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Abstract

We investigate an extension of excited state mean-field theory in which the energy
expression is augmented with density functional components in an effort to include the
effects of weak electron correlations. The approach remains variational and entirely
time-independent, allowing it to avoid some of the difficulties associated with linear
response and the adiabatic approximation. In particular, all of the electrons’ orbitals
are relaxed state specifically and there is no reliance on Kohn-Sham orbital energy
differences, both of which are important features in the context of charge transfer.
Preliminary testing shows clear advantages for single-component charge transfer states,
but the method, at least in its current form, is less reliable for states in which multiple

particle-hole transitions contribute significantly.

1 Introduction

The recently developed excited state mean-field theory (ESMF)! is intended to act as a

mean-field platform for excited states in much the same way as Hartree-Fock (HF) theory?



does for ground states. As one might expect, these two theories share many properties: they
rely on minimally correlated wave function forms, produce energy stationary points, relax
orbital shapes variationally, and have the same cost-scaling. Also like HF theory, ESMF lacks
a proper description of correlation effects, and so from a practical standpoint is expected to
be more useful as a starting point for correlation methods than as a way of making energy
predictions on its own. While there are many ways one could go about capturing correlation
effects, it is hard to avoid thinking about density functional theory (DFT)? in this context
given how useful it is for this purpose in ground states.

The Kohn-Sham (KS) formulation of DFT? is the most widely used electronic structure
method in chemistry, physics, and materials science. Due to its favorable scaling with system
size and reasonable accuracy in a variety of different circumstances, DFT is often regarded
as one of the most powerful tools for studying the electronic and dynamic properties of
materials and medium to large molecules. The KS-DFT method can also be considered as
an extension to the HF method, by replacing the exchange energy in HF with the exchange-
correlation (xc) energy in KS-DFT. With the exact xc functional, KS-DFT is able to capture
correlation effects exactly. Comparing to other post-HF methods that account for weak
correlation effects, such as configuration interaction, Moller-Plesset 2nd order perturbation
theory, and coupled cluster, the most appealing feature of KS-DF'T is its low cost-scaling,
which allows it to be applied to systems with thousands of electrons or more.

Inspired by the success of KS-DFT in ground states, one may wonder whether similar
extensions using DF'T can also be achieved for ESMF. Intuitively, combining ESMF with
DFT would allow one to go beyond the mean-field form of the ESMF wave function and
be able to recover weak correlation effects while maintaining the mean-field cost scaling of
ESMF. More importantly, such an approach need not rely on linear response (LR) theory
or the adiabatic approximation (AA), both of which are central to the practical application
of time-dependent density functional theory (TDDFT).>® As the combination of LR and

the AA can produce significant errors in some excited states, it would be very interesting to



instead augment ESMF theory by incorporating components from density functional theory
while keeping the formulation entirely time-independent.

While the LR formulation of TDDFT is formally exact, approximations are needed to
make the approach computationally tractable. The central quantity in TDDFT is the xc-
kernel f,.(r,¢;1',t'), defined as the functional derivative of the xc-potential,®

LI OV [n](r, ?)
Frelr, t;0'F) = on(r',t')

(1)

in which the v,.(r,t) is the time-dependent analogy of the ground state xc-potential and
n(r,t) is the electron density. The AA replaces the time-dependent xc-potential with the

ground state xc-potential,®

v n](r,t) = v (b)) (r) (2)
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Most notably, this approximation leads the xc-kernel to be local both in time and space if
the ground state xc functional is local as in LDA, or local in time but nonlocal in space in
the case of hybrid functionals.

While the AA is enormously convenient in that it makes TDDFT efficient and allows
it to use existing ground state functionals, it does create important limitations when mod-
eling charge transfer (CT), Rydberg, and double excitations. For example, TDDFT often
drastically underestimates excitation energies for long-range CT states!®!? and Rydberg

13715 and it is completely incapable of describing doubly excited states.!'%!” Besides

states,
the underestimation of excitation energies, it is also well known that for long-range CT
excited states, standard pure and hybrid functionals also fail to exhibit the correct 1/R

dependence along the charge separation coordination.!®® Given the technological and bi-



ological importance of CT, the limitations of practical TDDFT in this area are especially
frustrating.

To be more precise, these difficulties stem from two approximations: first, the usage of
approximate xc functionals, and second, the AA. The former is responsible for the problems
in Rydberg excited states and the missing 1/R behavior in long-range CT. For Rydberg
states, the problem lies primarily in the fact that the ground state xc-potential of local
and semi-local functionals decays exponentially with r, much faster than the 1/r decay
of the exact xc-potential. In order to deal with this problem, the asymptotic correction
approach!'* has been developed and results in dramatically improved Rydberg energetics.

19724 guccessfully yield the

For CT excited states, range-separated hybrid functionals (RSH)
correct 1/R behavior of long range CT excited states. This approach eliminates the CT
self-interaction error in which derivatives of the approximated exchange term fail to deliver
the long range Coulomb term that should be present in the linear response equations. 6
Even with the 1/R issue repaired, though, long range CT still poses challenges. This is
mainly due to fact that the excitation energy of long-range CT states should be determined
by the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor.
While KS-DFT’s highest occupied molecular orbital (HOMO) energy corresponds to the IP,
the lowest unoccupied molecular orbital (LUMO) energy does not, and is not supposed to,
correspond to the EA, even when the xc functional is exact. The result is that the difference
between the DFT LUMO and HOMO energies severely underestimates the excitation energy,
which leads to a situation in which the kernel contribution to the TDDFT energy is asked
to make up the difference. Such a difference between DF'T LUMO energy and EA, is usually
referred to as the “derivative discontinunity” in TDDFT literature.?> However, the kernel
contribution for most commonly used functionals is typically much too small to make an
appreciable difference on this scale, and so CT energies get underestimated, sometimes quite
severely. This difficulty, which we will refer to as the EA/IP imbalance, has been extensively

q10,16,25,26

studie and can be seen clearly in the examples we investigate below.



Unlike the issues discussed above, TDDFT’s failure to describe doubly excited states can
be laid squarely at the feet of the AA, which converts the memory-dependent time-non-
local xc-kernel f..(r,¢;r't’) into a time-local affair with no memory. One consequence of
this simplification is that, when expressed in Fourier space, the AA xc-kernel is frequency
independent. Given that it has been shown that the exact xc-kernel carries a strong frequency

26.2T adiabatic xc-kernels are thus not appropriate or

dependence near a double excitation,
accurate for doubly excited states. In practice, the failure of the AA in describing doubly
excited states also creates difficulties for other excitations, especially in the context of CT.

28,29 another consequence of the AA is that it fails

As pointed out by Ziegler and coworkers,
to account for relaxations in the occupied orbitals that are not involved in the excitation.
The orbital shapes for the particle and hole are relaxed by TDDFT, but the other orbital
shapes are not, at least not when the AA is being used. An intuitive way to see this in
light of the double excitation limitation is to consider that, after the single excitation itself,
the leading order term in the Taylor expansion of a fully orbital-relaxed singly excited state
is a linear combination of doubly excited determinants. Since CT excited states undergo
substantial charge deformations and changes in dipole when compared to the ground state,
allowing all of the orbitals to relax during the excitation is crucial.3® Without full relaxation,
errors in CT excitation energies often reach multiple eVs,!? even when RSH functionals are
employed. In sum, it would be highly desirable to have an excited state methodology that
benefits from DFT’s highly efficient incorporation of correlation effects but that is free from
the difficulties created by the AA and EA/IP imbalances.

