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Abstract

We investigate an extension of excited state mean-field theory in which the energy

expression is augmented with density functional components in an effort to include the

effects of weak electron correlations. The approach remains variational and entirely

time-independent, allowing it to avoid some of the difficulties associated with linear

response and the adiabatic approximation. In particular, all of the electrons’ orbitals

are relaxed state specifically and there is no reliance on Kohn-Sham orbital energy

differences, both of which are important features in the context of charge transfer.

Preliminary testing shows clear advantages for single-component charge transfer states,

but the method, at least in its current form, is less reliable for states in which multiple

particle-hole transitions contribute significantly.

1 Introduction

The recently developed excited state mean-field theory (ESMF)1 is intended to act as a

mean-field platform for excited states in much the same way as Hartree-Fock (HF) theory 2
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does for ground states. As one might expect, these two theories share many properties: they

rely on minimally correlated wave function forms, produce energy stationary points, relax

orbital shapes variationally, and have the same cost-scaling. Also like HF theory, ESMF lacks

a proper description of correlation effects, and so from a practical standpoint is expected to

be more useful as a starting point for correlation methods than as a way of making energy

predictions on its own. While there are many ways one could go about capturing correlation

effects, it is hard to avoid thinking about density functional theory (DFT) 3 in this context

given how useful it is for this purpose in ground states.

The Kohn-Sham (KS) formulation of DFT4 is the most widely used electronic structure

method in chemistry, physics, and materials science. Due to its favorable scaling with system

size and reasonable accuracy in a variety of different circumstances, DFT is often regarded

as one of the most powerful tools for studying the electronic and dynamic properties of

materials and medium to large molecules. The KS-DFT method can also be considered as

an extension to the HF method, by replacing the exchange energy in HF with the exchange-

correlation (xc) energy in KS-DFT. With the exact xc functional, KS-DFT is able to capture

correlation effects exactly. Comparing to other post-HF methods that account for weak

correlation effects, such as configuration interaction, Moller-Plesset 2nd order perturbation

theory, and coupled cluster, the most appealing feature of KS-DFT is its low cost-scaling,

which allows it to be applied to systems with thousands of electrons or more.

Inspired by the success of KS-DFT in ground states, one may wonder whether similar

extensions using DFT can also be achieved for ESMF. Intuitively, combining ESMF with

DFT would allow one to go beyond the mean-field form of the ESMF wave function and

be able to recover weak correlation effects while maintaining the mean-field cost scaling of

ESMF. More importantly, such an approach need not rely on linear response (LR) theory

or the adiabatic approximation (AA), both of which are central to the practical application

of time-dependent density functional theory (TDDFT).5–8 As the combination of LR and

the AA can produce significant errors in some excited states, it would be very interesting to
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instead augment ESMF theory by incorporating components from density functional theory

while keeping the formulation entirely time-independent.

While the LR formulation of TDDFT is formally exact, approximations are needed to

make the approach computationally tractable. The central quantity in TDDFT is the xc-

kernel fxc(r, t; r
′, t′), defined as the functional derivative of the xc-potential,9

fxc(r, t; r
′t′) =

δυxc[n](r, t)

δn(r′, t′)
(1)

in which the υxc(r, t) is the time-dependent analogy of the ground state xc-potential and

n(r, t) is the electron density. The AA replaces the time-dependent xc-potential with the

ground state xc-potential,9

υadiaxc [n](r, t) = υGS
xc [n(t)](r) (2)

at which point the xc-kernel becomes

fadia
xc (r, t; r′t′) =

δυGS
xc [n(t)](r)

δn(r′, t′)
= δ(t− t′) δ2Exc[n]

δn(r)δn(r′)
. (3)

Most notably, this approximation leads the xc-kernel to be local both in time and space if

the ground state xc functional is local as in LDA, or local in time but nonlocal in space in

the case of hybrid functionals.

While the AA is enormously convenient in that it makes TDDFT efficient and allows

it to use existing ground state functionals, it does create important limitations when mod-

eling charge transfer (CT), Rydberg, and double excitations. For example, TDDFT often

drastically underestimates excitation energies for long-range CT states 10–12 and Rydberg

states,13–15 and it is completely incapable of describing doubly excited states.16,17 Besides

the underestimation of excitation energies, it is also well known that for long-range CT

excited states, standard pure and hybrid functionals also fail to exhibit the correct 1/R

dependence along the charge separation coordination.10,18 Given the technological and bi-
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ological importance of CT, the limitations of practical TDDFT in this area are especially

frustrating.

To be more precise, these difficulties stem from two approximations: first, the usage of

approximate xc functionals, and second, the AA. The former is responsible for the problems

in Rydberg excited states and the missing 1/R behavior in long-range CT. For Rydberg

states, the problem lies primarily in the fact that the ground state xc-potential of local

and semi-local functionals decays exponentially with r, much faster than the 1/r decay

of the exact xc-potential. In order to deal with this problem, the asymptotic correction

approach14 has been developed and results in dramatically improved Rydberg energetics.

For CT excited states, range-separated hybrid functionals (RSH)19–24 successfully yield the

correct 1/R behavior of long range CT excited states. This approach eliminates the CT

self-interaction error in which derivatives of the approximated exchange term fail to deliver

the long range Coulomb term that should be present in the linear response equations.16

Even with the 1/R issue repaired, though, long range CT still poses challenges. This is

mainly due to fact that the excitation energy of long-range CT states should be determined

by the ionization potential (IP) of the donor and the electron affinity (EA) of the acceptor.

While KS-DFT’s highest occupied molecular orbital (HOMO) energy corresponds to the IP,

the lowest unoccupied molecular orbital (LUMO) energy does not, and is not supposed to,

correspond to the EA, even when the xc functional is exact. The result is that the difference

between the DFT LUMO and HOMO energies severely underestimates the excitation energy,

which leads to a situation in which the kernel contribution to the TDDFT energy is asked

to make up the difference. Such a difference between DFT LUMO energy and EA, is usually

referred to as the “derivative discontinunity” in TDDFT literature.25 However, the kernel

contribution for most commonly used functionals is typically much too small to make an

appreciable difference on this scale, and so CT energies get underestimated, sometimes quite

severely. This difficulty, which we will refer to as the EA/IP imbalance, has been extensively

studied10,16,25,26 and can be seen clearly in the examples we investigate below.
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Unlike the issues discussed above, TDDFT’s failure to describe doubly excited states can

be laid squarely at the feet of the AA, which converts the memory-dependent time-non-

local xc-kernel fxc(r, t; r
′t′) into a time-local affair with no memory. One consequence of

this simplification is that, when expressed in Fourier space, the AA xc-kernel is frequency

independent. Given that it has been shown that the exact xc-kernel carries a strong frequency

dependence near a double excitation,26,27 adiabatic xc-kernels are thus not appropriate or

accurate for doubly excited states. In practice, the failure of the AA in describing doubly

excited states also creates difficulties for other excitations, especially in the context of CT.

As pointed out by Ziegler and coworkers,28,29 another consequence of the AA is that it fails

to account for relaxations in the occupied orbitals that are not involved in the excitation.

The orbital shapes for the particle and hole are relaxed by TDDFT, but the other orbital

shapes are not, at least not when the AA is being used. An intuitive way to see this in

light of the double excitation limitation is to consider that, after the single excitation itself,

the leading order term in the Taylor expansion of a fully orbital-relaxed singly excited state

is a linear combination of doubly excited determinants. Since CT excited states undergo

substantial charge deformations and changes in dipole when compared to the ground state,

allowing all of the orbitals to relax during the excitation is crucial.30 Without full relaxation,

errors in CT excitation energies often reach multiple eVs,10 even when RSH functionals are

employed. In sum, it would be highly desirable to have an excited state methodology that

benefits from DFT’s highly efficient incorporation of correlation effects but that is free from

the difficulties created by the AA and EA/IP imbalances.

