
5634 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

Edge Computing Resources Reservation in Vehicular
Networks: A Meta-Learning Approach

Dawei Chen , Student Member, IEEE, Yin-Chen Liu, BaekGyu Kim , Member, IEEE, Jiang Xie , Fellow, IEEE,
Choong Seon Hong , Senior Member, IEEE, and Zhu Han , Fellow, IEEE

Abstract—With the development of autonomous vehicular tech-
nologies, the execution tasks become more memory-consuming
and computation-intensive. Simultaneously, a certain portion of
tasks are latency-sensitive, such as collaborative perception, path
planning, collaborative simultaneous localization and mapping,
real-time pedestrian detection, etc. Because of the limited compu-
tation resources inside vehicles and restricted transmission band-
width, edge computing can be an effective way to assist with the
tasks execution. Considering from the perspective of business, the
reservation or subscription cost is cheaper than real time requests.
In order to minimize the expense of consuming edge services, the
desirable situation is to reserve the resources as much as needed.
However, the configuration of vehicular network is variational in
practice due to the diversity of road maps, different time range
like peak time and off-peak time, and the various task types, which
makes it challenging to figure out a general machine learning model
that is suitable for any case. Therefore, to predict the resource
consumption in edge nodes accurately in different scenarios, we
propose a two-stage meta-learning based approach to adaptively
choose the appropriate machine learning algorithms based on the
meta-features extracted on database. Besides, due to the deficiency
of dataset for edge resource consumption, we program in game
engine unity to generate the 3D model of Manhattan area. Mean-
while, we change the factors like different road maps and number
of vehicles so as to get closer to practices. In the evaluation part, we
adopt root mean square error, mean absolute percentage, and mean
GEH as evaluation metrics to assess the performance of each model.
Also, a quantitative analysis for the total cost and waste is also
conducted. Eventually, we can find that the proposed meta-learning
based method outperforms the non-meta ones.

Manuscript received December 11, 2019; revised February 14, 2020; accepted
March 19, 2020. Date of publication March 31, 2020; date of current version
May 14, 2020. This work was supported in part by US MURI AFOSR MURI
18RT0073, in part by NSF EARS-1839818, in part by CNS1717454, in part
by CNS-1731424, in part by CNS-1702850, in part by US National Science
Foundation (NSF) under Grants 1718666, 1731675, 1910667, and 1910891,
and in part by Toyota Motor North America. The review of this article was
coordinated by Dr. B. Mao. (Corresponding author: Choong Seon Hong.)

Dawei Chen is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA (e-mail: dchen22@uh.edu).

Yin-Chen Liu and BaekGyu Kim are with the Toyota Motor North Amer-
ica, Inc., Mountain View, CA 94043 USA (e-mail: yin-chen.liu@toyota.com;
baekgyu.kim@toyota.com).

Jiang Xie is with the Department of Electrical and Computer Engineering,
University of North Carolina at Charlotte, Charlotte, NC 28223 USA (e-mail:
jxie1@uncc.edu).

Choong Seon Hong is with the Department of Computer Science and Engi-
neering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
(e-mail: cshong@khu.ac.kr).

Zhu Han is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA, and also with the Department
of Computer Science and Engineering, Kyung Hee University, Seoul 446-701,
South Korea (e-mail: zhan2@uh.edu).

Digital Object Identifier 10.1109/TVT.2020.2983445

Index Terms—Edge computing, resource reservation, meta-
learning, vehicular network.

I. INTRODUCTION

HAVING stepped into the era of information technol-
ogy, there are enormous artificial intelligence based au-

tonomous devices, technologies, and services coming into be-
ing, one important branch of which is autonomous vehicles
or intelligent vehicles. According to the definition of National
Highway Traffic Safety Administration (NHTSA), the levels of
vehicle automation can be categorized into six classes, which
are distinguished by the extent of autonomy [1]. Currently, the
performance of autonomous vehicles can just meet the require-
ments between level 2 and level 3, and both of which require
the driver must be ready to take back control at any time. In
other words, the artificial intelligence based autonomous driving
remains much to be done before realizing the human occupants
never need to be involved in driving, such as accurate prediction,
precise inference, latency decreasing, etc.

For the time being, the artificial intelligence technologies of
autonomous vehicles heavily rely on the data generated by the
built-in devices such as an array of sensors, electronic control
units, cameras, etc. According to the forecast of Intel, the data
generated by one single autonomous vehicle will achieve 4 TB
data per day [2]. Such a kind of massive data bring inevitable
challenges to data processing and storage within vehicles, espe-
cially for those real-time tasks with high computation complex-
ity such as collaborative perception, path planning, collabora-
tive simultaneous localization and mapping (SLAM), real-time
pedestrian detection, or with high demands for storage capacity
like uploading driving records. In this case, cloud computing
can be an effective way to help.

Nowadays, there are two mainstream cloud computing
paradigms: one is the conventional centralized cloud computing
and the other one is edge computing. The superiority of tradi-
tional centralized cloud computing is founded on the powerful
data processing ability and the enormous storage capacity of
remote datacenter. However, as a centralized paradigm, all the
data needs to be transmitted to the datacenter for storage or
further processing. The latency caused by long transmission
distance and limited bandwidth is a significant challenge for ve-
hicular networks [3]–[6]. On the opposite side, the architecture
of edge computing performs better for latency alleviation and
is more suitable for real-time tasks demanded by autonomous
vehicles. Because in edge computing configuration, many edge

0018-9545 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4162-1423
https://orcid.org/0000-0001-7892-5191
https://orcid.org/0000-0003-0683-4308
https://orcid.org/0000-0003-3484-7333
https://orcid.org/0000-0002-6606-5822
mailto:dchen22@uh.edu
mailto:yin-chen.liu@toyota.com
mailto:baekgyu.kim@toyota.com
mailto:jxie1@uncc.edu
mailto:cshong@khu.ac.kr
mailto:zhan2@uh.edu

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5635

nodes will be deployed in a geographically distributed manner
within the network, which means the services can be provided
to the users more closely. Moreover, edge nodes are capable
of computation ability and storage capacity to a certain extent,
which makes it feasible to perform tasks locally and feedback
the results to vehicles on time. Accordingly, transmission latency
can be reduced significantly and quality of service (QoS) can be
remarkably improved [7]–[10].

From the commercial perspective, the investment for edge
nodes deployment will increase the expenditures of services-
providers correspondingly, resulting in a relatively expensive
price of edge services [11]. Meanwhile, aiming at catering to
the market demands and attracting more customers, the corpo-
rations carry out some marketing strategies, one of which is
that the services can be sold in a reservation or subscription
way with a cheaper price and a real-time requested way with
an expensive price. Furthermore, different purchasing programs
are supplied and the customers can decide which program to get
enrolled in according to their own consumption characteristics.
For instance, Amazon Web Services (AWS) provides several
purchase schemes to customers, which are pay-as-you-go, save
when you reserve, and pay less by using more [12]. Concretely,
these programs are described as the following:

1) Pay-as-you-go: the customers can adjust the services de-
mands at any time depending on the their own needs and
only need to pay for services on an as needed basis.

