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We present a generalization of the variational principle that is compatible with any Hamiltonian
eigenstate that can be specified uniquely by a list of properties. This variational principle appears to
be compatible with a wide range of electronic structure methods, including mean-field theory, density
functional theory, multi-reference theory, and quantum Monte Carlo. Like the standard variational
principle, this generalized variational principle amounts to the optimization of a nonlinear function
that, in the limit of an arbitrarily flexible wave function, has the desired Hamiltonian eigenstate as
its global minimum. Unlike the standard variational principle, it can target excited states and select
individual states in cases of degeneracy or near-degeneracy. As an initial demonstration of how this
approach can be useful in practice, we employ it to improve the optimization efficiency of excited
state mean field theory by an order of magnitude. With this improved optimization, we are able to
demonstrate that the accuracy of the corresponding second-order perturbation theory rivals that of
singles-and-doubles equation-of-motion coupled cluster in a substantially broader set of molecules
than could be explored by our previous optimization methodology.

I. INTRODUCTION

While the ground state variational principle has acted
as the cornerstone of electronic structure theory for
decades, its usefulness is limited by its focus on the low-
est Hamiltonian eigenstates. Certainly this reality has
not prevented the development of powerful excited state
methods based on other principles, such as linear re-
sponse methods, or even methods based on the varia-
tional principle itself, such as state-averaging methods.
However, these methods rely on making additional ap-
proximations beyond those required for the ground state
theories from which they are derived. Linear response
of course assumes that the excited states are in some
sense close to the ground state in state space (specifically,
it assumes that they live in the ground state’s tangent
space),1 whereas state-averaging assumes that important
wave function traits such as the molecular orbitals are
shared by all states.? # In a huge variety of applications,
these approaches have been successful. However, there
remain important areas — such as charge transfer, core
excitation, and doubly excited states — where these addi-
tional layers of approximation continue to impair predic-
tive power and where it would be desirable to construct
excited state methods that do not require them.? 8

One route to doing so is to work with excited state
variational principles, which can fully tailor the flexi-
bility of an approximate wave function ansatz to the
needs of an individual excited state. Typically based
on functional forms that involve squaring the Hamilto-
nian operator,®!2 these approaches must either accept
a higher computational scaling than their ground state
counterparts'? or resort to statistical evaluation!®!! or
approximations to their functional forms.'® These chal-
lenges in mind, it would be interesting if a class of exact
excited state variational principles could be formulated
without the need to square this difficult operator. In this
paper, we present one such class, discuss its prospects for

wide utility, and show that it can be used to improve the
efficiency of excited state mean field (ESMF) theory.!?

One seemingly inescapable difficulty with excited
states and degenerate states is that they are harder to
specify uniquely than non-degenerate ground states. In-
deed, the latter can simply be specified by demanding the
state of lowest energy, a prescription that is both straight-
forward and widely applicable. For excited states, defin-
ing the Hamiltonian eigenstate that one wants is much
less straightforward. At the very least, one must say
something more specific about it, such as where it is in
the state ordering or what its properties are like. This
specification may be relatively simple, such as specify-
ing that one is interested in the Hamiltonian eigenstate
with energy closest to a given value, but clearly must
become more involved in cases with degeneracy or near-
degeneracy. Here, we will take the perspective that
Hamiltonian eigenstates whose unique specification re-
quires making more precise statements about their prop-
erties be accommodated by crafting a generalized varia-
tional principle in which these more precise specifications
can be encoded. For example, when dealing with degen-
eracy, uniquely specifying the desired stationary state
might be accomplished by specifying desired values for
both the energy and dipole moment. Even in cases that
are not strictly degenerate, optimization may be easier if
one can make statements about properties other than the
energy that help differentiate the state from other ener-
getically similar states. Crucially, however, these state-
ments should do no more than identify the state, and so
we will insist that the overall approach produce the same
optimized wave function regardless of the details of what
properties were used to uniquely identify it.

Although we will argue below that this generalized
variational principle (GVP) can be employed in many
areas of electronic structure and will point out parallels
to recent work in density functional theory'# and multi-
reference theory,* we will in this study use ESMF theory



as an example in which the approach offers clear prac-
tical benefits. In our previous study of ESMF, we cou-
pled an approximate excited state variational principle to
a Lagrangian constraint that ensured the optimizations
produce energy stationary points.'®> While this approach
allowed us to verify that ESMF theory could act as a
powerful platform for excited state correlation methods
and helped to inspire the GVP that we introduce here, it
possessed a number of difficulties. First, the method of
Lagrange multipliers is, strictly speaking, a saddle-point
method,'® and so complications arise when coupling it
to standard unconstrained quasi-Newton methods. Sec-
ond, we have found that, in practice, the approach suf-
fers from poor numerical conditioning and can take many
thousands of iterations to converge, which offsets the ad-
vantages of Hartree-Fock cost scaling with an unusually
high prefactor. Third, the original formulation was en-
tirely based on the energy and thus not appropriate for
cases with degeneracy. As we discuss below, all three
of these difficulties can be addressed by optimizing the
ESMF wave function with a GVP. The result is an order-
of-magnitude speedup for ESMF wave function optimiza-
tion, moving the method firmly into the regime where
subsequent correlation methods, rather than the mean
field starting point itself, dominate the cost of making
predictions.

The proposed GVP appears to create a number of op-
portunities in other areas of electronic structure. For
example, many other approaches exist for optimizing the
orbitals of weakly correlated excited states, such as A-
SCF'6 and the more recently introduced o-SCF.1%17 In
the case of A-SCF, the GVP’s specification of desired
properties is similar in spirit to the maximum-overlap
approach, and in practice may be able to compliment it
by helping avoid variational collapse. Using similar logic,
it appears likely that the GVP will be immediately com-
patible with a very recent excited-state-specific variant
of CASSCF that at present* employs the same type of
Lagrange multiplier approach as in our original formula-
tion of ESMF. Likewise, so long as the properties used
to specify the desired state can be statistically estimated
alongside the energy, it should be possible to realize a
GVP approach within variational Monte Carlo. Finally,
as we will discuss briefly below, the proposed GVP can
be used to define a constrained search procedure similar
to the ground state constrained search of Levy,'® allow-
ing formally exact density functionals to be defined for
excited states that can be specified uniquely by a list of
properties. This approach should allow a recent density
functional extension of ESMF theory'? to be reformu-
lated and placed on firmer theoretical foundations.

This paper is organized as follows. First, we introduce
the GVP, discuss why it should be applicable to a wide
range of wave function approximations, and show that
it may also have uses in density functional theory via a
constrained search procedure. We then review the ESMF
wave function ansatz before discussing both our origi-
nal optimization approach and a more efficient approach

based on a simple version of the GVP. We then present
results showing the advantages of the newer optimization
approach, use the improved optimizer to converge ESMF
for a wider selection of molecules than was previously
possible, and analyze the accuracy of the corresponding'3
perturbation theory (ESMP2). Finally, we provide a
proof-of-principle example of how the use of properties
other than the energy can assist in optimization and in
the face of energetic degeneracy. We conclude with a
summary of our findings and some thoughts on future
directions.

II. THEORY
A. A generalized variational principle

Although rigorous excited state variational principles
(i.e. functions whose global minimums are exact excited
states) can be constructed by squaring the Hamiltonian
operator,gA we will take a different approach here as work-
ing with H? is typically more difficult than working with
expressions involving only a single power of H. We begin
by taking note of the fact that, when the ansatz is chosen
as the exact (within the orbital basis) full configuration
interaction (FCI) wave function, all of the Hamiltonian’s
eigenstates are energy stationary points and all of the en-
ergy stationary points are Hamiltonian eigenstates. This
reality is made plain by simply constructing the FCI en-
ergy gradient with respect to the coefficient vector c,
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and recognizing that it is zero if and only if ¢ satisfies the
FCI eigenvalue equation. Thus, when attempting to con-
struct a variational principle that yields an exact excited
state in the limit of an exact (FCI) ansatz, it is sufficient
to take an approach that searches only among energy
stationary points and that, in the exact limit, is guaran-
teed to produce the specific desired stationary point. Of
course, the investigator must know something about the
state they want in order to ask for it specifically, and so
the approach will need a formal mechanism for defining
which stationary point (i.e. energy eigenstate) is being
sought. Crucially, while working with energy stationary
points does require differentiating the energy, and min-
imizing a function that is itself defined in terms of the
energy gradient may require some second derivative infor-
mation, the necessary derivatives do not require squaring
the Hamiltonian and can usually be evaluated without
increasing the cost scaling beyond what is already neces-
sary for evaluating the energy in the first place.'® Rec-
ognizing these formal advantages, we thus seek to define
a generalized variational principle for ground, excited,
and even degenerate states in which the energy gradi-
ent is the central player and a very general mechanism is
provided for specifying which Hamiltonian eigenstate is
being sought.