It is worth noting that within generalized KS (e.g. when using global hybrid or RSH

functionals) the IP/EA imbalance can be partially resolved without going beyond the AA.

For example, as one increases the degree of Hartree-Fock exchange in the xc functional, the

LUMO orbital energy becomes more firmly related to an EA. In the limit of using 100% HF

exchange and 0% correlation, TDDFT becomes equivalent to time-dependent HF (TDHF)

and the LUMO energy becomes the HF EA (the correct 1/R dependence is also achieved,
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although that already happens with RSH approaches). In practice, however, functionals do

not reach this extreme as HF energetics are not desirable, and so even in the generalized

KS context removing the EA/IP imbalance remains challenging. Further, it is important

to remember that even if this issue is resolved within the AA, the lack of orbital relaxation

remains an issue.

In this paper, we present a density functional extension of the ESMF method (DFE-

ESMF). Instead of relying on the linear response formalism and AA of TDDFT, we directly

modify the energy expression of ESMF theory by borrowing key ingredients from KS-DFT.

While this does not lead to a formal density functional theory as it lacks some of the key

properties of ground state DFT, the idea is to exploit density functionals’ proven ability to

add weak correlation effects to an uncorrelated reference wave function. As such correlations

tend to be local, and a local region of a molecule should not be capable of knowing whether

it is formally part of an excited state or a ground state, the hope is that the same ingredients

that allow KS-DFT to capture weak correlation effects will remain effective in the excited

state context. As in the original formulation of ESMF, the energy expression (including the

newly incorporated DFT ingredients) is combined with an excited state variational principle

to achieve excited-state-specific optimization of the orbitals. As we discuss below, this

approach seeks to bypass both the orbital relaxation and EA/IP imbalance issues that show

up in the practical application of TDDFT. In a variety of exploratory calculations, we find

that, when paired with an xc functional with a high degree of exact exchange (necessary to

help alleviate a self-interaction bias stemming from excited states’ more open-shell character),

this DFE-ESMF approach provides an accuracy comparable to TDDFT for simple single-

configuration-state-funciton (single-CSF) valence excitations while far outperforming it in

CT states, even when comparing against a RSH functional. The performance for multi-CSF

single excitations is more mixed, which appears to be caused by double-counting issues as

we discuss in some detail below.

This paper is organized as follows. We begin with a brief review of ground state KS-DFT
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so as to make clear its parallels with our excited state formalism. We then develop the work-

ing equations for the DFE-ESMF method in the context of both single-configurational and

multi-configurational wave functions. We then briefly review the ground state xc functionals

that we employ and discuss concerns about possible double counting problems. At the end

of the theory section, we compare DFE-ESMF with other excited state and multi-reference

DFT methods and also with constrained DFT. Results and discussions are then presented for

a variety of different valence, CT, and Rydberg excitations. We conclude our discussion by

pointing out the merits and drawbacks of the current method, along with possible directions

for future development.

2 Theory

2.1 Ground State DFT

In ground state DFT, the Levy constrained search formulation provides a formally exact

energy functional,3

E[n] = min
Ψ→n

〈
Ψ|T̂ + V̂ee|Ψ

〉
+ Vext[n] (4)

in which T̂ and V̂ee are the kinetic and electron-electron repulsion operators, and Vext[n] is

the external potential. In practice, KS-DFT re-writes this functional as3,4

E[n] = Ts[n] + Vext[n] + J [n] + Exc[n], (5)

in which Ts[n] is the kinetic energy of a fictitious Slater determinant that shares the same

density as the actual interacting system, J [n] is the Hartree part of the electron-electron

repulsion energy, and Exc[n] is the exchange-correlation functional. Considering the common

case of a closed-shell, spin-restricted KS determinant for N electrons, one can re-express the

energy in terms of the orbitals φi(r) for i ∈ [1, 2, . . . , N/2]. The external potential and
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Hartree pieces,

Vext[n] =

∫
υext(r)n(r)dr (6)

J [n] =
1

2

∫
n(r)n(r′)

|r− r′|
drdr′ (7)

are dependent only on the density, which is in turn now determined by the orbitals,4

n(r) = 2

N/2∑
i

|φi(r)|2. (8)

Note that we follow the convention that i, j, k refer to occupied orbitals, a, b, c to virtual

orbitals, and p, q, r, s to all orbitals. In the original KS formulation,4 the xc functional

depends only on density. However, due to the development of generalized KS schemes31,32

and hybrid functionals, it becomes more appropriate to write the xc function as a direct

function of the orbitals,

Exc[n]→ Exc

(
φ1, φ2, . . . , φN/2

)
. (9)

Of course, the KS kinetic energy is also an orbital functional,

Ts[n] = −
N/2∑
i

∫
φi(r)∇2φi(r)dr. (10)

With this orbital-based formulation, one then minimizes Eq. (5) under the constraint that

the orbitals remain orthonormal in order to arrive at the KS orbital eigenvector equation,

F̂
KS
φi = εiφi, (11)

in which F̂
KS

is the KS Fock operator.

Crucially, we note that the same energies, orbitals, and densities are arrived at if one
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performs the minimization

E = min
X

{
Ts[n] + Vext[n] + J [n] + Exc

(
φ1, φ2, . . . , φN/2

)}
(12)

in terms of the elements of the anti-Hermitian matrix X that transforms some initial or-

thonormal set of orbitals (such as those that diagonalize the one-electron parts of Ĥ) into

the final KS orbitals.

φp(r) =
∑
q

[
eX
]
pq
φ(0)
q (r) (13)

Given ESMF’s similarities to HF, it is worthwhile to write the HF energy in this same

form.

E
HF

= min
X

{
Ts + Vext + J + Ex

}
(14)

Here Ex is the HF exchange energy

Ex = −
∑
ij

(ij|ji) (15)

which we have expressed in terms of the two-electron integrals in the relaxed orbital basis.

(pq|rs) =

∫ ∫
φp(r)φq(r)φr(r

′)φs(r
′)

|r− r′|
drdr′ (16)

By comparing Equation 12 and 14, KS-DFT can be seen as the pairing of a minimally-

correlated ansatz (the Slater determinant) and a variational principle (the total energy) in

which the energy expression within the latter has been augmented by modifying the exchange

term. To formulate DFE-ESMF, we will follow a similar route, but with the ESMF wave

function as the minimally-correlated ansatz and using an excited state variational principle

instead of simple energy minimization.
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2.2 DFE-ESMF: Single-CSF Formalism

In ESMF, excited states are targeted by applying the following Lagrangian form of an excited

state variational principle,1

L =
〈

Ψ|(ω − Ĥ)2|Ψ
〉
− µ · ∂E

∂ν
(17)

Here ω is an energy used to select which excited state is being targeted, ν is the vector of

variational parameters within the ansatz, and µ is a vector of Lagrange multipliers by which

we constrain the the minimization of L so that it must converge to an energy stationary

point. In essence, the first term in L is a rigorous excited state variational principle with the

energy eigenstate closest to ω as its global minimum, but because approximate ansatzes will

prevent us from reaching this minimum, we add the energy stationarity constraint to ensure

that at least this important property of exact excited states is maintained. In other words,

the idea is for the first term to drive the optimization to the energy stationary point that

best corresponds to the desired excited state. In preliminary work on ESMF,1 it has been

found that computationally tractable approximations to this Lagrangian

L̃ = (ω − E)2 − µ · ∂E
∂ν

(18)

are in practice effective at achieving the same goal, and so for expediency’s sake we will

adopt L̃ as our working variational principle for DFE-ESMF.

