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We consider the variable selection problem, which seeks to identify im-
portant variables influencing a response Y out of many candidate features
X1, . . . ,Xp . We wish to do so while offering finite-sample guarantees about
the fraction of false positives—selected variables Xj that in fact have no ef-
fect on Y after the other features are known. When the number of features p

is large (perhaps even larger than the sample size n), and we have no prior
knowledge regarding the type of dependence between Y and X, the model-X
knockoffs framework nonetheless allows us to select a model with a guar-
anteed bound on the false discovery rate, as long as the distribution of the
feature vector X = (X1, . . . ,Xp) is exactly known. This model selection pro-
cedure operates by constructing “knockoff copies” of each of the p features,
which are then used as a control group to ensure that the model selection al-
gorithm is not choosing too many irrelevant features. In this work, we study
the practical setting where the distribution of X can only be estimated, rather
than known exactly, and the knockoff copies of the Xj ’s are therefore con-
structed somewhat incorrectly. Our results, which are free of any modeling
assumption whatsoever, show that the resulting model selection procedure
incurs an inflation of the false discovery rate that is proportional to our errors
in estimating the distribution of each feature Xj conditional on the remaining
features {Xk : k �= j}. The model-X knockoffs framework is therefore robust
to errors in the underlying assumptions on the distribution of X, making it an
effective method for many practical applications, such as genome-wide asso-
ciation studies, where the underlying distribution on the features X1, . . . ,Xp

is estimated accurately but not known exactly.

1. Introduction. Our methods of data acquisition are such that we often obtain infor-
mation on an exhaustive collection of possible explanatory variables. We know a priori that
a large proportion of these are irrelevant for our purposes, but in an effort to cover all bases,
we gather data on all what we can measure and rely on subsequent analysis to identify the
relevant variables. For instance, to achieve a better understanding of biological processes be-
hind a disease, we may evaluate variation across the entire DNA sequence and collect single
nucleotide polymorphism (SNP) information, or quantify the expression level of all genes, or
consider a large panel of exposures, and so on. We then expect the statistician or the scientist
to sort through all these and select those important variables that truly influence a response
of interest. For example, we would like the statistician to tell us which of the many genetic
variations affect the risk of a specific disease, or which of the many gene expression profiles
help determine the severity of a tumor.

This paper is about this variable selection problem. We consider situations where we have
observations on a response Y and a large collection of variables X1, . . . ,Xp . With the goal of
identifying the important variables, we want to recover the smallest set S ⊆ {1, . . . , p} such

Received January 2018; revised February 2019.
MSC2010 subject classifications. 62F03, 62F35, 62G10, 62G35.
Key words and phrases. Knockoffs, variable selection, false discovery rate (FDR), high-dimensional regres-

sion, robustness.

1409

http://www.imstat.org/aos/
https://doi.org/10.1214/19-AOS1852
http://www.imstat.org
mailto:rina@uchicago.edu
mailto:candes@stanford.edu
mailto:r.samworth@statslab.cam.ac.uk
http://www.ams.org/mathscinet/msc/msc2010.html


1410 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

that, conditionally on {Xj }j∈S , the response Y is independent of all the remaining variables
{Xj }j /∈S . In the literature on graphical models, the set S would be called the Markov blanket
of Y . Effectively, this means that the explanatory variables X1, . . . ,Xp provide information
about the outcome Y only through the subset {Xj }j∈S . To ensure reproducibility, we are
interested in methods that result in the estimation of a set Ŝ with false discovery rate (FDR)
control (Benjamini and Hochberg (1995)), in the sense that

FDR = E
[

#{j : j ∈ Ŝ \ S}
#{j : j ∈ Ŝ}

]
≤ q,

that is, a bound on the expected proportion of our discoveries Ŝ which are not in the smallest
explanatory set S .1 (Here, q is some predetermined target error rate, e.g., q = 0.1.)

In truth, there are not many variable selection methods that would control the FDR with
finite-sample guarantees, especially when the number p of variables far exceeds the sam-
ple size n. That said, one solution is provided by the recent model-X knockoffs approach of
Candès et al. (2018), which is a new read on the earlier knockoff filter of Barber and Candès
(2015); see also Barber and Candès (2019). One singular aspect of the method of model-X
knockoffs is that it makes assumptions that are substantially different from those commonly
encountered in the statistical literature. Most of the model selection literature relies on a spec-
ification of the model that links together the response and the covariates, making assumptions
on PY |X , the distribution of Y conditional on X—for instance, assuming that the form of this
distribution follows a generalized linear model or some other parametrized model. In contrast,
model-X knockoffs make no assumption whatsoever on the relation between the response Y

and the variables X = (X1, . . . ,Xp); in other words, the distribution PY |X of Y conditional
on X is “model-free.” The price of this generality is that we need to be able to specify the
distribution of the feature variables X = (X1, . . . ,Xp), which we denote by PX . This distri-
bution is then used to construct knockoff feature variables X̃ = (X̃1, . . . , X̃p), where each X̃j

mimics the real feature Xj and acts a “negative control” in any variable selection algorithm—
if our variable selection algorithm selects any of the knockoff features, this alerts us to a high
false positive rate in the algorithm. Knowledge of the distribution of X is needed in order to
construct the X̃j ’s appropriately—for instance, if X1 is a real signal while X2 is null, then
we need X̃2 to mimic X2’s dependence with X1 in order to act as an appropriate negative
control.

As argued in Candès et al. (2018) and Janson (2017), this “shift” of the burden of knowl-
edge is interesting because we must recall that the object of inference is on how Y relates
to X, that is, on PY |X . It is, therefore, a strong premise to posit the form of this relationship
PY |X a priori—and indeed, there are many applications in which we objectively do not have
any understanding of how Y depends on X. Further, the shift is also appropriate whenever
we know much more about the distribution of X than on the conditional distribution of Y | X.
For instance, it is easy to imagine applications in which we have many unlabeled samples—
samples of X—whereas it may be much harder to acquire labeled data or samples with a
given value of the response Y . A typical example is offered by genetic studies, where we now
have available hundreds of thousands or even millions of genotypes across many different
populations. At the same time, it may be difficult to recruit patients with a given phenotype
(the response variable Y ) and, therefore, we have substantially more data with which to esti-
mate PX than PY |X .

The ease with which we can gather information about X does not imply that we know
the distribution PX exactly, but we often do have substantial information about this distribu-
tion. Returning to our genetic example, it has been shown that the joint distribution of SNPs

1As is standard in the FDR literature, in this expected value we treat 0/0 as 0, to incur no penalty in the event
that no variables are selected, that is, when Ŝ =∅.
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may be accurately modeled by hidden Markov models (see Li and Stephens (2003), Qin, Niu
and Liu (2002), Stephens, Smith and Donnelly (2001), Zhang et al. (2002) for some early
formulations), and there certainly is an abundance of genotype data to estimate the various
model parameters; compare for instance the success of a variety of methods for genotype
imputation (Marchini and Howie (2010), Howie et al. (2012)) based on such models. More
generally, if a large amount of unlabeled data is available, the “deep knockoffs” methodology
of Romano, Sesia and Candès (2018) proposes using a deep generative model to generate
knockoffs, subject to constraints that ensure that the knockoffs have approximately replicated
the dependencies among the Xj ’s. Empirically, they find that this method is extremely effec-
tive at producing knockoff distributions that successfully control the FDR.

The purpose of this paper then is precisely to investigate common situations of this kind,
namely, what happens when we run model-X knockoffs and only assume approximate knowl-
edge of the distribution of X rather than exact knowledge, or equivalently, a construction of
the knockoff features X̃ that only approximately replicates the distribution of X. Our contri-
bution is a considerable extension of the original work on model-X knockoffs (Candès et al.
(2018)), which assumed a perfect knowledge of the distribution of X to achieve FDR con-
trol. If we only have access to an approximation of the distribution of X, then it is certainly
possible for model-X knockoffs to fail to control FDR—for instance, see Romano, Sesia and
Candès (2018), Section 6.5, 6.6, for examples where estimating the distribution of X using
only its first two moments is not sufficient for FDR control if the true distribution is heavy-
tailed.

Here, we develop a new theory, which quantifies very precisely the inflation in FDR when
running the knockoff filter with estimates of the distribution of X in place of the true distri-
bution PX . We develop nonasymptotic bounds which show that the possible FDR inflation
is well-behaved whenever the estimated distribution is reasonably close to the truth. These
bounds are general and apply to all possible statistics that the researcher may want to use
to tease out the signal from the noise. We also develop converse results for some settings,
showing that our bounds are fairly sharp in that it is impossible to obtain tighter FDR control
bounds in full generality. Thus, our theory offers finite-sample guarantees that hold for any
algorithm that the analyst decides to employ, assuming no knowledge of the form of the re-
lationship between Y and X and only an estimate of the distribution of X itself. On the other
hand, since our bounds are worst-case, they may be pessimistic in the sense that the realized
FDR in any practical situation may be much lower than that achieved in the worst possible
case.