To begin, let us make an exact formal construction,
after which we will discuss how this construction may be
converted into a practical tool. First, take the wave func-
tion to be a linear combination (with coefficient vector
@) of all the N-electron Slater determinants that can be
formed from the (finite) set of one-electron kinetic energy
eigenstates that (a) satisfy the particle-in-a-box bound-
ary conditions for a large box whose edges are length L
and (b) have kinetic energy less than QL, where Q is a
fixed positive constant. As the large box gets larger, this
wave function ansatz will eventually be able to describe
any normalizable Hamiltonian eigenstate to an arbitrar-
ily high accuracy. Next, choose a set of operators B; and
their desired expectation values b; and define a vector d
of property deviations.

J:{<B1>—b1, <Bg>—b2, } 2)

Now, if this vector uniquely specifies an exact Hamilto-
nian eigenstate, by which we mean that one such eigen-
state produces a lower norm for this vector than any other
Hamiltonian eigenstate, then that eigenstate will be the
result of the following limit, which forms our generalized
variational principle (GVP).

lim lim min (u’cf‘z—i-(l—,u)‘VE’Q) (3)
L—oco p—0 ¢

Note the order of limits, in which we take the limit in
u > 0 for each value of L as L is made progressively
larger. For any finite L, the properties of the system will
be finite regardless of the choice of ¢, and so the largest
possible norm for the vector d will also be finite. This
implies that, as p becomes small, the only states that
stand a chance of being the minimum are energy sta-
tionary states. As the box gets bigger and bigger, the
wave function approximation becomes exact, and the en-
ergy stationary states tend towards the exact Hamilto-
nian eigenstates. By assumption, one of these eigenstates
has a lower value for the norm of d than the others, and
so that eigenstate results from the minimization, as de-
sired. While a non-degenerate ground state can be found
via a property vector containing only the energy by set-
ting the target energy to a very large negative number,
one can instead seek excited states by choosing other tar-
get energies and furthermore can address degeneracies by
adding additional properties.

Although this formal definition works in principle, let
us now turn our attention to how it can be made use-
ful in practice. First, we replace the large-box FCI wave
function with an approximate wave function ansatz. This
removes the limit in L, which was in any case merely a
way of defining an explicit systematic approach towards
an exact wave function. In its place, we now have the
idea of systematic improvability that usually gets asso-
ciated with variational principles: as the approximate
ansatz becomes more and more flexible, we are guaran-
teed to recover the exact eigenstate eventually. Of course,

as with the traditional variational principle, there will
be systems for which the approximate wave functions
we can afford to work with will not approach the ex-
act limit closely enough to be useful. For example, the
Hartree-Fock Slater determinant is known to break sym-
metry in unphysical ways in many situations upon en-
ergy minimization,'® and we see no reason that similar
qualitative failures should not occur for too-approximate
wave functions when using a GVP. That said, the data
provided below for ESMF theory suggest that there are
many cases where even relatively simple wave functions
are flexible enough to make the approach useful.

In terms of affordability, notice that we have not re-
lied on squaring the Hamiltonian operator but have in-
stead employed the norm of the energy gradient with
respect to the wave function’s variational parameters. If
our wave function approximation allows for an affordable
energy evaluation, then automatic differentiation guar-
antees that the energy gradient, as well as the gradi-
ent of the norm of the gradient needed to perform the
minimization,'® can be evaluated at a constant multi-
ple of the cost for the energy. In the same way that we
apply this approach to ESMF theory below, we expect
that a related recent approach? to excited-state-specific
CASSCEF can also be reformulated in terms of this GVP.
Of course, in practice, there may be faster ways of evalu-
ating the necessary gradients than resorting to automatic
differentiation, but we at least have that option in princi-
ple and so the worst-case scenario for cost scaling should
not be worse than the parent method. As one additional
comment on practical minimization, note that the limit
on p will have to be discretized, but as we discuss below
in our application to ESMF theory, this does not appear
to create any significant difficulty.

At first glance, one might worry that, since the same
eigenstate can be specified by many different property de-
viation vectors, the approach may give different results
for different users who make different choices. However,
due to the limit on pu, only energy stationary points will
result from the minimization. So as long as the differ-
ent property deviation vectors all specify the same sta-
tionary point, they will produce the same results (under
the usual assumptions of nonlinear minimization meth-
ods not getting trapped in local minima). Of course,
there will be cases where it is not clear what to spec-
ify, but in these cases it is not obvious that state-specific
variational methods should be used at all, for how does
one design an optimization to find a state about which
nothing is known? If something is known, and if other
states that the desired state could get confused with have
been identified, then projections (even approximate ones)
against those states can be included in the property de-
viation vector in an effort to uniquely specify the elusive
state. Of course, such an approach has its limits, and
in systems with very dense spectra, such as excitations
inside a band of states in a solid, state-specific methods
are hard to recommend.

Before moving on to combining this general approach



with ESMF theory, let us make a short statement about
density functional theory. For a very large box (take a
box as large as you need to make the following as exact as
you would like, e.g. set L to one kilometer and Q) to one
megajoule per kilometer) we define the density functional
. 12 2
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in which we use Levy’s constrained search'® approach of
searching over only those coefficient vectors ¢ whose wave

functions have density p. Minimizing this functional in
the small-y limit,

tiy min (G051, )
is then guaranteed to produce the exact density for the
Hamiltonian eigenstate specified by the supplied prop-
erty deviation vector. Although minimizing G by vary-
ing p is an entirely impractical way of finding the pre-
scribed state’s exact density, it is one way to do it, and
we therefore see that exact density functionals (mean-
ing functionals of the density that when minimized give
the exact density) exist for states that can be specified
uniquely by property deviation vectors. We make no at-
tempt here to put precise bounds on how broad a class
of states this is, but we expect that it contains the vast
majority of molecular excited states that chemists have
questions about. Certainly, any non-degenerate molecu-
lar bound state falls in this category as such states can
be specified uniquely by their energy.

B. The ansatz

Turning now to the construction of a practical opti-
mization method for ESMF theory based on the above
GVP, let us begin by reminding the reader how ESMF
theory defines its wave function approximation.

) = e (CO(I)> + Z O’Z‘aCALZTCALiT|<I)> + nadlldu@})

(6)

Here |®) is the Restricted Hartree Fock (RHF) solution
and is included to help maintain orthogonality between
the excited state and the reference ground state, and the
coefficients ¢;, and 7;, correspond to excitations of an
up-spin and down-spin electron, respectively, from the i-
th occupied orbital to the a-th virtual orbital. In a finite
basis set of Ny,,s spatial orbitals, the operator X is given
by

Nbas
X =" X, (alag —alay) (7)
p<q

in which X is real and restricted to be the same for up-
and down-spin spin-orbitals. These choices ensure that
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FIG. 1. Gray areas represent non-zero variational parameters
in the orbital rotation space. The black-striped triangles in
(b) identify energy-invariant parameters. The structure of the
rotation coefficient matrix with no assumptions is shown in
(a), using the property of anti-hermiticity in (b), and using the
property of invariance under occupied-occupied and virtual-
virtual rotations in (c).

the orbital relaxation operator given by e¥ is unitary?’
and spin-restricted. As only the elements above the
diagonal of X matter here, the number of variational
parameters is reduced from NZ,. as in Fig. 1(a) to
Npas(Nbas —1)/2 as in Fig. 1(b) . Furthermore, as noted
by Van Voorhis and Head-Gordon, the energy of this type
of singly excited wave function is invariant to rotations
between occupied orbitals and to rotations between vir-
tual orbitals.?! Therefore, these energy-invariant rotation
parameters lead to redundancy in the parameters such
that two wave functions could have different values of Z,
co, 7, and 7, but have the same energy. As this would
further complicate any numerical optimization strategy,
we only allow for rotations between occupied and virtual
orbitals, making X an off-diagonal block matrix (see Fig.
1(c)), reducing the number of variational rotation param-
eters to NoceNyir, and redefining X

Nocc Nvir

X = Z 3 X (aTa - ajaa) . (8)

Accounting for all of the variables in the ESMF wave
function, for a system with a closed-shell ground state
with Ngec €lectrons in a basis of Ny, orbitals, there are
Noce = Nelee/2 occupied orbitals, and Nyiy = Npas — Noce
virtual orbitals. The CIS-like coefficient vector ¢ =
{co, 7,7} has (1 + 2NyceNyir) elements; the orbital ro-
tation parameter vector ¥ has Nyc.Nyir elements; thus,
the ESMF wave function ¥(/), where 7/ = {¢, Z}, has a
total of 3NyeeNyir + 1 variables.

Despite being composed of multiple determinants, we
assert that the ESMF wave function hews closely to the
principle of a mean-field theory, as it retains only the
minimum correlations necessary to describe an open shell
excited state of a fermionic system. Like the mean field



Hartree Fock wave function, the ESMF wave function
captures Pauli exclusion via the antisymmetry of Slater
determinants. However, more correlation is needed to
describe an open shell excited state. Not only can the
electrons in the open-shell arrangement not occupy the
same spin orbital, these opposite-spin electrons cannot
occupy the same spatial orbital, which is a strong corre-
lation not present in a closed-shell ground state that we
insist on capturing here, which immediately requires at
least two Slater determinants. As including the entire set
of single excitations keeps the approach general by ensur-
ing that any such open-shell correlation can be captured
and does not increase the cost scaling compared to using
a single pair of determinants, we opt for the wave func-
tion above as our ansatz. We do note, however, that a
two-determinant ansatz would likely be effective in many
cases, although making that simplification has the poten-
tial to complicate the corresponding perturbation theory,
a point we will return to in discussing our results. Ei-
ther way, double and triple excitations — where most of
the weak correlation effects that would move us squarely
away from the mean-field spirit are to be found — are
not included.

