in Fig. 5, introduce several incorrect edges disregarding the
noise proves to still be an effective judge of map alignment.

C. Wireframe Navigation and Exploration

After Algo. 1 calculates a goal point for the robot to reach
(e.g. a frontier point or the stored previous location of another
robot), a simple A* search over a temporarily-superimposed
grid is used to generate a collision-free path for the robot
to reach the goal. However, any online planning algorithm
with work for this, including sampling based methods such as
RRT* [29], to classical methods like the bug algorithm [30],
or methods based on computational geometry. Examples
of this last category include visibility graphs which are
guaranteed to find the shortest free path in O(n2 log |V |)
time, or trapezoid decomposition, which creates an efficiently
searchable structure in (O(n log |V |)) that can be used for
collision free navigation [31]. Once a trajectory is generated,
the robot can use its low-level control system to follow this
path. In our Gazebo simulations, a simple PID controller is
used to guide the TurtleBots along their planned paths.

V. RESULTS

The advantages of the wireframe map representation com-
pared to standard techniques are established in [1]. The
simulations results in this paper establish the effectiveness
of the decentralized control strategy for both environment
exploration and collaboration. Simulations were run with first
MATLAB then ROS-Gazebo. The ROS-Gazebo simulations
allow the algorithm to be challenged by more realistic sensor
noise. Fig. 9 highlights a common issue when extracting lines
from a noisy laser scan. Where there should be two right
angles the end is cutoff. Furthermore, the dynamics of the
robots are now simulated in addition to the sensing.

The first simulation establishes a baseline with a single
robot, as well as demonstrates that though this algorithm
is developed for groups of robots the exploration strategy
relying on frontier points is effective for a single robot as
well. A maze was generated in a 15m×15m space, which is
large compared to the small TurtleBot. Fig. 10 shows the
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Fig. 10: Left: ground truth wireframe map (15m×15m).
Middle: final maximum likelihood map of a single robot.
Right: Screenshot from the simulation of the TurtleBot.

ground truth wireframe map, the result of a single robot
exploring the environment, and a screenshot of this robot
as it is mapping. All simulated robots maintain 5 particles,
have 5m sensing radius, and a 8m communication radius.

The second simulation was run using the same 15m×15m
environment, but this time with 3 robots and MATLAB as
the simulator. The focus of this simulation was to test the
effectiveness of both the cooperation and the proposed align-
ment feature. Fig. 11 shows the maximum likelihood map for
each of the three robots upon completing the task. During
this run, every time two maps were compared for alignment
we used the 4PCS method as well as the wireframe-based
feature method. The 4PCS method was as likely to succeed
as to fail. Judging a group of four points drawn from a
set of sparse corners is simply not discriminating enough
(any rectangle can be matched 2 ways and any square can
be matched 4 ways), and most results were false positives.
While the verification method was effective at preventing
these incorrect alignments from being incorporated into the
map, this caused the robots to spend longer ruling out
bad alignments instead of exploring. The wireframe-based
feature is not immune to all of these false-positives, but
has two advantages. The first is that some matches can be
ruled out using the edge information. The second is that
the stricter standard for what constitutes a matched pair
results in fewer pairs to consider. Even if some incorrect
alignments are chosen during RANSAC, it is more likely
that the correct alignment is also considered (which should
have more overlapping vertices and therefore be chosen).

In order to characterize the effect of the number of robots
and sensing range, simulations were run on the 15m×15m
map with 1, 2, 3, 5, and 8 robots with sensing ranges of 1.5m,
3m, and 5m. For all runs the communication range was 7m
and the average vertex-detection noise was 40mm. Table I
shows the average number of iterations for the first robot
to complete its map. Since the robot’s step size is constant,
the number of iterations is a measure of distance traveled.
This demonstrates that the extra distance traveled to verify
map alignments is more than compensated for by the shared

TABLE I: Average Simulation Iterations to Completion

Avg. Iters. 1 robot 2 robots 3 robots 5 robots 8 robots

1.5m range 342 250 212 172 134
3m range 258 230 143 101 79
5m range 197 138 80 65 63

Fig. 11: Each robot’s maximum likelihood particle (wire-
frame map) upon completion of the MATLAB simulation.

Fig. 12: Each robot’s maximum likelihood particle (wire-
frame map) upon completion of the Gazebo simulation. The
increased noise is clear, but the resulting maps are still very
close to ground truth (underlaid in black).

information. There are diminishing returns to increasing the
number of robots (for a given map size), which is intuitive
as the robot’s have less new information to share in a given
merge and more robots with which to share. The data show
that a longer sensor range leads to quicker simulations. This
is likely explained by the fact that it is more work to map an
area therefore it is more likely that the shared information is
new to the other robot.

The number of robots, starting locations, and wall layout
of the final simulation were identical to the second, except
now the simulator used is ROS-Gazebo. The final maps
contain more noise, and more realistic sources of noise,
than the MATLAB-simulated results. Evidence of scans
incorrectly seeing beveled corners are clear. After mistakenly
seeing the beveled edge, often the correct edges are seen as
the robot approaches this thin obstacle (this is due to an
increased density of laser points falling on closer edges).
This has the effect of “trapping” the incorrect cut-off edge
inside of the correct edges. This incorrect edge will never be
predicted to be seen (since it is always now behind a wall) so
it will never be penalized by the weight update and therefore
is unlikely to ever be removed. This is not a serious problem
for two reasons. The first is that the purpose of this map
representation is for the robot to have a lightweight tool that
can be used for navigation, which is not affected by these
internal edges. Furthermore, if they did somehow become
a problem, the robot can identify them once there are no
frontier points left in its map. The absence of frontier points
means there are no more open contours. Any edge with an
endpoint with more than two neighbors can be evaluated by
counting the number of intersections along a line segment
connected from middle of the tested edge (not counted as an
intersection) to a point outside the bounds of the map. If the
number of intersection is odd then the edge can be removed
(this procedure is know as the point-in-polygon algorithm).

These simulations demonstrate the effectiveness of the
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algorithm, but the benefit should scale with the size of the
map. As the map becomes larger, the maximum distance for
scan verification does not increase (as this is only related
to the communication radius). Therefore the amount of
information gained vs. trajectory detour increases.

VI. CONCLUSION

In this paper we propose a distributed algorithm for an
arbitrary number of robots to efficiently map an environment.
A sparse representation and update framework are extended
to include control and collaboration. To achieve this, a new
feature is proposed that leverages the directed edges of the
wireframe to avoid the pitfalls of false-positive matches
introduce by storing only sparse data. This algorithm is
shown to work in a high fidelity simulation environments,
where realistic scan errors are handled by the robustness of
the particle filter. Single agent and multi-agent simulations
are run, and while both result in a complete map of the
environment, the multi-robot situation is faster and more
robust. As an additional byproduct, the relative robot frames
are determined in the course of executing the algorithm.

Ongoing work is underway to implement this methodology
on our in-house designed Ouijabot robots [32] to further
demonstrate the effectiveness of this algorithm in realistic
situations. We also intend to extend this methodology to
three dimensional environments where the ease of low-
computational navigation and sparse environment represen-
tations become even more critical. Finally, this algorithm
can also be extended to environments that have disjoint
subregions (e.g. some doors are closed creating groups of
rooms between which the robots cannot travel). In this
situation the robots in each area can construct a wireframe
of their reachable environment while using the techniques in
[33] to further build a topological map of the larger space.
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