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Abstract—The past decade has witnessed the prosperous
growth of augmented reality (AR) devices, as they provide
immersive and interactive experience for customers. AR appli-
cations have the properties of high data rate and latency sen-
sitivity. Currently, the available bandwidth is relatively limited
to transmit and process enormous generated data. Meanwhile,
it is challenging for AR to accurately detect and classify the
object in order to perfectly combine the corresponding virtual
contents with the real world. In this work, we focus on how to
solve the computation efficiency, low-latency object detection and
classification problems of AR applications. Firstly, we introduce
and analyze the practical mathematical model of AR, and
connect the AR operating principles with the object detection
and classification problem. To address this problem and reduce
the executing latency simultaneously, we propose a framework
collaborating mobile edge computing paradigm with federated
learning, both of which are decentralized configurations. To
evaluate our method, numerical results are calculated based
on the open source data CIFAR-10. Compared to centralized
learning, our proposed framework requires significantly fewer
training iterations.

I. INTRODUCTION

The past decade has witnessed the prosperous growth in
augmented reality (AR) devices. AR’s ability to combine
virtual contents with real world has attracted attention from
different fields, which can provide immersive and interactive
experience for gear wearers [1]. For example, at Mobile World
Congress (MWC) 2019, Microsoft introduced the HoloLens
2 to the world, demonstrating its tremendous potentials in a
variety of applications, such as food nutrition analysis, human
organs 3-D visualizations in surgeries, real-time and adaptive
forestage projection for concerts, and vehicle inspection and
malfunction analysis, etc, as illustrated as an example in Fig.
1. In addition, AR brings great success for the gaming field
such as the Pokémon Go, which harvests $1.8 billions revenue
at the second anniversary. However, all these applications are
sensitive to latency because delay can result in virtual objects
to move and bring dizziness to users [2]. Currently, bandwidth
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is relatively limited. It is impossible to transmit and process
the enormous data generated by multiple AR users. Therefore,
latency is usually an inevitable challenge.

To overcome long latency, a new computing paradigm has
emerged, called mobile edge computing (MEC). Basically,
MEC is inspired by shortening the transmission delay through
performing some computation and storage processes at the
edge. According to Cisco’s anticipation, mobile data of 77
exabytes per month will be generated by 2022, and annual
traffic will reach approximately one zettabyte [3]. In addition,
according to the Moore’s Law, the computation abilities of
these edge devices will increase exponentially in the near
future [4]. Therefore, the available computational resources
and storage capacity are plentiful. More importantly, these
resources are at the edge side and are closer to the users than
the centralized datacenter. Therefore, for high data rate and
latency-sensitive applications, it is an effective way to take
advantage of the MEC paradigm to reduce communication
delay significantly.

Basically, what AR does is to implant 3-D virtual objects
in a real-world context. Then, placing the object in a given
scene becomes a vital problem that needs to be addressed.
Generally, AR can be classified into two categories: one is
the marker-based AR, and the other one is the markerless AR
[5]. For the marker-based AR, it is necessary to produce a
marker in advance, like a template card with a certain size and
shape or a Quick Response (QR) Code, and manually place
the marker at an ideal position so as to generate a desirable
reference plane. Next, with the help of camera, it is practical
to recognize the location and estimate the pose of marker [6].
In this way, we can obtain the marker coordinates, whose
origin is the centroid of the marker. Combining the obtained
marker coordinates with prior-known camera coordinates, we
can easily calculate the observed screen coordinates through
3-D geometric transformation. For the markerless AR, the
principles are the same as that of marker-based AR, except
that a special physical template is not required. Instead, we
utilize some feature points to define the boundaries of the
projected model based on the computer vision technologies. In
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Fig. 1. The AR application for vehicle inspection.

addition, the demands for multi-object virtualization increase
dramatically. Thus, the accuracy of detection and classifi-
cation is of great importance, which directly affects user
experience. Recent achievements in the machine learning field
provide an effective and powerful tool to solve such feature
extraction problems.

For traditional machine learning algorithms, such as sup-
port vector machine (SVM), random forest (RF) or deep
neural network (DNN), the whole dataset is typically divided
into the training set and the test set, or one more validation set
sometimes. The training set is used to build a divinable model
and then test the model among the test set so as to obtain
the prediction results. These procedures are homogeneously
performed on one single machine, in other words, these
methods are centralized-performed. However, when it comes
to the situation with multiple mobile users using latency-
critical AR applications, this centralized machine learning
architecture is not applicable any more. Because, generally
speaking, for a model trained based on one single user can
be unsuitable for another user. Whereas, if all the users decide
to obtain their own customized model, the total computational
consumption and power consumption can be extremely large.
Therefore, how to obtain an accurate global model and reduce
the computational and power costs for each user is of great
challenges.