More accurate than CIS due to the added flexibility
from the orbital rotation operator,! yet less accurate
than methods like EOM-CCSD that incorporate more
electron correlation,” ESMF is best seen as a gateway
towards quantitatively accurate descriptions of excited
states rather than an accurate method in its own right.
Like Hartree Fock theory,?%?3 its ultimate utility is in-
tended as a platform upon which useful correlation meth-
ods can be built. So far, three such methods have been in-
vestigated: 1) a DFT-inspired extension to ESMF whose
preliminary testing!® reveals a valence-excitation accu-
racy similar to that of TD-DFT but also the promise
of significant advantages in charge transfer states, 2) an
excited state analog of Moller-Plesset perturbation the-
ory, ESMP2,'3 which we show below to be highly com-
petitive in accuracy with EOM-CCSD, and 3) a state-
specific complete active space self-consistent field (SS-
CASSCF) approach whose orbital optimization mirrors
that of ESMF and whose root-tracking approach is sim-
ilar in spirit to the GVP discussed here.*

While our original strategy for optimizing the ESMF
ansatz achieved the same O(N*) scaling as ground state
mean-field theory, the actual cost of the optimization was
unacceptably high. In many cases, it was more expen-
sive than working with our fully-uncontracted version of
ESMP2, whose cost scaling goes as O(N7). In searching
for more practical optimization methods, we have con-
sidered the option of deriving Roothaan-like equations,
but so far this approach has not yielded a practical op-
timization strategy. Instead, we have found two other
approaches to be more effective, at least for now. First,
one can replace the BFGS?4 27 minimization of our orig-
inal Lagrangian with an efficient Newton-Raphson (NR)
approach, which handles the strong couplings between
ansatz variables and Lagrange multipliers more effec-

tively. Second, one can use the GVP introduced above to
redefine the optimization target function in a way that
avoids Lagrange multipliers entirely, at which point both
BFGS and NR are considerably accelerated. In the next
section, we will discuss the old and new target functions,
after which we turn our attention to comparing the rel-
ative merits of BFGS and NR and how ESMF admits a
useful finite-difference approach to the latter.

C. Target Functions
1. Lagrange Multiplier Formalism

While Hartree-Fock theory uses Lagrange multipliers
to enforce orthonormality between the orbitals,?® our
original target function for optimizing the ESMF ansatz
used Lagrange multipliers to ensure that the optimiza-
tion ended on an energy stationary point even when we
approximated an H?2-based variational principle to keep
it affordable. By minimizing

Ly =W+ X-VE, (9)

in which W is an approximated excited state variational
principle and X are the Lagrange multipliers, we guaran-
tee that the optimization preserves the useful properties
of energy stationary points, such as size-consistency for
a product-factorizable ansatz. Note that, even if W is
not approximated, such properties can be violated in the
absence of the Lagrangian constraint.?? Note also that,
since we rotate from already-orthonormal Hartree Fock
orbitals, we do not need to add additional Lagrange mul-
tipliers for orthonormality. In practice, we approximated
the excited state variational principle

(¥|(w — H)*|)

N 77

(10)

whose global minimum is the exact (excited) energy
eigenstate with energy closest to w.?39 Somewhat sur-
prisingly, we found that even the aggressive approxima-
tion

W~ (w— E)? (11)
was sufficient in practice.'

While this formalism allows us to produce a number of
successful optimizations in small molecules and achieves
the desired cost scaling, it does create multiple complica-
tions. In particular, this Lagrangian is unbounded from
below with respect to the Lagrange multipliers, so sim-
ple descent methods like standard BFGS cannot be ap-
plied directly. Instead, we proceeded by minimizing the
squared norm of the gradient of Ly, i.e. |[VLz|?, and al-
though this does not increase the cost scaling, it leads
to an additional layer of automatic differentiation that
increases the cost prefactor. Worse yet, as we will make
clear below, this strategy was very poorly numerically



conditioned, causing BFGS to require a large number
of iterations to converge. In contrast, a NR algorithm
can directly search for and locate saddle points of this
Lagrangian target function, which are the solutions we
actually seek, thus avoiding the need for an extra layer
of derivatives.!®> Furthermore, NR helps with the speed
of convergence due to its more robust handling of second-
derivative couplings. However, whether working with NR
or BFGS, we find it even more effective to avoid Lagrange
multipliers entirely by reformulating the target function
using the GVP.

2. Generalized Variational Principle Approach

Consider instead an optimization target function that
can be switched between the energy itself and a simple
version of the GVP in which the energy is the only prop-
erty in the deviation vector.

Ly = x(plw = B)? + (1= wIVEP) + (1= )E (12)

If we first consider the case where we set x = 1, we see
that we have a simple version of Eq. (3) in which the
limit on L has been replaced by using the approximate
ESMF ansatz. This target function is bounded from be-
low, and so a series of optimizations in which u is made
progressively smaller and then set to zero can immedi-
ately employ either BFGS or NR. Once we are close to
convergence, we can in the case of NR then switch y to
zero and rely on NR’s ability to hone in on an energy
saddle point. Of course, in practice, it may be system
specific when and if switching x to zero is advantageous.
If one does not switch x to zero, then it is important to
realize that it is possible for an optimization to end at
a point where V|VE|?> = 0 but [VE|? # 0, so the user
must be careful to verify at the end of the optimization
that the energy gradient is indeed zero as expected. In
the results below, we did not encounter any optimiza-
tions converging to a stationary point of |VE|? that was
not a stationary point of F, but such points clearly exist
and so this simple check should be standard procedure.

While the use of (w — F)? was seen in our previous
approach as an approximation to an excited state varia-
tional principle, the GVP approach helps us see that this
is not where the approximation lies. Indeed, for non-
degenerate states, this simple choice for the deviation
vector will give exact results when used with an exact
ansatz. From this perspective, it is clear that the ap-
proximation being made is instead an ansatz approxima-
tion. To be precise, the assumption is that the stationary
points of the ESMF ansatz are, for the states we seek,
similar to those of FCI, which is the same assumption
that is made when formulating the Roothaan equations
to find an energy stationary point of the Slater deter-
minant in Hartree-Fock theory. Thus, as in the ground
state case, the central assumption is that the relevant en-
ergy stationary point of the mean-field ansatz is a good
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FIG. 2. An idealized representation of the relationship be-
tween two variables, v1 and v2, in the ESMF wave function
and the ESMF energy in a model system. The global min-
imum at a is the lowest energy ground state of the system,
while the two stationary points at b and c correspond to ex-
cited states of the system, and can be individually resolved
using the state-targeting parameter w which is shown by the
dotted line.

approximation for the exact Hamiltonian eigenstate. En-
ergy minimization (for the ground state) or the use of the
GVP (for any state) are simply means of arriving at the
relevant stationary point.

To give a concrete idea of how this target function may
be used in practice, let us sketch out how we might use
it to find a particular stationary point (point ¢) in Fig.
2. Initially, we set x = 1 and p = % and select an w
value near to where we expect the stationary point’s en-
ergy to be. We then take a series of NR steps seeking to
minimize L,,, but in between each step we decrease u by
some small amount, say 1—10, until we reach = 0. At this
point, the GVP is assumed to have done its job (locat-
ing the neighborhood of the correct stationary point) and
we switch x to 0, thus converting the optimization into a
standard saddle point search (if this proves unstable then
x can be held at 1 instead). The potential advantage of
this x = 0 stage is that it can employ well-known precon-
ditioning methods when solving the NR linear equation,
such as the Hartree-Fock energy hessian approximation

0:50ab

Mg o = 13
1030 = 9 (Faa — Fi + AE) (13)
that is often wused to accelerate ground state
optimizations.213135 Here F is the Fock matrix,

and AF is the change in energy between the last two
optimization steps. In summary, what starts as a mini-
mization method guided to the desired stationary point
by the GVP ends with a straightforward energy saddle
point search. Compared to the Lagrange multiplier
approach, this approach has the advantage that there
are no poorly-preconditioned Lagrange multipliers and
the objective function is bounded from below. Thus,
most standard minimization methods can be used



without the need for an additional layer of derivatives,
and the target function can convert into a form that is
easily preconditioned near the end of the optimization.

D. Finite-Difference NR

With the ability to evaluate gradients of both Ls and
L, comes the option of employing a finite-difference
approximation3® to the NR method (FDNR) that allows
us to avoid the expensive construction of Hessian ma-
trices. To begin, let us briefly review the standard NR
method in order to orient the reader and set notation. In
attempting to optimize L with respect to the variables v/,
the NR approach approximates changes in L to second
order in the yet-to-be-determined update to the current
variable vector A7.

