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ABSTRACT
Structural health monitoring (SHM) activities are essential for achieving a realistic characterisation of
bridge structural performance levels throughout the service life. These activities can help detect struc-
tural damage before the potential occurrence of component- or system-level structural failures. In add-
ition to their application at discrete times, SHM systems can also be installed to provide long-term
accurate and reliable data continuously throughout the entire service life of a bridge. Owing to their
superior accuracy and long-term durability compared to traditional strain gages, fiber optic sensors are
ideal in extracting accurate real-time strain and temperature data of bridge components. This paper
presents a statistical damage detection and localisation approach to evaluate the performance of pre-
stressed concrete bridge girders using fiber Bragg grating sensors. The presented approach employs
Artificial Neural Networks to establish a relationship between the strain profiles recorded at different
sensor locations across the investigated girder. The approach is capable of detecting and localising
the presence of damage at the sensor location without requiring detailed loading information; accord-
ingly, it can be suitable for long-term monitoring activities under normal traffic loads. Experimental
laboratory data obtained from the structural testing of a large-scale prestressed concrete bridge girder
is used to illustrate the approach.
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Introduction

Due to various deterioration processes (e.g. corrosion and
fatigue), more than 10% of bridges in the United States are
categorised as structurally deficient (FHWA, 2016). Among
those, approximately 53% are multi-beam/girder bridges. A
large number of newly constructed bridges in the United
States use prestressed concrete. In order to facilitate
informed repair and replacement decisions when these
structures approach the end of their service life, they could
be instrumented, during construction, with sensors that can
provide accurate and reliable data throughout the entire ser-
vice life. In this context, fiber Bragg grating (FBG) sensors
can provide outstanding long-term stability and highly reli-
able strain and temperature measurements with minimal
processing effort (Lin, Chang, Chern, & Wang, 2004). These
sensors, when embedded into the prestressed concrete (PSC)
components during construction, can provide accurate real-
time strain and temperature measurements at any time dur-
ing the service life. The measurements obtained from these
sensors can be used to assess the initial strain levels from
the prestress forces and to develop a baseline strain profile
under normal traffic loads that can help in evaluating the
long-term condition of the bridge component. Statistical
damage detection techniques can be used to achieve this

goal by identifying the deviation of a future state of the sys-
tem from the baseline state (Gres et al., 2017).

The introduction of the fiber FBG sensors by Morey,
Meltz, and Glenn (1990) opened the door for applying fiber
optic sensors in strain-based performance monitoring activ-
ities. Dunphy, Meltz, Lamm, and Morey (1990) demon-
strated the feasibility of using FBG sensors in monitoring
the response of layered graphite/epoxy composite compo-
nents. Prohaska et al. (1993) employed FBG sensors to
measure strains in a large-scale reinforced concrete beam
under pure bending. Research on the application of fiber
optic sensors in health monitoring of structures covers other
applications including quantifying the short- and long-term
changes in the response of concrete structures (e.g. Idriss,
Kodindouma, Kersey, & Davis, 1998; Inaudi & Vurpillot,
1999; Lin et al., 2004), studying structural vibration charac-
teristics (Chung & Kang, 2008; Kang, Kim, & Han, 2007),
and detecting concrete cracking. FBG sensors have also been
used to quantify prestress losses (Abdel-Jaber & Glisic, 2019;
Butler, Gibbons, He, Middleton, & Elshafie, 2016) and long-
term effects due to creep and shrinkage (Webb et al., 2017).

Fiber optic sensors have also been used for damage
detection in PSC components. Zhang, Gao, Shi, Cui, and
Zhu (2006) employed fiber optic sensors to identify the
damage in externally prestressed concrete T-beams by
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comparing their recorded response to analytically derived
limit states. Uva, Porco, Fiore, and Porco (2014) proposed a
method to identify damage in prestressed concrete viaducts
based on expected theoretical strains and actual ones
recorded with FBG sensors. Abdel-Jaber and Glisic (2015)
used long-gauge FBG sensors to detect pre-release cracks
and monitor prestressing force transfer in PSC girders.
Their approach focused on damage due to crack opening
during the pre-release phase. Waeytens et al. (2016) applied
model updating techniques for damage detection in a post-
tensioned concrete beam under static loading using distrib-
uted fiber optic sensors. Their method, which requires
detailed loading information, updates physical parameters
(e.g. modulus of elasticity) of different subdomains in a
finite element model to match the experimental results.
Anastasopoulos, De Smedt, Vandewalle, De Roeck, and
Reynders (2018) used FBG sensors to develop strain mode
shapes and identify structural damage based on the change
in top-to-bottom strain ratio in a prestressed concrete roof
girder. However, their approach is more suitable for isolated
individual structural components.