Underlying our novel model-X knockoffs theory is a completely new mathematical anal-
ysis and understanding of the knockoffs inferential machine. The technical innovation here
is essentially twofold. First, with only partial knowledge of the distribution of X, we can
no longer achieve a perfect exchangeability between the test statistics for the null variables
and for their knockoffs. Hence, we need tools that can deal with only a form of approximate
exchangeability. Second, our methods to prove FDR control no longer rely on martingale
arguments, and rather, involve leave-one-out type of arguments. These new arguments are
likely to have applications far outside the scope of the present paper.

2. Robust inference with knockoffs. To begin with, imagine we have data consisting
of n i.i.d. draws from a joint distribution on (X,Y ), where X = (X1, . . . ,Xp) ∈ Rp is the
feature vector while Y ∈ R is the response variable. We will gather the n observed data points
into a matrix X ∈ Rn×p and vector Y ∈ Rn, that is, the pairs (Xi,∗,Yi) are i.i.d. copies of
the pair (X,Y ). The joint distribution of (X,Y ) is unknown—specifically, we do not assume
any information about the conditional distribution of Y given X as discussed above. We work
under the assumption that PX , the marginal distribution of X, is known only approximately.
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Since the Markov blanket of Y may be ill-defined (e.g., if two features are identical then
the choice of the minimal set S may not be unique), we follow Candès et al. (2018) and define
Xj to be a null variable if Xj ⊥⊥ Y | X−j , that is, if Xj and the response Y are independent
conditionally on all the other variables. (We use the terms “features” and “variables” inter-
changeably.) Under very mild identifiability conditions, the set of nonnulls is nothing other
than the Markov blanket of Y . Writing H0 to denote the set of indices corresponding to null
variables, we can then reformulate the error we would like to control as E[|Ŝ ∩H0|/|Ŝ|] ≤ q .

2.1. Exact model-X knockoffs. Consider first an ideal setting where the distribution PX

is known. The model-X knockoffs method (Candès et al. (2018)) is defined by constructing
knockoff features satisfying the following conditions: X̃ is drawn conditional on the feature
vector X without looking at the response Y (i.e., X̃ ⊥⊥ Y | X), such that the joint distribution
of (X, X̃) satisfies a pairwise exchangeability condition, namely

(1) (X, X̃)swap(A)
d= (X, X̃)

for any subset A ⊆ {1, . . . , p}, where d= denotes equality in distribution. (In fact, to achieve
FDR control, this condition only needs to hold for subsets A ⊆ H0 containing only null
variables.) Above, the family (X, X̃)swap(A) is obtained from (X, X̃) by swapping the entries
Xj and X̃j for each j ∈A; for example, with p = 3 and A= {2,3},

(X1,X2,X3, X̃1, X̃2, X̃3)swap ({2,3}) = (X1, X̃2, X̃3, X̃1,X2,X3).

As a consequence of the pairwise exchangeability property (1), we see that the null knock-
off variables {X̃j }j∈H0 are distributed in exactly the same way as the original nulls {Xj }j∈H0

but some dependence is preserved: for instance, for any pair j �= k where k is a null, we have

that (Xj , X̃k)
d= (Xj ,Xk).

Given knowledge of the true distribution PX of the features X, our first step to implement
the method of model-X knockoffs is to construct a distribution for drawing X̃ conditional on
X such that the pairwise exchangeability property (1) holds for all subsets of features A. We
can think of this mechanism as constructing some probability distribution PX̃|X(·|x), which
is a conditional distribution of X̃ given X = x, chosen so that the resulting joint distribution
of (X, X̃), which is equal to

PX(x)PX̃|X(x̃|x),

is symmetric in the pairs (xj , x̃j ), and thus will satisfy the exchangeability property (1).
Now, when working with data (X,Y), we will treat each data point (Xi,∗,Yi) independently.
Specifically, after observing the data (X,Y) ∈ Rn×p × Rn, the rows X̃i,∗ of the knockoff
matrix are drawn from PX̃|X(·|Xi,∗), independently for each i and also independently of Y.
Figure 1 shows a schematic representation of the exact model-X knockoffs construction.

It is important to point out that mechanisms for producing the pairwise exchangeability
property (1) do exist and can be very concrete. As a specific example, suppose we wish to
sample knockoff copies of Gaussian features, which follow a known Gaussian distribution
PX = Np(0p,�). Then Candès et al. (2018) show that the knockoffs X̃i,∗ can be drawn from
the conditional distribution

(2) PX̃|X(·|Xi,∗) =Np

((
Ip − D�−1)Xi,∗,2D − D�−1D

)
for any fixed diagonal matrix D satisfying 0 	 D 	 2�. (This mechanism provides valid
knockoffs because it ensures that the joint distribution of (Xi,∗, X̃i,∗) is given by

N2p

(
02p,

(
� � − D

� − D �

))
,
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FIG. 1. Schematic representation of the exact model-X knockoffs construction.

which satisfies pairwise exchangeability (1).) There are also fast algorithms for the case
where X follows either a Markov or a hidden Markov model (Sesia, Sabatti and Candès
(2019)). More broadly, Candès et al. (2018) develop a general abstract mechanism termed
the Sequential Conditional Independent Pairs (SCIP) algorithm, which always produces ex-
changeable knockoff copies and can be applied to any distribution PX . Looking ahead, all
of these algorithms can be used in the case where PX is known only approximately, where
the exchangeability property (1) will be required to hold only with reference to the estimated
distribution of X, discussed in Section 2.2 below.

For assessing a model selection algorithm, the knockoff feature vectors X̃j can be used as
a “negative control”—a control group for testing the algorithm’s ability to screen out false
positives, since X̃j is known to have no real effect on Y. Although details are given in Sec-
tion 2.3, it is helpful to build some intuition already at this stage. Imagine for simplicity that
we wish to assess the importance of a variable by measuring the strength of the marginal cor-
relation with the response, that is, we compute Zj = |X


j Y|. Then we can compare Zj with

Z̃j = |X̃

j Y|, the marginal correlation for the corresponding knockoff variable. The crucial

point is that the pairwise exchangeability property (1) implies that if j is null (recall that this
means that Xj and Y are conditionally independent given X−j ), then

(Zj , Z̃j )
d= (Z̃j ,Zj ).

This holds without any assumptions on the form of the relationship PY |X between Y and
X (Candès et al. (2018)). In particular, this means that the test statistic Wj = Zj − Z̃j is
equally likely to be positive or negative. Thus to reject the null, we would need to observe a
large positive value of Wj . As we will see in Section 2.3, this way of reasoning extends to
any choice of statistic Zj ; whatever statistic we choose, knockoff variables obeying (1) offer
corresponding values of the statistic which can be used as “negative controls” for calibration
purposes.

Throughout this paper, we will pay close attention to the distribution we obtain when
swapping only one variable and its knockoff (and do not swap any of the other variables). In
this context, we can reformulate the broad exchangeability condition (1) in terms of single
variable swaps.

PROPOSITION 1 (Candès et al. (2018), Proposition 3.5). The pairwise exchangeability
property (1) holds for a subset A ⊆ {1, . . . , p} if and only if

(3) (Xj , X̃j ,X−j , X̃−j )
d= (X̃j ,Xj ,X−j , X̃−j )

holds for all j ∈A.
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In other words, we can restrict our attention to the question of whether a single given
feature Xj and its knockoff X̃j are exchangeable with each other (in the joint distribution
that also includes X−j and X̃−j ).

2.2. Approximate model-X knockoffs and pairwise exchangeability. Now we will work
toward constructing a version of this method when the true distribution of the feature vector
X is not known exactly. Here, we need to relax the pairwise exchangeability assumption,
since choosing a useful mechanism PX̃|X that satisfies this condition would generally require
a very detailed knowledge of the distribution of X, which is typically not available. This
section builds toward a definition of pairwise exchangeability with respect to an approximate
estimate of the distribution of X, in two steps.

From this point on, we will write PX to denote the assumed joint distribution of X, and Pj

for its conditionals; P �
X , and its conditionals P �

j , will denote the unknown true distribution of
X. Throughout we will assume that PX , our assumed or estimated distribution of X, is fixed
or is independent from the data set (X,Y), for example, it may have been estimated from a
separate unlabeled data set.