It is worth noting that within generalized KS (e.g. when using global hybrid or RSH
functionals) the IP/EA imbalance can be partially resolved without going beyond the AA.
For example, as one increases the degree of Hartree-Fock exchange in the xc functional, the
LUMO orbital energy becomes more firmly related to an EA. In the limit of using 100% HF
exchange and 0% correlation, TDDFT becomes equivalent to time-dependent HF (TDHF)

and the LUMO energy becomes the HF EA (the correct 1/R dependence is also achieved,



although that already happens with RSH approaches). In practice, however, functionals do
not reach this extreme as HF energetics are not desirable, and so even in the generalized
KS context removing the EA/IP imbalance remains challenging. Further, it is important
to remember that even if this issue is resolved within the AA, the lack of orbital relaxation
remains an issue.

In this paper, we present a density functional extension of the ESMF method (DFE-
ESMF). Instead of relying on the linear response formalism and AA of TDDFT, we directly
modify the energy expression of ESMF theory by borrowing key ingredients from KS-DFT.
While this does not lead to a formal density functional theory as it lacks some of the key
properties of ground state DFT, the idea is to exploit density functionals’ proven ability to
add weak correlation effects to an uncorrelated reference wave function. As such correlations
tend to be local, and a local region of a molecule should not be capable of knowing whether
it is formally part of an excited state or a ground state, the hope is that the same ingredients
that allow KS-DFT to capture weak correlation effects will remain effective in the excited
state context. As in the original formulation of ESMF, the energy expression (including the
newly incorporated DFT ingredients) is combined with an excited state variational principle
to achieve excited-state-specific optimization of the orbitals. As we discuss below, this
approach seeks to bypass both the orbital relaxation and EA /TP imbalance issues that show
up in the practical application of TDDFT. In a variety of exploratory calculations, we find
that, when paired with an xc functional with a high degree of exact exchange (necessary to
help alleviate a self-interaction bias stemming from excited states’ more open-shell character),
this DFE-ESMF approach provides an accuracy comparable to TDDFT for simple single-
configuration-state-funciton (single-CSF) valence excitations while far outperforming it in
CT states, even when comparing against a RSH functional. The performance for multi-CSF
single excitations is more mixed, which appears to be caused by double-counting issues as
we discuss in some detail below.

This paper is organized as follows. We begin with a brief review of ground state KS-DF'T



so as to make clear its parallels with our excited state formalism. We then develop the work-
ing equations for the DFE-ESMF method in the context of both single-configurational and
multi-configurational wave functions. We then briefly review the ground state xc functionals
that we employ and discuss concerns about possible double counting problems. At the end
of the theory section, we compare DFE-ESMF with other excited state and multi-reference
DFT methods and also with constrained DFT. Results and discussions are then presented for
a variety of different valence, CT, and Rydberg excitations. We conclude our discussion by
pointing out the merits and drawbacks of the current method, along with possible directions

for future development.

2 Theory

2.1 Ground State DFT

In ground state DFT, the Levy constrained search formulation provides a formally exact
energy functional,®

Efn] = min (O[T + Vee| ¥ ) + Veae[] (4)

in which 7" and V,. are the kinetic and electron-electron repulsion operators, and V.[n] is

the external potential. In practice, KS-DFT re-writes this functional as®*
Eln] = Ti[n] + Veur[n] + J[n] + Eqc[n], (5)

in which T[n] is the kinetic energy of a fictitious Slater determinant that shares the same
density as the actual interacting system, J[n] is the Hartree part of the electron-electron
repulsion energy, and E,.[n] is the exchange-correlation functional. Considering the common
case of a closed-shell, spin-restricted KS determinant for N electrons, one can re-express the

energy in terms of the orbitals ¢;(r) for ¢ € [1,2,...,N/2]. The external potential and



Hartree pieces,

Vi) = / Ve (1) (1) (6)
Jn] = l/wdrdr' (7)

2 v —r/|

are dependent only on the density, which is in turn now determined by the orbitals,*

N/2

n(r) =23 |oir)l*. (8)

Note that we follow the convention that ¢, 7, k refer to occupied orbitals, a,b,c to virtual
orbitals, and p,q,7,s to all orbitals. In the original KS formulation,* the xc functional
depends only on density. However, due to the development of generalized KS schemes3!32

and hybrid functionals, it becomes more appropriate to write the xc function as a direct

function of the orbitals,

E:Ec[n] — Exc(¢1;¢27~--7¢N/2)~ (9)

Of course, the KS kinetic energy is also an orbital functional,

N/2

Tn) = -3 / 61(£) V21 (x)dr. (10)

With this orbital-based formulation, one then minimizes Eq. (5) under the constraint that

the orbitals remain orthonormal in order to arrive at the KS orbital eigenvector equation,

FKSQ‘ = € ¢y, (11)

in which F_, is the KS Fock operator.

S

Crucially, we note that the same energies, orbitals, and densities are arrived at if one



performs the minimization

B = win{ T[] + Vean] + T[] + Eue (61,05, ., 672) } (12)

in terms of the elements of the anti-Hermitian matrix X that transforms some initial or-
thonormal set of orbitals (such as those that diagonalize the one-electron parts of H ) into

the final KS orbitals.
p(r) = Y [X] o (r) (13)

Given ESMF’s similarities to HF, it is worthwhile to write the HF energy in this same

form.
B, = m}}n{Ts A Vi + T+ Em} (14)

Here E, is the HF exchange energy

E, ==Y (ijlji) (15)

ij

which we have expressed in terms of the two-electron integrals in the relaxed orbital basis.

) = | /¢p ¢qr_r/| r)ou(r) (16)

By comparing Equation 12 and 14, KS-DFT can be seen as the pairing of a minimally-
correlated ansatz (the Slater determinant) and a variational principle (the total energy) in
which the energy expression within the latter has been augmented by modifying the exchange
term. To formulate DFE-ESMF, we will follow a similar route, but with the ESMF wave
function as the minimally-correlated ansatz and using an excited state variational principle

instead of simple energy minimization.



2.2 DFE-ESMF': Single-CSF Formalism

In ESMF, excited states are targeted by applying the following Lagrangian form of an excited

state variational principle,!

L= <m(w—ﬁ1)2|ny>—u.g—f (17)
Here w is an energy used to select which excited state is being targeted, v is the vector of
variational parameters within the ansatz, and u is a vector of Lagrange multipliers by which
we constrain the the minimization of L so that it must converge to an energy stationary
point. In essence, the first term in L is a rigorous excited state variational principle with the
energy eigenstate closest to w as its global minimum, but because approximate ansatzes will
prevent us from reaching this minimum, we add the energy stationarity constraint to ensure
that at least this important property of exact excited states is maintained. In other words,
the idea is for the first term to drive the optimization to the energy stationary point that
best corresponds to the desired excited state. In preliminary work on ESMF,! it has been
found that computationally tractable approximations to this Lagrangian

~ oF

LZ(w—E)Q—M-a—V (18)

are in practice effective at achieving the same goal, and so for expediency’s sake we will
adopt L as our working variational principle for DFE-ESMF.

Before augmenting the ESMF energy expression with density functional components, we
should consider the choice of the wave function ansatz used in ESMF. To start, consider a
singly excited configuration state function (CSF), which is perhaps the simplest spin-pure

excited state ansatz.