2) Save when you reserve: for the service like the Amazon
Elastic Compute Cloud (Amazon EC2) and Amazon Rela-
tional Database Service (Amazon RDS), if the customers
reserve in advance, a certain percent discount will be
provided. In addition, if paid with upfront payments, the
customers will be charged further less.

3) Pay less by using more: this is a common marketing
strategy, which means for services like Amazon simple
storage services (S3), if more volumes you consume, the
less you will pay per GB.

Obviously, it is a more economical way to consume services
by reservation in advance and the customers can save up to
75% compared with equivalent on-demand scheme based on
the AWS’s description. Therefore, for the purpose of minimiz-
ing the expenditure, it is of great importance for customers to
figure out how many resources, i.e., computational memory or
storage memory, should be reserved. Intuitively, this expense
minimization problem can be regarded as a prediction problem.
However, the amount of edge resource consumption actually
is closely related to many factors, such as speed, road map,
task memory consumption, etc. While traditional optimization
algorithms are not effective to address such high-dimensional
nonlinear regression problems [13]. Fortunately, the emerging
machine learning methods provide powerful tools to tackle with
such prediction problems. Due to the diversity of influence
factors in vehicular networks, we can hardly find one machine
learning model which is suitable and performs the best in any
scenarios [14]. Considering there are similarities in these sce-
narios, meta-learning can be an effective method to help, whose
goal is to learn from the experience or prior knowledge that
generalizes well to related new tasks. Therefore, we propose a

two-stage meta-learning based approach to adaptively choose
the appropriate machine learning algorithms according to the
meta-features extracted on databases.

In details, the contributions of this paper can be summarized
as follows:
� The majority of existing edge computing-related papers

focus on the perspective of edge services provider or the
technological aspect of edge computing networks, such as
minimizing energy consumption, maximizing QoS, mini-
mizing transmission delay, etc. In this work, we consider
the business perspective from edge services consumers and
aim at minimizing the customers’ cost for consuming edge
node resources, which is seldom done in existing literature.

� Because of the diversity of factors in vehicular networks,
such as time (like peak or off-peak), road map, and task
type, we propose a two-stage meta-learning based method
to adaptively select the appropriate machine learning
model, which anticipates accurately and correspondingly
gives the lowest expenditure in different scenarios.

� Since there is no open dataset about edge resource con-
sumption, we program on the game engine unity to build
the 3D model of Manhattan area to generate the data. At
the same time, we change the factors to test our method in
various scenarios, including road maps, number of vehicles
(to mimic the peak and off-peak time), and the randomness
of memory consumption size, so that the experiment envi-
ronment is able to get closer to the practice.

The structure of the rest paper is as following. Section II
discusses some related existing papers from both engineering
field and business field. Section III introduces the specific sce-
nario and the problem needs to be solved. Section IV intro-
duces the proposed two-stage meta-learning approach and the
machine learning models implemented in this work. Section V
firstly introduces the process of data generation in detail and
shows the performances of our proposed method comparing
with the non-meta methods. Finally, a conclusion is drawn in
Section VI.

II. RELATED WORK

As a promising distributed computation paradigm, edge com-
puting has become a popular field of research. However, most
existing papers in an edge computing scenario focus on the
technology perspective of the edge computing network side,
like network architecture improvements, edge nodes placement,
edge-assisted tasks offloading, etc. [15] proposed a fine-grained
collaborative offloading strategy with caching enhancement
scheme to minimize the latency at the edge side in both femto-
cloud mobile network scenario and mobile edge computing
scenario. [16] proposed a method based on the Lagrangian
heuristic algorithm and workload allocation scheme to optimally
place the cloudlets, under the considerations of both cloudlet
cost and average end-to-end delay in a mobile edge comput-
ing scenario. [17] proposed a novel communication scheme to
enable the low-latency, robust and accurate edge node assisted
self-driving service for connected autonomous driving services

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

5636 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

TABLE I
TYPICAL EDGE COMPUTING COMPANIES AND PRODUCTS

in a mobile edge computing scenario. Different from these liter-
ature, this paper stands on the side of edge resources consumers
and focuses on the economic aspect to minimize the expenditure
for customers. Therefore, in this paper, the specific architecture
of edge computing network, the limitation of edge resources,
and the wireless communications are unconcerned.

Thanks to the low-latency and distributed properties of edge
computing, diverse use cases can be supported, such as con-
nected autonomous vehicles, e-health, industrial automation,
mobile gaming, smart grid, and Internet of Things (IoT) ser-
vices [18]–[21]. Correspondingly, such characteristics and ca-
pabilities offered by an edge computing platform can be trans-
lated into unique value and revenue generation [22], which also
prompts some researches on commercial aspect of edge comput-
ing. Present typical edge computing companies are summarized
in Table I [23] discussed the influences of five factors, i.e., ease
of use, security, cost reduction, reliability, and collaborating,
on the cloud usages of micro and small businesses. [24] intro-
duced a framework that leverages pricing aspects to enable the
sharing economy vision for edge devices applied into the smart
city scenario. [25] compared several pricing models, such as
the time based model, volume based model, flat rate, content
based model, etc., and discusses the pricing schemes from
different cloud services providers including AWS EC2, AWS
S3, Microsoft Azure, and AppNexus. Whereas, these works
analyze and discuss problems on from the perspectives of service
providers and the market operations instead of service customers
as well.

As a promising machine learning approach, meta-learning
has attracted considerable interests of diverse science and en-
gineering communities recently, and is widely used in different
fields. [26] proposed a meta-learning based framework to learn
the online learning algorithm from offline videos so as to address
an object tracking problem. [27] proposed a meta-learning based
method to tackle with an automatic text classification problem
through utilizing the distance-based meta-features derived from
the original bag-of-words representation. [28] proposed a novel
meta-learning method for domain generalization by a model
agnostic training procedure so that the domain shift problem can
be avoided. [29] proposed a two deep neural network architec-
ture based meta-learning strategy to solve the clod-start problem
for item recommendations when new items arrive continuously.
However, to the best of our knowledge, there is no existing

Fig. 1. The scenario and procedures description.

literature that implements a meta-learning based method to
deal with an edge resource reservation problem in vehicular
networks.

III. SCENARIO DESCRIPTION AND PROBLEM FORMULATION

In this paper, we consider an edge computing platform de-
ploying edge nodes and providing edge computing services. The
computational resources or storage resources can be purchased
via reservation or real-time request. The automotive company
provides services to the autonomous vehicle customers, such as
collaborative perception, path planning, collaborative simulta-
neous localization and mapping, real-time object detection, etc.
Consequently, it is inevitable for automotive company to pay
the rental fee or operation fee to the edge platform so as to offer
the corresponding services to customers. The procedures are
described in Fig. 1.