Before augmenting the ESMF energy expression with density functional components, we

should consider the choice of the wave function ansatz used in ESMF. To start, consider a

singly excited configuration state function (CSF), which is perhaps the simplest spin-pure

excited state ansatz.

|Ψa
i 〉 =

1√
2

(
a+
a ai |Ψ0〉 ± a+

ā aī |Ψ0〉
)

(19)

This is a superposition between alpha (i→ a) and beta (̄i→ ā) excitations from the closed
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shell Slater determinant Ψ0 in which the excitations both occur within the same pair of

spatial orbitals {i, a}. The sign determines whether the excitation is a singlet or triplet,

and although we will develop the mathematics for the singlet case below, the triplet is

equally straightforward. As in the ground state presentation above, the (spin-restricted)

molecular orbitals will be defined via an anti-Hermitian matrix X as in Eq. (13), but with

the corresponding ground state KS-DFT orbitals now acting as the initial orbitals φ(0) and

X encoding excited-state-specific relaxations. This single-CSF ansatz leads to the electron

density

nia(r) = |φa(r)|2 − |φi(r)|2 + 2

N/2∑
k

|φk(r)|2 (20)

and a one-body reduced density matrix (1RDM) P that is diagonal in the basis of the relaxed

molecular orbitals.

Pkj = 2δkj − δkiδji

Pbc = δbaδca (21)

Pjb = Pbj = 0

The ESMF kinetic energy can be computed as

Tia =
〈

Ψa
i |T̂ |Ψa

i

〉
= Tr [P

AO
T

AO
] (22)

where PAO is the 1RDM rotated into the atomic orbital basis, and T
AO

are the kinetic energy

integrals in that basis. Likewise, the external potential contribution may be evaluated as

V ext
ia = Tr [P

AO
h

AO
] (23)

where hAO are the corresponding one-electron integrals.

Turning our attention now to the electron-electron repulsion energy, we start with the
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Hartree term, which for this singlet CSF’s density is

J [nia] =
1

2
(ii|ii) +

1

2
(aa|aa) − (aa|ii)

+ 2
∑
kj

(kk|jj) + 2
∑
j

(
(aa|jj)− (ii|jj)

)
, (24)

For hybrid functionals, we will need a definition for the wave-function-based exchange energy

(i.e. an excited state analogue of HF exchange), which we choose to arrive at by making the

usual index exchanges in the two-electron integrals of the corresponding Hartree term.

E
x(wfn)
ia = − 1

2
(ii|ii) − 1

2
(aa|aa) + (ai|ia)

−
∑
kj

(kj|jk) −
∑
j

(
(aj|ja)− (ij|ji)

)
(25)

Now, for the closed shell Slater determinant used in KS-DFT, the Hartree term (Equation 7)

and the wave-function exchange term (Equation 15) sum to the electron-electron repulsion

energy of the Slater determinant. However, things are not so simple in the excited state, and

even for this single-CSF singlet wave function, the full wave-function-based electron-electron

repulsion energy contains one additional term:

Eee
ia ≡ 〈Ψa

i | V̂ee |Ψa
i 〉 = J [nia] + E

x(wfn)
ia + (ai|ia). (26)

For the triplet CSF, we have a similar situation, but the additional term takes on the opposite

sign:

E
ee(triplet)
ia = J [nia] + E

x(wfn)
ia − (ai|ia). (27)
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This extra term, which we will denote as the wave function correlation energy (WFCE)

EWFCE
ia = ±(ai|ia), (28)

determines the singlet-triplet splitting and arises from the fact that V̂ee connects the two

different terms in our CSF.

The energy of the wave function in Equation 19 is then the sum of the kinetic energy,

the external potential, Hartree and exchange energy, and WFCE:

Ewfn
ia = Tia + V ext

ia + J [nia] + E
x(wfn)
ia + EWFCE

ia . (29)

In the same way that one can arrive at KS-DFT starting from HF by replacing the exchange

term with an exchange correlation functional (which converts Equation 14 into Equation

12), we now replace the exchange term in our excited state wave function energy in order to

arrive at the energy expression for single-CSF DFE-ESMF.

Eia = Tia + V ext
ia + J [nia] + Exc

ia + EWFCE
ia (30)

Note especially that the WFCE term is retained. As this term originates from a strong cor-

relation effect (the two electrons involved in the excitation are taking care to never be in the

same orbital at the same time), we assume that it will not create significant double count-

ing issues when used in conjunction with standard formulations of ground state exchange-

correlation functionals, as these are geared towards weak correlation and are not designed

to capture open-shell spin recoupling correlations. In ground state KS-DFT, EWFCE = 0

and HF is recovered by using a functional with no correlation and 100% HF exchange. The

analogous property is maintained by DFE-ESMF: when using a functional consisting soley

of 100% wave function exchange as defined in Equation 25, the DFE-ESMF energy reverts

back to the ESMF expression for a single CSF’s energy.
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As in ESMF theory, the minimization of Eq. (18) requires the evaluation of certain sums

over the second derivatives of our energy expression. Although the density functional energy

expression of Eq. (30) differs from that of ESMF theory, we can exploit the same automatic

differentiation (AD) approach in order to perform the optimization at a cost whose scaling

with system size is the same as a ground state KS Fock build. For an explanation of how

this is achieved, we refer the reader to the original ESMF paper.1 As in that case, we have

formulated our pilot code using the convenient AD capabilities of the TensorFlow frame-

work33 and have carried out the minimization via a quasi-Newton approach.34 In addition

to what is necessary for ESMF, this requires AD through the grid integration involved in

density functional components such as the LDA exchange and correlation terms, which we

have now achieved with the correct scaling.

2.3 DFE-ESMF: Multiple-CSF Formalism

In cases where a state contains major contributions from multiple different single excitations,

we may generalize the approach into a multi-CSF form with a wave function similar to

configuration interaction singles (CIS),35

|ΨMCSF〉 =
∑
ia

cia |Ψa
i 〉, (31)

in which we still relax the orbitals as above. In this case, the density becomes

n
MCSF

(r) = 4
∑
ia

|cia|2
∑
k

|φk(r)|2 + 2
∑
iab

ciacibφa(r)φb(r)

− 2
∑
ija

ciacjaφi(r)φj(r) (32)
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and the 1RDM in the relaxed MO basis is no longer diagonal.

Pij = δij −
∑
a

ciacja

Pia = Pai = 0

Pab =
∑
i

ciacib

(33)

Nonetheless, we can still take the KS approach and evaluate both the kinetic energy and

external potential via the wave function’s 1RDM using Eqs. (22) and (23).

Although the one-electron components are quite similar to the single-CSF approach, the

electron-electron repulsion energy is less straightforward. In order to define the Hartree

term, one possibility is to use the density from Eq. (32) in the standard J [n] form of Eq.

(7). However, doing so introduces unphysical virtual-virtual Coulomb repulsion terms in the

form of (aa|bb), similar to the ghost interactions encountered in ensemble DFT. In order to

avoid these in the multi-CSF case, we generalize the Hartree term as the weighted statistical

average of the Hartree terms from each separate CSF as given in Eq. (24).

JMCSF ≡
∑
ia

|cia|2J [nia] (34)

If we now apply the index-exchange approach, we simply arrive at an “exact” wave function

exchange that is the weighted average of the single-CSF pieces from Eq. (25).

E
x(wfn)
MCSF ≡

∑
ia

|cia|2Ex(wfn)
ia (35)

As before, the Hartree and exchange pieces do not add up to the full wave function electron-

electron repulsion energy,

〈Ψ| V̂ee |Ψ〉 = JMCSF + E
x(wfn)
MCSF + EWFCE

MCSF , (36)
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and the additional correlation effects are now more involved.