Actually, many of the existing literatures related to MEC
are focused on the computation efficiency problem. In [7],
a matching game based method is utilized to solve a joint
radio and computational resource allocation problem in a fog
computing system. In [8], a fine-grained collaborative offload-
ing strategy is proposed to address a content-popularity based
caching problem in a MEC network. In [9], the block suc-
cessive upper bound minimization based method is proposed
to tackle with the joint computing, caching, communication,
and control optimization problem. However, these works are
based on the game theory or the optimization. In this paper,
in order to address the computation efficiency and low-
latency feature extraction problem for AR applications, we
propose a machine learning framework to address the object
detection problem for the multi-user AR application in the
MEC scenario, which is not considered in existing literatures.
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Fig. 2. The 3-D geometry transformation process in AR glasses.

To summarize, our main contributions are as follows:

« For the purpose of addressing the computation efficiency
and low-latency object classification problem for AR
applications, we propose a framework that integrates
MEC and FL so as to obtain the global optimal machine
learning model. To the best of our knowledge, there is no
existing work utilizing this approach in AR application
scenario.

e We explore and analyze the practical mathematical
model of AR in details. Next, we connect the AR operat-
ing principles with the object detection and classification
problem.

o For the experiments, we perform the proposed frame-
work on the open dataset and compare it with centralized
learning. Consequently, we can find that our proposed
framework performs better, reflected in acceptable accu-
racy and much fewer training rounds.

The structure of the rest paper is as follows. Section II
introduces the operation principles of AR in detail and the
corresponding mathematical models. Also, with regard to the
AR applications, the descriptions of the specific scenario and
the corresponding formulation is given in this section. Section
IIT states the proposed framework and the details of the FL in
the MEC scenario. Section IV shows the performance of our
proposed method compared with the baseline method. Finally,
a conclusion is drawn in Section V.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we detail the operation principles of AR, the
description of scenario, and the corresponding problem for-
mulation. Overall, the 3-D geometry transformation process
is shown in Fig. 2. Generally, the process can be divided
into three steps, 3-D transformation, 2-D transformation,
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and correction. We will introduce them one by one in the
following subsections.

A. 3-D Transformation

In this part, we introduce the process of 3-D transformation.
This is a mapping from world coordinates to camera coordi-
nates. Firstly, we define the transformation between camera
and a set of feature points as:

Xc = EXy, (D

where x¢ denotes the positions of feature points in feature
coordinates, x. denotes the transformed position in camera
coordinates, and &£ 1is the transformation matrix between
feature coordinates and camera coordinates, which is also
named as the pose matrix or extrinsic camera matrix [10].
Specifically, the transformation matrix £ can be expressed in
a combination of a translation vector T and a rotate matrix
R, ie.,

xe = [R|T] x¢. 2)

Generally, the dimensions of T and R are 3 x 1 and 3 x
3, respectively. Thus, we can rewrite (2) in a homogeneous
coordinates as the following form,

T
Te 1 ri2 riz b f
" Yr

Ye | = | T21 T22 T23 12 3)
Zf
Ze 31 T3z r3z 13 )

Although there are nine elements in rotation matrix R, these
parameters can be calculated via three angles in practice: «,
B, and ~y, which are the rotation in camera coordinates along
z-axis, x-axis, and y-axis, respectively, as shown in Fig. 3.
Thus, intuitively, R can be decided via three components, as
the following equation,

[ 711 T2 713
R=| 721 7m2 723 | = R.R;Ry
| 731 732 733
M1 0 0 cosf 0 sing
=| 0 cosa —sina 0 1 0 4)
0 sina cosa —sinf3 0 cosp
cosy —siny 0
siny cosy O
0 0 1

Obviously, this extrinsic camera matrix have six freedoms
totally. The next step is to project the contents from camera
coordinates to an ideal image plane.