We define the unit price for reservation and real-time request
as Prv and Prt, respectively, and generally Prv ≤ Prt. To per-
form some computation-intensive or storage-demanding tasks,
at each time t the practical needed amount for edge resources
is n(t) units. While the total amount reserved by automotive
company is m(t) units. Intuitively, only when n(t) = m(t),
the consumption expenditure is optimally minimized. Because
whenn(t) > m(t), the reserved amount of resources cannot meet
the usage requirements and the extra real-time purchasing is
inevitable. When n(t) < m(t), the reserved amount of resources
exceeds the actual demand, which actually is a waste for both
customers and services provider. Therefore, the total cost of
consuming edge services S(t) can be described by the following

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5637

function:

S(t) =

{
m(t) × Prv, n(t) ≤ m(t),

m(t) × Prv + (n(t) −m(t))× Prt, m(t) < n(t).
(1)

Correspondingly, the total waste W (t) can be calculated as the
following piece-wise function:

W (t) =

{
(m(t) − n(t))× Prv, n(t) ≤ m(t),

(n(t) −m(t))× (Prt − Prv), m(t) < n(t).
(2)

Obviously, in order to minimize the waste, the desirable situation
is m(t) = n(t). Thereby, the objective function can be defined
by mean-square-error (MSE):

min
∥∥∥m(t) − n(t)

∥∥∥2

2
. (3)

IV. METHODOLOGY

In this section, we firstly introduce our proposed two-stage
meta-learning approach. Then, the machine learning models
utilized in this paper are introduced as well.

A. Meta-Learning

Meta-learning is also known as learning to learn, which is
not specifically defined but covers any kind of machine learning
methods based on prior knowledge learned from other related
tasks. One of the typical meta-learning problems is the algorithm
selection problem (ASP). [30] formulates the classical ASP
and proves that there is a connection between the problem
characteristics and the algorithm which can be utilized to solve
it. Later, [31] further demonstrates there will be no one single
algorithm that can work out optimums for all the problems. In
other words, the algorithm performs differently from problem
to problem, or more specifically, from dataset to dataset. How-
ever, generally, ASPs are NP-hard, which are challenging to be
resolved by traditional optimization methods [32]. Therefore,
we propose a two-stage meta-learning approach to address this
problem. Before looking into the details, some preliminary
definitions and descriptions are introduced here. In this work,
the meta-learning task is made up by the following components:
� The task or problem spaceP: a set of problems that contains

both solved and unsolved ones, which specifically can be a
regression or classification problem in supervised learning
or a state-space action decision problem in reinforcement
learning. Essentially, the dimension of P is high due to the
diversity of characteristics embedded in the tasks, which is
the factor that leads to the performance fluctuation of same
model among different problems. In this work,P indicates
the edge resource prediction problems in vehicular net-
works under different scenarios, which can be considered
as regression problems substantially.

� The meta-feature space C: a set of data characteristics re-
flecting the internal or intrinsic representations of a dataset.
Basically, C is a multi-dimensional vector mathematically.
The specific types of meta-features are decided by the prob-
lem and the selected machine learning models, the typical

forms of which include simple meta-features (such as the
number of samples, the number of classes, etc.), statistical
meta-features (such as skewness, kuitosis, covariance, cor-
relation, etc.), information-theoretic meta-features (such as
norm entropy, mutual information, uncertainty coefficient,
etc.), complexity based meta-features (such as Fisher’s
discriminant, volume of overlap, data consistency, etc.),
model based meta-features (like for decision tree, the
number of leaves, branch length, information can be the
meta-features), and landmarkers, etc [33]. The specific
meta-features utilized in this work are introduced in details
in Section V-A.

� The machine learning model or algorithm spaceM: basi-
cally it can be the universal set which contains all the ex-
isting algorithms. Whereas, practically, when considering
one specific problem,M can only be a set of appropriately
selected ones. In this work, because the tasks are time series
data based prediction problems,M is defined as a group of
long short term memory (LSTM) based machine learning
models, which is detailedly introduced in Section IV-B.

� The performance evaluation space E : is a set of diverse
metrics to assess the performance of algorithms inM on a
dataset. The evaluation metrics implemented in this work
are discussed concretely in Section V-B.

For each task Ti in P , what is supposed to be learned the
distribution over the dataset, which can be described as p(Ti). In
order to find the best regression model, the traditional method is
to apply all the algorithms inM to Ti, and then perform ranking
calculations to determine which specific algorithm should be
the one [34]. However, one defect of this approach is that, each
time when dealing with a new but related task, calculating over
the spaceM is time-costing. Meanwhile, the prior-knowledge
concealed in previous experiences are not well exploitative.
Therefore, we propose a two-stage meta-learning method to
solve this problem, which is illustrated in Fig. 2. On the first
stage, we utilize a deep neural network (named as Decider) to
figure out which algorithm should be selected according to the
experiences. On the second stage, the chosen machine learning
model (named as Prognosticator) is implemented to perform the
inference for edge resource consumption.

Basically, each algorithm inM can be denoted as fθi , where
f is the function that can represent the ith algorithm in M
and θ describes the corresponding parameters determined by the
machine learning model configurations. Intuitively, the objective
function or loss function of the Decider can be written as

min
i
L1 (fθi) = ‖fθi(c)− r‖2

2 ,

s.t. fθi ∈M,

c ∈ C,

(4)

where c is the meta-feature vector and r is the suggested algo-
rithm or the best performance one according to previous experi-
ences which gives the most economical scheme correspondingly.
The architecture of the Decider is a fully-connected deep neural
network, which means the output of each hidden layer will be
the input of the following hidden layer. Thus, to optimize the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

5638 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

Fig. 2. The proposed meta-learning framework.

network, back-propagation is inevitable operation through the
network, which can be described as,

∂L1

∂δ(l)
=

∑
l

(
∂L1

∂o(l)

)
∂o(l)

∂o(l−1)

∂o(l−1)

δ(l)
, (5)

where l denotes the number of hidden layers of the Decider,
δ(l) describes the generalized parameter set (including weight
and bias) in layer l, i.e., δl = {w(l), b(l)}, and o(l) denotes the
output of layer l. During each iteration, the parameters of all the
layers will get updated by

δ
′
= δ − α∇δL1, (6)

where α is the learning rate. When the number of iterations or
the value of loss function achieves the threshold, the training
phase ends and the optimal algorithm f ∗θ or the Prognosticator
can be obtained. Until here, all the operations in stage one have
been finished and the corresponding procedures are summarized
in Algorithm 1.

The second stage is to exploit the Prognosticator obtained in
stage one to predict the edge resource consumption. In this stage,
what needs to be done is to optimize the parameters of Prognos-
ticator so as to fit the new dataset N from Ti. Pre-requisitely, it
is necessary to divide N into training set and testing set, which
are denoted as x and y, respectively. Therefore, the objective

Algorithm 1: The First Stage Meta-Learning.
1: Input: experience data D; meta-feature space C;

machine learning model spaceM; new task Ti;
learning rate α; maximum iteration steps tmax.