2.2.1. Exchangeability with respect to an input distribution PX . We are provided with
data X and conditional distributions Pj (·|x−j ) for each j . As a warm-up, assume first that
these conditionals are mutually compatible in the sense that there is a joint distribution PX

over Rp that matches these p estimated conditionals—we will relax this assumption very
soon. Then as shown in Figure 2, we repeat the construction from Figure 1, only with the
Pj ’s as inputs. In words, the algorithm constructs knockoffs, which are samples from PX̃|X , a
conditional distribution whose construction is based on the conditionals Pj or, equivalently,
the joint distribution PX . In place of requiring that pairwise exchangeability of the features
Xj and their knockoffs X̃j holds relative to the true distribution of X, as in (1) and (3), we
instead require that the knockoff construction mechanism satisfy pairwise exchangeability
conditions relative to the estimated joint distribution PX that it receives as input:

(4)
If (X, X̃) is drawn as X ∼ PX and X̃ | X ∼ PX̃|X(·|X), then

(X, X̃)swap(A)
d= (X, X̃), for any subset A ⊆ {1, . . . , p}.

When only estimated compatible conditionals are available, original and knockoff features
are required to be exchangeable with respect to the distribution PX , which is provided as
input (but not with respect to the true distribution of X, which is unknown). To rephrase, if
the distribution of X were in fact equal to PX , then we would have exchangeability.

FIG. 2. Schematic representation of the approximate model-X knockoffs construction. The two differences rela-
tive to Figure 1 are circled in red.
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2.2.2. Exchangeability with respect to potentially incompatible conditionals Pj . We
wish to provide an extension of (4) to cover the case where the conditionals may not be
compatible; that is, when a joint distribution with the Pj ’s as conditionals may not exist.
To understand why this is of interest, imagine we have unlabeled data that we can use to
estimate the distribution of X. Then we may construct Pj by regressing the j th feature Xj

onto the p − 1 remaining features X−j . For instance, we may use a regression technique
promoting sparsity or some other assumed structure. In such a case, it is easy to imagine that
such a strategy may produce incompatible conditionals. It is, therefore, important to develop
a framework adapted to this setting. To address this, we shall work throughout the paper with
the following definition.

DEFINITION 1. PX̃|X is pairwise exchangeable with respect to Pj if it satisfies the fol-
lowing property:

(5)

For any distribution D(j) on Rp with j th conditional Pj ,

if (X, X̃) is drawn as X ∼ D(j) and X̃ | X ∼ PX̃|X(·|X),

then (Xj , X̃j ,X−j , X̃−j )
d= (X̃j ,Xj ,X−j , X̃−j ).

Above, D(j) is the product of an arbitrary marginal distribution for X−j and of the conditional
Pj .

In words, with estimated conditionals Pj , we choose PX̃|X to satisfy pairwise exchange-
ability with respect to these Pj ’s, for every j . (As before, we remark that this only needs to
hold for j ∈ H0 to ensure FDR control, but since in practice we do not know which features
are null, we require (5) to hold for every j .)

To see why this is an extension of (4), note that if the Pj ’s are mutually compatible, that is,
there is some distribution PX with conditionals Pj for each j , then any algorithm operating
such that (5) holds for each j , obeys (4) as well—this is because, for each j , we can apply
(5) with the distribution D(j) = PX .

Now let us consider the question of how we might generate knockoff copies obeying (5). In
the setting where our estimated conditionals Pj are all compatible with some joint distribution
PX on X, constructing knockoff copies in this approximate scenario is no different from the
exact model-X knockoffs framework—if we have some mechanism which, when we input
the joint distribution P �

X of X, will produce exchangeable knockoffs obeying (1), then we
can instead provide our estimated joint distribution PX as input to produce knockoff copies
that satisfy (4) and, by extension, satisfy (5). Hence, if the Pj ’s are mutually compatible, then
all the mechanisms producing valid knockoffs under exact knowledge of P �

X—we mentioned
a few in the previous section—can be readily used for our purposes. Later in Section 4, we
will also give an example of a mechanism producing valid knockoffs satisfying (5) under
incompatible Pj ’s.

2.2.3. Probability of a swap. We next develop a key lemma that will allow us to charac-
terize the quality of our constructed knockoffs. In an exact model-X knockoffs framework,
the key idea is that the knockoffs X̃j act as controls for null variables Xj , because even after
all observing all of the data—all the covariates, and the response Y —we are unable to tell
which of the two, that is, Xj and X̃j , is the real variable versus the knockoff. More precisely,
each of the two is equally likely to be the real variable or the knockoff. Our next step in the
approximate setting, therefore, is to determine whether this is approximately true when the
estimated conditionals Pj are not too far from the true conditionals P �

j .
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From this point on, we will assume without comment that for each j , either Xj and X̃j are
both discrete variables or are both continuous variables, and abusing notation, in these two
settings we will use P �

j (·|x−j ) and Pj (·|x−j ) to denote the conditional probability mass func-
tion or conditional density, respectively, for the true and estimated conditional distribution of
Xj given X−j = x−j . Furthermore, we assume that P �

j (·|x−j ) and Pj (·|x−j ) are supported
on the same (discrete or continuous) set for any x−j . Our theory can be generalized to the
setting of mixed distributions and/or varying supports, but for clarity of the results we do not
present these generalizations here.

The construction of the knockoff features as in Figure 2 yields the following approximate
pairwise exchangeability result (proved in Appendix A).

LEMMA 1. Fix any feature index j such that pairwise exchangeability (5) with respect
to Pj is satisfied. If Xj , X̃j are discrete, then for any2 a, b,

P{Xj = a, X̃j = b | X−j , X̃−j }
P{Xj = b, X̃j = a | X−j , X̃−j } = P �

j (a|X−j )Pj (b|X−j )

Pj (a|X−j )P
�
j (b|X−j )

.

Furthermore, if index j corresponds to a null feature (i.e., Xj ⊥⊥ Y | X−j ) and we addition-
ally assume that X̃ | X is drawn from PX̃|X independently of Y , then the same result holds
when we also condition on Y :

(6)
P{Xj = a, X̃j = b | X−j , X̃−j , Y }
P{Xj = b, X̃j = a | X−j , X̃−j , Y } = P �

j (a|X−j )Pj (b|X−j )

Pj (a|X−j )P
�
j (b|X−j )

.

The conclusion in the continuous case is identical except with ratios of probabilities replaced
with ratios of densities.

To better understand the roles of the various distributions at play, consider the two follow-
ing scenarios for the joint distribution of the feature vector X and its knockoff copy X̃:

T
ru

e
di

st
ri

bu
tio

n ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
X−j ∼ (any distribution)

Xj | X−j ∼ P �
j (·|X−j )

X̃ | X ∼ PX̃|X(·|X)

A
ss

um
ed

di
st

ri
b.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
X−j ∼ (any distribution)

Xj | X−j ∼ Pj (·|X−j )

X̃ | X ∼ PX̃|X(·|X)

The knockoff generating mechanism PX̃|X is designed with the estimated conditional Pj

in mind and, therefore, by construction, Xj and X̃j are exchangeable under the ‘Assumed
distribution” scenario on the right, defined with the incorrect estimate Pj of the j th con-
ditional. The real distribution of (X, X̃) instead follows the scenario labeled as the “True
distribution,” on the left. When P �

j �= Pj , this means that Xj and X̃j are only approximately
exchangeable under the true distribution of the data. Lemma 1 quantifies the extent to which
the pair (Xj , X̃j ) deviate from exchangeability, giving a useful formula for computing the ra-
tio between the likelihoods of the two configurations (Xj , X̃j ) = (a, b) and (Xj , X̃j ) = (b, a)

(after conditioning on the remaining data).

2Formally, this result holds only for a, b lying in the support of P�
j (·|X−j ), which is assumed to be equal to

the support of Pj (·|X−j ), as otherwise the ratio is 0/0; we ignore this possibility here and throughout the paper
since these results will be applied only in settings where a, b do lie in this support.
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It is important to observe that if we are working in the exact model-X framework, where
the true distribution and assumed distribution are the same (i.e., P �

j = Pj ), then in this case
the lemma yields

(7)
P{Xj = a, X̃j = b | X−j , X̃−j , Y }
P{Xj = b, X̃j = a | X−j , X̃−j , Y } = 1

for each null j . That is, the two configurations are equally likely. This result for the exact
model-X setting is proved in Candès et al. (2018), Lemma 3.2, and is critical for establishing
FDR control properties. When we use estimates Pj rather than the true conditionals P �

j ,
however, the property (7) is no longer true, since Lemma 1 shows that the ratio is no longer
equal to 1 in general. We can no longer use the knockoff statistics as exact negative controls;
only as approximate controls. This is where the major difficulty comes in: if a knockoff
statistic is only approximately distributed like its corresponding null, what is the potential
inflation of the type-I error that this could cause? In other words, if Pj ≈ P �

j so that the ratio
in (6) is slightly different from 1, how much might this inflate the resulting FDR?