) = = (ot 90) + o | v0) (19)

This is a superposition between alpha (i — a) and beta (i — a) excitations from the closed

10



shell Slater determinant W, in which the excitations both occur within the same pair of
spatial orbitals {i,a}. The sign determines whether the excitation is a singlet or triplet,
and although we will develop the mathematics for the singlet case below, the triplet is
equally straightforward. As in the ground state presentation above, the (spin-restricted)
molecular orbitals will be defined via an anti-Hermitian matrix X as in Eq. (13), but with
the corresponding ground state KS-DFT orbitals now acting as the initial orbitals ¢(*) and
X encoding excited-state-specific relaxations. This single-CSF ansatz leads to the electron

density
N/2

Nia(r) = |da(r)[* = |0:(x)[* +2 ) x(r)[* (20)

and a one-body reduced density matrix (IRDM) P that is diagonal in the basis of the relaxed

molecular orbitals.

Prj = 20k — 01idji
Pbc - 6ba50a <21>
Pjpy = Pyj =0
The ESMF kinetic energy can be computed as
AO ™ AO

T = (WIT19;) = Tx [P, T, (22)

where Py is the IRDM rotated into the atomic orbital basis, and T',,, are the kinetic energy

integrals in that basis. Likewise, the external potential contribution may be evaluated as

Vet =Tr [P, b, (23)

AO""AO

where h 40 are the corresponding one-electron integrals.

Turning our attention now to the electron-electron repulsion energy, we start with the

11



Hartree term, which for this singlet CSF’s density is

Tl = %(iiliz’) + %(aa|aa) _ (aalii)

+ 23 (kkig) + 23 ((aalif) - (iilig)). (24)

For hybrid functionals, we will need a definition for the wave-function-based exchange energy
(i.e. an excited state analogue of HF exchange), which we choose to arrive at by making the
usual index exchanges in the two-electron integrals of the corresponding Hartree term.

E* (wfn)

ia

1, .. 1 -
= — 5(“’”) — §(aa|aa) + (ailia)
= D hslik) = D ((eilia) - Gigli)) (25)

Now, for the closed shell Slater determinant used in KS-DFT, the Hartree term (Equation 7)
and the wave-function exchange term (Equation 15) sum to the electron-electron repulsion
energy of the Slater determinant. However, things are not so simple in the excited state, and
even for this single-CSF singlet wave function, the full wave-function-based electron-electron

repulsion energy contains one additional term:
By = (03| Vee [0 = Jlnia] + B + (ailia). (26)

For the triplet CSF, we have a similar situation, but the additional term takes on the opposite

sign:

Ege(triplet) _ J[nm] 4+ Ezf(wfn) _ (CLZ|ZCL) (27)

a a

12



This extra term, which we will denote as the wave function correlation energy (WFCE)
EVFCE — +(ailia), (28)

determines the singlet-triplet splitting and arises from the fact that V.. connects the two
different terms in our CSF.
The energy of the wave function in Equation 19 is then the sum of the kinetic energy,

the external potential, Hartree and exchange energy, and WFCE:
B = T+ Vi + Jlnia) + B + EYFE (29)

In the same way that one can arrive at KS-DFT starting from HF by replacing the exchange
term with an exchange correlation functional (which converts Equation 14 into Equation
12), we now replace the exchange term in our excited state wave function energy in order to

arrive at the energy expression for single-CSF DFE-ESMF.
Eig = Tia + Vi™ + Jlni] + Bl + Ejg" " (30)

Note especially that the WFCE term is retained. As this term originates from a strong cor-
relation effect (the two electrons involved in the excitation are taking care to never be in the
same orbital at the same time), we assume that it will not create significant double count-
ing issues when used in conjunction with standard formulations of ground state exchange-
correlation functionals, as these are geared towards weak correlation and are not designed
to capture open-shell spin recoupling correlations. In ground state KS-DFT, EWFCE — (
and HF is recovered by using a functional with no correlation and 100% HF exchange. The
analogous property is maintained by DFE-ESMF: when using a functional consisting soley
of 100% wave function exchange as defined in Equation 25, the DFE-ESMF energy reverts

back to the ESMF expression for a single CSF’s energy.
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As in ESMF theory, the minimization of Eq. (18) requires the evaluation of certain sums
over the second derivatives of our energy expression. Although the density functional energy
expression of Eq. (30) differs from that of ESMF theory, we can exploit the same automatic
differentiation (AD) approach in order to perform the optimization at a cost whose scaling
with system size is the same as a ground state KS Fock build. For an explanation of how
this is achieved, we refer the reader to the original ESMF paper.! As in that case, we have
formulated our pilot code using the convenient AD capabilities of the TensorFlow frame-
work?®? and have carried out the minimization via a quasi-Newton approach.?! In addition
to what is necessary for ESMF, this requires AD through the grid integration involved in
density functional components such as the LDA exchange and correlation terms, which we

have now achieved with the correct scaling.

2.3 DFE-ESMF: Multiple-CSF Formalism

In cases where a state contains major contributions from multiple different single excitations,
we may generalize the approach into a multi-CSF form with a wave function similar to

configuration interaction singles (CIS),3?

[Unicse) = cia [TF), (31)

in which we still relax the orbitals as above. In this case, the density becomes

Myose (T) = 4 Z lial® > 1660 + 2 ciacinda(r)du(r)

iab

—2 Z CiaCja®i(r)@;(T) (32)

ija
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and the 1IRDM in the relaxed MO basis is no longer diagonal.

By =i — g CiaCja

a

Pia:PaiZO <33)

Pab = E CiaCib
7

Nonetheless, we can still take the KS approach and evaluate both the kinetic energy and
external potential via the wave function’s IRDM using Eqgs. (22) and (23).

Although the one-electron components are quite similar to the single-CSF approach, the
electron-electron repulsion energy is less straightforward. In order to define the Hartree
term, one possibility is to use the density from Eq. (32) in the standard J[n| form of Eq.
(7). However, doing so introduces unphysical virtual-virtual Coulomb repulsion terms in the
form of (aa|bb), similar to the ghost interactions encountered in ensemble DFT. In order to
avoid these in the multi-CSF case, we generalize the Hartree term as the weighted statistical

average of the Hartree terms from each separate CSF as given in Eq. (24).

JMCSF = Z ‘Cia|21][nia] (34>

ia

If we now apply the index-exchange approach, we simply arrive at an “exact” wave function

exchange that is the weighted average of the single-CSF pieces from Eq. (25).
z (win x (win
Eyicse = D lewl B, (35)

As before, the Hartree and exchange pieces do not add up to the full wave function electron-

electron repulsion energy,

(U] Vi |0) = Jgcsp + EE0) 4 BWVECE, (36)

15



and the additional correlation effects are now more involved.
ENESE =2 ciaciy[2(ail jb) — (abli)]

iajb

+) it 24 ab|kk) — 2(ak|kb)]

abi

Y ciatjal 24 ij|kk) — 2(jk|ki)) (37)

ija

+Z]cw| Z A(aalkk) + 2(ak|ka) + 4(ii|kk) — 2(ik|ki)]

+ Z |Cia|?[2(aalii) — 2(ailia)]

Using the same logic as before (although see Section 2.4 regarding double counting con-

cerns), we define the multi-CSF density functional form for the energy in Eq. (18) to be
Encse =T + Vear + Jucsr + Eze + ENiise (38)

in which the T" and V,,; are as in Eqgs. (22) and (23) but with the multi-CSF 1RDM, and
E,. is as in the ground state functional but with the density taken from Eq. (32) and the

f
wave function exchange component set to EM%VS];)

2.4 Double Counting Problems

The DFE-ESMF energy, in both the single and multiple CSF formalisms, contains correlation
terms that do not exist in the energy expression of ground state DF'T. However, one potential
problem of adding these correlation terms into the energy formula as we have done is that,
in principle, they could be accounted for again in the xc functional, leading to a double
counting problem. In the single-CSF formalism, the WFCE term (ailia) arises completely
due to the fact that the wave function contains two determinants with equal weights. Such
a strong correlation effect is (typically) not built in to practical forms for E,. which instead

aim to include weak correlation effects.?® Therefore, we do not expect to have significant

16



double counting problems in the single-CSF' case.