2: Randomly initialize the parameter δ.
3: for t = 1: tmax do
4: Feed forward propagate all the samples in D and

calculate the MSE by (4);
5: Back propagate MSE through the network by

applying (5) and update the values of parameter set
δ
′
via (6);

6: end for
7: Output: the trained Decider with optimal parameters δ∗;

Algorithm 2: The Second Stage Meta-Learning.
1: Input: meta-feature space C; machine learning model

spaceM; new task Ti; new task dataset N ; learning
rate β; maximum iteration steps kmax.

2: Feed the meta-features ci from Ti into the Decider and
the specific Prognosticator, i.e., f ∗θ , can be obtained;

3: Divide N into training set x and testing set y;
4: Feed x into f ∗θ with randomly initialized parameters φ;
5: for k = 1: kmax do
6: Feed forward propagate all the samples through x

and get the MSE by (7);
7: Back propagate MSE throughout the network f ∗θ by

applying (8) and update the parameter set φ
′
via (9);

8: end for
9: Output: the Prognosticator f ∗θ with optimal parameters

φ∗;
10: Feed the testing data y into f ∗θ (φ

∗) and infer the
amount of edge resource consumption;

function of Prognosticator can be defined as

min
φ
L2 (f

∗
θ (φ)) =

∑
(x,y)∼Ti

‖f ∗θ (φ;x)− y‖2
2 , (7)

whereφ is the parameters set for the machine learning model f ∗θ .
To minimize the error, likewise, the Prognosticator will perform
the back-propagation, i.e.,

∂L2

∂φ(p)
=

∑
p

(
∂L2

∂o(p)

)
∂o(p)

∂o(p−1)

∂o(p−1)

φ(p)
, (8)

where p denotes the number of hidden layers in the Prognosti-
cator. For step in (8), the parameters φ will be updated by

φ
′
= φ− β∇φL2, (9)

where β is the learning step size. Overall, the second-stage
procedures are summarized in Algorithm 2.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5639

Fig. 3. The structure of a LSTM cell.

B. Machine Learning Model Space

In this section, the algorithm spaceM are concretely intro-
duced. With a time series dataset, in this work, we exploit several
LSTM based machine learning models, which are introduced in
details as the following.

1) LSTM Cell: LSTM is developed from recurrent neural
networks (RNNs), which is a kind of artificial neural networks
(ANNs) with recurrent connections. For ANNs, one key assump-
tion is that all the outputs or inputs are independent to each
other. However, with the help of recurrent connections, a RNN
is able to execute same task for every element from a sequence
with the output being depended on the previous computations,
which makes it suitable for utilizing sequential data to perform
sequence recognition or prediction problem [35]. Whereas, one
drawback when a RNN performs back-propagation to optimize
the parameters is the gradient vanishing or gradient explosion
problem due to the sequential multiplication of tanh′ [36].
Aiming at solving this problem, LSTM is proposed through
introducing the gates. The structure of one LSTM cell consists of
three main parts: forget gate, input gate, and output gate, which
is illustrated in Fig. 3.

At each time t, the calculation equations are as follows,

f (t) = σ(ωf (h
(t−1), x(t)) + bf), (10)

i(t) = σ(ωi(h
(t−1), x(t)) + bi), (11)

C̃(t) = tanh(ωc(h
(t−1), x(t)) + bc), (12)

o(t) = σ(ωo(h
(t−1), x(t)) + bo), (13)

h(t) = tanh (c(t)) ∗ o(t), (14)

where σ is sigmoid function; f (t), i(t), o(t) are the value of
forget gate, input gate and output gate, respectively, and the
corresponding ω and b are weight and bias; h(t) is the hidden
state. When performing back-propagation among LSTM, we can
obtain

∂C(t)

∂C(t−1)
= C(t−1)σ′(·)ωf ∗ o(t−1) tanh′(C(t−1))

+ C̃(t)σ′(·)ωi ∗ o(t−1) tanh′

+ i(t) tanh′(·) ∗ o(t−1) tanh′(C(t−1)) + f (t).

(15)

Fig. 4. The architecture of BiLSTM network.

For k steps back-propagation, the derivative shown in (15) will
be multiplied over k times. If the LSTM architecture is suffi-
ciently large, e.g. k →∞, when the network starts approaching
to converge to zero, we can adjust the value of ∂C(t)

∂C(t−1) closer
to one, like 0.97, through controlling the output value of forget
gate f (t) [37]. In this way, the gradient vanishing problem can
be avoided, which is also the reason for why we only focus on
those LSTM based models in this work.

2) BiLSTM: BiLSTM is inspired by the directional RNN and
is proposed by [38]. Conventional RNN or LSTM processes
series data in a forward direction or in time order. However,
for BiLSTM or bidirectional RNN, both forward and backward
direction information are utilized to process the sequence data
through two independent LSTM or RNN layers [39]. The struc-
ture of the BiLSTM network is illustrated in Fig. 4.

As we can see, the overall structure of a BiLSTM can be di-
vided into four layers: input layer, forward layer, backward layer,
and output layer. The functionality of input layer is intuitive,
which feeds the series data into the network. The forward layer

calculates
−→
h(t) chronologically, in other words, from t = 0 to

t = N . While the backward layer calculates
←−
h(t) unchronologi-

cally, i.e., from t = N to t = 0. For both forward and backward
layers, LSTM is the basic element for configuration. All the
formulations and structures inside these LSTM cells are totally
the same as what is discussed in Subsection IV-B1. The output
layer utilizes the output of forward and backward layers to cal-
culate the current output through a sigmoid activation function.
Therefore, unlike the output of LSTM in (13), the final output
of the BiLSTM network can be expressed as

o(t) = σ
(
ωo

(
x(t),
−→
h(t),
←−
h(t)

)
+ bo

)
. (16)

3) Stacked LSTM and Stacked BiLSTM: In the field of ma-
chine learning, there is a kind of model named as deep neural
networks (DNNs), which is developed from ANNs. Generally,
compared with ANNs, a DNN is possessed of a deep archi-
tecture, which has more than one hidden layers. With multiple
layers, a DNN is able to extract high-level and more essential
representations so as to fitting a high-dimensional non-linear

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

5640 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

Fig. 5. The structure of a stacked LSTM network.

Fig. 6. The structure of a Stacked BiLSTM network.

model [40]. This idea works for LSTM and BiLSTM as well.
Based on the shallow structure, a deeper model can be built
by adding more hidden layers. The names of deep LSTM and
BiLSTM model are stacked LSTM and stacked BiLSTM, re-
spectively, and the corresponding architectures are shown in
Fig. 5 and Fig. 6, respectively.

The architecture becomes hierarchical paradigm and the out-
put function needs some modifications accordingly. For stacked
LSTM, in layer l, the input is the ouput of the last layer, which
can be described as

h
(t)
l = ω(l−1,l)h

(t)
l−1 + bl. (17)

Suppose the number of hidden layers is M , the output of the
network is

o(t) = σ(ωo(h
(t)
M) + bo). (18)

Similarly, the output of a stacked BiLSTM network can be
expressed as

o(t) = σ
(
ωo

(−→
h
(t)
M ,
←−
h
(t)
M

)
+ bo

)
. (19)

Fig. 7. The 3D model of Manhattan area built in Unity.