EWFCE
MCSF = 2

∑
iajb

ciacjb[2(ai|jb)− (ab|ji)]

+
∑
abi

ciacjb[
∑
k

4(ab|kk)− 2(ak|kb)]

−
∑
ija

ciacja[
∑
k

4(ij|kk)− 2(jk|ki)]

+
∑
ia

|cia|2
∑
k

[−4(aa|kk) + 2(ak|ka) + 4(ii|kk)− 2(ik|ki)]

+
∑
ia

|cia|2[2(aa|ii)− 2(ai|ia)]

(37)

Using the same logic as before (although see Section 2.4 regarding double counting con-

cerns), we define the multi-CSF density functional form for the energy in Eq. (18) to be

EMCSF = T + Vext + JMCSF + Exc + EWFCE
MCSF (38)

in which the T and Vext are as in Eqs. (22) and (23) but with the multi-CSF 1RDM, and

Exc is as in the ground state functional but with the density taken from Eq. (32) and the

wave function exchange component set to E
x(wfn)
MCSF .

2.4 Double Counting Problems

The DFE-ESMF energy, in both the single and multiple CSF formalisms, contains correlation

terms that do not exist in the energy expression of ground state DFT. However, one potential

problem of adding these correlation terms into the energy formula as we have done is that,

in principle, they could be accounted for again in the xc functional, leading to a double

counting problem. In the single-CSF formalism, the WFCE term (ai|ia) arises completely

due to the fact that the wave function contains two determinants with equal weights. Such

a strong correlation effect is (typically) not built in to practical forms for Exc which instead

aim to include weak correlation effects.36 Therefore, we do not expect to have significant
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double counting problems in the single-CSF case.

However, if one employs the full CIS-style multi-CSF formalism, the wave function defi-

nitely includes both some kinetic energy correlation effects and some electron-electron inter-

action correlation effects. In order to illustrate this, consider the case where the multi-CSF

expansion is dominated by one CSF with an excitation between the ith and ath orbitals.

We can treat this dominant piece as the zeroth-order reference in a perturbative expansion.

As some other singly-excited CSFs are coupled to this reference by T̂ and even more by

V̂ee, such couplings would be part of any 2nd-order perturbation correction starting from

this reference. Thus, a simple Moller-Plesset-style argument suggests that many and per-

haps most of the contributions within EWFCE
MCSF would be part of the system’s weak correlation

physics and so at significant risk of double counting within our multi-CSF formalism. Indeed,

in early testing, we found that excitation energies with the full multi-CSF formalism were

worse than those from the single-CSF formalism, which we now understand was primarily a

double counting issue.

In order to avoid this problem, one might try to separate contributions from the weak

and strong correlations within the multi-CSF expansion. Although there is no unique way

to do this, we have for now taken the expedient approach of including in our multi-CSF

expansion only those CSFs whose TDDFT coefficients are above a threshold. While it may

become clear once more data is available what the least-bad threshold choice would be, we

have for now set this threshold at a relatively large value of 0.2 to help ensure that retained

CSFs are playing a larger-than-perturbative role in the excitation and are therefore more

likely to contribute energetic correlation effects of the type that are not built in to common

density functionals. For simplicity, and in contrast to ESMF theory, we do not optimize these

coefficients in our minimization of L̃ and instead hold them fixed at their TDDFT values.

Admittedly, such a 0.2 threshold will become troublesome in cases where the excited states

are composed of a large collection of excitations, such as plasmons. Therefore, developing

alternative approaches to avoid the double counting problem will be highly desired in future

17



developments of DFE-ESMF.

2.5 Discussion of DFE-ESMF

It is important to note that the DFE-ESMF method in its current form is not an excited

state generalization of the ground state KS-DFT. Based on the Hohenberg-Kohn theorem, 3

which establishes a one-to-one mapping between external potential and density, the ground

state energy depends solely on density. However, it has been shown37 that such a one-to-one

mapping between external potential and density does not exist for excited states. Therefore,

the excited state density alone can not uniquely determine its energy. The simplest example

would the singlet and triplet excited state of a given configuration. These two states have

the same density, but different energies. In previous developments that try to generalize the

ground state KS-DFT to excited states, Levy and Nagy use bi-functionals38 that depends on

both excited state and ground state density, and Görling uses totally symmetric part of the

density39 and a generalized adiabatic connection scheme,40,41 in order to enforce the correct

symmetry of excited states. Thus, we suggest that it is more useful to view DFE-ESMF as

a practical extension to ESMF rather than as a formal density functional theory. That said,

DFE-ESMF does share some similarities with the exact generalized adiabatic connection

(GAC) approach.41 Both methods use a symmetry-determined linear combination of Slater

determinant to compute kinetic energy, external potential, and exchange energy. In addition,

both methods try to enforce the correct excited state symmetry. In DFE-ESMF, the excited

state symmetry is taken care by the WFCE term, while GAC uses the symmetrized density.41

In the context of spin symmetry, it is important to note that the WFCE term is es-

sential for our optimization approach. Without this term, singlet and triplet excited states

formulated by the same excitation have the same density and energy. Consequently, our

energy-based excited state variational approach would not be able to distinguish these two

states and its results would be arbitrary. As discussed before, the difference between sin-

glet and triplet states is encoded in the WFCE term, and adding this term to the energy
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expression greatly helps the optimization procedure to pick the desired state.

At present, DFE-ESMF uses functionals developed for ground state to treat excited

states. While there is no reason to think that this approach is optimal, it is a very com-

mon procedure to treat excited states using ground state functionals. For example, the

aforementioned GAC approach, the ∆ self-consistent field (∆SCF) method,42 constricted

variational density functional theory,43 and spin-restricted ensemble-referenced Kohn-Sham

method (REKS)44 all use ground state functionals to describe excited states. While it may

in future be worthwhile to develop functionals specifically for use with DFE-ESMF, we do

not explore this direction here.

Although we do use ground state functionals, it is important to distinguish the present

approach from the use of such functionals in TDDFT via the AA. First, the AA is a statement

about the time dependence of the exchange correlation kernel, which has no direct analogue

in DFE-ESMF, as it is a time-independent theory. Second, the AA, when combined with LR

theory to produce practical versions of TDDFT, creates issues that are not present in DFE-

ESMF, regardless of whether ground state functionals are employed. Most importantly, the

AA prevents TDDFT from incorporating the effects of orbital relaxations for electrons not

involved in the excitation. Due to its many-electron variational nature, DFE-ESMF explicitly

includes these relaxations, in direct analogy to how ground state KS-DFT variationally

relaxes all the electrons’ orbitals. Thus, although both the AA and the current formulation

of DFE-ESMF lead in practice to the use of ground state functionals for treating excited

states, the approximations being made in these two approaches are distinct.

Finally, it is important to emphasize that state-specific formulations do come with lim-

itations alongside their advantages. As for some other excited state specific DFT methods

discussed in the next section, it is not obvious how to arrive at rigorous transition moments

for DFE-ESMF. Although one could simply define these in terms of the underlying wave

function and the ab initio Hamiltonian, this approach would miss the fact that the states

have been optimized based on a DFT-modified energy expression, creating a disconnect be-
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tween the evaluations of energy differences and transition strengths. Another issue with state

specific methods is that they do not in general satisfy known sum rules and sum-over-state

expressions.3 Thus, although the approach pursued here possesses some formal advantages

when compared to TDDFT, it also suffers from some formal disadvantages.