However, if one employs the full CIS-style multi-CSF formalism, the wave function defi-
nitely includes both some kinetic energy correlation effects and some electron-electron inter-
action correlation effects. In order to illustrate this, consider the case where the multi-CSF
expansion is dominated by one CSF with an excitation between the ¢th and ath orbitals.
We can treat this dominant piece as the zeroth-order reference in a perturbative expansion.
As some other singly-excited CSFs are coupled to this reference by T and even more by
Vee, such couplings would be part of any 2nd-order perturbation correction starting from
this reference. Thus, a simple Moller-Plesset-style argument suggests that many and per-
haps most of the contributions within EM/ESE would be part of the system’s weak correlation
physics and so at significant risk of double counting within our multi-CSF formalism. Indeed,
in early testing, we found that excitation energies with the full multi-CSF formalism were
worse than those from the single-CSF formalism, which we now understand was primarily a
double counting issue.

In order to avoid this problem, one might try to separate contributions from the weak
and strong correlations within the multi-CSF expansion. Although there is no unique way
to do this, we have for now taken the expedient approach of including in our multi-CSF
expansion only those CSFs whose TDDF'T coefficients are above a threshold. While it may
become clear once more data is available what the least-bad threshold choice would be, we
have for now set this threshold at a relatively large value of 0.2 to help ensure that retained
CSF's are playing a larger-than-perturbative role in the excitation and are therefore more
likely to contribute energetic correlation effects of the type that are not built in to common
density functionals. For simplicity, and in contrast to ESMF theory, we do not optimize these
coefficients in our minimization of L and instead hold them fixed at their TDDFT values.
Admittedly, such a 0.2 threshold will become troublesome in cases where the excited states

are composed of a large collection of excitations, such as plasmons. Therefore, developing

alternative approaches to avoid the double counting problem will be highly desired in future
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developments of DFE-ESMF.

2.5 Discussion of DFE-ESMF

It is important to note that the DFE-ESMF method in its current form is not an excited
state generalization of the ground state KS-DFT. Based on the Hohenberg-Kohn theorem,?
which establishes a one-to-one mapping between external potential and density, the ground
state energy depends solely on density. However, it has been shown®” that such a one-to-one
mapping between external potential and density does not exist for excited states. Therefore,
the excited state density alone can not uniquely determine its energy. The simplest example
would the singlet and triplet excited state of a given configuration. These two states have
the same density, but different energies. In previous developments that try to generalize the
ground state KS-DFT to excited states, Levy and Nagy use bi-functionals®® that depends on
both excited state and ground state density, and Gorling uses totally symmetric part of the

4041 41y order to enforce the correct

density®® and a generalized adiabatic connection scheme,
symmetry of excited states. Thus, we suggest that it is more useful to view DFE-ESMF as
a practical extension to ESMF rather than as a formal density functional theory. That said,
DFE-ESMF does share some similarities with the exact generalized adiabatic connection
(GAC) approach.?* Both methods use a symmetry-determined linear combination of Slater
determinant to compute kinetic energy, external potential, and exchange energy. In addition,
both methods try to enforce the correct excited state symmetry. In DFE-ESMF, the excited
state symmetry is taken care by the WFCE term, while GAC uses the symmetrized density. !

In the context of spin symmetry, it is important to note that the WFCE term is es-
sential for our optimization approach. Without this term, singlet and triplet excited states
formulated by the same excitation have the same density and energy. Consequently, our
energy-based excited state variational approach would not be able to distinguish these two

states and its results would be arbitrary. As discussed before, the difference between sin-

glet and triplet states is encoded in the WFCE term, and adding this term to the energy
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expression greatly helps the optimization procedure to pick the desired state.

At present, DFE-ESMF uses functionals developed for ground state to treat excited
states. While there is no reason to think that this approach is optimal, it is a very com-
mon procedure to treat excited states using ground state functionals. For example, the
aforementioned GAC approach, the A self-consistent field (ASCF) method,*? constricted
variational density functional theory,*® and spin-restricted ensemble-referenced Kohn-Sham
method (REKS)* all use ground state functionals to describe excited states. While it may
in future be worthwhile to develop functionals specifically for use with DFE-ESMF, we do
not explore this direction here.

Although we do use ground state functionals, it is important to distinguish the present
approach from the use of such functionals in TDDFT via the AA. First, the AA is a statement
about the time dependence of the exchange correlation kernel, which has no direct analogue
in DFE-ESMF, as it is a time-independent theory. Second, the AA, when combined with LR
theory to produce practical versions of TDDF'T, creates issues that are not present in DFE-
ESMF, regardless of whether ground state functionals are employed. Most importantly, the
AA prevents TDDFT from incorporating the effects of orbital relaxations for electrons not
involved in the excitation. Due to its many-electron variational nature, DFE-ESMF explicitly
includes these relaxations, in direct analogy to how ground state KS-DFT variationally
relaxes all the electrons’ orbitals. Thus, although both the AA and the current formulation
of DFE-ESMF lead in practice to the use of ground state functionals for treating excited
states, the approximations being made in these two approaches are distinct.

Finally, it is important to emphasize that state-specific formulations do come with lim-
itations alongside their advantages. As for some other excited state specific DF'T methods
discussed in the next section, it is not obvious how to arrive at rigorous transition moments
for DFE-ESMF. Although one could simply define these in terms of the underlying wave
function and the ab initio Hamiltonian, this approach would miss the fact that the states

have been optimized based on a DFT-modified energy expression, creating a disconnect be-
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tween the evaluations of energy differences and transition strengths. Another issue with state
specific methods is that they do not in general satisfy known sum rules and sum-over-state
expressions.® Thus, although the approach pursued here possesses some formal advantages

when compared to TDDF'T, it also suffers from some formal disadvantages.

2.6 Comparisons to Other State-Specific DFT Methods

DFE-ESMF is not the first attempt to combine wave function based methods with density
functionals. For example, multi-reference (MR) DFT methods such as multiconfiguration
Pair-Density Functional Theory (MC-PDFT)*5%6 and density matrix renormalization group
pair-density functional theory (DMRG-PDFT)*" also modify a wave function’s energy ex-
pression by using an xc energy functional to capture correlation effects. A major difference
between these methods and DFE-ESMF is that they target strong correlation in ground
states, whereas DFE-ESMF targets weak correlation in singly excited states. Another differ-
ence is that, because CASSCF and DMRG-SCF wave functions already incorporate state-
specific orbital relaxations, the DFT part of their methodology need not address the orbital
shapes. The central feature of DFE-ESMF, on the other hand, is its excited-state-specific or-
bital relaxation. Finally, these MR-DFT approaches use the on-top pair density functional,*®
which is more capable of addressing strong correlation issues.