B. 2-D Transformation

After getting 3-D positions in camera coordinates, in this
part, we will introduce the process of mapping a 3-D domain
into an image plain. At first, we describe the relationship

Fig. 3. Three freedoms for rotation matrix R.

of observations from camera coordinates and ideal image
coordinates as Z, i.e.,

X1 = IXc. (5)

Generally, what matrix Z does is 2-D translation. A 3-D point
can be mapped to a 2-D image point through a perspective
transformation matrix F'. Define x; as the position in the ideal
image coordinates. Then we have

x; = Fx.. (6)

In homogeneous coordinates, we can rewrite (6) in a matrix
form,

z; f 00 0 e

AMowi =10 0 0f|]%], %
1 00 1 0 “e
1

where A = z., s = xcz—fc, Ys = ycz%, and f is the focal
length. In the desirable case, the centroid of the image is
located on the optical axis. But in practice, the centroid drifts
away from the optical center due to the resembling technology
or manufacturing process. Thus, this offset should also be
considered. Define the principle point offset as (p,, p,). The
corresponding offset calibration matrix P is

1 0 p. O
01 p, 0

P=10 0 0 ®)
00 0 1

With the perspective transformation matrix, we can obtain the
position in an ideal image coordinates,

f 0 p O

T=FP = 0/ p 0 )
00 1 0
00 1 0

C. Calibration

So far, we have accomplished the second step. However,
most images are not square in size, such as 4 : 3 or 16 :
9, which results in non-square pixels. In this situation, it is
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necessary to scale the projection from image coordinates into
pixels coordinates, which is also called aspect ratio correction,
expressed as matrix A, i.e.,

m% 0 0
A=| 0 = 0], (10)
0 0 1

where m, is the pixel width and m,, is the pixel height. In
addition, in the pixel coordinates, each pixel row should be
orthogonal to the pixel column. However, in practice, there
will be an angle 6 between the pixel row and pixel column,
which is called as skew, illustrated in Fig. 4. Skew causes
significant distortion in image formation, which is another
inevitable factor to consider. Skew is often a shear operation
and can be described in matrix S as,

1 tanf 0 O
S=10 1 0 0 (11)
0 0 1 0

Define x as the position in the ideal image coordinates. Then,
from (6) to (11), we obtain a total of four transformation or
correction matrices, namely F, P, A, and S, respectively.
These transformations can be accumulated together by mul-
tiplication, and the multiplication result is also called the
intrinsic camera matrix in the field of computer vision. Thus,
the mapping between camera coordinates and observed screen
coordinates can be summarized as follows:

0 ps 0
e 0 0 gf P .
ys | =X 0 L o Py
\ m, 00 1 0
1 0 0 1
00 1 0
1 tan® 0 0 e
0 1 00 Ye (12)
0 0 10 %
1
% tan@mi pe 0 e
1 T xT yc
Y Ze
0 0 1 0
1

Finally, combining the extrinsic camera matrix with the in-
trinsic camera matrix, we have a mapping between the feature
points position in the real world coordinates and the positions
in the AR generated images or videos coordinates. Thus, it
follows that

T . mLT tan Gmim pr O
f
1 0 0 1 0
ri1 T2 Tzt xTf (13)
ro1 T2z T2z 2 Yf
r31 r3z2 T3z 13 zf
0 0 0 1 1
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Fig. 4. The example for skew distortion.

As discussed in the previous section, object extraction and
classification is important to combine the real world with
virtual objects for certain AR applications, depending on
where the 3-D model and which model is implanted. We
assume a scenario that contains M AR wearers using the
same application and one centralized cloud located far from
the edge. Suppose that the area of the detected feature or
object is denoted as pair (x4,yd), and the real or desirable
area is (xr,yr). Define the object detection and classification
machine learning model as

y=F(w;Q) =F(w;(xd,yd))

where F'(-) is the object detection model, w is the general
model parameters set, Q is the input image, and y is the
prediction class. Also, we define § as the ground truth.
Thereby, the problem is transformed to find the optimal value
w* such that,

(14)

1 (w™; (xa,¥a)) = 9[l = 0. (15)

III. FEDERATED LEARNING IN MOBILE EDGE
COMPUTING

AR applications generate a huge amount of data and are
latency-sensitive. In the centralized paradigm, all data gener-
ated by different individual users will be accumulated together
by uploading them separately to the data center, which leads
to tremendous communication consumption. Therefore, we
propose a framework that combines FL with MEC, both of
which are distributed structures. FL was firstly proposed by
Google [11], a distributed machine learning framework which
is computation efficient and can cooperate with any machine
learning model. In the AR application case, we can treat
edge devices as federation group, mainly performing data
generation and local model updates. Although the centralized
cloud can be regarded as the central agent, it is regarded as an
aggregator to compute the global model based on the uploaded
local models. We define w(j) as the global parameters after
the j-th global aggregation. And w] (k) is denoted as the
local model parameter for the k-th local update steps after
the j-th global aggregation for the i-th device. f;(-) is the
local model for the ¢-th device. The total number of global
iterations is defined as 7, so we have 5 = 0,1,---,7T.
And the total number of local updates iterations between

Authorized licensed use limited to: University of North Carolina at Charlotte. DowrZoZa&d on December 16,2020 at 07:03:56 UTC from IEEE Xplore. Restrictions apply.