Before proceeding with this question, we first give some additional background on the
knockoff filter, to see how the knockoff variables X̃j will be used to test our hypotheses. We
will then return in Section 3 to the question of how errors in constructing the knockoffs can
affect the resulting FDR.

2.3. The knockoff filter. After constructing the variables X̃j , we apply the knockoff filter
to select important variables. We here quickly rehearse the main ingredients of this filter and
refer the reader to Barber and Candès (2015) and Candès et al. (2018) for additional details;
our exposition borrows from Barber and Candès (2019). Suppose that for each variable Xj

(resp., each knockoff variable X̃j ), we compute a score statistic Zj (resp., Z̃j ), such that

(Z1, . . . ,Zp, Z̃1, . . . , Z̃p) = z
([X, X̃],Y)

,

with the idea that Zj (resp., Z̃j ) measures the importance of Xj (resp., X̃j ) in explaining Y .
Assume that the scores are “knockoff agnostic” in the sense that switching a variable with its
knockoff simply switches the components of Z in the same way. This means that

(8) z
([X, X̃]swap(A),Y

) = z
([X, X̃],Y)

swap(A)

that is, swapping X1 and X̃1 before calculating Z has the effect of swapping Z1 and Z̃1, and
similarly swapping X2 and X̃2 swaps Z2 and Z̃2, and so on. Here, we emphasize that Zj may
be an arbitrarily complicated statistic. For instance, it can be defined as the absolute value of
a lasso coefficient, or some random forest feature importance statistic; or, we may fit both a
lasso model and a random forest, and choose whichever one has the lowest cross-validated
error.

These scores are then combined in a single importance statistic for the variable Xj as

Wj = fj (Zj , Z̃j ) =: wj

([X, X̃],Y)
,

where fj is any antisymmetric function, meaning that fj (v,u) = −fj (u, v). As an exam-
ple, we may have Wj = Zj − Z̃j , where the Zj ’s and Z̃j ’s are the magnitudes of regression
coefficients estimated by the lasso at a value of the regularization parameter given by cross-
validation, say. Again, any choice of antisymmetric function fj and score statistic Zj , no
matter how complicated, is allowed. By definition, the statistics Wj obey the flip-sign prop-
erty, which says that swapping the j th variable with its knockoff has the effect of changing
the sign of Wj (since, by (8) above, if we swap feature vectors Xj and X̃j then Zj and Z̃j

get swapped):

(9) wj

([X, X̃]swap(A),Y
) =

{
wj

([X, X̃],Y)
, j /∈A,

−wj

([X, X̃],Y)
, j ∈A.



1418 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

The Wj ’s are the statistics that the knockoff filter will use. The idea is that large positive val-
ues of Wj provide evidence against the hypothesis that the distribution of Y is conditionally
independent of Xj , while in contrast, if j ∈ H0, then Wj has a symmetric distribution and,
therefore, is equally likely to take on positive or negative values.

In fact, it is equally valid for us to define Wj = wj([X, X̃],Y) for any function wj satisfy-
ing the flip-sign property (8), without passing through the intermediate stage of defining Zj ’s
and Z̃j ’s, and from this point on we do not refer to the feature importance scores Zj , Z̃j in
our theoretical results. However, for better understanding of the intuition behind the method,
we should continue to think of Wj as comparing the apparent importance of the feature Xj

versus its knockoff X̃j for modeling the response Y.
Now that we have test statistics for each variable, we need a selection rule. For the knockoff

filter, we choose a threshold T0 > 0 by setting3

(10) T0 = min
{
t > 0 : #{j : Wj ≤ −t}

#{j : Wj ≥ t} ≤ q

}
,

where q is the target FDR level. The output of the procedure is the selected model Ŝ = {j :
Wj ≥ T0}. In Barber and Candès (2015), it is argued that the ratio appearing in the right-
hand side of (10) is an estimate of the false discovery proportion (FDP) if we were to use the
threshold t—this is true because P{Wj ≥ t} = P{Wj ≤ −t} for any null feature j ∈ H0, and
so we would roughly expect

(11)

(# false positives at threshold t) = #{j ∈ H0 : Wj ≥ t}
≈ #{j ∈ H0 : Wj ≤ −t}
≤ #{j : Wj ≤ −t},

that is, the numerator in (10) is an (over)estimate of the number of false positives selected
at the threshold t . Hence, the selection rule can be interpreted as a step-up rule, stopping the
first time our estimate falls below our target level. A slightly more conservative procedure,
the knockoff+ filter, is given by incrementing the number of negatives by one, replacing the
threshold in (10) with the choice

(12) T+ = min
{
t > 0 : 1 + #{j : Wj ≤ −t}

#{j : Wj ≥ t} ≤ q

}
,

and setting Ŝ = {j : Wj ≥ T+}. Formalizing the intuition of our rough calculation (11), the
false discovery rate control properties of these two procedures are studied in Barber and
Candès (2015) under an exact pairwise exchangeability setting.

3. FDR control results.

3.1. Measuring errors in the distribution. If the knockoff features are generated using a
mechanism designed to mimic the estimated conditionals Pj rather than the true conditional
distributions P �

j , when can we hope for error control? Intuitively, if the conditional distribu-

tions P �
j and Pj are similar, then we might hope that the knockoff feature X̃j is a reasonably

good control group for the original feature Xj .
In order to quantify this, we begin by measuring the discrepancy between the true condi-

tional P �
j and its estimate Pj . Define the random variable

(13) K̂Lj := ∑
i

log
(P �

j (Xij |Xi,−j ) · Pj (X̃ij |Xi,−j )

Pj (Xij |Xi,−j ) · P �
j (X̃ij |Xi,−j )

)
,

3We want T0 to be positive and the formal definition is that the minimum in (10) is taken over all t > 0 taking
on values in the set {|W1|, . . . , |Wp|}.
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where the notation K̂Lj suggests the KL divergence. In fact, K̂Lj is the observed KL diver-
gence between (Xj , X̃j ,X−j , X̃−j ) and (X̃j ,Xj ,X−j , X̃−j ). To prove this, working in the
discrete case for simplicity, Lemma 1 tells us that∑

i

log
(P �

j (xij |xi,−j ) · Pj (̃xij |xi,−j )

Pj (xij |xi,−j ) · P �
j (̃xij |xi,−j )

)

= log
(
P{(Xj , X̃j ,X−j , X̃−j ) = (xj , x̃j ,x−j , x̃−j )}
P{(X̃j ,Xj ,X−j , X̃−j ) = (xj , x̃j ,x−j , x̃−j )}

)
for any xj , x̃j , x−j , x̃−j . Therefore, we see that

E[K̂Lj ] = dKL
(
(Xj , X̃j ,X−j , X̃−j )‖(X̃j ,Xj ,X−j , X̃−j )

)
,

where dKL is the usual KL divergence between distributions. (Recall that the approximate
conditionals Pj and the knockoff mechanism PX̃|X are assumed to be chosen independent
of the data (X,Y), and so this KL divergence measures the difference between two fixed
distributions.)

In the exact model-X setting, where the knockoff construction mechanism PX̃|X sat-
isfies the pairwise exchangeability property (1), Proposition 1 immediately implies that

(Xj , X̃j ,X−j , X̃−j )
d= (X̃j ,Xj ,X−j , X̃−j ) and, thus, E[K̂Lj ] = 0—and in fact, since we are

using the true conditionals P �
j , or in other words Pj = P �

j , we would have K̂Lj = 0 always.
In the approximate model-X framework, where Pj �= P �

j , we will instead have E[K̂Lj ] > 0
(although of course, for a given draw of the data, it may occur that K̂Lj is zero or even neg-
ative). We can interpret K̂Lj as measuring the extent to which the pairwise exchangeability
property (3) is violated for a specific feature j . We will see in our results below that control-
ling the K̂Lj ’s is sufficient to ensure control of the false discovery rate for the approximate
model-X knockoffs method. More precisely, we will be able to bound the false positives
coming from those null features which have small K̂Lj .

3.2. FDR control guarantee. We now present our guarantee for robust error control with
the model-X knockoffs filter. The proof of this theorem appears in Appendix A.

THEOREM 1. Under the definitions above, for any ε ≥ 0, consider the null variables
for which K̂Lj ≤ ε. If we use the knockoff+ filter, then the fraction of the rejections that
correspond to such nulls obeys

(14) E
[ |{j : j ∈ Ŝ ∩H0 and K̂Lj ≤ ε}|

|Ŝ| ∨ 1

]
≤ q · eε.