With regards to variational DFT methods for excited states, many approaches distinct
from DFE-ESMF already exist. The A self-consistent field (ASCF) approach?? relaxes
excited state orbitals by using the SCF cycle in an attempt to converge onto open-shell
solutions to KS equations, employing the maximum overlap method (MOM) to help avoid
collapsing back to the ground state or to lower-lying excited states. %% The related restricted
open-shell Kohn-Sham (ROKS) method®! may also collapse to lower excited states, but its
enforced open-shell nature prevents collapse to the ground state and it has shown advantages
relative to ASCF for CT excitations’ singlet-triplet splittings.®? Finally, ensemble DFT in the

form of REKS and SA-REKS optimizes excited state orbitals in a state-averaged manner,
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trading some state-specificity in return for a further reduction in the risk of variational
collapse. In contrast to these approaches, the DFE-ESMF approach makes direct use of
an excited state variational principle. Although this does not rigorously guarantee that
the correct stationary point will be found (all of these variational methods are nonlinear
minimizations with at least some starting point dependence, after all) the global minimum
of the variational principle it employs is the desired excited state, offering a strong formal
advantage in the effort to avoid collapse to lower states. In our preliminary explorations,
we have yet to encounter a case where the optimization does not converge to the stationary
point corresponding to the targeted excited state, even in cases where ASCF encounters
variational collapse. It is also worth noting that, although the multi-CSF version of DFE-
ESMF comes with double counting concerns, it can at least be applied to states that strongly
mix two or more excitation components, while ASCF, ROKS, and REKS all assume that
excitations are single-component in nature.

The constrained DFT (CDFT) method®® represents another route towards excited state
orbital relaxation that is especially relevant for long range CT, where it is straightforward
to impose physically motivated density constraints in cases where the donor and acceptor
can be clearly identified. As shown by numerous applications, CDFT can provide accurate
estimates of excitation energies,® coupling elements,® forces,?® and diabatic surfaces.®” A
particularly strong parallel with DFE-EMSF can be seen in long range CT, where single-CSF
DFE-ESMF is expected to be equivalent to CDFT in the limit of complete donor-acceptor
separation (see for example Figure S1). To understand this equivalence, consider that both
methods will move an electron from the donor’s HOMO to the acceptor’s LUMO and then
make their energy expression stationary with respect to orbital rotations. As the WFCE
term in DFE-ESMF vanishes in the limit of long range CT, the two methods will have the
same energy expression in this case and so will produce the same results. In shorter-ranged
CT where donor and acceptor are less well defined, DFE-ESMF has the formal advantage

of not having to impose a user-specified charge constraint, and so can in principle predict
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the distribution of the particle and hole rather than having it imposed from some external
source. DFE-ESMF also avoids having to worry about the ambiguities inherent to assigning

formal atomic charges and the difficulties these create.?®?

3 Results

3.1 Computational Details

To assess the performance of DFE-ESMF and to compare to existing excited state DFT
methodologies, we have carried out tests in the following atomic and molecular excitations:
1) singlet and triplet n — ¢* in HyO.
2) singlet and triplet n — 7* and singlet 7 — 7* in CH50.

3) singlet and triplet ¢ — ¢* in LiH.

)
)
)
4) singlet m — 7* in CO.
5) singlet He 1s—Be 2p in He-Be dimer.
6) singlet NH3 2pz—F5 2pz in NH3-F5 dimer.
7) singlet 2s—3s and 2p—3p in the Ne atom.
All of the DFE-ESMF results are obtained via our own pilot code, which extracts one-
and two-electron integrals from PySCF.% The Lebdev-Laikov grid® is used to perform the
numerical integration to compute the xc energy. The TDDFT, CIS, ROKS, and ASCF
DFT results were obtained from QChem.% In ROKS the spin purification techniques®! is
used, and in ASCF DFT we report the broken-spin open-shell energy. Equation-of-Motion
Coupled Cluster with singles and doubles (EOM-CCSD) results were computed by MOL-
PRO.% Tt is also worth noting that the implementation of ROKS in QChem is limited to
only HOMO—LUMO excitations. In the current study, the CSF expansions in both the
single-CSF formalism and multiple-CSF formalism are selected by the CI vector of TDDFT

using the same xc functional. We choose a large threshold of ¢ = 0.2 for CSF truncation,

and switch to the multi-CSF formalism of DFE-ESMF when there are more than one CSF
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left after truncation.

For DFE-ESMF, we employ three xc functionals: LDA, the Becke3-Lee-Yang-Parr func-
tional (B3LYP),% % and the Becke-Half-Half functional (BHHLYP),% which have 0%, 20%,
and 50% wave function exchange fractions, respectively. We expect results to be somewhat
sensitive to this fraction, as ground and excited states have different amounts of open shell
character and thus are likely to suffer from differing degrees of self-interaction error. As
existing functionals have mostly been optimized for closed shell ground states, it would not
be surprising if a higher than usual wave function exchange fraction was necessary to create
a fair playing field for the open-shell state. Note that our excitation energies come from
energy differences between DFE-ESMF (for the excited state) and KS-DFT (for the ground
state) in which both have used the same xc functional.

For basis sets, we employed the cc-pVDZ basis® for H,O, CH,0, LiH, and CO, the cc-
pVTZ basis® for the He-Be dimer, the aug-cc-pVTZ basis® for Ne, and the 6-31G basis®
for the NH3-F5 dimer. Results will be presented in terms of excitation energy errors relative
to EOM-CCSD. The molecular geometries and absolute values of excitation energies can be

found in the Supplemental Information.

3.2 Excited State Dipole Shifts

Before presenting the results of DFE-ESMF, we first categorize the excited states into CT
and non-CT types by computing the difference between the ground and excited state dipole

moment. In atomic units, the dipole moment is

fi=Y ZisRa- / rn(r)dr (39)

in which Z, and R, are the charge and position of the Ath nuclei. For simplicity, the
electron density for excited states is estimated using Equation 20 using ground state KS

orbitals without any relaxation. The dipole moment difference (—Aji—) between the ground

23



and excited state yields information about the electron charge distribution between these
two states.

The computed —Aji—s are shown in Figure 1. For Ne, H,O, and the n — 7* state in
CH,0, the —A[i— are fairly small, indicating that the charge distributions are similar for
the ground and excited states. These states can thus be viewed as purely Rydberg (Ne) and
valence (HoO, CH,0) excited states with little charge deformation. As expected, the long-
range CT excited states'®™ of He-Be and NH3-F; have a significantly larger —Aji—. Note
that LiH also sees significant charge deformations, which are a consequence of its partially
ionic nature in which the bonding and anti-bonding orbitals are shifted towards opposite

ends of the molecule.

Ne 2p - 3p 1
Ne 2s — 3s 1

H,0 |
CH,0n~*
CO 1

CH,0 m—m*
LiH

He-Be

NH;-F,

0 5 10 5 20 25 30
Dipole Moment Difference (Debye)

Figure 1: The norms of the dipole moment differences between ground and excited states.
The BHHLYP functional is used in all dipole calculations.

3.3 Single-CSF Excited States

Let us begin with an analysis of how the theory performs for excited states dominated by a
single CSF, looking at different types of excitations within this category. We will look first
at valence excitations, followed by CT states and finally Rydberg excitations. These cases

covered, we will then consider states that contain a superposition of multiple CSFs.
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3.3.1 Valence Excitations
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excitation energy error (eV)

(n—0*) 3(n-0%)

Figure 2: The excitation energy error of singlet (left) and triplet (right) n — o* excited
states in HoO compared to EOM-CCSD results.
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Figure 3: The excitation energy error of singlet (left) and triplet (right) n — 7* excited
states in CH,O compared to EOM-CCSD results.

Excitation energy errors relative to EOM-CCSD for H,O and CH,0O are shown in Figures
2 and 3, respectively. Compared to the CT examples in the next section, TDDFT performs
relatively well for these valence excitations, with BBLYP and especially BHHLYP providing
excitation energies within about half an eV of the reference and LDA performing only a little

worse. These relatively good TDDFT results are not particularly surprising in light of the
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fact that the charge density deformations are small, and so the lack of orbital relaxation due
to the AA is not especially concerning. In fact, we have explicitly analyzed the importance
of orbital relaxation by evaluating the Frobenius norm of the DFE-ESMF orbital rotation
matrix X . Averaging over the three values from the three different functionals tested, we
find || X|| to be 0.16 and 0.15 for H,O and CH,O, respectively, which is smaller than in the
CT examples we will see below.