Although a deeper network can fit a complex non-linear model
well, it also easily brings over-fitting problem. Over-fitting
means the model is exactly suitable for the training dataset
while performs poorly upon test dataset. To tackle with this
problem, one effective method is to adopt the dropout strategy.
The main idea of dropout is to randomly ignore some hidden
LSTM units by a certain percentage during the training phase.
The selected hidden units will not update the parameters in the
back-propagation process. But for the other units, they will opti-
mize the parameters normally according to the back propagated
error. By this way, the model can never fit the training dataset
perfectly so as to avoid the over-fitting problem [41]. Therefore,
based on these two deep models, we add dropout strategy during
the training phase, which are named as S-LSTM with dropout
(S-LSTM-D) and S-BiLSTM with dropout (S-BiLSTM-D),
respectively.

V. SIMULATION RESULTS

A. Data Generation

There are many different edge computing resources in reality,
such as computation memory, computation power, etc. In this
work, we focus on the computation memory consumption. In
order to obtain the memory utilization data in diverse traffic
situation, we build our own simulation environment through
implementing the game engine Unity3D [42]. We build up the
3D model of real-world Manhattan area as the geographical
background, which is shown in Fig. 7, where the red dots
indicate the locations of edge servers and the green dashed
boxes represent the simulation areas. The traffic AI package is
implemented to yield traffic flows. Vehicle models are generated
in specified areas and move forward following the pre-defined
road network obeying traffic rules. In addition, we adjust the total
number of vehicles appear in the roadside unit (RSU) coverage
area to simulate peak period and off-peak period traffic.

Edge server model and vehicle receiver model are built
to simulate edge computing assisted computation execution

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5641

Fig. 8. The different scenarios built in Unity. (a) The multi-intersection scenario. (b) The roundabout scenario. (c) The highway scenario. (d) The bridge scenario.

behavior on both units when vehicle receiver is located within the
connection range of edge server. Every offloaded computation
task will consume a certain amount of memory in the edge
server during the period of the task execution. Therefore, we can
obtain the memory utilization data by documenting the memory
consumption of the edge server. Memory consumption sizes
are defined in the vehicle receiver model to simulate offloading
computation with different data size. Accordingly, a larger data
size will occupy more memory capacity on edge server, resulting
in taking longer time to be computed or processed, and vice
versa. Vehicle receiver model is attached to the vehicle model
of the traffic AI package, and edge server models are placed in
the area, where is considered to perform simulated computation
offloading service for all vehicles within the range of the edge
server.

For the purpose of enriching the scenarios, in this work, we
choose four different road maps to simulate traffic flow, i.e.,
multiple intersections, roundabout, highway, and bridge areas,
which is illustrated in Fig. 8. Besides, the simulation video
is available at [43]. As is shown in Fig. 8, edge servers are
located right below the horizontal black bars, surrounded by a
green circle representing the coverage range of each edge server.
The spline connecting vehicles and edge servers represents the
connection link, with different color represents different ongoing
operation (green for uploading, white for processing, and blue
for downloading). The small dot on top of the vehicles is the

vehicle receiver model, and the color of the dot stands for the
status of the receiver (blue for task complete, yellow for task in
process, and red for disconnected). Besides, the larger green or
blue disk attached to the bottom of vehicles represents upload
and download progress. Apart from creating different scenarios,
we also vary the memory consumption (MC) size in vehicle
receiver model and number of vehicles utilizing the driving AI
package. The number of cars for multi-intersection, roundabout,
highway, and bridge are set as {30, 60, 100}, {20, 35, 50}, {30,
60, 100}, and {45, 90, 150}, respectively. For the small data size
situation, the MC will be randomly generated within the range
of [18, 22] (MB). And for big data size situation, the MC will be
randomly generated within the rage of [36, 44] (MB). Therefore,
for each road scenario, there are six dataset in total with the
combination of different data size and number of cars and these
three factors constitute the meta-feature space F . For conve-
nience, we name the dataset in the format “Scenario-number of
vehicles-datasize”. For example, Roundabout-20-B means the
data is generated in roundabout scenario with 20 vehicles and the
data size is big. The details of settings for variation of situations
can be summarized in Table II.

B. Simulation and Evaluation

For the performance evaluation metrics space E , we adopt the
suggestions in [44] and use three measurements totally, i.e. root

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

5642 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

TABLE II
PARAMETERS SETTING FOR DIFFERENT ROAD MAPS

TABLE III
PARAMETERS SETTINGS FORM

mean square error (RMSE), mean absolute percentage (MAP),
and mean GEH (MGEH), whose definitions are

RMSE =

√
1
n

∑n

i=1
(yi − Yi)

2, (20)

MAPE =
1
n

n∑
i=1

|yi − Yi|
Yi

, (21)

MGEH =
1
n

n∑
i=1

√
2 (yi − Yi)

2

yi + Yi
, (22)

respectively, where yi is the predicted value and Yi is the ground
truth. Therein RMSE and MAPE are widely used statistical met-
rics. While GEH is named by the initials of creator, Geoffrey E.
Havers, and has no special mathematical or statistical meaning.
Even so, GEH has been approved to be an effective measurement
for a variety of traffic analysis purpose and a smaller GEH
value indicates a better regression of observed flows [45]. In
addition, as is discussed in Section IV-B,M contains six models,
i.e., LSTM, BiLSTM, S-LSTM, S-BiLSTM, S-LSTM-D, and
S-BiLSTM-D. The parameters settings are as shown in Table III.
The simulations are performed under TensorFlow framework
and the GPU version is NVIDIA 1080Ti. The results are shown
in Table IV, which forms our experience dataset D.

As we can see in Table IV, for some scenarios, MAPE is
not applicable because there are zeros in the dataset, resulting
in the infinite value. Among the three metrics, it is obvious that
they keep consistent to each other actually. Checking throughout
the table, one conclusion is that LSTM performs better in the
majority cases instead of those deep models. Generally, deep
network is supposed to work better than shallow networks,
like the performance difference between DNNs and ANNs,
however, which is not the case here. The main difference is,
in DNNs or ANNs, a vital assumption is the data samples
are independent to each other. Whereas, for time series data,
one significant property is time dependency, which means the
information comes from previous LSTM makes more sense than
the information transmitted between hidden layers. In addition,

in the stacked architecture, if the previous layer has already
made wrong prediction, the next layer will continue forecasting
based on the incorrect results, which means errors will be
transmitted and enlarged. Besides, time dependency can also
explain why the dropout strategy is not suitable here. Since the
information that each LSTM brings may be of great importance
for cells in the later series. Dropout strategy will erase the
randomly selected units so that anticipation cannot be calculated
accurately. Moreover, for time series data, the input can be
as few as even two dimensional, i.e., time and value. Unlike
high dimensional cases, overfitting is not that common. Also,
comparing the bidirectional model with unbidrectional model,
generally, the performances are similar. But there are still some
numerical differences between them, which is because if the
forward information is different from backward information, it
is easy to introduce bias in the output phase.