Statistical damage detection can be performed using
supervised or unsupervised methods. The former method
requires damage-sensitive features (DSFs) from both dam-
aged and undamaged states of the structure, while unsuper-
vised methods detect the damage using information from a
baseline undamaged structural state (Santos, Cr�emona,
Orcesi, & Silveira, 2013). Due to the fact that obtaining
DSFs from the damaged state of the structures is challeng-
ing, common statistical damage detection practices often
rely on unsupervised methods (Jin & Jung, 2018). Several
methodologies are available for damage detection and local-
isation in bridges using unsupervised statistical damage
detection (e.g. Mattson & Pandit, 2006; Reiff, Sanayei, &
Vogel, 2016; Weinstein, Sanayei, & Brenner, 2018).
However, these methods are often based on small-scale
laboratory tests on idealised structures or may require com-
prehensive finite element analysis and detailed loading
information for proper damage detection. In addition, less
focus has been placed on the application of unsupervised
statistical damage identification in PSC bridge components
using fiber optic sensing systems. In particular, an approach
capable of assessing damage in PSC bridge components
under random loading is required.

This paper presents a framework for damage detection
and localisation in newly constructed prestressed concrete
bridge girders using fiber optic sensing and Artificial Neural
Networks (ANNs). The presented approach uses an inferred
relationship between the strain profiles at different sensors
distributed across the girder to detect damage under variable
amplitude loading. The presented damage detection and
localisation approach does not require applied loads as input
parameter or detailed finite element analysis of the investi-
gated component. In addition, it has higher accuracy com-
pared to other monitoring techniques relying on foil-type
strain gages. The approach is illustrated using experimental
data obtained from flexural testing of a large-scale pre-
stressed concrete girder instrumented with FBG sensors.

The strain readings obtained during an initial random load-
ing stage are used to train ANNs and define acceptable pre-
diction error bounds to judge whether or not the girder is
damaged. The trained ANNs are then used to predict strain
profiles at target sensors for other randomly generated vari-
able amplitude and monotonic load tests. Finally, the error
between the predicted strains and experimental data is com-
pared to acceptable error bounds to identify and localise the
damage in the girder during subsequent load tests.

Damage detection and localisation procedure

Artificial Neural Networks

ANNs are algorithms designed to recognise numerical pat-
terns. Several types of neural networks, such as feedforward,
radial basis function, convolutional, recurrent, and modular
neural networks, have been introduced to assist in solving
complex computational problems in various research areas
(Mehta, 2019). Owing to their superior prediction accuracy
and computational efficiency, feed forward ANNs, which
consist of one or more hidden layers, have been among the
most widely adopted network types (Montana & Davis,
1989). ANNs consist of input, output, and hidden layers. An
input layer is responsible for introducing the input parame-
ters (X) to the ANN. The Output layer is the last layer of
neurons that streamlines the results matrix (Y), while g hid-
den layers (h(1) to h(g)), each consisting of several neurons
(e.g. n1

(1) to na1
(1) for hidden layer one and, n1

(g) to nag
(g)

for hidden layer g), are responsible for converting the input
units to nonlinear functions of linear combinations of
weights (e.g. w1,a2

(2) for weights between neuron 1 of first
hidden layer and neuron a2 of the second hidden layer) and
bias values (e.g. ba1,a2

(2) for bias between neuron a1 of first
hidden layer and neuron a2 of the second hidden layer)
assigned to a given input parameter.

A transfer function (f) will then determine the state of
each hidden layer during the training as (Montana & Davis,
1989):

hðpÞ ¼ f WðpÞXþ BðpÞ� �
and p ¼ 1 to g (1)

where W(p) and B(p) are the matrices of the weights and
bias values associated with the transformation through neu-
rons in hidden layer p, respectively. Comparing the ANN
prediction to the target output, the assigned weights and
bias values are optimised such that the prediction error
is minimised.