The basic trend in DFE-ESMF accuracies for different functionals follows that of TDDFT
in these excitations, with BHHLYP giving the most accurate predictions, followed by B3LYP
and then LDA. As we will see, the accuracy ordering for different functionals in DFE-ESMF
plays out is the same way in most of our test systems, with BHHLYP’s high fraction of wave
function exchange outperforming the other two functionals in valence, CT, and Rydberg
states. Our understanding of this trend is that a larger fraction of wave function exchange
is most likely helping to balance self-interaction errors in the ground and excited states. We
expect that these errors are larger in the excited states due to their open-shell nature, and
so a higher fraction of wave function exchange than is typically used in ground state models
appears to be helpful for balancing these errors between the ground and excited states. We
should emphasize that in all of our DFE-ESMF results, energy differences were evaluated
based on the same functional for both ground and excited states, but using the density
and wave function exchange definition for the state in question (see discussion surrounding
Eq. (30)). Although this preliminary test of four single-CSF valence excitations is far from
exhaustive or systematic, the efficacy of DFE-ESMF/BHHLYP in these cases provides an
encouraging proof of principle.

For singlet excited states, we also compare to the predictions of ROKS, which, like DFE-
ESMF, provides excited state orbital relaxation. The most striking difference between the
ROKS results and those of TDDFT and DFE-ESMF is that they do not follow the same
trend with respect to the fraction of wave function exchange. Indeed, the accuracy ordering

differs in H,O and CH»O, with LDA seeming to offer the best average ROKS performance.
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Note that we have not carried out ROKS comparisons in the triplet states because (QChem

currently only implements ROKS for singlet states.

3.3.2 Charge-Transfer Excitations

Although DFE-ESMF and TDDFT provide similar accuracies in the simple valence excita-
tions discussed above, the story is very different for CT excitations. Before looking in detail
at the numerical CT examples, it is worth considering two important potential sources of
error TDDFT faces in CT contexts, which we will refer to as the EA/IP imbalance and the
orbital relaxation error. To see these clearly, consider a simple CT excitation consisting of a

single 7 — a transition, in which case the TDDFT excitation energy is given by "

AE(i — a) = &5 — 55 1 (ia| fo.|ia) (40)

in which €9 and €& are the ground state KS orbital energies of the donor and accep-
tor orbitals, respectively. This equation has been used extensively 9162526 t5 analyze the
TDDFT’s failure in CT excited states and we refer readers to those references for details. In
a nutshell, because €% does not correspond to the EA of the acceptor (it undercounts the
new repulsions created by the extra electron), the orbital energy difference in this equation
tends to severely underestimate C'T excitation energies. In principle this should be repaired
by the xc term, and it has been shown that a fully non-adiabatic frequency-dependent xc
kernel, such as the time-dependent exact exchange (TDEXX), is able to produce the nec-
essary corrections.?® However, once the AA is applied, the loss of frequency dependence in
the kernel leads to corrections that are too small with existing functionals, even RSHs.
While the EA/IP imbalance is a significant concern, it is typically offset in practice by the
fact that AA TDDFT works with unrelaxed orbitals. It is well known in electronic structure
theory that the omission of orbital relaxation effects tends to raise the energy of the excited

state. For example, configuration interaction singles (CIS), which is free from the IP/EA
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imbalance problem because of Koopmann’s theorem, usually overestimates the CT excitation
energy by more than 1eV due to the lack of orbital relaxation.” Ideally, the third term in
Equation 40 would eliminate both orbital relaxation issues and the EA/IP imbalance, but
even when the third term is zero, these two errors do at least work to cancel each other
because they push in opposite directions. However, the EA/IP imbalance in long-range
CT is often much too large for orbital relaxation errors to counteract, resulting in TDDF'T
excitation energies that are much too low as in the NH3; —F5 and He—Be transitions shown
below. However, as one moves to increasingly shorter range CT with correspondingly larger
overlaps between the donor and acceptor, the EA/IP imbalance becomes less and less of an
error and more and more a positive feature of the TDDFT formalism. Indeed, in the valence
excitation limit, the difference in how DFT accounts for electron-electron repulsion energy
in the occupied and virtual orbitals increases the accuracy of using orbital energy differences
as excitation energy estimates, because in this limit the “donor” and “acceptor” are one and
the same. One can imagine that for very short-ranged CT, any small remaining errors from
the EA/IP imbalance could cancel with orbital relaxation errors precisely enough for the
exchange correlation term to clean up the details. Such an effect seems to be at work in LiH,
to which we now turn our attention, which despite having a substantial dipole change and

thus CT is nonetheless treated well by TDDFT.

LiH Figure 4 shows excitation energy errors for the lowest singlet and triplet excitations
in LiH. For both of these states, the balancing process between EA /TP issues and missing
orbital relaxations appears to work in TDDFT’s favor, especially in the case of the BHHLYP
functional. To check that such a trade off really does appear to be at work here, we again
evaluated || X || as a measure of orbital relaxation importance and found it to be 0.41, signif-
icantly higher than for H,O or CH,0O. As in the valence states of those molecules, BHHLYP
is also very effective in DFE-ESMF’s single-CSF formalism for LiH’s singlet excitation. For

the triplet, however, the single-CSF formalism shows relatively poor accuracy regardless of

28



EZArs\iF-LDA

B esvF-B3LYP
s ViF-BHHLYP
E==ESMF-BHHLYP
MMM rp-LpA

B tD-B3LYP
EEEro-sunLyp

—
>
(5]
C)
S
8
=
(5]
% [roks-LpA
2 0.5 [EIROKS-B3LYP
Q
g IOk s-BHHLYP
=1
.2
=t
8
5 0.0
»x
Q
-0.5

Figure 4: The excitation energy error of singlet (left) and triplet (right) o — o* excited
states in LiH compared to EOM-CCSD results.

functional, and indeed this state has more than one CSF above our ¢ = 0.2 threshold in
TDDFT. When we include both of the CSFs whose coefficients breach this threshold via the
multi-CSF approach, the DFE-ESMF/BHHLYP result improves from an error above 0.4 eV
to an error of just -0.02 eV relative to EOM-CCSD. Note that the multi-CSF approach has

no effect on the singlet state, as in that case only the primary CSF was above the threshold.

NH; to F;  We now turn our attention to the first of two long-range CT excitations: the
NH;-F5 dimer shown in Figure S1. In Figure 5, we see that, after excited-state orbital
relaxation via the minimization of Eq. (18), DFE-ESMF is substantially more accurate than
TDDFT regardless of the functionals chosen. Even when comparing ESMF-LDA against
TDDFT with the wB97X RSH, the variational approach makes an excitation energy error
roughly half as large. Using BHHLYP, which continues to outperform the others for DFE-
ESMF, the variational approach achieves an excitation energy error of just 0.26 eV, compared
to multi-eV errors for TDDFT when using either wB97X or BHHLYP.

Although this excited state is predominantly a HOMO—LUMO excitation, we find that
ROKS consistently collapses to a lower excited state (see the Supplemental Information

for absolute excitation energies). Hence, we compare our results to MOM ASCF instead.
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We found that ASCF DFT yields similarly accurate predictions as DFE-ESMF. This is as
expected since ASCF DFT are known to perform well in long-range CT excited states, if
the states are dominated by one CSF.