In particular, this implies that the false discovery rate is bounded as

(15) FDR ≤ min
ε≥0

{
q · eε + P

(
max
j∈H0

K̂Lj > ε
)}

.

Similarly, for the knockoff filter, for any ε ≥ 0, a slightly modified fraction of the rejections
that correspond to nulls with K̂Lj ≤ ε obeys

E
[ |{j : j ∈ Ŝ ∩H0and K̂Lj ≤ ε}|

|Ŝ| + q−1

]
≤ q · eε

and, therefore, we obtain a bound on a modified false discovery rate:

E
[ |Ŝ ∩H0|
|Ŝ| + q−1

]
≤ min

ε≥0

{
q · eε + P

(
max
j∈H0

K̂Lj > ε
)}

.



1420 R. F. BARBER, E. J. CANDÈS AND R. J. SAMWORTH

In Section 4, we will see concrete examples where maxj=1,...,p K̂Lj is small with high
probability, yielding a meaningful result on FDR control.

It worth pausing to unpack our main result a little. Clearly, we cannot hope to have error
control over all nulls if we have done a poor job in constructing some of their knockoff
copies, because our knockoff “negative controls” may be completely off. Having said this,
(14) tells us that that if we restrict our definition of false positives to only those nulls for
which we have a reasonable “negative control” via the knockoff construction, then the FDR is
controlled. Since we do not make any assumptions, this type of result is all one can really hope
for. In other words, exact model-X knockoffs make the assumption that the knockoff features
provide exact controls for each null, thus ensuring control of the false positives; our new result
removes this assumption, and provides a bound on the false positives when counting only
those nulls for which the corresponding knockoff feature provides an approximate control.

In a similar fashion, imagine running a multiple comparison procedure, for example, the
Benjamini–Hochberg procedure, with p-values that are not uniformly distributed under the
null. Then in such a situation, we cannot hope to achieve error control over all nulls if some
of the null p-values follow grossly incorrect distributions. However, we may still hope to
achieve reasonable control over those nulls for which the p-value is close to uniform.

A noteworthy aspect of this result is that it makes no modeling assumption whatsoever.
Indeed, our FDR control guarantees hold in any setting—no matter the relationship PY |X
between Y and X, no matter the true distribution P �

X of the feature vector X, and no matter
the test statistics W the data analyst has decided to employ (as long as W obeys the flip-
sign condition). What the theorem says is that when we use estimated conditionals Pj , if the
Pj ’s are close to the true conditionals P �

j in the sense that the quantities K̂Lj are small, then
the FDR is well under control. (In the ideal case where we use the true conditionals, then
K̂Lj = 0 for all j ∈ H0, and we automatically recover the FDR-control result from Candès et
al. (2018); that is, we get FDR control at the nominal level q since we can take ε = 0.)

Finally, we close this section by emphasizing that the proof of Theorem 1 employs argu-
ments that are completely different from those one finds in the existing literature on knock-
offs. We discuss the novelties in our techniques in Appendix A.

3.2.1. Is KL the right measure?. As mentioned above, our theorem applies to any con-
struction of the statistics W , including adversarial constructions that might be chosen delib-
erately to try to detect the differences between the Xj ’s and the X̃j ’s. It is therefore expected
that in any practical scenario, the achieved FDR would be lower than that suggested by our
upper bounds. In practice, W would be chosen to try to identify strong correlations with Y ,
and we would not expect that this type of statistic is worst-case in terms of finding discrepan-
cies between the distributions of Xj and X̃j . In fact, empirical studies (Candès et al. (2018),
Sesia, Sabatti and Candès (2019)) have already reported on the robustness of model-X knock-
offs, namely possibly large model misspecifications when W is chosen to identify a strong
dependence between X and Y .

Examining our result more closely, we can see that our theorem applies to any statistic
W because the K̂Lj ’s measure our ability to distinguish between each Xj and its knockoff
copy X̃j and, therefore, if the two are virtually indistinguishable (i.e., K̂Lj is small), then any
importance statistic W is almost equally likely to have Wj > 0 or Wj < 0 (as long as W obeys
the “flip-sign” property (9)). In other words, if K̂Lj is low, then X̃j provides a high quality
“control group” for the null Xj , under any choice of W . However, when we run the knockoff
filter in practice, our statistics W = (W1, . . . ,Wp) provide only a coarse summary of the data
X, X̃, Y. Even if the p-dimensional vectors Xj and X̃j contain sufficient information for us to
distinguish between the original null variable and its knockoff (due to a poor approximation
Pj of P �

j ), it is likely that much of this information is lost when we observe only W instead
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of the full data. Therefore, a small K̂Lj is sufficient, but by no means necessary, for FDR
control—K̂Lj being small means that we are unable to distinguish between a null and its
knockoff when viewing the full data, while for FDR control we only need to establish that
the two are indistinguishable when viewing the statistics W1, . . . ,Wp .

To formalize this idea, suppose that we fix some choice of statistic W (i.e., a map
from the data (X, X̃,Y) to the statistic W = (W1, . . . ,Wp)). Suppose that random variables
E1, . . . ,Ep satisfy the following property:

P
{
Wj > 0,Ej ≤ ε | |Wj |,W−j

}
≤ eε · P{

Wj < 0 | |Wj |,W−j

} ∀ε ≥ 0, j ∈ H0.
(16)

(We would generally choose the Ej ’s to be functions of (X, X̃,Y), and would then interpret
the probability as being taken with respect to the joint distribution of the data (X, X̃,Y).) For
each null j , if Ej is low then this means that, if we are only given access to the statistic W

(rather than viewing the full data), then we do not have much hope of distinguishing between
the j th feature and its knockoff copy. The following lemma verifies that the K̂Lj ’s satisfy
this property universally, that is, for any choice of the feature importance statistic W .

LEMMA 2. For any choice of statistic W that obeys the “flip-sign” property (9), the
random variables K̂Lj defined in (13) satisfy the property (16).

We will now generalize our FDR control result, Theorem 1, to replace K̂Lj with any
knockoff quality measure Ej satisfying the property (16). The proof of this theorem, and the
lemma above, appear in Appendix A.

THEOREM 2. Under the definitions above, let W be a statistic satisfying the “flip-sign”
property (9). Suppose that, for this choice of W , the random variables E1, . . . ,Ep satisfy the
property (16), meaning that they measure the quality of the knockoffs with respect to W . Then
the conclusions of Theorem 1 hold with Ej in place of K̂Lj for each j .

In particular, if the statistic W reveals much less information than the full data set X, X̃,
Y, then it may be possible to construct Ej ’s that are in general much lower than the K̂Lj ’s,
thus yielding a tighter bound on FDR. It remains to be seen whether, in specific settings for
the distribution of the data, there are natural examples of the statistic W that are amenable to
constructing tightly controlled Ej ’s to yield tighter bounds on the resulting FDR. We aim to
explore this question in future work, but here we give one potential example. Suppose that
the statistic W depends on the data X, X̃, Y only through some coarse summary statistics, for
example, only through X
Y and X̃
Y. In this setting, for any values a, b ∈R, define

Ej(a, b) = log
(P{(X


j Y, X̃

j Y) = (a, b) |X−j , X̃−j ,Y}

P{(X

j Y, X̃


j Y) = (b, a) |X−j , X̃−j ,Y}
)

(where the numerator and denominator are interpreted as conditional probabilities or condi-
tional densities, as appropriate). We can then take

Ej = Ej

(
X


j Y, X̃

j Y

)
and, by our assumption on W , we can verify that these Ej ’s satisfy the desired property (16).
Now, will Ej yield a better bound on FDR? We can see that Ej measures the extent to which
the one-dimensional random variables X


j Y and X̃

j Y are distinguishable from each other,

after observing the remaining data, that is, X−j , X̃−j , Y. In contrast, K̂Lj measures the same
question for the full n-dimensional random vectors Xj and X̃j and, therefore, will in general
be much larger than Ej .
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3.3. A lower bound on FDR. Next, we ask whether it is possible to prove a converse
to Theorem 1, which guarantees FDR control as long as the K̂Lj ’s are small. We are inter-
ested in knowing whether bounding the K̂Lj ’s is in fact necessary for FDR control—or is it
possible to achieve an FDR control guarantee even when the K̂Lj ’s are large? Of course, as
discussed in Section 3.2.1, for a predefined choice of the statistic W , the K̂Lj ’s may yield
very conservative results. Here, however, we are interested in determining whether the K̂Lj ’s
are indeed the right measure of FDR inflation when we are aiming for a result that is universal
over all FDR control methods.