Feedforward ANNs are known as networks with no
closed-loops, meaning that data moves only in one direction
from the input nodes, through the hidden nodes, and to the
output nodes. Figure 1 shows a generalised layout of a
multilayer feedforward ANN. These networks often benefit
from a backpropagation algorithm that calculates the gradi-
ent of the error with respect to the assigned weights and
bias values for a given input. Levenberg-Marquardt
(Levenberg, 1944; Marquardt, 1963) nonlinear least squares
optimisation algorithm is adopted in this paper for ANN
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training. This method is well known for its high efficiency
and fast convergence (Hagan & Menhaj, 1994).

Damage detection using ANNs

The approach developed in this paper employs ANNs to
establish a relationship between the strains recorded under
normal traffic loads by the FBG sensors embedded along
the girder. After establishing this relationship, future strain
responses recorded under normal traffic loads can be used
to identify whether or not the beam is damaged. The pro-
posed framework is designed to identify the damage based
only on the strain records without relying on information
about the magnitude of applied loads. Several ANNs are
trained and tested in order to account for modelling uncer-
tainties associated with their prediction.

The adopted criteria for defining each ANN are discussed
in more detail later in this paper. Each individual ANN is
trained using a randomly selected sample of the training
dataset. The relationship between the strain records of sen-
sors can be different due to the dissimilar nonlinear fit that
each ANN establishes. The strain records of all except one
sensor (i.e. the target sensor) along the beam are used as the
input of the ANNs to predict the strain at the target sensor.
After training the ANNs, other available strain records col-
lected during future monitoring, referred to as the set-aside
dataset, are fed to the trained ANNs to predict the expected
strains at the target sensor. Finally, damage is assessed by
comparing the ANN predicted strain response to the actual
response obtained by the FBG sensors. Figure 2 shows the
layout of the proposed damage detection framework.

To assess the damage occurrence, prediction error is used
to compare the simulated strains against those recorded

under next load applications. The prediction error associ-
ated with individual ANNs at different time instants is:

Eði, jÞ ¼ eANNði, jÞ�e exp ðiÞ (2)

where E(i,j) is the error associated with jth ANN at the ith

time instant, eexp (i) is FBG strain record at target sensor
associated with the ith time instant, while eANN (i,j) is the
strain predicted by the jth ANN at the same time. n and m
represent the total number of ANNs and strain data points,
respectively. The mean prediction error ME is:

ME ¼
Pn

j¼1

Pm
i¼1Eði, jÞ

m� n
(3)

In addition, the mean lower and upper bounds of the
strain prediction error associated with the trained ANNs at
95% confidence intervals are:

ELB ¼ MEþ
Pn

j¼1E2:5ðjÞ
n

(4)

EUB ¼ MEþ
Pn

j¼1E97:5ðjÞ
n

(5)

where ELB and EUB are the lower and upper bounds of pre-
diction error associated the testing dataset, respectively,
E2.5(j) and E97.5(j) are the 2.5th and 97.5th percentiles of the
prediction error associated with jth trained neural network
and testing dataset. A damage is detected if the mean pre-
diction error under a specific loading condition falls outside
the defined bounds, otherwise the beam is considered
undamaged. Note that the defined bounds should be estab-
lished for the undamaged state of the structure. This is due
to the fact that these bounds will be used as a baseline to
compare the future behaviour of the girder and identify the
potential presence of structural damage. In this paper, these
bounds are defined based on Weinstein et al. (2018).

Note that the proposed approach is designed to detect
damage in newly constructed bridge girders. In such appli-
cations, the ANNs will be only trained once, during the
undamaged (i.e. pre-cracking) state of the girders and after
installing the girders in place. Although there is no need for
continuous training of the ANNs, there is a need for regular
analysis of strain records to assess the presence of damage
in the monitored component. This process should to be
conducted for each monitored girder. Due to the uncertain-
ties associated with material properties, variation in sensor
locations, and unforeseen construction conditions, girders
with identical design specifications can have different rela-
tionship between the strain responses of embedded sensors.
In addition, the approach can be also applied to existing
bridge girders that are: (a) in an undamaged state and (b)
instrumented using any sensor type capable of providing
continuous strain readings under variable amplitude loading
at several locations along their length.

Damage localisation using ANNs

To localise damage in PSC girders, the beam is divided into
several regions. For each region, a configuration of ANN

Figure 1. Generalised layout of multilayer feedforward ANNs.
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with unique selection of input and target sensors responsible
for predicting damage is developed. The flowchart of the
proposed damage localisation approach is presented in
Figure 3. Strain readings in the undamaged state are used to
train the ANNs for different configurations corresponding
to regions 1 to l. Eighty-five percent and 15% of the strain
records are randomly selected and defined as training and
testing datasets. A number of ANNs (n) are next trained for
each configuration corresponding to defined regions. Each
of the n ANNs is then trained using a randomly selected
10% of the training dataset. This process is repeated for the
considered damage regions (i.e. ANN configurations 1 to l).
Finally, the prediction error corresponding to ANNs with
different configurations is compared to localise the damage.