It would appear that TDDFT’s error cancellation between its EA/IP imbalance and its
lack of orbital relaxations breaks down here, with the magnitude of the former overwhelming
that of the latter. We can verify this picture in two ways: first, with the DFE-ESMF
approach, and second, by looking at ground state KS-DFT IP-EA estimates at very long
range. Start with DFE-ESMF. At the top of Figure 5, we show the excitation energies (i.e.
the energy differences between Eq. (30) and the ground state KS energy) before the DFE-
ESMF orbital optimization has been carried out, meaning that the excited state DFE-ESMF
energy is being evaluated using the ground state KS orbitals. This excitation energy is thus
the difference between two many-electron DFT energies (one DFE-ESMF and one KS-DFT)
and so does not suffer from the EA/IP imbalance. While the EA/IP issue has thus been
removed, orbital relaxation effects have yet to be included, and as expected the excitation
energies are now too large. When we then relax the orbitals (|| X || = 0.21), we see in the
middle of Figure 5 that the predicted excitation energies decrease to more accurate values.
Thus, by looking step-wise at how DFE-ESMF changes the energy from TDDFT, we can
watch the staged removal of first the EA /TP imbalance and then the fixed-orbital error. This
process appears to confirm the idea that TDDFT suffers from both, and that in long-range
CT the EA/IP part dominates, leading TDDFT to underestimate the excitation energy.

We can corroborate this view by moving the molecules to a very large distance and
comparing DFE-ESMF, TDDFT, and a simple difference of ground state KS energies between
the cation, anion, and neutral species that provides a many-electron evaluation of the IP
and EA. At very long distance, Figure 6 shows that the performance of DFE-ESMF and
TDDEFT is quite similar to what we saw at the shorter separation. At the bottom of the
figure, we see that if we simply perform four single-molecule ground state KS calculations

for the donor cation, acceptor anion, and the two neutral species, the resulting difference
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Figure 5: Comparison of excitation energy errors relative to EOM-CCSD for the NHj3 2pz
—F5 2pz CT excitation at an intermolecular separation of 6 A. For DFE-ESMF, we show
the results both before and after the orbital relaxation is performed.

between the IP and EA is a very accurate predictor of the charge transfer energy, as we
would expect from previous work on CDFT. Thus, if both the IP/EA imbalance born of
single-particle orbital energy differences and the orbital relaxation errors are removed via
this ground state KS approach or by CDFT, accuracy is restored. The key point is that,
unlike these approaches, the DFE-ESMF formalism should allow both of these issues to be
addressed even in systems where clear-cut foreknowledge distinguishing between the donor

and acceptor is not available, and without having to worry about the spin-symmetry breaking

inherent to ASCF.

He to Be In our second long-range CT example, we investigate the excitation from the
He 1s orbital to the Be 2pz orbital as a function of the distance between the atoms. In
Figure 7, we see the familiar failure of local functionals and simple hybrids to predict the
correct 1/R trend in the excitation energy. While this problem is repaired by the use of a
RSH, we see that absolute accuracy is still poor, at least for the specific wB97X functional
we tested here. As in the previous example, DFE-ESMF out-performs the accuracy of the
RSH regardless of which functional it is paired with while also correctly capturing the 1/R

behavior. The advantage of DFE-ESMF becomes especially clear when looking at the non-
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Figure 6: Excitation energy errors relative to EOM-CCSD for the NH3 2pz —Fy 2pz CT
at a 120 A intermolecular separation. wB97X-IPEA refers to the difference between (a) the
sum of ground state KS energies for the donor cation and acceptor anion and (b) the ground
state KS energy of the neutral ground states.

parallelity error (NPE) plotted in Figure 8. NEP is defined as the difference between the
largest and smallest errors relative to EOM-CCSD across the distance coordinate. DFE-
ESMF with LDA, B3LYP, and BHHLYP all produce NPEs below 1€V, as compared to an
NPE of almost 2 eV for TDDFT with the wB97X functional. In Figure 8 we also plot the
shifted root-mean-square (RMS) error. Shifted RMS error is calculated by first shifting the
PES in Figure 7 so that the excitation energy at 8 A matches the prediction of EOM-CCSD,
and then computing the RMS error along the shifted PES. Unlike NPE, shifted RMS error
is less affected by the repulsive regime and we find it to be significantly smaller than NPE
for all methods. Even so the shifted RMS error of TDDFT with the wB97X functional (0.29
eV) is still much larger than that of DF-ESMF, which is around 0.1 eV.

While ASCF produces a visibly not-smooth curve when when paired with the LDA
functional (possibly due to variational collapse issues), its performance with BSLYP and
BHHLYP is quite good. In the long-range limit these potential curves overlap that of EOM-
CCSD and their shifted RMS error is comparable to DF-ESMF, although accuracy is a
bit lower at shorter ranges where the broken spin symmetry is expected to matter more.

Consequently, the NPEs of ASCF with the hybrid functionals are a bit larger than those of
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DFE-ESMF, but a major improvement over TDDFT.
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Figure 7: Comparison of He 1s—Be 2p CT excitation energy as a function of R(He-Be)
between DFE-ESMF, TDDFT, ASCF, and EOM-CCSD.
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Figure 8: Left: Comparison of non-parallelity errors in the He 1s—Be 2p CT excitation

energy. Right: Comparison of shifted root-mean-square errors in the He 1s—Be 2p CT
excitation energy.

3.3.3 Rydberg Excitations

Unlike in CT excitations, it is not obvious that the ability of DFE-ESMF to address the
EA/IP imbalance and orbital relaxations will be of great benefit in the context of Rydberg

excitations. In these states, the challenge faced by TDDFT arises primarily from the failure
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of practical xc¢ functionals to produce a potential that decays as 1/r at large distances,
which is not the same as the failure of error cancellation that causes trouble in the CT case.
However, work by Van Voorhis™ has shown that although the ground state xc potential
has little resemblance to the exact potential, the xc potential associated with an excited
state density can behave much more sensibly at long distance. Thus, it is interesting to ask
whether DFE-ESMF’s inherently excited state nature and its ability to relax the orbitals in
an excited-state-specific manner may in practice lead to improvements for Rydberg states.
As an initial probe of this question, we have studied the 2s—3s excitation in the Ne atom.
The excitation energy error relative to EOM-CCSD is plotted in Figure 9. As expected,
TDDFT drastically underestimates the excitation energy by as large as 8.21eV using LDA
and 2.94eV using BHHLYP. Notably, although our DFE-ESMF method is able to reduce the
error of TDDFT by some amount, it is still very far from being quantitatively accurate. The
most accurate functional in DFE-ESMF, the BHHLYP functional, still underestimates the
excitation energy by 2.74eV. Although there is no dipole change in this excitation, the charge
deformation in Rydberg states is still large since the virtual orbitals are much more diffuse
than and share little overlap with the occupied orbitals. Consequently, the averaged || X|| is
as large as 0.25, comparable to that of CT excitations, indicating that orbital relaxation is

also important in Rydberg excitations.
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Figure 9: Comparison of excitation energy error of the Ne 2s — 3s transition.
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As discussed in the previous subsection, the main source of error in DFE-ESMF is the
self-interaction error with approximate xc functionals: The functional parametrized for the
ground state is incapable of correcting the self-interaction error of the excited electron re-
siding in virtual orbitals. This problem is not too concerning in valence excitations since
the occupied and virtual orbitals have similar characters, and hence similar amount of self-
interaction. Therefore thanks to error cancellation, balanced description between the ground
and the excited states can still be achieved. However, in Rydberg states, the virtual orbitals
are much more diffuse than the occupied orbitals. Consequently, the amount of SIEs left
in J[n| after adding the UEG exchange energy EVF¢[n] to it, as in LDA, becomes clearly
different in the occupied and virtual orbitals. This results in an unbalanced treatment be-
tween the ground and the excited state if one uses the same xc functionals for both states,
leading to a large error in this Rydberg excitation energy. In future, testing asymptotically
corrected functionals in DFE-ESMF would appear to be warranted.