1
L7+ M) = L(P) + VL- A + SAFT-H-AF - (14)

Here, the Hessian is H;; = 9°L/0v;0v;. Setting the gra-
d1ent of this approximation (w.r.t. A7) to zero and solv-
ing for AU gives an estimate for the variable change that
would lead to L being stationary.

H A~ -VL (15)

If H can be explicitly constructed and inverted, then one
simply does so in order to solve for the update, but in
many situations (including ours) the explicit construction
of the Hessian is prohibitively expensive.

Instead, we follow Pearlmutter®® and solve Eq. (15)
via a Krylov subspace method (we use GMRES?") in
which the matrix-vector product is formed efficiently
via a finite-difference of gradients. Noting that the key
matrix-vector product is

Z 61/,8V] : (16)

we compare to the differentiation of a first-order Taylor
expansion of L.

L(7 + AD) ~ L(7) + Z agiyij (17)
: J
OL(7 + AP) OL(i7
ov; 81@8% AVJ (18)

Combining Egs. (16) and (18), one arrives at a simple
approximation for the matrix-vector product in the form
of a gradient difference.

OL(V + AD) B OL(7)
v, av;

[H-AV); = (19)
Note that, if AV is not small enough to justify the Taylor
expansion, we can exploit the linearity of the matrix-
vector product to make the finite-difference more accu-

rate by scaling the vector down and then scaling the re-
sulting matrix-vector product back up.

H. AV~ % (VL@ +ean) - VL@)  (20)

In a given FDNR iteration, VL(7) is evaluated once and
stored, so that each additional finite-difference estimate
of a matrix-vector product requires only a single addi-
tional gradient evaluation. Although in principle an even
more accurate finite-difference can be achieved at the cost
of two gradients per matrix-vector multiply via the sym-
metric finite-difference formula, we have not found this to
be advantageous. As our results below demonstrate, the
simpler one-gradient approach is already a very accurate
approximation.

III. COMPUTATIONAL DETAILS

Calculations in this work include timing comparisons
between the previously discussed ESMF optimization
methods and vertical excitation benchmarks of ESMF
and ESMP2 against a range of single-reference excited
state methods. Generally, generating initial guesses for
an ESMF calculation is straightforward and does not ne-
cessitate any post-HF calculations. An initial RHF cal-
culation computes the orthonormal HF orbitals which are
used unrotated as the initial ESMF orbitals, i.e. X =0,
and therefore the initial unitary transformation matrix
is simply the identity matrix. Often, the dominant con-
figuration state function (CSF) in an excitation is suf-
ficient as the initial guess for ¢. For example, using
the notation from Eq. (6), the initial guess for a sin-
glet excitation from the i-th to the a-th orbital is simply
0) = J51(al,ai|®) + @, |®)). Choosing w is sys-
tem dependent and requires some intuition, but even a
rough approximation to the excitation energy from ex-
periment, TD-DFT, or a CIS calculation is often suffi-
cient because the energy stationary point criteria ensures
that we will recover a size-consistent solution regardless
of our choice of w. If a rough approximation of the ex-
cited state energy is not feasible, one can slowly increase
w over the course of several optimizations and identify an
entire spectrum of excited states. In this specific survey,
the former approximation process was used to generate
the majority of initial ESMF guesses. For a few sys-
tems, however, the initial guesses were generated from
the most important single excitation coefficients of the
EOM-CCSD wave function, and w was calculated using

0.5 (21)
27.211

where Egrpgpr is the RHF ground state energy and
AFEgor—ccosp is the EOM-CCSD vertical excitation en-
ergy. The energy correction is included since ESMF tends
to underpredict excitation energies by approximately 0.5
eV relative to high level benchmarks. These few ini-
tial guesses built from EOM-CCSD results were only

w=FEryr+AEgoyMm-ccsp —



necessary to confirm that both methods were describ-
ing the same excitation and ensure fair comparisons and
evaluations between them. The ground state references
for ESMF and ESMP2 excitation energies are RHF and
MP2, respectively.

Timing data reported in this work was produced on one
24-core node of the Berkeley Research Computing Savio
cluster. Note that this timing data is meant to compare
between different optimization methods for ESMF that
use the same Python-based Fock build code, and are not
intended to represent production level timings. Work is
underway on a low-level implementation that exploits a
faster Fock build, but this is not the focus of the cur-
rent study. For FDNR-L,,, timing data reported in Sec.
IV B, u was set to % in the first iteration, i in the sec-
ond iteration, and 0 in all subsequent iterations, and x
was switched from 1 to 0 after the first 10 iterations. All
calculations were completed under the frozen core ap-
proximation and most in the cc-pVDZ basis set;3839 ex-
ceptions to the latter include the Hessian data reported
in Fig. 7 and the LiH system in Sec. IV E which used
the minimal STO-3G basis set,*®4! and CIS(D) bench-
mark data which employed the rimp2-cc-pVDZ auxiliary
basis set.*?> With MOLPRO version 2019.1,%344 we opti-
mized the geometries of a set of small organic molecules
at the B3LYP/6-31G* level of theory.*>4® Explicit ge-
ometry coordinates and the main CSFs contributing to
each excitation are provided in the Supporting Informa-
tion (SI). Moving to the cc-PVDZ basis set, we then per-
formed ground state Restricted Hartree-Fock calculations
to compute the initial orbitals used in ESMF, and CIS,
MP2, and EOM-CCSD calculations for later benchmark-
ing. CIS(D), TDDFT/B3LYP, and TDDFT/wB97X-V49
excitation energies were computed with Q-Chem version
5.2.0%°, and 6-CR-EOM-CC(2,3)¢ calculations were per-
formed with GAMESS.%! As some theories may lead to
different orbital energies and thus orbital orderings, for
each theory that used a different molecular orbital ba-
sis, we used Molden®?*3 to plot and compare the main
orbitals involved in each excitation to ensure we were
comparing the same state between theories.

IV. RESULTS
A. Assessing the Finite-Difference Approximation

While the numerical efficiency offered by the FDNR
approach is welcome, its overall applicability depends
on the accuracy of its finite-difference approximation.
To quantify its accuracy we computed the exact Hes-
sian of L,y , Hex, with Tensorflow’s automatic differenti-
ation software® for water, ammonia, formaldehyde, and
methanimine, at the beginning, middle, and end of the
optimization. We then constructed a “finite-difference
Hessian” of L,,, Hj, by applying Eq. (20) to the
columns of the identity matrix. In Table I, we report 1)
the number of orbitals in these systems with the cc-pVDZ

TABLE I. For different molecules and stages in a NR opti-
mization in the cc-pVDZ basis, we show the number of or-
bitals in the basis set Nypas, the time it takes to construct Hex
and then apply it to VL,, one hundred times, the time it
takes to estimate the same one hundred matrix-vector prod-
ucts via Eq. (20), and the average relative error associated
with Eq. (20).

NR Hex time Hyq time relative
Molecule Npas iter.  (min) (min) error
Water 23 0 0.40 039 24x10°°
5 0.40 0.39 6.0x1076
10  0.40 0.39 6.0x1076
Ammonia 28 0 0.97 079 24x10°°
10 1.00 0.82 6.1x107°
30 1.03 093 6.1x10°°
Formaldehyde 36 0 4.52 2.08 2.8x10°°
10  4.53 2.08 6.5x107°
18  4.53 2.08 6.5x107°
Methanimine 41 0 9.02 3.62 2.6 x 1076
10 9.22 381 6.5x107°
30 9.38 377 6.5x107°

basis set, 2) the time in minutes required to build Hey
once and compute the matrix-vector product He VL,
one hundred times, 3) the time in minutes required to
compute Hg VL, using Eq. (20) one hundred times, and
4) the relative error between the results of applying ei-
ther Hyq or Hex to Ly, ie. [HaVL—HeVL|/[Hex VL.
The data demonstrate that the finite-difference approach
to applying the Hessian matrix has much more favor-
able scaling than building and applying the exact Hes-
sian. In fact, the cost of building the exact Hessian scales
so rapidly that, for cyclopropene (59 orbitals in the cc-
pVDZ basis), Hex could not be computed in under two
hours on a NERSC Cori Haswell node. Additionally, the
relative errors assure us that the finite-difference approx-
imation is highly accurate, and so we have used it in all
of the iterative FDNR optimizations discussed below.

B. Comparing Optimization Strategies

We now turn to the question of which strategy is most
efficient when optimizing the ESMF wave function. Our
key findings here are that the GVP-based L, objective
function leads to faster optimization than does L; and
that, once using L, the efficiencies of the BFGS and
FDNR methods become system-dependent but similar.
Figures 3-6 show four examples of this trend, which we
have observed across all of the systems we have tested.
In each of these four examples, roughly one order of mag-
nitude in speed is gained by moving to the L, objective
function.