A normalised mean error is defined to compare the predic-
tion error in each region. This is essential since the recorded
strains at target sensors and their associated errors may be in
different ranges. Accordingly, the prediction error associated
with the configured ANNs may not be directly comparable. In
this paper, the normalised error is computed as:

NMEðk, jÞ ¼
Pm

i¼1
eANNði, j, kÞ�e exp ði, kÞ

e exp ði, kÞ
m

(6)

where NME(k,j) is the normalised mean error associated
with prediction of the jth ANN in configuration k, eexp (i,k)
is FBG strain record at the target sensor of ANN

Figure 2. Layout of the proposed damage detection framework.
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configuration k associated with the ith time instant, and
eANN (i,j,k) is the strain record at the target sensor of ANN
configuration k predicted by the jth ANN at time instant i.

Illustrative example

The proposed damage detection procedure is illustrated on
an approximately 1=2 scale AASHTO Type II prestressed gir-
der. The beam was instrumented during construction with
FBG sensors, vibrating wire strain gages (VWSGs), and a
mid-span displacement sensor.

Specimen design

The cross section of the tested girder consisted of two 13.2mm
diameter (0.52 in.) low-relaxation prestressing strands with min-
imum ultimate strength of 1860MPa (270 ksi). The strands were
tensioned to 75% of their specified tensile strength and placed
5 cm (2 in.) above the bottom fiber of the cross section. In add-
ition, two No. 16 (#5) reinforcing bars were placed 5 cm (2 in.)
below the top fiber of the cross section to counteract the concrete
tensile stresses at time of prestress release. No. 10 (#3) Z-shaped
bars were also placed transversely to resist shear stresses.
Transverse shear reinforcement was designed to ensure flexural

Figure 3. Layout of the proposed damage localisation approach.
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failure under a four-point-bending test. The beamwas longitudin-
ally symmetrical with respect to its mid-span. Figure 4 shows the
geometry of the section, placement of reinforcement and pre-
stressing strands, and spacing of shear reinforcement along one
half of the beam. The girder was constructed using self-consoli-
dating concrete designed to achieve a compressive strength of
27.5MPa (4000psi) and 55MPa (8000psi) at 7 and 28days,
respectively. Figure 5(a) and (b) shows, respectively, an elevation
of the beam reinforcement and concrete placement process dur-
ing the girder construction in Donald G. Fears Structural
Engineering Laboratory located at the University of Oklahoma.

Temperature, deflection and strain monitoring using
FBG sensors

Two fiber optic cables, each consisting of 15 FBGs, were
placed along the girder at the prestressing strand level. Each
cable was placed to position 15 sensors in one half of the
girder. A third fiber optic cable containing two temperature
sensors, each in one half of the beam, was also embedded in
the girder. The instrumentation was symmetric with respect
to the centerline of the girder. Figure 6 shows the layout of
the strain and temperature sensors (FBGs) distributed along
one half of the beam. Note that the girder was longitudin-
ally symmetrical. Clustering the sensors near the supports
aimed at capturing the behaviour of the end regions during
and after prestress transfer.

An interrogator featuring four channels and optimised for
measuring static and dynamic measurements (FAZ
Technology, 2019) was used to provide a source signal (i.e.
laser light) for the fiber optic sensors and interpret the

wavelength data under applied loads. The recorded change in
wavelength from the strain and temperature sensors at differ-
ent time instants during testing was then used to calculate the
change in temperature and strain. Equation (7) presents the
relationship between the temperature sensor reading and
actual temperature in �C (FAZ Technology, 2019):

Tt ¼ TS1

�
kTt�kTref

kTref

�2

þ TS2
kTt�kTref

kTref

 !
þ TS3 (7)

where Tt is the temperature in ˚C at time t, TS1, TS2, and
TS3 are temperature calibration coefficients provided by the
manufacturer, while kTt is the wavelength recorded by tem-
perature sensor at time t during the experiment, and kTref is
the reference wavelength for the temperature sensor pro-
vided by the manufacturer.