Based on the results in Table IV, we generate the data
for model selection recommendations. The data is four-
dimensional. The first three features are roadmap, the number
of vehicles, and memory consumption size. And the rest one is
the suggested model. With the foundation of this dataset D, we
build a two-hidden layer DNN to perform the model selection
problem, or we can say, a classification problem. The hidden
units in each hidden layer is 4. The loss function is defined as
MSE as well and the gradient descent methods is also Adam. In
addition, according to the evaluation from [46], the peak time
of traffic happens averagely from 6am to 9am and 4pm to 7pm.
Therefore, when we assess the performance on a roadmap basis
and quantitative analysis, we add different weights to the values.
The datasets with a larger number of vehicles will get 25%, as
is regarded as peak time. The two hours around peak time are
defined for medium number of vehicles, which is 33%. The rest
42% goes for the datasets with small amount of vehicles, which
is considered as off-peak time. In addition, for the percentage of
different memory consumption size, it is divided equally. Finally,
the final scores obtained by our meta-learning method and the
non-meta methods are summarized in Table V, which is sta-
tistically calculated among the different roadmaps. Obviously,
we can find that our proposed method always achieves the best
evaluation scores among all the roadmaps.

Besides, we conduct the quantitative analysis among all the
methods as well. Here, to calculate cost defined in (1) and waste
defined in (2), we take the price of the AWS as reference. Accord-
ing to the data and description from reference [12], the one year
of all upfront price is 541 dollars and can save 43% compared
with paying on demand. Here, we just do a simple normalization
and define the reservation unit price as 1.48 dollars and the
unit price for real-time request as 2.60 dollars, respectively. The
concrete details for the cost are summarized in Fig. 9. Also, we
add the best case and the worst case as the benchmark values,
which indicates all the volumes are purchased by reservation
and real-time requests, respectively.

Obviously, we can find that although there is gap between
the cost of our proposed meta-learning method and the coun-
terpart of the best case, the proposed method always gives the
better price than all the other methods, which helps save up to
39.93%, 37.15%, 5.62%, and 70.47% for the multi-intersections,

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5643

TABLE IV
SUMMARY OF RESULTS FOR DIFFERENT SCENARIOS

TABLE V
SCORES OBTAINED BY PROPOSED META METHOD AND NON-META METHODS

roundabout, highway, and bridge scenarios, respectively, com-
pared with the fully real time requests. Apart from the cost,
we also calculate the amount of waste. Actually, the total cost
is made up by two parts: one is the reservation part and the
other one is the real-time request when we have insufficient

reservation. Intuitively, both of them can be the source of waste.
If the amount of reservation is more than that of needed, it
means we make excess reservation, which leads to a waste
of money for the customer and a waste of computation or
storage resources for edge platform as well. Similarly, if the

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

5644 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

Fig. 9. Total cost for different methods.

Fig. 10. Waste for different methods. (a) Waste in multi-intersection scenario. (b) Waste in roundabout scenario. (c) Waste in highway scenario. (d) Waste in
bridge scenario.

amount of reservation is less than the demands, it indicates
we make inadequate reservation, which means purchasing more
resources is inevitable for meeting the demands with a relatively
expensive price. Therefore, when we calculate the waste, the
distinguishment for these two kinds of waste is also took into
consideration, and the details are summarized in Fig. 10. For the
total waste, the results keep consistent with the results of cost,
i.e., the method gives the most economical scheme brings the
least waste. Meanwhile, no matter for the excess waste or the
inadequate waste, we can find that our proposed meta-learning
gives out the least waste.

VI. CONCLUSION

In order to minimize the expenses to consume edge comput-
ing resources, this paper proposed a two-stage meta-learning
approach. In the first stage, a DNN is utilized to learn the
experience dataset so as to figure out which machine learning
model performs better in a specific situation. In the second
stage, the resource amount anticipation will be conducted by the
machine learning model selected by the DNN obtained in the first
stage according to the meta-features. In addition, due to the fact
that there is no open edge computing based vehicular network

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: EDGE COMPUTING RESOURCES RESERVATION IN VEHICULAR NETWORKS: A META-LEARNING APPROACH 5645

dataset, we program in the game engine Unity3D to build the 3D
model of Manhattan area as in real world. Meanwhile, we adjust
the factors like different roadmaps, the number of vehicles, and
the randomness of memory consumption sizes for the traffic,
which makes our data get closer to the practice. Eventually, we
find that out proposed meta-learning method always gives the
most economical predictions, which helps save up to 39.93%,
37.15%, 5.62%, and 70.47% for multi-intersections, round-
about, highway, and bridge scenarios, respectively, compared
with the fully real time requests.

REFERENCES

[1] National Highway Traffic Safety Administration (NHTSA). Automated
vehicles for safety, 2019. [Online]. Available: https://www.nhtsa.
gov/technology-innovation/automated-vehicles-safety#issue-road-self-
driving

[2] Intel. Data is the new oil in the future of automated driving, 2016. [Online].
Available: https://newsroom.intel.com/editorials/krzanich-the-future-of-
automated-driving/#gs.jpzzzs

[3] D. Chen, X. Zhang, L. L. Wang, and Z. Han, “Prediction of cloud
resources demand based on hierarchical pythagorean fuzzy deep neu-
ral network,” IEEE Trans. Services Comput., to be published, doi:
10.1109/TSC.2019.2906901.

[4] X. Yang, Z. Fei, J. Zheng, N. Zhang, and A. Anpalagan, “Joint multi-user
computation offloading and data caching for hybrid mobile cloud/edge
computing,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 018–11 030,
Nov. 2019.

[5] H. Guo, J. Liu, J. Zhang, W. Sun, and N. Kato, “Mobile-edge computation
offloading for ultradense IoT networks,” IEEE Internet Things J., vol. 5,
no. 6, pp. 4977–4988, Dec. 2018.

[6] Z. Zhou, J. Feng, Z. Chang, and X. Shen, “Energy-efficient edge comput-
ing service provisioning for vehicular networks: A consensus ADMM
approach,” IEEE Trans. Veh. Technol., vol. 68, no. 5, pp. 5087–5099,
May 2019.

[7] A. Ndikumana et al., “Joint communication, computation, caching, and
control in big data multi-access edge computing,” IEEE Trans. Mobile
Comput., vol. 19, no. 6, pp. 1359–1374, Jun. 1, 2020.

[8] H. Guo, J. Zhang, and J. Liu, “FiWi-enhanced vehicular edge comput-
ing networks: Collaborative task offloading,” IEEE Veh. Technol. Mag.,
vol. 14, no. 1, pp. 45–53, Mar. 2019.

[9] J. Zhao, Q. Li, Y. Gong, and K. Zhang, “Computation offloading and
resource allocation for cloud assisted mobile edge computing in vehicular
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 8, pp. 7944–7956,
Aug. 2019.

[10] H. Guo, J. Liu, and J. Lv, “Toward intelligent task offloading at the edge,”
IEEE Netw., vol. 34, no. 2, pp. 128–134, Mar./Apr. 2020.