Theorem 3 below proves that, if there is a feature j for which K̂Lj does not concentrate
near zero, then we can construct an honest model selection method that, when assuming
that the conditional distribution of Xj | X−j is given by Pj , fails to control FDR at the
desired level if the true conditional distribution is in fact P �

j . By “honest,” we mean that
the model selection method would successfully control FDR at level q if Pj were the true
conditional distribution. Our construction does not run a knockoff filter on the data; it is
instead a hypothesis testing based procedure, meaning that the K̂Lj ’s govern whether it is
possible to control FDR in a general sense. Hence, our converse is information-theoretic
in nature and not specific to the knockoff filter. The proof of Theorem 3 is given in the
Supplementary Material (Barber, Candès and Samworth (2019)).

THEOREM 3. Fix any distribution P �
X , any feature index j , and any estimated condi-

tional distribution Pj . Suppose that there exists a knockoff sampling mechanism PX̃|X that is
pairwise exchangeable with respect to Pj (5), such that

P{K̂Lj ≥ ε} ≥ c

for some ε, c > 0 when (X, X̃) is drawn from P �
X × PX̃|X . Then there exists a conditional

distribution PY |X , and a testing procedure Ŝ that maps data (X,Y) ∈ Rn×p ×Rn to a selected
set of features Ŝ(X,Y) ⊆ {1, . . . , p}, such that:

• If the data points (Xi,∗,Yi) are i.i.d. draws from the distribution PX × PY |X , where PX is
any distribution whose j th conditional is Pj (i.e., our estimated conditional distribution
Pj for feature Xj is correct), then

FDR(Ŝ) = q.

• On the other hand, if the data points (Xi,∗,Yi) are i.i.d. draws from the distribution P �
X ×

PY |X (i.e., our estimated conditional distribution Pj is not correct, as the true conditional
distribution is P �

j ), then

FDR(Ŝ) ≥ q
(
1 + c

(
1 − e−ε)).

For the last case (where P �
X is the true distribution), if c ≈ 1 (i.e., K̂Lj ≥ ε with high

probability) then FDR(Ŝ)� q(2 − e−ε); when ε ≈ 0 is small, we have 2 − e−ε ≈ 1 + ε ≈ eε ,
which is the same inflation factor on the FDR on the upper bound in Theorem 1. In other
words, Theorems 1 and 3 provide (nearly) matching upper and lower bounds. With these
theorems, we do not aim to claim that the knockoffs methodology is universally robust, but
rather, to determine and quantify the robustness properties of this already existing method. It
is indeed true that substantial mistakes in the model of X can lead to a loss of FDR control,
and the theorems above show that the K̂Lj ’s quantify exactly when, and to what extent, this
issue has the potential to occur. Of course, as discussed above in Section 3.2.1, if we restrict
our attention to prespecified statistics W , then the actual loss of FDR control maybe much
less severe than that predicted by the bounds in Theorem 1.
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4. Examples. To make our FDR control results more concrete, we will give two exam-
ples of settings where accurate estimates Pj of the conditionals P �

j ensure that the K̂Lj ’s are
bounded near zero. Examining the definition (13) of K̂Lj , we see that K̂Lj is a sum of n i.i.d.
terms, and we can therefore expect that large deviation bounds such as Hoeffding’s inequality
can be used to provide an upper bound uniformly across all p features. (Of course, as noted
in Section 3.2.1, measuring knockoff quality via the K̂Lj ’s is a “worst-case” analysis that
will bound FDR universally over all statistics W , and may therefore give a very conservative
result; for a specific predefined choice of W , it may be possible to compute a tighter bound.)

All theoretical results in this section are proved in the Supplementary Material.

4.1. Bounded errors in the likelihood ratio. First, suppose that our estimates Pj of the
conditional distribution P �

j satisfy a likelihood ratio bound uniformly over any values for the
variables:

(17) log
(P �

j (xj | x−j ) · Pj (x
′
j | x−j )

Pj (xj | x−j ) · P �
j (x′

j | x−j )

)
≤ δ

for all j , all xj , x′
j , and all x−j . In this setting, the following lemma, proved via Hoeffding’s

inequality, gives a bound on the K̂Lj ’s.

LEMMA 3. If the condition (17) holds uniformly for all j and all xj , x′
j , x−j , then with

probability at least 1 − 1
p

,

max
j=1,...,p

K̂Lj ≤ nδ2

2
+ 2δ

√
n log(p).

In other words, if Pj satisfies (17) for some δ = o( 1√
n log(p)

), then with high probability

every K̂Lj will be small. By Theorem 1, then the FDR for model-X knockoffs in this setting
is controlled near the target level q .

4.2. Gaussian knockoffs. For a second example, suppose that the distribution of the fea-
ture vector X is mean zero and has covariance �−1, where � is some unknown precision
matrix. (We assume zero mean for simplicity, but these results can of course be generalized
to an arbitrary mean.) Suppose that we have estimated � with some approximation �̃, and
let �j and �̃j denote the j th columns of these matrices. Our results below will assume that
the error in estimating each column of � is small, that is, �̃j − �j is small for all j .

As described earlier in (2), Candès et al. (2018), equation (3.2),’s Gaussian knockoff
construction consists of drawing the knockoffs according to the conditional distribution
PX̃|X(·|X) given by

(18) X̃ | X ∼ Np

(
(Ip − D�̃)X,2D − D�̃D

)
,

where D = diag{dj } is a nonnegative diagonal matrix chosen to satisfy 2D − D�̃D � 0, or
equivalently, D 	 2�̃−1. If the true precision matrix of X were given by �̃ (assumed to be
positive definite), then we can calculate that the joint distribution of the pair (X, X̃) has first
and second moments given by

E
[(

X

X̃

)]
=

(
0
0

)
, Var

((
X

X̃

))
=

(
�̃−1 �̃−1 − D

�̃−1 − D �̃−1

)
.

In other words, for every j , Xj and X̃j are exchangeable if we only look at the first and
second moments of the joint distribution.
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If the true distribution of X is in fact Gaussian, again with mean zero and covariance �̃−1,
then a stronger claim follows—the joint distribution of (X, X̃) is then multivariate Gaussian

and, therefore, (X, X̃)swap(A)
d= (X, X̃) for every subset A ⊆ [p]. In other words, the knockoff

construction determined by PX̃|X satisfies pairwise exchangeability, as defined in (4), with
respect to the distribution PX = Np(0, �̃−1). To frame this property in terms of conditionals,
Pj , rather than an estimated joint distribution, PX , we can calculate the estimated conditional
distributions Pj (·|X−j ) as

(19) Xj | X−j ∼N
(
X
−j

(−�̃−j,j

�̃jj

)
,

1

�̃jj

)
,

where �̃−j,j ∈ Rp−1 is the column �̃j with entry �̃jj removed.
As noted in Section 2.2, we may want to work with estimated precision matrices, which

are not positive semidefinite (PSD). The rationale is that if �̃ is fitted by regressing each
Xj on the remaining features X−j to produce the j th column, �̃j , then the result will not
be PSD in general. If �̃ is not PSD, although there is no corresponding joint distribution,
the conditionals Pj (19) are still well-defined as long as �̃jj > 0 for all j ; they are just not
compatible. (Note that symmetry is a far easier constraint to enforce, for example, by simply
replacing our initial estimate �̃ with (�̃+ �̃
)/2, which preserves desirable features such as
sparsity that might be present in the initial �̃; in contrast, projecting to the PSD cone while
enforcing sparsity constraints may be computationally challenging in high dimensions.)

Our first result verifies that this construction of PX̃|X satisfies pairwise exchangeability
with respect to the conditional distributions Pj given in (19).

LEMMA 4. Let �̃ ∈ Rp×p be a symmetric matrix with a positive diagonal, and let PX̃|X
be defined as in (18). Then, for each j = 1, . . . , p, PX̃|X is pairwise exchangeable with respect
to the conditional distribution Pj given in (19), that is, the exchangeability condition (5) is
satisfied.

In practice, we would construct Gaussian knockoffs in situations where the distribution
of X might be well approximated by a multivariate normal. The lemma below gives a high
probability bound on the K̂Lj ’s in the case where the features are indeed Gaussian but with
an unknown covariance matrix �−1. Here, Gaussian concentration results can be used to
control the K̂Lj ’s, which then yields FDR control. (We note that recent work by Fan et al.
(2019) also studies the Gaussian model-X knockoffs procedure with an estimated precision
matrix �̃, under a different framework.)