The change in strain can be computed as (FAZ
Technology, 2019):

Det ¼
kt�kinitial
kinitial

�B Tt � Tinitialð Þ
A

(8)

in which Det is change in strain at time t with respect to ini-
tial strain value, kinitial and Tinitial are initial wavelength and
temperature readings at the starting time of the test, and kt
and Tt are wavelength and temperature reading at time t
during testing. A and B are calibration constants provided
by the manufacturer. The values of the calibration parame-
ters provided by the manufacturer are presented in Table 1.

Figure 4. Geometry of the section and reinforcement details.
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Vibrating wire strain gages

Thirteen VWSGs were also embedded in the girder during
construction with six gages at each end and one at mid-span as
shown in Figure 6. Two different models of VWSGs were used,
Geokon 4200 and 4202 (Geokon, 2019) with 152mm (6 in.)
and 51mm (2 in.) gage lengths, respectively. One Geokon 4202

strain gage with ±0.4 le measurement resolution and six
Geokon 4200 gages with ±1 le resolution were distributed
along each half of the specimen. The Geokon 4202 sensor was
placed 10 cm (4 in.) away from the girder end while the
Geokon 4200 sensors were distributed along the length of the
beam as shown in Figure 6. In addition, a VWSG temperature
sensor was attached externally to the girder surface to measure

Figure 5. View of (a) beam reinforcement before casting and (b) beam during construction.

Figure 6. Layout of the FBGs and VWSGs distributed along one half of the beam.

Table 1. Calibration parameters for temperature and strain sensors.

Calibration parameter Temperature sensor 1 Temperature sensor 2 Strain sensors

TS1 �1,676,707.293078550 (�C) 140,364.36897385 (�C) —
TS2 54,069.9715208757 (�C) 53,482.2408014799 (�C) —
TS3 22.5024283936152 (�C) 22.4751371210772 (�C) —
kTref 1557.486 (nm) 1537.725 (nm) —
A — — 7.63625706E-07 (le�1)
B — — 5.96841206E-06 (�C�1)

STRUCTURE AND INFRASTRUCTURE ENGINEERING 7



the ambient temperature during load tests. A single data-logger
was used to record the VWSG sensor readings during testing.
Figure 7 depicts the placement of FBG and VWSG sensors in
the constructed girder.

Test procedure and loading

The constructed girder was tested under four-point bending
with load points 75 cm (30 in.) away from the mid-span. The
point loads were applied through a spreader beam with two
support points and a 250 kN (55 kip) hydraulic actuator with
MTS FlexTest 60 load controller (MTS, 2019). Figure 8(a) and
(b) shows the layout of the loading set up, and the actual test
frame constructed in Bert Cooper Engineering Laboratory
located at Oklahoma State University. The strain and tem-
perature profiles during testing were recorded using the FBG
sensors with 1000Hz sampling frequency. The VWSG sensors
were used to record strains during the monotonic tests. A
sample from the VWSG sensors was recorded at each load
increment. A linear variable displacement transducer (LVDT)
was installed at mid-span to measure the beam deflections
with 1000Hz sampling frequency during all tests. The testing
phase consisted of 19 loading runs, including 10 monotonic
tests and 9 randomly generated dynamic load tests (i.e. vari-
able amplitude loading). For the monotonic loading tests, the
load was applied at a constant rate until a predefined max-
imum load level was reached; this maximum load was then
kept constant for 5minutes to allow beam inspection. Next,
the specimen was unloaded at a constant rate of 13.4 kN/min
(3 kip/min) until fully unloaded.

The experimental phase started with recording the
response of the constructed prestressed girder under 3 dif-
ferent randomly generated variable amplitude dynamic loads
and 4 monotonic loads (i.e. Dyna 1 to Dyna 3 and Mono 1
to Mono 4). Table 2 shows the attributes of different load
runs. Note that the tests IDs are organised with respect to
the order of conducting the tests. Next, another monotonic
ramp load (i.e. Crack 1) was applied to the girder at
13.4 kN/min (3 kip/min) loading rate for the first 111 kN
(25 kip) and with a reduced rate of 4.45 kN/m (1 kip/min)

until the first crack was observed. During the Crack 1 load
run, the loading was paused for two minutes at 4.45 kN (1
kip) increments to inspect the beam and identify the crack
initiation. This process was continued until the first crack
was observed at 160 kN (36 kip).