[11] B. Antonio, F. Stefano, and I. Ahmad, “Deploying fog applications how
much does it cost, by the way?” in Proc. 7th Int. Conf. Cloud Comput.
Services Sci., Porto, Portugal, Apr. 2017, pp. 68–77.

[12] Amazon Web Services, “AWS Pricing—How does AWS pricing work?”,
2006. [Online]. Available: https://aws.amazon.com/pricing/?nc1=h_ls

[13] J. Xu, R. Rahmatizadeh, L. Bölöni, and D. Turgut, “Real-time prediction of
taxi demand using recurrent neural networks,” IEEE Trans. Intell. Transp.
Syst., vol. 19, no. 8, pp. 2572–2581, Aug. 2018.

[14] C. Lemke, M. Budka, and B. Gabrys, “Metalearning: A survey of trends
and technologies,” Artif. Intell. Rev., vol. 44, no. 1, pp. 117–130, Jun. 2015.

[15] S. Yu, R. Langar, X. Fu, L. Wang, and Z. Han, “Computation offloading
with data caching enhancement for mobile edge computing,” IEEE Trans.
Veh. Technol., vol. 67, no. 11, pp. 11 098–11 112, Nov. 2018.

[16] Q. Fan and N. Ansari, “On cost aware cloudlet placement for mobile edge
computing,” IEEE/CAA J. Automatica Sinica, vol. 6, no. 4, pp. 926–937,
Jul. 2019.

[17] H. Wang, B. Kim, J. Xie, and Z. Han, “E-auto: A communication scheme
for connected vehicles with edge-assisted autonomous driving,” in Proc.
IEEE Int. Conf. Commun., Shanghai, China, May 2019, pp. 1–6.

[18] J. Liu, H. Guo, J. Xiong, N. Kato, J. Zhang, and Y. Zhang, “Smart
and resilient EV charging in SDN-enhanced vehicular edge computing
networks,” IEEE J. Sel. Areas Commun., vol. 38, no. 1, pp. 217–228,
Jan. 2020.

[19] Y. Liu, H. Yu, S. Xie, and Y. Zhang, “Deep reinforcement learning
for offloading and resource allocation in vehicle edge computing and
networks,” IEEE Trans. Veh. Technol., vol. 68, no. 11, pp. 11 158–11 168,
Nov. 2019.

[20] T. K. Rodrigues, K. Suto, H. Nishiyama, J. Liu, and N. Kato, “Machine
learning meets computation and communication control in evolving edge
and cloud: Challenges and future perspective,” IEEE Commun. Surv. Tut.,
vol. 22, no. 1, pp. 38–67, Jan.-Mar. 2020.

[21] M. Min, L. Xiao, Y. Chen, P. Cheng, D. Wu, and W. Zhuang, “Learning-
based computation offloading for IoT devices with energy harvesting,”
IEEE Trans. Veh. Technol., vol. 68, no. 2, pp. 1930–1941, Feb. 2019.

[22] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—A key technology towards 5 g,” Eur. Telecommun. Standards
Institute White Paper, vol. 11, no. 11, pp. 1–16, Sep. 2015.

[23] P. Gupta, A. Seetharaman, and J. R. Raj, “The usage and adoption of cloud
computing by small and medium businesses,” Int. J. Inf. Manage., vol. 33,
no. 5, pp. 861–874, Oct. 2013.

[24] J. M. García, P. Fernández, A. Ruiz-Cortes, S. Dustdar, and M. Toro,
“Edge and cloud pricing for the sharing economy,” IEEE Internet Comput.,
vol. 21, no. 2, pp. 78–84, Mar. 2017.

[25] A. Mazrekaj, I. Shabani, and B. Sejdiu, “Pricing schemes in cloud comput-
ing: An overview,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 2, pp. 80–86,
Feb. 2016.

[26] B. Li, W. Xie, W. Zeng, and W. Liu, “Learning to update for object tracking
with recurrent meta-learner,” IEEE Trans. Image Process., vol. 28, no. 7,
pp. 3624–3635, Feb. 2019.

[27] S. Canuto, D. X. Sousa, M. A. Gonçalves, and T. C. Rosa, “A thorough
evaluation of distance-based meta-features for automated text classifica-
tion,” IEEE Trans. Knowl. Data Eng., vol. 30, no. 12, pp. 2242–2256,
Mar. 2018.

[28] D. Li, Y. Yang, Y.-Z. Song, and T. M. Hospedales, “Learning to generalize:
Meta-learning for domain generalization,” in Proc. 32th AAAI Conf. Artif.
Intell., New Orleans, LA, 2018, pp. 3490–3497.

[29] M. Vartak, A. Thiagarajan, C. Miranda, J. Bratman, and H. Larochelle,
“A meta-learning perspective on cold-start recommendations for items,”
in Proc. 31th Conf. Neural Inf. Process. Syst., Long Beach, CA, 2017, pp.
6904–6914.

[30] J. R. Rice, “The algorithm selection problem,” in Advances in Computers.
Elsevier, 1976, vol. 15, pp. 65–118.

[31] D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimiza-
tion,” IEEE Trans. Evolutionary Computation, vol. 1, no. 1, pp. 67–82,
Apr. 1997.

[32] D. G. Ferrari and L. N. De Castro, “Clustering algorithm selection by
meta-learning systems: A new distance-based problem characterization
and ranking combination methods,” Inf. Sci., vol. 301, pp. 181–194,
Apr. 2015.

[33] J. Vanschoren, “Meta-learning: A survey,” 2018, arXiv:1810.03548.
[34] M. Tripathy and A. Panda, “A study of algorithm selection in data mining

using meta-learning.” J. Eng. Sci. Technol. Rev., vol. 10, no. 2, pp. 51–64,
Mar. 2017.

[35] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, “Recent
advances in recurrent neural networks,” 2017, arXiv:1801.01078.

[36] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[37] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training
recurrent neural networks,” in Proc. Int. Conf. Mach. Learn., Atlanta, GA,
Jun. 2013, pp. 1310–1318.

[38] A. Graves and J. Schmidhuber, “Framewise phoneme classification with
bidirectional lstm and other neural network architectures,” Neural Netw.,
vol. 18, no. 5-6, pp. 602–610, Jul. 2005.

[39] Z. Cui, R. Ke, and Y. Wang, “Deep bidirectional and unidirectional lstm
recurrent neural network for network-wide traffic speed prediction,” 2018,
arXiv:1801.02143.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Cambridge,
MA, USA: MIT Press, 2016.

[41] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958, Jun. 2014.

[42] Unity. Unity for games: Create a world with more play, 2019. [Online].
Available: https://unity.com/solutions/game

[43] Video for “Edge computing resources reservation in vehicular networks:
A meta-learning approach”, 2019. [Online]. Available: https://youtu.be/
aiEpy1eV7pw

[44] J. Mackenzie, J. F. Roddick, and R. Zito, “An evaluation of htm and lstm
for short-term arterial traffic flow prediction,” IEEE Trans. Intell. Transp.
Syst., vol. 20, no. 5, pp. 1847–1857, Aug. 2019.