2020 International Conference on Computing, Networking and Communications (ICNC): Signal Processing for
Communications

. > Dim’:(r)
Centralized Cloud \M"’/ o(j+1)= T‘
S
S,

Selected Devices §

JACAD)

Fa(@h ()
Local Updates af

Device M

Device 2

Device 1

Fig. 5. The illustration for federated learning in mobile edge computing
paradigm.

two adjacent global aggregations is defined as 7, so we have
k =20,---,7. The corresponding FL process can be divided
into the following steps:

1) The centralized cloud selects a part of existing edge
devices S C {1,--- ,M}.

2) The centralized cloud sends a naive object detection and
classification model with parameters @ (0) to the selected
devices S. The naive model can even be an initial model
without any training.

3) The edge device will train the received naive model
locally for a certain iterations 7, based on the local-
generated data, which is followed by

W(k) =

: wi(k—1)—=nVwi(k—=1),  (16)

where 7 is the learning rate.
4) After T rounds, every selected device uploads the trained
model with parameters w?(7) to the centralized cloud.
5) The centralized cloud will aggregate all the local models
WY(7), i € S, generally based on the weighted average
method [12], i.e.,
M
> Diw)(7)

- i€S

w(l) = D ; (17)
where D £ 3, < D; , D; is the dataset size of device
i. Here we assume D,,, N D, = () for any m # n.

6) Iteratively, after the T-th global aggregation, we obtain
the final global model parameters & (7). We can ob-
tain the object classification that needs to be replaced
with corresponding 3-D model via F (@(T)), ie., y =
F(w(T)).

This process is shown in Fig. 5. We summarize the above
steps as Algorithm 1. Compared to the conventional machine
learning method, the advantages of FL can be summarized as
follows:

Algorithm 1 Federated Learning Algorithm

1: Input: the total number of global aggregation 7'; the total
number of local updates between two global aggregation
T; the set of selected devices S; the learning rate 7.
Initialize the global model parameters (0).
for j=0:T do
for k=1:7 do
if k # 7 then
For each selected device i € S, performing local
updates based on D; simultaneously using (16).
7: else _
The devices upload w; () to the centralized cloud.
The datacenter performs aggregation by (17) and
obtain w(j + 1).

A

9: Set w(j +1) = w!T(0).
10: end if

11:  end for

12: end for

13: Output: the optimum global model parameters w(7).

TABLE I
THE COMPARISON BETWEEN FEDERATED LEARNING AND CENTRALIZED
LEARNING
Models Accuracy Rounds
Federated Learning (i.i.d.) 88.67% 400 (for each device)

Federated Learning (non-i.i.d.)
Centralized Learning

86.00% 400 (for each device)
90.10% 1000

o Generally, the data generated by different users are non-
i.i.d. data due to the various behavior characteristics.
However, the task aims at obtaining a model that is
suitable for each individual user. FL has been proved
to be an effective way to tackle with non-i.i.d. data [13],
which is perfectly suitable for multi-user scenario.

o The traditional centralized method brings huge commu-
nication workloads due to data transmission. However,
this can be easily relieved by FL because what are
transmitted between edge devices and datacenter are the
machine learning model or even the model parameters,
whose data size is greatly smaller than the original
dataset [14].

o In addition, because the original data will not be up-
loaded, FL is an effective way to reduce the probabilities
of eavesdropping, which means the user’s privacy can be
ensured [15].

IV. NUMERICAL RESULTS

In this section, we conduct numerical results using CNN
to perform the classification on ten thousand labeled images
from CIFAR-10 dataset [16] in Tensorflow framework, since
AR is a video or image based application. Among them,
83.33% are training samples. The structure of CNN is one
3 X 6 x 5 convolutional layer, one 2 x 2 maxpool layer,
one 6 x 16 x 5 convolutional layer, and followed by a fully
connected network. For the proposed method, we assume the

Authorized licensed use limited to: University of North Carolina at Charlotte. DowrZoZacJed on December 16,2020 at 07:03:56 UTC from IEEE Xplore. Restrictions apply.