2.6 Comparisons to Other State-Specific DFT Methods

DFE-ESMF is not the first attempt to combine wave function based methods with density

functionals. For example, multi-reference (MR) DFT methods such as multiconfiguration

Pair-Density Functional Theory (MC-PDFT)45,46 and density matrix renormalization group

pair-density functional theory (DMRG-PDFT)47 also modify a wave function’s energy ex-

pression by using an xc energy functional to capture correlation effects. A major difference

between these methods and DFE-ESMF is that they target strong correlation in ground

states, whereas DFE-ESMF targets weak correlation in singly excited states. Another differ-

ence is that, because CASSCF and DMRG-SCF wave functions already incorporate state-

specific orbital relaxations, the DFT part of their methodology need not address the orbital

shapes. The central feature of DFE-ESMF, on the other hand, is its excited-state-specific or-

bital relaxation. Finally, these MR-DFT approaches use the on-top pair density functional, 48

which is more capable of addressing strong correlation issues.

With regards to variational DFT methods for excited states, many approaches distinct

from DFE-ESMF already exist. The ∆ self-consistent field (∆SCF) approach42 relaxes

excited state orbitals by using the SCF cycle in an attempt to converge onto open-shell

solutions to KS equations, employing the maximum overlap method (MOM) to help avoid

collapsing back to the ground state or to lower-lying excited states.49,50 The related restricted

open-shell Kohn-Sham (ROKS) method51 may also collapse to lower excited states, but its

enforced open-shell nature prevents collapse to the ground state and it has shown advantages

relative to ∆SCF for CT excitations’ singlet-triplet splittings.52 Finally, ensemble DFT in the

form of REKS and SA-REKS optimizes excited state orbitals in a state-averaged manner,
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trading some state-specificity in return for a further reduction in the risk of variational

collapse. In contrast to these approaches, the DFE-ESMF approach makes direct use of

an excited state variational principle. Although this does not rigorously guarantee that

the correct stationary point will be found (all of these variational methods are nonlinear

minimizations with at least some starting point dependence, after all) the global minimum

of the variational principle it employs is the desired excited state, offering a strong formal

advantage in the effort to avoid collapse to lower states. In our preliminary explorations,

we have yet to encounter a case where the optimization does not converge to the stationary

point corresponding to the targeted excited state, even in cases where ∆SCF encounters

variational collapse. It is also worth noting that, although the multi-CSF version of DFE-

ESMF comes with double counting concerns, it can at least be applied to states that strongly

mix two or more excitation components, while ∆SCF, ROKS, and REKS all assume that

excitations are single-component in nature.

The constrained DFT (CDFT) method53 represents another route towards excited state

orbital relaxation that is especially relevant for long range CT, where it is straightforward

to impose physically motivated density constraints in cases where the donor and acceptor

can be clearly identified. As shown by numerous applications, CDFT can provide accurate

estimates of excitation energies,54 coupling elements,55 forces,56 and diabatic surfaces.57 A

particularly strong parallel with DFE-EMSF can be seen in long range CT, where single-CSF

DFE-ESMF is expected to be equivalent to CDFT in the limit of complete donor-acceptor

separation (see for example Figure S1). To understand this equivalence, consider that both

methods will move an electron from the donor’s HOMO to the acceptor’s LUMO and then

make their energy expression stationary with respect to orbital rotations. As the WFCE

term in DFE-ESMF vanishes in the limit of long range CT, the two methods will have the

same energy expression in this case and so will produce the same results. In shorter-ranged

CT where donor and acceptor are less well defined, DFE-ESMF has the formal advantage

of not having to impose a user-specified charge constraint, and so can in principle predict
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the distribution of the particle and hole rather than having it imposed from some external

source. DFE-ESMF also avoids having to worry about the ambiguities inherent to assigning

formal atomic charges and the difficulties these create.53

3 Results

3.1 Computational Details

To assess the performance of DFE-ESMF and to compare to existing excited state DFT

methodologies, we have carried out tests in the following atomic and molecular excitations:

1) singlet and triplet n→ σ∗ in H2O.

2) singlet and triplet n→ π∗ and singlet π → π∗ in CH2O.

3) singlet and triplet σ → σ∗ in LiH.

4) singlet π → π∗ in CO.

5) singlet He 1s→Be 2p in He-Be dimer.

6) singlet NH3 2pz→F2 2pz in NH3-F2 dimer.

7) singlet 2s→3s and 2p→3p in the Ne atom.

All of the DFE-ESMF results are obtained via our own pilot code, which extracts one-

and two-electron integrals from PySCF.58 The Lebdev-Laikov grid59 is used to perform the

numerical integration to compute the xc energy. The TDDFT, CIS, ROKS, and ∆SCF

DFT results were obtained from QChem.60 In ROKS the spin purification techniques61 is

used, and in ∆SCF DFT we report the broken-spin open-shell energy. Equation-of-Motion

Coupled Cluster with singles and doubles (EOM-CCSD) results were computed by MOL-

PRO.62 It is also worth noting that the implementation of ROKS in QChem is limited to

only HOMO→LUMO excitations. In the current study, the CSF expansions in both the

single-CSF formalism and multiple-CSF formalism are selected by the CI vector of TDDFT

using the same xc functional. We choose a large threshold of ε = 0.2 for CSF truncation,

and switch to the multi-CSF formalism of DFE-ESMF when there are more than one CSF
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left after truncation.

For DFE-ESMF, we employ three xc functionals: LDA, the Becke3-Lee-Yang-Parr func-

tional (B3LYP),63–65 and the Becke-Half-Half functional (BHHLYP),66 which have 0%, 20%,

and 50% wave function exchange fractions, respectively. We expect results to be somewhat

sensitive to this fraction, as ground and excited states have different amounts of open shell

character and thus are likely to suffer from differing degrees of self-interaction error. As

existing functionals have mostly been optimized for closed shell ground states, it would not

be surprising if a higher than usual wave function exchange fraction was necessary to create

a fair playing field for the open-shell state. Note that our excitation energies come from

energy differences between DFE-ESMF (for the excited state) and KS-DFT (for the ground

state) in which both have used the same xc functional.

For basis sets, we employed the cc-pVDZ basis67 for H2O, CH2O, LiH, and CO, the cc-

pVTZ basis68 for the He-Be dimer, the aug-cc-pVTZ basis68 for Ne, and the 6-31G basis69

for the NH3-F2 dimer. Results will be presented in terms of excitation energy errors relative

to EOM-CCSD. The molecular geometries and absolute values of excitation energies can be

found in the Supplemental Information.

3.2 Excited State Dipole Shifts

Before presenting the results of DFE-ESMF, we first categorize the excited states into CT

and non-CT types by computing the difference between the ground and excited state dipole

moment. In atomic units, the dipole moment is

~µ =
∑
A

ZARA −
∫

rn(r)dr (39)

in which ZA and RA are the charge and position of the Ath nuclei. For simplicity, the

electron density for excited states is estimated using Equation 20 using ground state KS

orbitals without any relaxation. The dipole moment difference (—∆~µ—) between the ground
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and excited state yields information about the electron charge distribution between these

two states.

The computed —∆~µ—s are shown in Figure 1. For Ne, H2O, and the n → π∗ state in

CH2O, the —∆~µ— are fairly small, indicating that the charge distributions are similar for

the ground and excited states. These states can thus be viewed as purely Rydberg (Ne) and

valence (H2O, CH2O) excited states with little charge deformation. As expected, the long-

range CT excited states18,70 of He-Be and NH3-F2 have a significantly larger —∆~µ—. Note

that LiH also sees significant charge deformations, which are a consequence of its partially

ionic nature in which the bonding and anti-bonding orbitals are shifted towards opposite

ends of the molecule.

0 5 10 15 20 25 30
Dipole Moment Difference (Debye)

Ne 2p 3p

Ne 2s 3s

H2O

CH2O n

CO

CH2O 

LiH

He-Be

NH3-F2

Figure 1: The norms of the dipole moment differences between ground and excited states.
The BHHLYP functional is used in all dipole calculations.