LEMMA 5. Let �,�̃ ∈ Rp×p be any matrices, where � is positive definite and �̃ is

symmetric with a positive diagonal. Suppose that Xi,∗
iid∼ Np(0,�−1), while X̃ | X is drawn

according to the distribution PX̃|X given in (18). Define

(20) δ� = max
j=1,...,p

(�jj )
−1/2 · ∥∥�−1/2(�̃j − �j)

∥∥
2.

Then with probability at least 1 − 1
p

,

max
j=1,...,p

K̂Lj ≤ 4δ�

√
n log(p) · (1 + o(1)

)
,

where the o(1) term refers to terms that are vanishing when we assume that log(p)
n

= o(1) and
that this upper bound is itself bounded by a constant.
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(A formal bound making the o(1) term explicit is provided in the proof.) In particular,
comparing to our FDR control result, Theorem 1, we see that as long as the columnwise error
in estimating the precision matrix � satisfies δ� = o( 1√

n log(p)
), the FDR will be controlled

near the target level q .
When might we be able to attain such a bound on the error in estimating �? As mentioned

earlier, in many applied settings, we may have access to substantially more unlabeled data
(i.e., the feature vector X without an associated response Y ) than labeled data (pairs (X,Y )).
Suppose that, for the purpose of estimating �, we have access to N � n draws of the feature
vector X ∼ P �

X . When the distribution of X is multivariate Gaussian with a sparse inverse
covariance matrix �, the graphical Lasso (Friedman, Hastie and Tibshirani (2008), Yuan and
Lin (2007)) estimates � as

�̂λ = arg min
A�0

{
− log det(A) + 〈A, ŜN 〉 + λ

∑
j �=k

|Ajk|
}
,

where ŜN is the sample covariance matrix of the unlabeled training data while λ > 0 is a
penalty parameter inducing sparsity in the resulting solution. Ravikumar et al. (2011) proved
that, if � is sufficiently sparse, then under certain additional assumptions and with an appro-
priate choice of penalty parameter λ, the graphical Lasso solution �̂λ satisfies an entrywise

error bound ‖�̂λ − �‖∞ �
√

log(p)
N

, and furthermore, is asymptotically guaranteed to avoid
any false positives (i.e., if �jk = 0 then (�̂λ)jk = 0). Therefore, if each column of � has
at sparsity at most s� (i.e., at most s� nonzeros) and � has bounded condition number, this

then proves that the bound (20) on the error in estimating � holds with δ� �
√

s� log(p)
N

. We
conclude that the results of Lemma 5 give a meaningful bound on FDR control as long as

4δ� ·
√

n log(p) �
√

s� log(p)

N
·
√

n log(p) = o(1).

Equivalently, it is sufficient to have an unlabeled sample size N satisfying

N � n · s� log2(p).

5. Discussion. In this paper, we established that the method of model-X knockoffs is
robust to errors in the underlying assumptions on the distribution of the feature vector X,
making it an effective method for many practical applications, such as genome-wide associ-
ation studies, where the underlying distribution on the features X1, . . . ,Xp can be estimated
accurately. One notable aspect is that our theory is free of any modeling assumptions, since
our theoretical guarantees hold no matter the data distribution or the statistics that the data
analyst wishes to use, even if they are designed to exploit some weakness in the construction
of knockoffs. Looking forward, it would be interesting to develop a theory for fixed statistics,
as outlined in Section 3.2.1. For instance, if the researcher commits to using a prespecified
random forest feature importance statistic, or some statistic based on the magnitudes of lasso
coefficients (perhaps calculated at a data-dependent value of the regularization parameter),
then what can be said about FDR control? In other words, what can we say when the statis-
tics W only probe the data in certain directions? We leave such interesting questions for
further research.

APPENDIX A: PROOFS OF MAIN RESULTS

Whereas all proofs of FDR control for the knockoff methods thus far have relied on mar-
tingale arguments (see Barber and Candès (2015), Barber and Candès (2019), Candès et al.
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(2018)), here we will prove our main theorem using a novel leave-one-out argument. Before
we begin, we would like to draw a loose analogy. To prove FDR controlling properties of
the Benjamini–Hochberg procedure under independence of the p-values, Storey, Taylor and
Siegmund (2004) developed a very elegant martingale argument. Other proof techniques,
however, operate by removing or leaving out one hypothesis (or one p-value); see Benjamini
and Yekutieli (2001), Ferreira and Zwinderman (2006) for examples. At a very high level,
our own methods are partially inspired by the latter approach.

A.1. Proofs of FDR control results, Theorems 1 and 2. Theorem 1 follows directly
from Theorem 2 combined with Lemma 2, and thus requires no separate proof. To prove
Theorem 2, for any ε ≥ 0 and for any threshold t > 0, define

Rε(t) :=
∑

j∈H0
1{Wj ≥ t, K̂Lj ≤ ε}

1 + ∑
j∈H0

1{Wj ≤ −t} .

Then, for the knockoff+ filter with threshold T+, we can write

|{j : j ∈ Ŝ ∩H0 and K̂Lj ≤ ε}|
|Ŝ| ∨ 1

=
∑

j∈H0
1{Wj ≥ T+, K̂Lj ≤ ε}

1 ∨ ∑
j 1{Wj ≥ T+}

= 1 + ∑
j 1{Wj ≤ −T+}

1 ∨ ∑
j 1{Wj ≥ T+} ·

∑
j∈H0

1{Wj ≥ T+, K̂Lj ≤ ε}
1 + ∑

j 1{Wj ≤ −T+}

≤ 1 + ∑
j 1{Wj ≤ −T+}

1 ∨ ∑
j 1{Wj ≥ T+} · Rε(T+) ≤ q · Rε(T+),

where the next-to-last step holds by definition of Rε , and the last step holds by the construc-
tion of the knockoff+ filter. If we instead use the knockoff filter (rather than knockoff+),
then we use the threshold T0 and similarly obtain

|{j : j ∈ Ŝ ∩H0 and K̂Lj ≤ ε}|
q−1 + |Ŝ| ≤ 1 + ∑

j 1{Wj ≤ −T0}
q−1 + ∑

j 1{Wj ≥ T0} · Rε(T0)

≤ q · Rε(T0),

where the two steps hold by definition of Rε and the construction of the knockoff filter,
respectively. Either way, then, it is sufficient to prove that E[Rε(T )] ≤ eε , where T is either
T+ or T0.

Next, given a threshold rule T = T (W) mapping statistics W ∈ Rp to a threshold T > 0
(i.e., the knockoff or knockoff+ filter threshold, T0 or T+), for each index j = 1, . . . , p we
define

Tj = T
((

W1, . . . ,Wj−1, |Wj |,Wj+1, . . . ,Wp

))
> 0,

that is, the threshold that we would obtain if Wj were replaced with |Wj |. The following
lemma (proved in the Supplementary Material) establishes a property of the Tj ’s in the con-
text of the knockoff filter.
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LEMMA 6. Let T = T (W) be the threshold for either the knockoff or the knockoff+.4

For any j , k,

(21) If Wj ≤ −min{Tj , Tk} and Wk ≤ −min{Tj , Tk}, then Tj = Tk .

Now with T being either the knockoff or knockoff+ thresholding rule, we have

E
[
Rε(T )

] = E
[∑

j∈H0
1{Wj ≥ T ,Ej ≤ ε}

1 + ∑
j∈H0

1{Wj ≤ −T }
]

= ∑
j∈H0

E
[

1{Wj ≥ Tj ,Ej ≤ ε}
1 + ∑

k∈H0,k �=j 1{Wk ≤ −Tj }
]
,

where the last step holds since T > 0 by definition, so if Wj ≥ T then Wj � −T , and, by
definition of Tj , we also have T = Tj in this case. Continuing from this last step, we can
rewrite the expectation as

E
[
Rε(T )

] = ∑
j∈H0

E
[
1{Wj > 0,Ej ≤ ε} · 1{|Wj | ≥ Tj }

1 + ∑
k∈H0,k �=j 1{Wk ≤ −Tj }

]
(*)= ∑

j∈H0

E
[
P{Wj > 0,Ej ≤ ε | |Wj |,W−j } · 1{|Wj | ≥ Tj }

1 + ∑
k∈H0,k �=j 1{Wk ≤ −Tj }

]

≤ eε · ∑
j∈H0

E
[
P{Wj < 0 | |Wj |,W−j } · 1{|Wj | ≥ Tj }

1 + ∑
k∈H0,k �=j 1{Wk ≤ −Tj }

]
(*)= eε · ∑

j∈H0

E
[

1{Wj < 0} · 1{|Wj | ≥ Tj }
1 + ∑

k∈H0,k �=j 1{Wk ≤ −Tj }
]

= eε ·E
[ ∑
j∈H0

1{Wj ≤ −Tj }
1 + ∑

k∈H0,k �=j 1{Wk ≤ −Tj }
]
,

where the two steps marked with (*) hold because Tj is a function of |Wj |, W−j by its
definition, and so we can treat it as known when we condition on |Wj |, W−j .