To understand why the L; objective function is less
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FIG. 3. Two plots are shown for different optimizations of
the HOMO-LUMO singlet excitation in cc-pVDZ water. In
(a), the difference between the current and converged excited
state energy in Hartree is compared to the elapsed optimiza-
tion time for the BFGS-Ly (red triangles), FDNR-L; (orange
diamonds), BFGS-L,, (blue circles), and FDNR-L,, (green
squares) optimization strategies. In (b), the norm (in mil-
lihartrees) of the Lagrange multipliers associated with the
orbital rotation parameters is shown over the course of an
BFGS-Lj; optimization. Note that the elapsed time is plotted
on a log scale in (a) but on a linear scale in (b) and that each
marker represents one iteration in the associated algorithm.

efficient, it is useful to analyze the Lagrange multipliers.
At convergence, the energy will be stationary, which in
turn implies that the Lagrange multiplier values will all
be zero.

57~ oW X 55) = G +HEA =0 (22)
o oF
= X=0 (24)

Thus, we have guessed X =0 in our optimizations. How-
ever, as can be seen in the lower panels of Figures 3-6, the
optimization moves the Lagrange multipliers significantly
away from zero before returning them there. At the very
least, this suggests that while our initial guesses for the
wave function parameters and Lagrange multipliers are
reasonable, they are not particularly well paired, in that
the optimization of the wave function variables drives
the multipliers away from their optimal values during a
large fraction of the optimization. This issue is simply
not present when using the L,, objective function as no
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FIG. 4. For the HOMO-LUMO singlet excitation in cc-pVDZ
carbon monoxide, the difference between the current and con-
verged excited state energy in Hartree is compared across op-
timization strategies in (a) and the norm (in millihartrees) of
the Lagrange multipliers associated with the orbital rotation
parameters is shown over the course of an BFGS-Ly optimiza-
tion in (b).

multipliers are present and thus no guess for them is re-
quired.

To gain additional insight into the difficulties created
through the Lagrange multipliers, we can look at the
Hessian matrices produced by the two different objective
functions, for which examples are shown in Fig. 7. As
one might expect, the L Hessian has a blocked structure,
with the multiplier-multiplier block being zero trivially
and the other three blocks being diagonally dominant.
This structure is quite far from the identity-matrix guess
of standard BFGS, and although it may be possible to
construct a better estimate for the initial inverse Hes-
sian this would require evaluating at least some of the
second derivatives of the objective function individually,
which is not guaranteed to have the same cost scaling as
evaluating the energy. Although good estimates may be
achievable at low cost, we have not in this study made any
attempt at improving the initial BFGS Hessian guess for
either objective function, and have simply used the iden-
tity matrix in both cases. As Fig. 7 shows, this very sim-
ple guess is a better fit for the single-diagonal diagonally
dominant Hessian of the GVP-based objective function.
As we move towards a production-level implementation
of the ESMF wavefunction and GVP, we hope to further
improve the optimization algorithms. As the overall com-
putational cost of ESMF is dominated by the number of



—
S
N2

1E-1
1E-2 |
1E-3 |
1E4
1E-5 |

E — Efinal (Eh)

1E-6 |
1E-7
1E-8

1 10 100 1000
elapsed time (s)

(0) 10 [

120 7y
~ 100 Af “
L§ 8.0 | 4 n &
< 60 | a4 2
< 40 | A

20

0.0 A

0 200 400 600 800 1000 1200

elapsed time (s)

‘ KEY: ABFGS L; ® BFGS L,, @ FDNR Ly,

FIG. 5. For the HOMO-LUMO singlet excitation in cc-pVDZ
formaldehyde, the difference between the current and con-
verged excited state energy in Hartree is compared across op-
timization strategies in (a) and the norm (in millihartrees) of
the Lagrange multipliers associated with the orbital rotation
parameters is shown over the course of an BFGS-Ly optimiza-
tion in (b).

TABLE II. Formal cost-scaling for methods used in this work.
These scalings are with respect to the system size N and are
for canonical versions of the methods, i.e. without accelera-
tions from two-electron integral screening or factorization.

Method Formal Scaling
RHF?8 N?
CIS? N
TDDFT! N*
ESMF N*
CIS(D)® N°
EOM-CCSD® N°©
5-CR-EOM-CC(2,3),D° N7
ESMP?2 N7

Fock builds, we anticipate significant speedups through
Hessian preconditioning, integral screening,® resolution
of the identity approaches,®®*7 and, as our objective
function is invariant to some orbital rotations, geometric
descent minimization methods.?!
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FIG. 6. For the HOMO-LUMO singlet excitation in cc-pVDZ
diazomethane, the difference between the current and con-
verged excited state energy in Hartree is compared across op-
timization strategies in (a) and the norm (in millihartrees) of
the Lagrange multipliers associated with the orbital rotation
parameters is shown over the course of an BFGS-Ly optimiza-
tion in (b).

C. Benchmarking Excitation Energies

We compiled a modest test set of small organic
molecules that allows us to compare the accuracy of
ESMF and ESMP2 against that of a range of single
reference, weakly correlated excited state wave function
methods. These methods include CIS, CIS(D), and no-
tably EOM-CCSD and §-CR-EOM-CC(2,3),D, the lat-
ter of which scales as O(N7) and is used as a high level
benchmark.® To contextualize the accuracy of ESMF and
ESMP2 theories within the wider realm of excited state
methods, we also present TDDFT benchmarks against
J-CR-EOM-CC(2,3),D for both the B3LYP functional
and the wB97X-V functional — two popular hybrid GGA
functionals. #4649 For reference, the formal scaling of all
methods used here is summarized in Table II. While
these scalings can in some cases be reduced via sparse
linear algebra or integral screening,®® %! we compare to
canonical scalings here as our ESMF implementation
does not yet take advantage of such approaches.

Our test set includes a number of intramolecular
HOMO-LUMO singlet excitations as well as two long-
range charge transfer excitations, NHs(n) — Fa(c™)
with a 6 A separation, and Ny(m) — CHy(2p) with
a 10.4 A separation. These types of CT excitations
are known to cause difficulties for linear response the-



FIG. 7. Heatmaps of the initial Hessian matrix for (a) the Ly

target function and (b) the L, target function where p = %

and x = 1 for the HOMO-LUMO excitation in formaldehyde
in the STO-3G basis. The values of the matrix are scaled
such that the matrix elements equal to zero are white and the
elements darken as they increase in magnitude. Note that in
order to emphasize detail, the Hessians are scaled according
to Hy; = (1 — exp[f‘Hin) and that Hz,, is enlarged with
respect to IjILX.

ories; for example, CIS fails to capture how the shapes
and sizes of the donor’s and acceptor’s orbitals change
following the excitation.? In contrast, EOM-CCSD
(through its doubles response operator) and ESMP2
(through ESMF’s variational optimization) do capture
the relaxation effects, which helps them achieve signifi-
cantly better (although not perfect) energetics in these
CT cases.>"8:63°66 Although the analysis for TDDFT
is less straightforward, even modern range-separated
functionals do not account properly for all orbital re-
laxation effects, which continue to produce difficulties
in charge transfer excitations!'457 despite the clear
improvements68 71 that range-separation offers.

The results for this survey are shown in Fig. 8 and
tabulated in the SI. Overall, we see that EOM-CCSD
and ESMP2 are most accurate in this test set, which we
attribute to their ability to provide fully excited-state-
specific orbital relaxations. In contrast, CIS, which lacks
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proper orbital relaxation, has the largest mean unsigned
error (MUE) and maximum error of the wavefunction
methods, performing especially poorly in the two charge
transfer systems. Note that, although CIS can shape the
orbitals for the electron and hole involved in the excita-
tion via superpositions of different singles, it leaves the
remaining occupied orbitals unrelaxed, which is notably
inappropriate in long range CT where the large changes
in local electron densities should lead all nearby valence
orbitals to relax significantly.

CIS(D), an excited state analog of ground state MP2,
recovers much of the electron correlation effects missing
in CIS, halving the CIS MUE. Employing perturbation
theory in the space of double excitations and using prod-
ucts of CIS single excitation amplitudes and ground-state
MP2 double excitation amplitudes to account for triple
excitations from the ground state wave function, CIS(D)
captures weak correlation and can improve the CIS exci-
tation energies for only O(N®) cost.?® The effect of the
perturbative doubles and approximated triples on the ex-
citation energies is certainly noticeable as the accuracy
improves; however, CIS(D)’s use of ground state MP2
amplitudes leaves it lacking as from first principles, the
electron-electron correlation in the ground state should
differ from that in the excited state for any electrons in-
volved in or near the excitation. We would thus expect
a fully excited-state-specific perturbation theory to out-
perform CIS(D), and indeed this is what we find.