3.3 Single-CSF Excited States

Let us begin with an analysis of how the theory performs for excited states dominated by a

single CSF, looking at different types of excitations within this category. We will look first

at valence excitations, followed by CT states and finally Rydberg excitations. These cases

covered, we will then consider states that contain a superposition of multiple CSFs.
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3.3.1 Valence Excitations
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Figure 2: The excitation energy error of singlet (left) and triplet (right) n → σ∗ excited
states in H2O compared to EOM-CCSD results.
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Figure 3: The excitation energy error of singlet (left) and triplet (right) n → π∗ excited
states in CH2O compared to EOM-CCSD results.

Excitation energy errors relative to EOM-CCSD for H2O and CH2O are shown in Figures

2 and 3, respectively. Compared to the CT examples in the next section, TDDFT performs

relatively well for these valence excitations, with B3LYP and especially BHHLYP providing

excitation energies within about half an eV of the reference and LDA performing only a little

worse. These relatively good TDDFT results are not particularly surprising in light of the
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fact that the charge density deformations are small, and so the lack of orbital relaxation due

to the AA is not especially concerning. In fact, we have explicitly analyzed the importance

of orbital relaxation by evaluating the Frobenius norm of the DFE-ESMF orbital rotation

matrix X. Averaging over the three values from the three different functionals tested, we

find ||X|| to be 0.16 and 0.15 for H2O and CH2O, respectively, which is smaller than in the

CT examples we will see below.

The basic trend in DFE-ESMF accuracies for different functionals follows that of TDDFT

in these excitations, with BHHLYP giving the most accurate predictions, followed by B3LYP

and then LDA. As we will see, the accuracy ordering for different functionals in DFE-ESMF

plays out is the same way in most of our test systems, with BHHLYP’s high fraction of wave

function exchange outperforming the other two functionals in valence, CT, and Rydberg

states. Our understanding of this trend is that a larger fraction of wave function exchange

is most likely helping to balance self-interaction errors in the ground and excited states. We

expect that these errors are larger in the excited states due to their open-shell nature, and

so a higher fraction of wave function exchange than is typically used in ground state models

appears to be helpful for balancing these errors between the ground and excited states. We

should emphasize that in all of our DFE-ESMF results, energy differences were evaluated

based on the same functional for both ground and excited states, but using the density

and wave function exchange definition for the state in question (see discussion surrounding

Eq. (30)). Although this preliminary test of four single-CSF valence excitations is far from

exhaustive or systematic, the efficacy of DFE-ESMF/BHHLYP in these cases provides an

encouraging proof of principle.

For singlet excited states, we also compare to the predictions of ROKS, which, like DFE-

ESMF, provides excited state orbital relaxation. The most striking difference between the

ROKS results and those of TDDFT and DFE-ESMF is that they do not follow the same

trend with respect to the fraction of wave function exchange. Indeed, the accuracy ordering

differs in H2O and CH2O, with LDA seeming to offer the best average ROKS performance.
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Note that we have not carried out ROKS comparisons in the triplet states because QChem

currently only implements ROKS for singlet states.

3.3.2 Charge-Transfer Excitations

Although DFE-ESMF and TDDFT provide similar accuracies in the simple valence excita-

tions discussed above, the story is very different for CT excitations. Before looking in detail

at the numerical CT examples, it is worth considering two important potential sources of

error TDDFT faces in CT contexts, which we will refer to as the EA/IP imbalance and the

orbital relaxation error. To see these clearly, consider a simple CT excitation consisting of a

single i→ a transition, in which case the TDDFT excitation energy is given by71

∆E(i→ a) = εKS
a − εKS

i + 〈ia|fxc|ia〉 (40)

in which εKS
i and εKS

a are the ground state KS orbital energies of the donor and accep-

tor orbitals, respectively. This equation has been used extensively10,16,25,26 to analyze the

TDDFT’s failure in CT excited states and we refer readers to those references for details. In

a nutshell, because εKS
a does not correspond to the EA of the acceptor (it undercounts the

new repulsions created by the extra electron), the orbital energy difference in this equation

tends to severely underestimate CT excitation energies. In principle this should be repaired

by the xc term, and it has been shown that a fully non-adiabatic frequency-dependent xc

kernel, such as the time-dependent exact exchange (TDEXX),72 is able to produce the nec-

essary corrections.25 However, once the AA is applied, the loss of frequency dependence in

the kernel leads to corrections that are too small with existing functionals, even RSHs.

While the EA/IP imbalance is a significant concern, it is typically offset in practice by the

fact that AA TDDFT works with unrelaxed orbitals. It is well known in electronic structure

theory that the omission of orbital relaxation effects tends to raise the energy of the excited

state. For example, configuration interaction singles (CIS), which is free from the IP/EA
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imbalance problem because of Koopmann’s theorem, usually overestimates the CT excitation

energy by more than 1eV due to the lack of orbital relaxation.73 Ideally, the third term in

Equation 40 would eliminate both orbital relaxation issues and the EA/IP imbalance, but

even when the third term is zero, these two errors do at least work to cancel each other

because they push in opposite directions. However, the EA/IP imbalance in long-range

CT is often much too large for orbital relaxation errors to counteract, resulting in TDDFT

excitation energies that are much too low as in the NH3 →F2 and He→Be transitions shown

below. However, as one moves to increasingly shorter range CT with correspondingly larger

overlaps between the donor and acceptor, the EA/IP imbalance becomes less and less of an

error and more and more a positive feature of the TDDFT formalism. Indeed, in the valence

excitation limit, the difference in how DFT accounts for electron-electron repulsion energy

in the occupied and virtual orbitals increases the accuracy of using orbital energy differences

as excitation energy estimates, because in this limit the “donor” and “acceptor” are one and

the same. One can imagine that for very short-ranged CT, any small remaining errors from

the EA/IP imbalance could cancel with orbital relaxation errors precisely enough for the

exchange correlation term to clean up the details. Such an effect seems to be at work in LiH,

to which we now turn our attention, which despite having a substantial dipole change and

thus CT is nonetheless treated well by TDDFT.

LiH Figure 4 shows excitation energy errors for the lowest singlet and triplet excitations

in LiH. For both of these states, the balancing process between EA/IP issues and missing

orbital relaxations appears to work in TDDFT’s favor, especially in the case of the BHHLYP

functional. To check that such a trade off really does appear to be at work here, we again

evaluated ||X|| as a measure of orbital relaxation importance and found it to be 0.41, signif-

icantly higher than for H2O or CH2O. As in the valence states of those molecules, BHHLYP

is also very effective in DFE-ESMF’s single-CSF formalism for LiH’s singlet excitation. For

the triplet, however, the single-CSF formalism shows relatively poor accuracy regardless of
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Figure 4: The excitation energy error of singlet (left) and triplet (right) σ → σ∗ excited
states in LiH compared to EOM-CCSD results.

functional, and indeed this state has more than one CSF above our ε = 0.2 threshold in

TDDFT. When we include both of the CSFs whose coefficients breach this threshold via the

multi-CSF approach, the DFE-ESMF/BHHLYP result improves from an error above 0.4 eV

to an error of just -0.02 eV relative to EOM-CCSD. Note that the multi-CSF approach has

no effect on the singlet state, as in that case only the primary CSF was above the threshold.

NH3 to F2 We now turn our attention to the first of two long-range CT excitations: the

NH3-F2 dimer shown in Figure S1. In Figure 5, we see that, after excited-state orbital

relaxation via the minimization of Eq. (18), DFE-ESMF is substantially more accurate than

TDDFT regardless of the functionals chosen. Even when comparing ESMF-LDA against

TDDFT with the ωB97X RSH, the variational approach makes an excitation energy error

roughly half as large. Using BHHLYP, which continues to outperform the others for DFE-

ESMF, the variational approach achieves an excitation energy error of just 0.26 eV, compared

to multi-eV errors for TDDFT when using either ωB97X or BHHLYP.