[45] Transport for London. Traffic modeling guidelines version 3.0, 2010. [On-
line]. Available: http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf

[46] T. D. Wemegah, S. Zhu, and C. Atombo, “Modeling the effect of days and
road type on peak period travels using structural equation modeling and
big data from radio frequency identification for private cars and taxis,”
Eur. Transport Res. Rev., vol. 10, no. 2, pp. 1–14, Jun. 2018.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety#issue-road-self-driving
https://newsroom.intel.com/editorials/krzanich-the-future-of-automated-driving/#gs.jpzzzs
https://dx.doi.org/10.1109/TSC.2019.2906901
https://aws.amazon.com/pricing/{?}nc1$=$h_ls
https://unity.com/solutions/game
https://youtu.be/aiEpy1eV7pw
http://content.tfl.gov.uk/traffic-modelling-guidelines.pdf

5646 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 5, MAY 2020

Dawei Chen (Student Member, IEEE) received the
B.S. degree in telecommunication engineering from
the Huazhong University of Science and Technology,
Wuhan, China, in 2015. He is currently working
toward the Ph.D. degree with the Department of
Electrical and Computer Engineering, University of
Houston, Houston, TX, USA. His research interests
include machine learning, edge computing, and wire-
less networks.

Yin-Chen Liu received the bachelor’s degree in me-
chanical engineering from National Taipei University
of Technology, Taipei, Taiwan, in 2013 and the M.S.
degree in mechanical engineering from the Univer-
sity of California, Riverside, Riverside, CA, USA, in
2017. He is currently a Research Scientist with Toy-
ota Motor North America Info Tech Labs, Mountain
View, CA, USA. His research interests include cyber
physical system, robotics control, edge computing
and optimization.

BaekGyu Kim (Member, IEEE) received the Ph.D.
degree in computer science from the University of
Pennsylvania, Philadelphia, PA, USA. He is currently
a Principal Researcher with Toyota Motor North
America, InfoTech Labs, Mountain View, CA, USA.
His research interests include software platform tech-
nologies for connected cars, and model based soft-
ware development for high-assurance systems.

Jiang Xie (Fellow, IEEE) received the B.E. degree
from Tsinghua University, Beijing, China, the M.Phil.
degree from The Hong Kong University of Sci-
ence and Technology, Hong Kong, and the M.S. and
Ph.D. degrees from Georgia Institute of Technology,
Atlanta, GA, USA, all in electrical and computer engi-
neering. She joined the Department of Electrical and
Computer Engineering, University of North Carolina
at Charlotte (UNC-Charlotte), Charlotte, NC, USA,
as an Assistant Professor, in August 2004, where she
is currently a Full Professor. Her current research

interests include resource and mobility management in wireless networks,
mobile computing, Internet of Things, and cloud/edge computing. She is on
the Editorial Boards for the IEEE/ACM TRANSACTIONS ON NETWORKING and
Journal of Network and Computer Applications (Elsevier). She received the
US National Science Foundation (NSF) Faculty Early Career Development
(CAREER) Award in 2010, a Best Paper Award from IEEE Global Communica-
tions Conference (Globecom 2017), a Best Paper Award from IEEE/WIC/ACM
International Conference on Intelligent Agent Technology (IAT 2010), and
a Graduate Teaching Excellence Award from the College of Engineering at
UNC-Charlotte in 2007. She is a Senior Member of the ACM.

Choong Seon Hong (Senior Member, IEEE) received
the B.S. and M.S. degrees in electronic engineering
from Kyung Hee University, Seoul, South Korea, in
1983 and 1985, respectively, and the Ph.D. degree
from Keio University, Tokyo, Japan, in 1997. In 1988,
he joined KT, Gyeonggi-do, South Korea, where he
was involved in broadband networks as a member
of the Technical Staff. Since 1993, he has been with
Keio University. He was with the Telecommunica-
tions Network Laboratory, KT, as a Senior Member of
Technical Staff and as the Director of the Networking

Research Team until 1999. Since 1999, he has been a Professor with the
Department of Computer Science and Engineering, Kyung Hee University. His
research interests include future internet, intelligent edge computing, network
management, and network security. He is a member of the Association for
Computing Machinery (ACM), the Institute of Electronics, Information and
Communication Engineers (IEICE), the Information Processing Society of Japan
(IPSJ), the Korean Institute of Information Scientists and Engineers (KIISE),
the Korean Institute of Communications and Information Sciences (KICS), the
Korean Information Processing Society (KIPS), and the Open Standards and ICT
Association (OSIA). He has served as the General Chair, the TPC Chair/Member,
or an Organizing Committee Member of international conferences, such as
the Network Operations and Management Symposium (NOMS), International
Symposium on Integrated Network Management (IM), Asia-Pacific Network
Operations and Management Symposium (APNOMS), End-to-End Monitor-
ing Techniques and Services (E2EMON), IEEE Consumer Communications
and Networking Conference (CCNC), Assurance in Distributed Systems and
Networks (ADSN), International Conference on Parallel Processing (ICPP),
Data Integration and Mining (DIM), World Conference on Information Security
Applications (WISA), Broadband Convergence Network (BcN), Telecommuni-
cation Information Networking Architecture (TINA), International Symposium
on Applications and the Internet (SAINT), and International Conference on
Information Networking (ICOIN). He was an Associate Editor for the IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT and the IEEE JOUR-
NAL OF COMMUNICATIONS AND NETWORKS. He currently serves as an Associate
Editor for the International Journal of Network Management and an Associate
Technical Editor for the IEEE Communications Magazine.

Zhu Han (Fellow, IEEE) received the B.S. degree
in electronic engineering from Tsinghua University,
Beijing, China, in 1997, and the M.S. and Ph.D.
degrees in electrical and computer engineering from
the University of Maryland, College Park, MD, USA,
in 1999 and 2003, respectively. From 2000 to 2002,
he was an R&D Engineer of JDSU, Germantown,
Maryland. From 2003 to 2006, he was a Research
Associate with the University of Maryland. From
2006 to 2008, he was an Assistant Professor with
Boise State University, Idaho. He is currently a John

and Rebecca Moores Professor with the Department of Electrical and Computer
Engineering as well as with the Department of Computer Science, University of
Houston, Houston, TX, USA. His research interests include wireless resource
allocation and management, wireless communications and networking, game
theory, big data analysis, security, and smart grid. He received an NSF Career
Award in 2010, the Fred W. Ellersick Prize of the IEEE Communication Society
in 2011, the EURASIP Best Paper Award for the Journal on Advances in Signal
Processing in 2015, IEEE Leonard G. Abraham Prize in the field of communi-
cations systems (Best Paper Award in IEEE JOURNAL ON SELECTED AREAS IN

COMMUNICATIONS) in 2016, and several best paper awards in IEEE conferences.
He was an IEEE Communications Society Distinguished Lecturer from 2015 to
2018, and has been AAAS Fellow since 2019 and ACM Distinguished Member
since 2019. He is 1% highly cited researcher since 2017 according to Web of
Science.

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on December 16,2020 at 07:15:00 UTC from IEEE Xplore. Restrictions apply.