Within this test set of systems, we unsurprisingly ob-
served that the accuracy of TDDFT is both system and
functional dependent. As summarized in Fig. 8, the ac-
curacy of the BSLYP and wB97X-V functionals across the
intramolecular valence-excitations rivals that of EOM-
CCSD. Indeed, it is difficult to motivate moving away
from the remarkably low computational cost TDDFT
methods for such excitations.”® However, the TDDFT re-
sults are not as accurate in the charge transfer systems.
The B3LYP functional performs particularly poorly, and
while the accuracy of TDDFT with the wB97X-V func-
tional, which uses HF exchange at long-ranges, is not
quite so catastrophic, it drastically underestimates the
excitation energy by multiple eV.

In this survey, ESMF consistently underestimates the
excitation energy, and when the unsigned errors are com-
pared, was more accurate than CIS, yet not as accu-
rate as CIS(D). The underestimation can be understood
by recognizing that, in the excited state, ESMF cap-
tures the pair-correlation energy between the two elec-
trons in open-shell orbitals, whereas no correlation at
all is preset in the RHF ground state (apart from Pauli
correlation that of course ESMF also has). In addi-
tion, ESMF does in fact recover some weak correlation
between different configurations of singly-excited deter-
minants, i.e. for some configurations of i, j, a, and b,
((I)?|e_leIeX|<I>?> # 0. We are thus not surprised that
ESMF excitation energies tend to be underestimates due
to this capture of some correlation. Note that, as this is a
very incomplete accounting of correlation effects (doubles
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FIG. 8. Singlet excitation energy errors from seven methods vs §-CR-EOM-CC(2,3)D in eV for several small organic molecules.
From left to right for each molecule, the excitation energy error bars correspond to CIS (red/solid), CIS(D) (orange/dots),
EOM-CCSD (yellow/open circles), TDDFT/B3LYP (green/horizontal lines), TDDFT/wB97X-V (light blue/diagonal lines),
ESMF (dark blue/gridlines), and ESMP2 (purple/diagonal gridlines). For each method, we tabulate the maximum and mean
unsigned errors across all 18 systems in the test set, Max (All) and Mean (All), and the maximum and mean unsigned errors
across only the 16 intramolecular excitations in the test set, Max (No CT) and Mean (No CT). Additionally, we plot each
Mean (All) UE with horizontal, solid lines in the plot. For easier visualization of the data, we truncate the y-axis at -1.5 eV.
As the B3LYP and wB97X-V charge transfer excitation energy errors exceed this bound, we have included the absolute value
of the error truncated by the axis. See the SI for more information about the individual excitations, but note that the two on

the right are the two charge transfer cases.

and triples are missing), it is also not surprising that the
overall accuracy of ESMF is inferior to that of CIS(D),
which provides at least an approximate estimate of what
the second order correction for the doubles and triples
should be. Another notable point about the accuracy
of ESMF is that it is not significantly different in the

CT systems as compared to the other systems, suggest-
ing that it has successfully captured the larger orbital
relaxations present in CT.

Although its stand-alone accuracy leaves something
to be desired, the ESMF wave function does provide
an excellent starting point for post-mean-field correla-



tion theories, as evidenced by the excellent performance
of ESMP2. Thanks to its orbital-relaxed starting point
and excited-state-specific determination of the doubles
and triples, ESMP2 delivers the highest overall accuracy
when compared to the 6-CR-EOM(2,3)D benchmark. In
both intra- and inter-molecular excitations, ESMP2 is
significantly more accurate than CIS, CIS(D), or ESMF,
and slightly more accurate than EOM-CCSD. Of particu-
lar interest to note is that ESMP2 maintains its accuracy
across both intramolecular valence excitations and long-
range charge transfer excitations, and while this test set
is too limited and the basis set too small to make strong
recommendations, this data suggests that ESMP2 may
in some circumstances be preferable to EOM-CCSD as
well as TDDFT in both intra- and inter-molecular exci-
tations. Certainly the data motivate work on versions
of ESMP2 that avoid using the full set of uncontracted
triples in the first order interaction space, which should
lower its cost-scaling.

D. A Single-CSF Ansatz

As many excitations are dominated by a single open-
shell CSF, one might wonder whether in these cases the
full CIS-like CI expansion within ESMF is strictly neces-
sary. Although the effect of the remaining singly-excited
CSF's is not negligible, one could argue that their small
weights put them firmly in the category of weak correla-
tion effects that should be handled by the perturbation
theory. For now, we have chosen not to pursue this di-
rection in ESMP2 for two reasons. First, it would limit
the theory to single-CSF-dominated excitations. Second,
many of the other single excitations are much closer in
energy to the reference wave function than the doubles
excitations are, thus significantly increasing the risk of
encountering intruder states. That said, we have used
our present implementation to test how much the ab-
sence of these terms in ESMP2 matters if we restrict the
reference function to be a single CSF with optimized or-
bitals, which we will refer to here as the oo-CSF ansatz.

|oo-CSF) = X <dZTdZ¢<I>> + 77&1¢&z‘¢|‘1’>>~ (25)

As in Eq. 6, |®) denotes the RHF solution. However, the
definition of X is slightly different. The 0o-CSF ansatz is
invariant to occupied-occupied and virtual-virtual orbital
rotations that do not involve orbitals 7 or a, but such
rotations that do involve these orbitals now matter, and
so we have enabled these portions of the X matrix in
addition to the ESMF occupied-virtual block shown in
Fig. 1(b). Finally, note that n is not a variable and is
simply set to 1 if we wish to work with the spin singlet
and —1 for the triplet.

As seen in Table III, we tested 0o-CSF as a refer-
ence for ESMP2 in three systems where the structure
of the optimized ESMF wave function suggested that
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TABLE III. Excitation energy errors in eV relative to §-CR-
EOM-CC(2,3),D for the HOMO—LUMO singlet excitations
of water, formaldehyde, methanimine, and dinitrogen. Below
the name of each molecule, we report the CSF coefficients in
the ESMF wave function with amplitudes larger than 0.1.

oo- ESMP2 ESMP2
ESMF CSF w/ESMF w/oo-CSF

Water -0.67 -0.66 0.05 0.06
HOMO — LUMO  0.70
Formaldehyde -0.69 -0.66 0.15 0.18
HOMO — LUMO  0.66
HOMO-3 — LUMO  0.22
Methanimine -0.59 -0.55  -0.02 0.02
HOMO — LUMO  0.67
HOMO-2— LUMO  -0.17
Dinitrogen -1.39  -1.13 0.06 0.52

HOMO-1 — LUMO 0.49
HOMO — LUMO+1 0.49

00-CSF had a good chance of being effective and one
in which it did not appear appropriate. For water, the
ESMF wave function is already dominated by a single
CSF. For formaldehyde and methanimine, the additional
subset of occupied-occupied rotations that we enabled
for 00-CSF allow the primary components of the exci-
tation to be converted into a single CSF by mixing the
ESMF HOMO with the other occupied orbitals. While
this simplification is certainly not always possible (N
is a good counterexample, having two large components
involving completely separate sets of molecular orbitals)
our results suggest that when it is, the absence of the
other singles excitations in our ESMP2 method may not
be of much consequence. In the future, the efficacy of
00-CSF for single-CSF-dominated states could perhaps
be exploited in a couple of different ways. On the one
hand, it is a simpler ansatz and so may prove easier to
optimize than ESMF, which even in systems where sec-
ondary CSF's were not negligible could be useful if it pro-
vides a low-cost, high-quality initial guess for the ESMF
optimization. On the other hand, its simpler structure
could prove useful in simplifying the implementation of
ESMP2.

E. Targeting with Other Properties

So far, we have focused on how an energy-targeting
GVP can improve ESMF optimizations. We now turn
our attention to the use of other properties to improve
the robustness of optimization in the face of poor initial
guesses, energetic degeneracy, and poor energy target-
ing. To investigate these aspects of the GVP, we study
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FIG. 9. Molecular orbital diagrams for the key determinants
in the four relevant states in our LiH test. From left to right,
we have the ionic RHF wave function |®), and the main CSFs
that contribute to the singlet state |WZ%) that maintains the
ionic character, and that contribute to the degenerate singlet
and triplet states |WS%,) and |WS%)) in which neutrality has
been restored by an Li—H charge transfer. Note that while
the molecular orbitals are arranged based on their RHF or-
bital energies, the energy gaps are not to scale.

stretched LiH (bond distance 7 A) in the STO-3G basis,
whose low-lying states can be seen in Fig. 9. The idea is
to optimize to the [UST)) state despite the challenges of
(a) initial guesses that contain varying mixtures of [WEX)
and [WSL) character, (b) setting the energy targeting to
aim at the wrong state, namely setting w to the ESMF
energy for [WEX) and (c) the presence of [W<%), which
is energetically degenerate with |[U$7Z)) at this bond dis-
tance. While the latter difficulty could be resolved by
constraining our CI coefficients to produce only singlet
states, we intentionally leave our CI coefficients uncon-
strained. Instead, we will investigate the efficacy of over-
coming the challenges of degeneracy, poor w choice, and
poor initial guesses by including additional properties in
the GVP’s deviation vector d.