Although this excited state is predominantly a HOMO→LUMO excitation, we find that

ROKS consistently collapses to a lower excited state (see the Supplemental Information

for absolute excitation energies). Hence, we compare our results to MOM ∆SCF instead.
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We found that ∆SCF DFT yields similarly accurate predictions as DFE-ESMF. This is as

expected since ∆SCF DFT are known to perform well in long-range CT excited states, if

the states are dominated by one CSF.

It would appear that TDDFT’s error cancellation between its EA/IP imbalance and its

lack of orbital relaxations breaks down here, with the magnitude of the former overwhelming

that of the latter. We can verify this picture in two ways: first, with the DFE-ESMF

approach, and second, by looking at ground state KS-DFT IP-EA estimates at very long

range. Start with DFE-ESMF. At the top of Figure 5, we show the excitation energies (i.e.

the energy differences between Eq. (30) and the ground state KS energy) before the DFE-

ESMF orbital optimization has been carried out, meaning that the excited state DFE-ESMF

energy is being evaluated using the ground state KS orbitals. This excitation energy is thus

the difference between two many-electron DFT energies (one DFE-ESMF and one KS-DFT)

and so does not suffer from the EA/IP imbalance. While the EA/IP issue has thus been

removed, orbital relaxation effects have yet to be included, and as expected the excitation

energies are now too large. When we then relax the orbitals (||X || = 0.21), we see in the

middle of Figure 5 that the predicted excitation energies decrease to more accurate values.

Thus, by looking step-wise at how DFE-ESMF changes the energy from TDDFT, we can

watch the staged removal of first the EA/IP imbalance and then the fixed-orbital error. This

process appears to confirm the idea that TDDFT suffers from both, and that in long-range

CT the EA/IP part dominates, leading TDDFT to underestimate the excitation energy.

We can corroborate this view by moving the molecules to a very large distance and

comparing DFE-ESMF, TDDFT, and a simple difference of ground state KS energies between

the cation, anion, and neutral species that provides a many-electron evaluation of the IP

and EA. At very long distance, Figure 6 shows that the performance of DFE-ESMF and

TDDFT is quite similar to what we saw at the shorter separation. At the bottom of the

figure, we see that if we simply perform four single-molecule ground state KS calculations

for the donor cation, acceptor anion, and the two neutral species, the resulting difference
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Figure 5: Comparison of excitation energy errors relative to EOM-CCSD for the NH3 2pz
→F2 2pz CT excitation at an intermolecular separation of 6 Å. For DFE-ESMF, we show
the results both before and after the orbital relaxation is performed.

between the IP and EA is a very accurate predictor of the charge transfer energy, as we

would expect from previous work on CDFT. Thus, if both the IP/EA imbalance born of

single-particle orbital energy differences and the orbital relaxation errors are removed via

this ground state KS approach or by CDFT, accuracy is restored. The key point is that,

unlike these approaches, the DFE-ESMF formalism should allow both of these issues to be

addressed even in systems where clear-cut foreknowledge distinguishing between the donor

and acceptor is not available, and without having to worry about the spin-symmetry breaking

inherent to ∆SCF.

He to Be In our second long-range CT example, we investigate the excitation from the

He 1s orbital to the Be 2pz orbital as a function of the distance between the atoms. In

Figure 7, we see the familiar failure of local functionals and simple hybrids to predict the

correct 1/R trend in the excitation energy. While this problem is repaired by the use of a

RSH, we see that absolute accuracy is still poor, at least for the specific ωB97X functional

we tested here. As in the previous example, DFE-ESMF out-performs the accuracy of the

RSH regardless of which functional it is paired with while also correctly capturing the 1/R

behavior. The advantage of DFE-ESMF becomes especially clear when looking at the non-
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Figure 6: Excitation energy errors relative to EOM-CCSD for the NH3 2pz →F2 2pz CT
at a 120 Å intermolecular separation. ωB97X-IPEA refers to the difference between (a) the
sum of ground state KS energies for the donor cation and acceptor anion and (b) the ground
state KS energy of the neutral ground states.

parallelity error (NPE) plotted in Figure 8. NEP is defined as the difference between the

largest and smallest errors relative to EOM-CCSD across the distance coordinate. DFE-

ESMF with LDA, B3LYP, and BHHLYP all produce NPEs below 1eV, as compared to an

NPE of almost 2 eV for TDDFT with the ωB97X functional. In Figure 8 we also plot the

shifted root-mean-square (RMS) error. Shifted RMS error is calculated by first shifting the

PES in Figure 7 so that the excitation energy at 8 Å matches the prediction of EOM-CCSD,

and then computing the RMS error along the shifted PES. Unlike NPE, shifted RMS error

is less affected by the repulsive regime and we find it to be significantly smaller than NPE

for all methods. Even so the shifted RMS error of TDDFT with the ωB97X functional (0.29

eV) is still much larger than that of DF-ESMF, which is around 0.1 eV.

While ∆SCF produces a visibly not-smooth curve when when paired with the LDA

functional (possibly due to variational collapse issues), its performance with B3LYP and

BHHLYP is quite good. In the long-range limit these potential curves overlap that of EOM-

CCSD and their shifted RMS error is comparable to DF-ESMF, although accuracy is a

bit lower at shorter ranges where the broken spin symmetry is expected to matter more.

Consequently, the NPEs of ∆SCF with the hybrid functionals are a bit larger than those of
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DFE-ESMF, but a major improvement over TDDFT.
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Figure 7: Comparison of He 1s→Be 2p CT excitation energy as a function of R(He-Be)
between DFE-ESMF, TDDFT, ∆SCF, and EOM-CCSD.
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Figure 8: Left: Comparison of non-parallelity errors in the He 1s→Be 2p CT excitation
energy. Right: Comparison of shifted root-mean-square errors in the He 1s→Be 2p CT
excitation energy.

3.3.3 Rydberg Excitations

Unlike in CT excitations, it is not obvious that the ability of DFE-ESMF to address the

EA/IP imbalance and orbital relaxations will be of great benefit in the context of Rydberg

excitations. In these states, the challenge faced by TDDFT arises primarily from the failure
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of practical xc functionals to produce a potential that decays as 1/r at large distances,

which is not the same as the failure of error cancellation that causes trouble in the CT case.

However, work by Van Voorhis74 has shown that although the ground state xc potential

has little resemblance to the exact potential, the xc potential associated with an excited

state density can behave much more sensibly at long distance. Thus, it is interesting to ask

whether DFE-ESMF’s inherently excited state nature and its ability to relax the orbitals in

an excited-state-specific manner may in practice lead to improvements for Rydberg states.

As an initial probe of this question, we have studied the 2s→3s excitation in the Ne atom.