Finally, the summation inside the last expected value above can be simplified as follows:
if for all null j , Wj > −Tj , then the sum is equal to zero, while otherwise, we can write∑

j∈H0

1{Wj ≤ −Tj }
1 + ∑

k∈H0,k �=j 1{Wk ≤ −Tj } = ∑
j∈H0

1{Wj ≤ −Tj }
1 + ∑

k∈H0,k �=j 1{Wk ≤ −Tk}

= ∑
j∈H0

1{Wj ≤ −Tj }∑
k∈H0

1{Wk ≤ −Tk} = 1,

where the first step applies Lemma 6. Combining everything, we have shown that E[Rε(T )] ≤
eε , which proves the theorem.

A.2. Proof of Lemma 2. We need to prove that

P
{
Wj > 0, K̂Lj ≤ ε | |Wj |,W−j

} ≤ eε · P{
Wj < 0 | |Wj |,W−j

}
4More generally, this result holds for any function T = T (W) that satisfies a “stopping time condition” with

respect to the signs of the Wj ’s, defined as follows: for any t > 0, the event 1{T ≤ t} depends on W only through
(1) the magnitudes |W |, (2) sign(Wj ) for each j with |Wj | < t , and (3)

∑
j :|Wj |≥t sign(Wj ).
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for any null j and any ε ≥ 0. To proceed, we will be conditioning on observing X−j , X̃−j ,
Y, and on observing the unordered pair {Xj , X̃j }, that is, we observe both the original and
knockoff features but do not know which is which. It follows from the flip-sign property that
having observed all this, we know all the knockoff statistics W except for the sign of the
j th component Wj . Put differently, W−j and |Wj | are both functions of the variables we are
conditioning on, but sign(Wj ) is not. Without loss of generality, label the unordered pair of

feature vectors {Xj , X̃j }, as X(0)
j and X(1)

j , such that:

(22)

{
If Xj = X(0)

j and X̃j = X(1)
j , then Wj ≥ 0;

If Xj = X(1)
j and X̃j = X(0)

j , then Wj ≤ 0.

We can therefore write

P
{
Wj > 0, K̂Lj ≤ ε | |Wj |,W−j

}
= E

[
P
{
Wj > 0, K̂Lj ≤ ε |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

} | |Wj |,W−j

]
and similarly

P
{
Wj < 0 | |Wj |,W−j

}
= E

[
P
{
Wj < 0 |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

} | |Wj |,W−j

]
.

Therefore, it will be sufficient to prove that

P
{
Wj > 0, K̂Lj ≤ ε |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

}
≤ eε · P{

Wj < 0 |X(0)
j ,X(1)

j ,X−j , X̃−j ,Y
}
.

(23)

Now, if X(0)
j , X(1)

j , X−j , X̃−j , Y are such that |Wj | = 0, clearly this bound holds trivially,
so from this point on we ignore this trivial case and assume that |Wj | > 0. By our definition

(22) of X(0)
j and X(1)

j , we have

P{Wj > 0 |X(0)
j ,X(1)

j ,X−j , X̃−j ,Y}
P{Wj < 0 |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y}

= P{(Xj , X̃j ) = (X(0)
j ,X(1)

j ) |X(0)
j ,X(1)

j ,X−j , X̃−j ,Y}
P{(Xj , X̃j ) = (X(1)

j ,X(0)
j ) |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y} ,

(24)

where this last ratio should be interpreted as a ratio of conditional probabilities or conditional
densities, as appropriate. Since the observations i = 1, . . . , n are independent, this can be
rewritten as

n∏
i=1

P{(Xij , X̃ij ) = (X(0)
ij ,X(1)

ij ) |X(0)
ij ,X(1)

ij ,Xi,−j , X̃i,−j ,Yi}
P{(Xij , X̃ij ) = (X(1)

ij ,X(0)
ij ) |X(0)

ij ,X(1)
ij ,Xi,−j , X̃i,−j ,Yi}

=
n∏

i=1

P �
j (X(0)

ij |Xi,−j ) · Pj (X
(1)
ij |Xi,−j )

Pj (X
(0)
ij |Xi,−j ) · P �

j (X(1)
ij |Xi,−j )

=: eρj ,

(25)

where the first equality holds by Lemma 1 (recalling that j is assumed to be a null feature).
Next, from the definition (13) of K̂Lj and the definition (22) of X(0)

j and X(1)
j , we can see that
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K̂Lj = ρj if Wj > 0, or otherwise K̂Lj = −ρj if Wj < 0. Therefore,

P
{
Wj > 0, K̂Lj ≤ ε |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

}
= P

{
Wj > 0, ρj ≤ ε |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

}
= 1{ρj ≤ ε} · P{

Wj > 0 |X(0)
j ,X(1)

j ,X−j , X̃−j ,Y
}

= 1{ρj ≤ ε} · eρj · P{
Wj < 0 |X(0)

j ,X(1)
j ,X−j , X̃−j ,Y

}
,

where the next-to-last step holds since ρj is a function of X(0)
j , X(1)

j , X−j , X̃−j , Y, while the
last step uses our work in (24) and (25). Since 1{ρj ≤ ε} · eρj ≤ eε trivially, we have proved
the desired bound (23), which concludes the proof of the lemma.

A.3. Proof of Lemma 1. We prove the lemma in the case where all features are discrete;
the case where some of the features may be continuous is proved analogously. First, consider
any null feature index j . By definition of the nulls, we know that Xj ⊥⊥ Y | X−j . Furthermore,
X̃ ⊥⊥ Y | X by construction. Therefore, the distribution of Y | (X, X̃) depends only on X−j ,
and in particular, Y ⊥⊥ (Xj , X̃j ) | (X−j , X̃−j ). This proves that

(26)
P{Xj = a, X̃j = b | X−j , X̃−j , Y }
P{Xj = b, X̃j = a | X−j , X̃−j , Y } = P{Xj = a, X̃j = b | X−j , X̃−j }

P{Xj = b, X̃j = a | X−j , X̃−j } ,

because the numerator and denominator are each unchanged whether we do or do not con-
dition on Y . Thus, for null features j , it is now sufficient to prove only the first claim of the

lemma, namely that the right-hand side above is equal to
P �

j (a|X−j )Pj (b|X−j )

Pj (a|X−j )P �
j (b|X−j )

.

From this point on, let j be any feature (null or nonnull). We will now prove the first claim
in the lemma. Recalling the assumption that PX̃|X is pairwise exchangeable with respect to
Pj (5), we introduce a pair of random variables drawn as follows: first, draw X′−j ∼ P �

X−j
,

where P �
X−j

is the distribution of X−j ; then draw X′
j | X′−j ∼ Pj (·|X′−j ); and finally, draw

X̃′ | X′ ∼ PX̃|X(·|X′). Then by (5),

(27)
(
X′

j , X̃
′
j ,X

′−j , X̃
′−j

) d= (
X̃′

j ,X
′
j ,X

′−j , X̃
′−j

)
.

By construction, the joint distribution of (X′, X̃′) is given by

P
{
X′ = x, X̃′ = x̃

} = P �
X−j

(x−j )Pj (xj |x−j )PX̃|X(x̃|x).

Now, fixing any x−j , x̃−j ∈ Rp−1, write xa as the vector in Rp with entry j given by a and
all other entries given by x−j , and define xb, x̃a , x̃b analogously. Then (27) is equivalent to

(28) P �
X−j

(x−j )Pj (a|x−j )PX̃|X
(
x̃b|xa) = P �

X−j
(x−j )Pj (b|x−j )PX̃|X

(
x̃a|xb).

Now we turn to the true distribution of the data, generated as X ∼ P �
X and X̃ | X ∼ PX̃|X .

This means that the joint distribution of (X, X̃) is given by

P{X = x, X̃ = x̃} = P �
X−j

(x−j )P
�
j (xj |x−j )PX̃|X(x̃|x).

We can therefore calculate

P{Xj = a, X̃j = b,X−j = x−j , X̃−j = x̃−j }
P{X′

j = a, X̃′
j = b,X′−j = x−j , X̃

′−j = x̃−j }
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=
P �

X−j
(x−j )P

�
j (a|x−j )PX̃|X(x̃b|xa)

P �
X−j

(x−j )P
�
j (b|x−j )PX̃|X(x̃a|xb)

= P �
j (a | x−j )

Pj (a | x−j )
· Pj (b | x−j )

P �
j (b | x−j )

,

where the last step holds by (28). This proves the lemma.
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