As we wish to arrive at the neutral [¥¢Z)) state while
avoiding the corresponding triplet state and being re-
silient to an initial guess contaminated by the ionic
|WEX) state, the total spin and the Mulliken charges?®
of the atoms are obvious candidates for additional prop-
erties that should help uniquely identify our target state.
We therefore chose our property deviation vector as

d={(B)—w, (Qu)—n. VI -C}  (20)

where (Qr;) is the Mulliken charge on the Li atom and
we set n = 0 and ¢ = 0 so as to target a neutral sin-
glet. Happily, both the values and the derivatives of the
Mulliken charges and the total spin

2 _ 2ia(Tia = Tia)”
<S > a Zia Jiza + Tz%z (27)

are easily evaluated for a CIS-like wavefunction like
ESMF, and so the use of these properties does not change
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FIG. 10. For various choices of the A matrix weights, we
report the minimum value of p required for our initial guess
lg(p)) to successfully optimize to the correct energy for the
targeted |WSL,) state.

the cost-scaling of the method. In order to conveniently
study the effects of putting different amounts of empha-
sis on different property deviations, we modify the GVP
objective function to take the following form.

Ly=pdTA d+ (1 —p)|VEP (28)
Ag 0 0

A=|0 Ag O (29)
0 0 Ag

Of course, this is equivalent to setting the semi-positive-
definite matrix A to unity and scaling the definitions of
the different properties, but we find the above form more
convenient for presenting the different relative weightings
that we placed on our three different property deviations.
For our initial guess |g(p)), we have set the orbital basis
to the the RHF orbitals and have used varying mixtures
of |¢FX) and |¢)CT), which are the CIS wave functions
corresponding to [WEX) and |WCT), respectively.

\/; ‘¢CT /100 D ‘QSEX (30)

For each choice of the property weights in the A matrix,
we tested whether |g(p)) would successfully converge to
the |[W1)) state for the cases p = 0, 10, 20, ..., 100. Each
optimization was performed via FDNR minimization of
L =xLx+ (1 —x)E, with u stepped down from one to
zero by intervals of 0.1 and y switched from one to zero
on the twentieth FDNR iteration. A value of -7.146 Ej,
the ESMF energy for |[UEX) was used for w throughout.

As seen in Fig. 10, placing significant weights on both
the charge and spin deviations allows for successful op-
timizations even with very poor initial guesses and our



intentionally off-center value for w. With Ag = 10 and
Ag > 4, we find that having as little as 10% of the cor-
rect CIS wavefunction in the initial guess leads to a suc-
cessful optimization. When we do not include the spin
targeting (i.e. when we set Ag = 0), we find that the
charge targeting is much less effective, with no optimiza-
tions succeeding when less than 80% of the correct CIS
wavefunction is in the guess, regardless of the value of
Ag. This result was somewhat unexpected, given that
our guess is a pure spin singlet. We had expected that
by giving the optimization a strong preference for neutral
states, we would have converged to a linear combination
of [WCT)) and |¥SL)) that, while perhaps displaying some
spin contamination, at least had the correct energy. In-
stead, we find that using spin to break the optimization
degeneracy (by setting Ag = 10) is essential for robust
convergence.

V. CONCLUSIONS

We have presented a generalization of the variational
principle based on the energy gradient and the idea of
constructing a flexible system for optimizing a state that
can be specified uniquely by a list of properties. This
approach is formally exact while avoiding the difficul-
ties associated with squaring the Hamiltonian operator.
Instead, it demands that a limited amount of energy sec-
ond derivative information be evaluated, but, and this
point is crucial, the required derivatives do not lead to
an increase in cost scaling compared to the traditional
ground state variational principle. So long as the prop-
erties used to identify the desired state do not themselves
lead to an increase in cost scaling, the approach is there-
fore expected to maintain the scaling of its ground state
counterpart.

Combining these ideas with excited state mean field
theory, we have shown that the latter’s optimization can
be carried out without the need for the Lagrange multi-
pliers that were present in its original formulation. We
find that this approach leads to substantial efficiencies in
the optimization thanks to both a simpler Hessian and
an objective function that is bounded from below and
thus easier to use straightforwardly with quasi-Newton
optimization methods. We have also shown that a full
Newton-Raphson approach can be realized efficiently and
without Hessian matrix construction by formulating Hes-
sian matrix-vector products approximately via a finite-
difference of gradients. Although it is not yet clear
whether quasi-Newton methods or this full Newton ap-
proach will ultimately be faster for excited state mean
field optimizations, what is clear is that the objective
function based on the generalized variational principle is
strongly preferable to the original objective function that
relied on Lagrange multipliers.

With the ability to converge excited state mean field
calculations in a larger set of molecules than was previ-
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ously possible, we compared the corresponding second or-
der perturbation theory to other commonly-used single-
reference excited state methods and found its accuracy to
be highly competitive. This success motivates both work
on an internally contracted version of this perturbation
theory in order to reduce its cost scaling and on fully
excited-state-specific coupled cluster methods, which, if
the history of ground state investigations is any guide,
should be even more reliable than the perturbation the-
ory.

More broadly, the generalized variational principle ap-
pears to offer new opportunities in many different areas
of electronic structure theory. The ability to use a prop-
erty vector to define which state is being sought with-
out changing the final converged wave function should be
especially useful in multi-reference investigations, where
root flipping often prevents excited-state-specific calcu-
lations. By combining the energy with other properties,
we demonstrated that the GVP could be used to resolve
an individual state even in the presence of degeneracy,
poor initial guesses, and poor energy targeting. There
are of course many properties one could explore, but some
that come immediately to mind are the dipole moment,
changes in bond order from the ground state, and the de-
gree of overlap with wave function estimates from other
methods such as state averaging. In addition to multi-
reference theory, the generalized variational principle ap-
pears to offer a route to defining exact density functionals
for excited states so long as those states can be specified
uniquely by a list of properties. Combined with promis-
ing preliminary data from a density functional extension
of excited state mean field theory,'* this formal founda-
tion may allow for interesting new directions in density
functional development.
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A generalized variational principle with applications to excited
state mean field theory

Jacqueline A. R. Shea, Elise Gwin, and Eric Neuscamman

S.1 Line search details

In scenarios where the current variable is far from a stationary point (i.e. violates the second order
Taylor expansion used in the FDNR approximation) or there was an incomplete convergence of the
GMRES solver, the convergence of the FDNR algorithm is accelerated by including a parameter &

that scales the change to the variable vector according to
Vil = Vi + EAVL. (D

The update vector AV is the optimal direction we should move in, yet the overall optimization
may converge faster if we can determine algorithmically how far we should move that direction
in parameter space. The line search algorithm described in this section and illustrated in Figure
1 identifies the step size, reducing the impact of “bad steps” and maximizing the effect of “good
steps” towards the desired energy stationary point.

After computing the descent direction Ay, via the GMRES algorithm, we then aim to minimize
g(&) = f(Vi + EAV,), where f is a target function for the line search. This target function need not
be identical to the main algorithm’s target function like L; or L, ; in fact, we most often used the
energy as the line search target function as it is cheaper to compute than other potential line search
target function candidates such as L, |VE]|, or |VL|. However, minimizing the energy is not ideal in
scenarios where AV, mainly affects energy-invariant parameters such as the lagrange multipliers in

L. For cases where the line search seemed ineflicient or failed when minimizing the energy, we



instead used L as the line search target function.
Once we have selected a target function, we then identify two points with opposite-signed

derivatives, £, and &g. Although we use the approximate derivative

8¢ +9) - g

D(¢) ~ 5

2)

as another cost saving measure, by the intermediate value theorem, we are guaranteed that &; and
&g are left- and right-side bounds, respectively, for the line search step size that minimizes g(¢), &.

With these new bounds, we then start with a bisection search, where a central point is suggested
according to & = %(.fL +&r). It D(&) < D(éc) < 0, the central point becomes the new left-
side bound, i.e. & — &;. Alternatively, if 0 < D(éc) < D(&r), éc — &g. This first bisection
search tightens the bounds closer to the minimum. Then, the line search generates a few points
between the bounds and attempts to fit the function g(£) with the two or three points with smallest
values of D(¢) to either a linear or quadratic polynomial to produce an estimate to &. If this new
estimate does not have a sufficiently small value of D(&)), the line search reverts back to a bisection
search. Overall, the linesearch is quite robust, computationally cheap — converging in about twenty

function calls, and greatly improves the speed and numerical stability of the FDNR algorithm.



E(v + &Av)

Figure 1: A fictitious example illustrating the line search is shown. The energy of the wave function
is the target function and is plotted against &£ in green. The initial bounds are chosen such that the
target function is decreasing at &, and increasing at £&¢. An initial bisection search locates &¢, the
central point between the bounds as shown by the dashed lines and double-headed gray arrows,
and this point becomes the new left-most bound to the minimum. Two more points are generated
between the bounds, & and &», and a parabola — plotted in black — is fit to those three points with
smallest values of D(§): &c, €71, and &f,. The minimum of that parabola shown by the yellow star
is approximately &, — the value that minimizes E(v + £Av).