The excitation energy error relative to EOM-CCSD is plotted in Figure 9. As expected,

TDDFT drastically underestimates the excitation energy by as large as 8.21eV using LDA

and 2.94eV using BHHLYP. Notably, although our DFE-ESMF method is able to reduce the

error of TDDFT by some amount, it is still very far from being quantitatively accurate. The

most accurate functional in DFE-ESMF, the BHHLYP functional, still underestimates the

excitation energy by 2.74eV. Although there is no dipole change in this excitation, the charge

deformation in Rydberg states is still large since the virtual orbitals are much more diffuse

than and share little overlap with the occupied orbitals. Consequently, the averaged ||X|| is

as large as 0.25, comparable to that of CT excitations, indicating that orbital relaxation is

also important in Rydberg excitations.
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Figure 9: Comparison of excitation energy error of the Ne 2s → 3s transition.
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As discussed in the previous subsection, the main source of error in DFE-ESMF is the

self-interaction error with approximate xc functionals: The functional parametrized for the

ground state is incapable of correcting the self-interaction error of the excited electron re-

siding in virtual orbitals. This problem is not too concerning in valence excitations since

the occupied and virtual orbitals have similar characters, and hence similar amount of self-

interaction. Therefore thanks to error cancellation, balanced description between the ground

and the excited states can still be achieved. However, in Rydberg states, the virtual orbitals

are much more diffuse than the occupied orbitals. Consequently, the amount of SIEs left

in J [n] after adding the UEG exchange energy EUEG
x [n] to it, as in LDA, becomes clearly

different in the occupied and virtual orbitals. This results in an unbalanced treatment be-

tween the ground and the excited state if one uses the same xc functionals for both states,

leading to a large error in this Rydberg excitation energy. In future, testing asymptotically

corrected functionals in DFE-ESMF would appear to be warranted.

The unbalanced treatment of SIEs should not be exclusive to DFE-ESMF and could affect

∆SCF DFT as well, since it also uses ground state functionals to describe excited states. In

fact, in Figure 9 we found that the size and trend of errors of ∆SCF DFT with different xc

functionals is quite comparable to DFE-ESMF, corroborating our speculations. In this case,

the recovery of spin-symmetry in DFE-ESMF does not appear to have had much effect on

the excitation energy.

3.4 Multi-CSF Excited States

We now turn our attention to states in which multiple CSFs are important. While DFE-

ESMF can be formulated to treat such states and thus may be expected to offer a significant

advantage over single-determinant methods such as ∆SCF, such optimism must be tempered

by the increased risk of making double counting errors and the complication of needing a

way to choose the values of the CI coefficients. As we see in the following subsections, these

issues result in the present formulation of DFE-ESMF being less effective in the multi-CSF
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case than it was in the single-CSF cases discussed above.

CH2O The π → π∗ excited state in CH2O contains significant contributions from two ex-

cited CSFs: HOMO-1→LUMO and HOMO→LUMO+2. In contrast to LiH, where TDDFT

only predicts multiple important CSFs for the BHHLYP functional, this CH2O excitation

is strongly multi-CSF in TDDFT regardless of the choice of funcitonal. Excitation energy

errors relative to EOM-CCSD are plotted in Figure 10, where the ∆SCF results have been

obtained by optimizing the orbitals for the open-shell determinant that has the largest weight

in TDDFT’s CI vector. Curiously, both TDDFT and DFE-ESMF give the most accurate pre-

diction with LDA in this case, with DFE-ESMF showing especially poor accuracy with BHH-

LYP. This sharp contrast to the trends we saw in the single-CSF cases is explained, at least

in part, by the strong dependence of the CI coefficients on the choice of functional. For LDA

and B3LYP, the HOMO→LUMO+2 CSF has a larger weight that the HOMO-1→LUMO

CSF, whereas the relative importance of these CSFs is reversed when using BHHLYP. Noting

that ∆SCF places the energy of the orbital-optimized HOMO-1→LUMO CSF 1.86eV below

the energy of the orbital-optimized HOMO→LUMO+2 CSF, we can understand much of

DFE-ESMF/BHHLYP’s lowering of the excitation energy simply in terms of the change in

the CI coefficients coming from TDDFT. It therefore appears that, in future, re-optimizing

the CI coefficients within the DFE-ESMF framework may be important.

CO In the π → π∗ excitation in CO, spatial symmetry ensures that the px π orbital is

degenerate with its py counterpart, and likewise for the two π∗ orbitals, so that the excited

state is an equal mixture of the πx → π∗x and πy → π∗y CSFs. The excitation energy errors

for this state are shown in Figure 11, where we have used our multi-CSF formalism to treat

this two-CSF state. In this case, the DFE-ESMF trend is back in line with what we saw

in most other states, with BHHLYP providing the most accurate result, although TDDFT

is notably more accurate than DFE-ESMF. The trend for ∆SCF is quite different, and it

faces multiple difficulties here, including the breaking of spin and spatial symmetry as well
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Figure 10: The excitation energy error of singlet π → π∗ excited states in CH2O compared
to EOM-CCSD results.

as variational collapse to the ground state with BHHLYP, which explains the unusually large

error in that case.
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Figure 11: The excitation energy errors relative to EOM-CCSD for the CO π → π∗ singlet
excitation. Energy minimization of ∆ SCF with BHHLYP functional ends up collapsing
back to ground state.

Ne Unlike its 2s→3s excitation, the Ne atom’s 2p→3p excited state is a equal mixture

of two CSFs. In the plot of excitation energy errors (Figure 12) we see that DFE-ESMF

and TDDFT have similar accuracies in this case, although the former errors high while the

latter errors low. Again, we see the tendency of DFE-ESMF to benefit from a relatively
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high fraction of wave function exchange. Unlike the other two multi-CSF cases discussed

above, ∆SCF proves considerably more accurate for this excitation than either DFE-ESMF

or TDDFT.
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Figure 12: Comparison of excitation energy errors relative to EOM-CCSD for the Ne 2p →
3p transition.

4 Conclusions

We have presented a density functional extension to the recently developed excited state

mean-field theory in an attempt to capture the effects of weak electron correlation. By aug-

menting the ESMF wave function’s energy expression with components from density func-

tional theory and inserting the resulting expression into an approximate excited variational

principle, the approach provides excited-state-specific orbital optimization in the presence

of a correlation treatment. In the same way that KS-DFT loosely parallels many aspects

of HF theory, this DFE-ESMF approach parallels ESMF theory. Being a variational, time-

independent approach, the method differs from TDDFT in some important aspects, most

notably in its ability to fully relax orbitals and in the fact that it does not depend on the

ground state KS orbital eigenvalues and so avoids concerns related to the EA/IP imbal-

ance. In preliminary testing, these advantages result in significantly improved excitation

38



energies for simple charge transfer examples, while accuracy for other excitations is more

comparable to TDDFT. Compared to ROKS and ∆SCF, which can also deliver full orbital

relaxation, DFE-ESMF is less prone to variational collapse thanks to its use of an excited

state variational principle.

Although these advantages and strengths are promising, the current formulation of DFE-

ESMF also has a number of shortcomings. For excited states in which multiple CSFs make

major contributions, double counting becomes a serious concern and accuracy, although

still close to that of TDDFT, is reduced. This challenge is especially concerning in the

context of larger systems, where multi-CSF states become increasingly common. Rydberg

states are also challenging, although this may have more to do with the choice of density

functional than with the DFE-ESMF approach itself: both it and TDDFT make substantial

errors in these states. Looking forward, we therefore see a number of directions for possible

improvement. As we saw in all cases (except for the π → π∗ transition in formaldehyde where

the sensitivity of TDDFT’s CI coefficients to the fraction of wave function exchange appears

to be the culprit) DFE-ESMF was most accurate when using a much higher fraction of wave

function exchange (50%) than is typically found in ground state functionals. This is not

surprising given the open shell nature of excited states, and suggests that a straightforward

route to improved energetics may come from retraining functionals in this direction. Of

course, this is just one question in a much broader array of functional design issues, such

as whether it would be advantageous to include range-separation or asymptotic corrections,

the latter of which may help with the Rydberg problem. Functional design questions aside,

our observation that accuracy tends to be lower in multi-CSF states raises the question of

whether this is due to relying on TDDFT CI coefficients or comes from some other source.

If the former, then variational re-optimization of the CI coefficients alongside the orbitals

may be advantageous. Finally, as a practical issue, our pilot implementation achieves the

desired cost scaling (equivalent to ground state KS-DFT) but could be sped up considerably

if implemented in a production level quantum chemistry package.
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