The unbalanced treatment of SIEs should not be exclusive to DFE-ESMF and could affect
ASCF DFT as well, since it also uses ground state functionals to describe excited states. In
fact, in Figure 9 we found that the size and trend of errors of ASCF DFT with different xc
functionals is quite comparable to DFE-ESMF, corroborating our speculations. In this case,
the recovery of spin-symmetry in DFE-ESMF does not appear to have had much effect on

the excitation energy.

3.4 Multi-CSF Excited States

We now turn our attention to states in which multiple CSFs are important. While DFE-
ESMF can be formulated to treat such states and thus may be expected to offer a significant
advantage over single-determinant methods such as ASCF, such optimism must be tempered
by the increased risk of making double counting errors and the complication of needing a
way to choose the values of the CI coefficients. As we see in the following subsections, these

issues result in the present formulation of DFE-ESMF being less effective in the multi-CSF
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case than it was in the single-CSF cases discussed above.

CH;0 The m — 7* excited state in CH5O contains significant contributions from two ex-
cited CSFs: HOMO-1—LUMO and HOMO—LUMO+2. In contrast to LiH, where TDDFT
only predicts multiple important CSFs for the BHHLYP functional, this CH,O excitation
is strongly multi-CSF in TDDFT regardless of the choice of funcitonal. Excitation energy
errors relative to EOM-CCSD are plotted in Figure 10, where the ASCF results have been
obtained by optimizing the orbitals for the open-shell determinant that has the largest weight
in TDDFT’s CI vector. Curiously, both TDDFT and DFE-ESMF give the most accurate pre-
diction with LDA in this case, with DFE-ESMF showing especially poor accuracy with BHH-
LYP. This sharp contrast to the trends we saw in the single-CSF cases is explained, at least
in part, by the strong dependence of the CI coefficients on the choice of functional. For LDA
and B3LYP, the HOMO—LUMO+2 CSF has a larger weight that the HOMO-1—-LUMO
CSF, whereas the relative importance of these CSF's is reversed when using BHHLYP. Noting
that ASCF places the energy of the orbital-optimized HOMO-1—-LUMO CSF 1.86eV below
the energy of the orbital-optimized HOMO—LUMO+2 CSF, we can understand much of
DFE-ESMF/BHHLYP’s lowering of the excitation energy simply in terms of the change in
the CI coefficients coming from TDDFT. It therefore appears that, in future, re-optimizing

the CI coefficients within the DFE-ESMF framework may be important.

CO In the @ — 7* excitation in CO, spatial symmetry ensures that the p, m orbital is
degenerate with its p, counterpart, and likewise for the two 7* orbitals, so that the excited
state is an equal mixture of the 7, — 7} and 7, — 7, CSFs. The excitation energy errors
for this state are shown in Figure 11, where we have used our multi-CSF formalism to treat
this two-CSF state. In this case, the DFE-ESMF trend is back in line with what we saw
in most other states, with BHHLYP providing the most accurate result, although TDDFT
is notably more accurate than DFE-ESMF. The trend for ASCF is quite different, and it

faces multiple difficulties here, including the breaking of spin and spatial symmetry as well
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Figure 10: The excitation energy error of singlet 7 — 7* excited states in CH,O compared
to EOM-CCSD results.

as variational collapse to the ground state with BHHLYP, which explains the unusually large

error in that case.

ESMF-LDA -
ESMF-B3LYP -
ESMF-BHHLYP -
TD-LDA +
TD-B3LYP A
TD-BHHLYP -
ASCF-LDA +
ASCF-B3LYP 4
ASCF-BHHLYP

_ |I=‘m.
N

4 )
Excitation Energy Error (eV)

(=]
38

Figure 11: The excitation energy errors relative to EOM-CCSD for the CO © — 7* singlet
excitation. Energy minimization of A SCF with BHHLYP functional ends up collapsing
back to ground state.

Ne Unlike its 2s—3s excitation, the Ne atom’s 2p—3p excited state is a equal mixture
of two CSFs. In the plot of excitation energy errors (Figure 12) we see that DFE-ESMF
and TDDFT have similar accuracies in this case, although the former errors high while the

latter errors low. Again, we see the tendency of DFE-ESMF to benefit from a relatively
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high fraction of wave function exchange. Unlike the other two multi-CSF cases discussed
above, ASCF proves considerably more accurate for this excitation than either DFE-ESMF
or TDDFT.

ESMF-B3LYP - FEEF
ESMF-BHHLYP 1 NN
o0 | (N
TD-B3LYP |
TD-BHHLYP

ASCF-LDA -
ASCF-B3LYP - .
ASCF-BHHLYP - -

) -1 0 1 2
Excitation Energy Error (eV)

Figure 12: Comparison of excitation energy errors relative to EOM-CCSD for the Ne 2p —
3p transition.

4 Conclusions

We have presented a density functional extension to the recently developed excited state
mean-field theory in an attempt to capture the effects of weak electron correlation. By aug-
menting the ESMF wave function’s energy expression with components from density func-
tional theory and inserting the resulting expression into an approximate excited variational
principle, the approach provides excited-state-specific orbital optimization in the presence
of a correlation treatment. In the same way that KS-DFT loosely parallels many aspects
of HF theory, this DFE-ESMF approach parallels ESMF theory. Being a variational, time-
independent approach, the method differs from TDDFT in some important aspects, most
notably in its ability to fully relax orbitals and in the fact that it does not depend on the
ground state KS orbital eigenvalues and so avoids concerns related to the EA/IP imbal-

ance. In preliminary testing, these advantages result in significantly improved excitation
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energies for simple charge transfer examples, while accuracy for other excitations is more
comparable to TDDFT. Compared to ROKS and ASCF, which can also deliver full orbital
relaxation, DFE-ESMF is less prone to variational collapse thanks to its use of an excited
state variational principle.

Although these advantages and strengths are promising, the current formulation of DFE-
ESMF also has a number of shortcomings. For excited states in which multiple CSFs make
major contributions, double counting becomes a serious concern and accuracy, although
still close to that of TDDFT, is reduced. This challenge is especially concerning in the
context of larger systems, where multi-CSF states become increasingly common. Rydberg
states are also challenging, although this may have more to do with the choice of density
functional than with the DFE-ESMF approach itself: both it and TDDFT make substantial
errors in these states. Looking forward, we therefore see a number of directions for possible
improvement. As we saw in all cases (except for the 7 — 7* transition in formaldehyde where
the sensitivity of TDDFT’s CI coefficients to the fraction of wave function exchange appears
to be the culprit) DFE-ESMF was most accurate when using a much higher fraction of wave
function exchange (50%) than is typically found in ground state functionals. This is not
surprising given the open shell nature of excited states, and suggests that a straightforward
route to improved energetics may come from retraining functionals in this direction. Of
course, this is just one question in a much broader array of functional design issues, such
as whether it would be advantageous to include range-separation or asymptotic corrections,
the latter of which may help with the Rydberg problem. Functional design questions aside,
our observation that accuracy tends to be lower in multi-CSF states raises the question of
whether this is due to relying on TDDFT CI coefficients or comes from some other source.
If the former, then variational re-optimization of the CI coefficients alongside the orbitals
may be advantageous. Finally, as a practical issue, our pilot implementation achieves the
desired cost scaling (equivalent to ground state KS-DFT') but could be sped up considerably

if implemented in a production level quantum chemistry package.
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