S.2 Excitation Energies Results

Table 1: CSF coeficients in the ESMF wave function with amplitudes larger than 0.1 are tabulated
for each molecule in the test set. Orbital ordering is relative to RHF orbital energies produced by
MOLPRO version 2019.1. Note that other levels of theory may have different orbital energies, and
thus orbital orderings. In these scenarios, we ensured we were comparing the same excitations by
plotting and visually comparing orbitals contributing to the major CSFs in the excitations between
theories.

Molecule Excitation CSF Amplitude
Acetaldehyde HOMO — LUMO 0.65
HOMO-5 — LUMO 0.17
HOMO-4 — LUMO -0.15
Ammonia HOMO — LUMO 0.70
Carbon Monoxide HOMO — LUMO 0.70
Cyclopropene HOMO — LUMO 0.68
HOMO — LUMO+3 -0.19
Diazomethane HOMO — LUMO 0.68
HOMO  — LUMO+3 -0.16
Dinitrogen HOMO-1 — LUMO 0.49
HOMO — LUMO+I 0.49
Ethylene HOMO — LUMO 0.69
Formaldehyde HOMO — LUMO 0.66
HOMO-3 — LUMO 0.22
Formamide HOMO-1 — LUMO+2 0.68
HOMO-4 — LUMO+2 -0.11
Hydrogen Sulfide HOMO — LUMO 0.70
Ketene HOMO — LUMO 0.69
HOMO  — LUMO+3 0.14
Methanimine HOMO — LUMO 0.67
HOMO-2 — LUMO -0.17
Nitrosomethane HOMO — LUMO 0.65
HOMO-5 — LUMO 0.21
HOMO-2 — LUMO 0.14
Streptocyanine Cation HOMO — LUMO 0.70
Thioformaldehyde HOMO — LUMO 0.70
Water HOMO — LUMO 0.70
Ammonia — Difluorine HOMO — LUMO 0.70
Dinitrogen — Methylene HOMO-3 — LUMO 0.70




Table 2: Comparisons for singlet excitations from the ground state in the cc-pVDZ basis set. We
report 0-CR-EOM-CC(2,3),D excitation energies in eV, with other methods’ results reported as
excitation energy errors in eV relative to 0-CR-EOM-CC(2,3),D and summarized in terms of mean
unsigned error (UE) and maximum UE.

6-CR-EOM- EOM- TD-DFT TD-DFT
Molecule CC(2,3),D (eV) CIS CIS(D) CCSD B3LYP wBI7X-V ESMF ESMP2
Acetaldehyde 4.36 0.71 0.25 0.21 0.09 0.14 -0.63 0.15
Ammonia 7.57 0.95 0.06 0.05 -0.52 -0.07 -0.46 -0.01
Carbon Monoxide 8.76 0.61 0.51 0.30 0.16 0.31 0.05 -0.16
Cyclopropene 797 0.57 -0.33 -0.08 -0.83 -0.33 -0.41 -0.06
Diazomethane 3.01 0.38 0.82 0.45 0.05 0.09 -0.67 -0.04
Dinitrogen 10.36 -1.31 0.62 0.44 -0.03 0.00 -1.39 0.06
Ethylene 8.80 -0.25 0.12 0.19 0.11 0.10 -0.43 -0.29
Formaldehyde 4.08 0.63 0.25 0.19 0.07 0.10 -0.69 0.15
Formamide 5.86 0.88 0.16 0.21 0.04 0.11 -0.79 0.13
Hydrogen Sulfide 7.05 0.58 0.24 0.11 -0.27 0.20 0.00 -0.07
Ketene 3.78 0.70 0.59 0.36 0.22 0.31 -0.23 -0.05
Methanimine 5.35 0.66 0.35 0.22 0.00 0.11 -0.59 -0.02
Nitrosomethane 1.85 0.27 0.30 0.25 0.13 0.12 -0.41 0.17
Streptocyanine Cation 7.53 1.55 0.07 0.28 1.08 1.07 0.21 -0.42
Thioformaldehyde 2.18 0.58 0.26 0.24 0.13 0.17 -0.54 -0.08
Water 8.30 1.02 -0.12 -0.01 -0.57 -0.22 -0.67 0.05
Ammonia — 9.27 2.38 -0.78 0.51 -6.91 -2.69 -1.49 -0.27
Difluorine
Dinitrogen — 15.49 1.66 0.26 0.60 -6.58 -1.79 -0.69 0.15
Methylene
Max UE 2.38 0.82 0.60 6.91 2.69 1.49 0.42
Mean UE 0.87 0.34 0.26 0.99 0.44 0.58 0.13




S.3 Molecular Geometries

All geometries are reported in Bohr.

Acetaldehyde

C
C
O
H
H
H
H

0.008052747
-1.761806316

2.246773638
-0.904428111
-2.977891958
-2.977891958
-0.702745912

Ammonia

N

H
H
H

Carbon Monoxide

0.111541492
-0.587537797
-0.587537798
-0.587537797

0.000000000
0.000000000
0.000000000
0.000000000
1.652861299
-1.652861299
0.000000000

0.000000002
0.880428810
-1.760857612
0.880428810

C 0.000000000 0.000000000
O 0.000000000 0.000000000

0.879198997
-1.344481077
0.718590585
2736770916
-1.265947535
-1.265947535
-3.092549493

0.000000000
-1.524947426
0.000000000
1.524947426

-1.230609558
0.873855928



Cyclopropene
C  0.000000000
C 0.000000000
C  0.000000000
H 0.902756928
H -0.902756928
H 0.000000000
H 0.000000000

Diazomethane

C 0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

T T Z Z

Dinitrogen
N 0.000000000
N 0.000000000

Ethylene

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

T = T T QO

Formaldehyde

C 0.000000000
0.000000000
0.000000000
0.000000000

T = O

0.000000000
0.638080734
-0.638080734
0.000000000
0.000000000
1.563989148
-1.563989148

-0.000000000
0.000000000
-0.000000000
1.784627456
-1.784627456

0.000000000
0.000000000

1.244689439
-1.244689439
2.315999946
-2.315999946
2.315999946
-2.315999946

0.000000000
0.000000000
1.746571764
-1.746571764

-0.872109716
0.479769238
0.479769238

-1.470452899

-1.470452899
1.011157668
1.011157668

-2.282953315
0.137388906
2.246110349

-3.225240635

-3.225240635

1.018666600
-1.018666600

0.000000000
0.000000000
1.727974166
1.727974166
-1.727974166
-1.727974166

-1.126692899

1.111413933
-2.224070962
-2.224070962



Formamide
-0.759239486
1.465517414
-2.536583216
-1.567254484
-2.001519756
-4.368936239

— - o Z O 0

Hydrogen Sulfide
S 0.000000000
H 0.000000000
H 0.000000000

Ketene

C 0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

= T O 0O

Methanimine

C 0.103417399
N 0.091622833
H -1.575250900
H 1.888324157
H -1.679726679
Nitrosomethane
C -1.769950191
N 0.005900793
O 2.140923687
H -0.784206011
H -2.958034437
H -2.958034952

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000
1.838805844
-1.838805844

0.000000000
0.000000000
0.000000000
1.764688153
-1.764688153

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000076
-0.000000079
-0.000000375
-0.000000174

1.656486501
-1.656485950

0.680863915
0.317888436
-1.145481407
2.576881356
-2.949041662
-0.742367881

-0.468754348
1.234674624
1.234674624

-2.433659698
0.034004982
2.198008243

-3.424475103

-3.424475103

1.094801643
-1.268355130
2.268386439
2.082404864
-1.958372417

-1.063258407
1.056243005
0.438685065

-2.854317255

-0.863557788

-0.863557601



Streptocyanine Cation

T T T T T Z Z QO

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000
2.179904146
-2.179904146
0.000000000
2.361047263
-2.361047263
3.775585653
-3.775585653

Thioformaldehyde

C
S
H
H

0.000000000
0.000000000
0.000000000
0.000000000

Water

O
H
H

0.000000000
0.000000000
0.000000000

0.000000000
0.000000000
1.723389730
-1.723389730

0.000000000
1.425999575
-1.425999575

Ammonia — Fluorine

N
H
H
H
F
F

0.000000000
0.000000000
1.537789200
-1.537789200
0.000000000
0.000000000

-0.443921233

1.331763699
-1.331763699
-1.331763699
-0.443921233
-0.443921233

Dinitrogen — Methylene

C

T T Z Z

0.000000000
0.000000000
0.000000000
0.000000000
0.000000000

0.000000000
0.000000000
0.000000000
1.623731296
-1.623731296

0.799430664
-0.330459605
-0.330459605

2.828681969
-2.212325178
-2.212325178

0.677824117

0.677824117

-2.074807692

0.943242493
-3.161483020
-3.161483020

-0.112851412
0.970077421
0.970077421

-6.652831844
-7.379272802
-7.379272802
-7.379272802
4.685524903
7.379272802

-10.173779784
9.530551979
11.567891822
-11.462151350
-11.462151350



Lithium Hydride (Stretched)
Li 0.000000000 0.000000000  0.000000000
H 0.000000000 0.000000000 13.228082872
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