2020 International Conference on Computing, Networking and Communications (ICNC): Signal Processing for
Communications

o}
o
T

~
o
T

o2}
=}
T

o
o
T

S
o
T

W
o
T

Accuracy for non-i.i.d. data (%)
n
o

0 I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Global Aggregation Epoch

Fig. 6. Accuracy for different local updates iterations with non-i.i.d. data.

25

N
T

Loss for non-i.i.d. data
P

—t—r=20
—— =15

—— 5

—— =1
05 T L L L

0 2 4 6 8 10 12 14 16 18 20
Global Aggregation Epoch

—

Fig. 7. Loss for different local updates iterations with non-i.i.d. data.

number of users is five and they have the same data size, i.e.,
Dy = ... = D5. We set the learning rate to 0.002. The local
updates iteration 7 is 20, the global aggregation iteration T’
is 20, the local batch size is 2000, and the activation function
is Relu. To evaluate the performance, we also introduce the
centralized learning as a baseline, which shares the same
network structure. The results are shown in Table I. For i.i.d.
situation setting, each user is randomly assigned a uniform
distribution over 10 classes. For non-i.i.d. setting, the data is
sorted by class and each user is randomly assigned equally
from two classes.

We can see that from the perspective of accuracy, the
centralized learning gets better performance. Since the model
is trained on the whole dataset, the bias from some individual
devices cannot make a difference. However, to achieve the
88.67% accuracy with i.i.d. data and 86.00% accuracy with
non-i.i.d. data, FL takes 600 rounds fewer than the centralized
learning, which is significantly faster. Reducing six hundred
iteration rounds can alleviate latency dramatically because
machine learning algorithms are usually high-complexity and
each iteration consumes a lot of computational resources.
In particular, for the centralized learning, each iteration is
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performed throughout the whole dataset. The executing time
of procedure like back-propagation is proportional to the data
size. As a consequence, it requires more computation time
for each iteration in centralized learning than FL. Therefore,
our proposed framework can bring remarkable time efficiency,
with the condition that the accuracy is only reduced by 3.9%
with non-i.i.d. data and 1.43% with i.i.d. data. Besides, re-
garding to accuracy, the difference between i.i.d. and non-i.i.d.
settings is 2.47%, which also demonstrates the effectiveness
of FL for dealing with non-i.i.d. data.

In addition, we explore the influence of different local
update iteration on accuracy and loss. The concrete illustra-
tions are shown in Figs. 6, 7, 8 and 9, respectively. Figs.
6 and 7 are conducted under non-i.i.d. settings. And Figs.
8 and 9 are conducted under i.i.d. settings. Obviously, if
the local update performs more rounds between the two
global aggregation, the accuracy can be better and the loss
is reduced more quickly. This is because, with more local
iterations, the uploaded local models are more mature or well
trained. In other words, the parameters are more suitable
for the corresponding local data distributions. The benefits
are continuously obtained by the global model via weighted
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average. Therefore, in the case of sufficient local computation
resources, the more local rounds are calculated, the more
accurate the model we can obtain in a shorter time. Besides,
comparing the performance of non-i.i.d. setting with i.i.d. set-
ting, we can see that accuracy is higher and the loss decreases
faster in i.i.d. environment. This is because with same data
distribution, the local models should have some features in
common. Therefore, the performance of aggregated global
model can be similar as centralized learning. However, in non-
1.1.d. case, data distribution varies from user to user, which
means one local model cannot be suitable for the others,
resulting in the lower convergence.

V. CONCLUSION

In this paper, to tackle with the classification problem
for high data rate and latency-sensitive AR applications,
we introduce and analyze the mathematical model of AR
in detail and connect the AR operating principles with the
object detection and classification problem. Then, we pro-
posed a framework that combines FL. with MEC to address
the corresponding challenges. To evaluate our method, we
conduct the experiments among open source dataset CIFAR-
10 in i.i.d. settings and non-i.i.d. settings, and also compare
with centralized learning. Our proposed framework can bring
fewer iteration rounds for model training, meanwhile only
leads to 3.9% accuracy less with non-i.i.d. data and 1.43%
accuracy less with i.i.d. data. In addition, we also explore
the influence of local updates iterations on the accuracy and
loss or convergence speed. As a consequence, we find that
when more local updates are performed, we can get more
accurate model and the loss decreases faster. Besides, training
by i.i.d. data leads to better accuracy and faster convergence,
comparing with non-i.i.d. case.
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