The cracking pattern in this stage can be seen in Figure 9.
As shown, four cracks initiated and propagated to a level
approximately 100mm from the bottom fiber of the girder.
This condition of the girder is referred to as the minor crack-
ing state in this paper. Two more randomly generated
dynamic loads runs (i.e. Dyna 4 and Dyna 5) were applied
after the first minor cracking was observed. Next, another
monotonic load (i.e. Crack 2) was applied to the girder. The
load run was applied at 22.3 kN/min (5 kip/min) for the first
134 kN (30 kip) and continued at 4.45 kN/m (1kip/min) load-
ing rate with a pause at each 4.45 kN (1 kip) until the cracks
propagated to the upper half of the cross section at 191 kN
(43 kip). The damage extent of the beam after this test is
referred to as the excessive cracking state in this paper. The
crack pattern in this stage is also shown in Figure 9. The
experiment then continued with applying three more mono-
tonic (i.e. Mono 5 to Mono 8) and four randomly generated
dynamic loads (i.e. Dyna 6 to Dyna 9).

Results and discussion

Concrete compressive strength

Concrete compressive strength specimens for the girder
were tested at 1, 7, and 28 days of age and before conduct-
ing the load tests at 69 days. Table 3 presents the average
compressive strength of three cylinders tested at the afore-
mentioned ages. The cracking and ultimate capacities of the
beam were estimated based on the compressive strength test
results, cross-sectional properties, and loading configuration
to be 148 kN (33.4 kips) and 210 kN (47.2 kips), respectively.
These capacities were used to design the loading procedure
suitable for developing the proposed damage detection and
localisation approach.

Figure 7. Placement of the FBGs and VWSGs in the constructed girder.
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Load testing and strain measurement using FBGs
and VWSGs

As indicated previously, the FBG sensors distributed along
the girder were used to obtain the strain time histories dur-
ing monotonic and randomly generated dynamic load tests.
Figure 10 displays the recorded response of sensor 15

during Dyna 3 load test. To ensure the proper operation of
the fiber optic sensors, the strains recorded by the FBGs
were compared to those obtained by the VWSGs during
monotonic load tests. Figure 11 compares the change in
strains obtained from FBG sensor 15 to those of the
embedded VWSG at mid-span under various monotonic

Figure 8. (a) Layout of the loading setup (b) test frame and the prestressed girder during load testing.
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load values. In summary, it was found that the FBG sensors
provide a reliable and stable reading at different load levels.

ANN training

Feed forward neural networks with 10 hidden neurons (see
Figure 1) were used to establish the relationship between
the strain readings of sensors along one half of the tested
girder. Strain records associated with Dyna 3 load run were
randomly divided into training and testing datasets repre-
senting 85% and 15% of the data points, respectively. These
percentages which are initially selected based on the com-
mon practice of ANN applications (e.g. Ezeldin & Sharara,
2006; Khandel & Soliman, 2019) were evaluated to make
sure both the datasets have similar statistical properties.
Note that any other strain record under dynamic loads in
the pre-cracking stage (e.g. Dyna 1 or Dyna 2) can be used
for training the ANNs. The strain records of eight sensors,
namely 1, 2, 3, 10, 11, 12, 13, and 14 along one half of the
beam were used as the input to predict the strains at target
sensor 15.

Table 2. Attributes of different load tests.

Test ID Load type Maximum load – kN (kip) Frequency (Hz) Loading rate – kN/min (kip/min) Notes Duration (seconds)

Dyna 1 Random dynamic 45 (10) 2 — No cracks 556
Dyna 2 Random dynamic 62 (14) 2 — No cracks 695
Dyna 3 Random dynamic 102 (23) 2 — No cracks – training and testing dataset 1200
Mono 1 Monotonic 45 (10) — 13.4 (3) No cracks 440
Mono 2 Monotonic 67 (15) — 13.4 (3) No cracks 640
Mono 3 Monotonic 89 (20) — 13.4 (3) No cracks 840
Mono 4 Monotonic 111 (25) — 13.4 (3) No cracks 1040
Crack 1 Monotonic 160 (36) — Variable First crack observed 3000
Dyna 4 Random dynamic 102 (23) 2 — Small cracks 1075
Dyna 5 Random dynamic 107 (24) 2 — Small cracks 614
Crack 2 Monotonic 191 (43) — Variable Cracks widened 2600
Dyna 6 Random dynamic 107 (24) 4 — Wide cracks 321
Dyna 7 Random dynamic 107 (24) 6 — Wide cracks 241
Dyna 8 Random dynamic 107 (24) 8 — Wide cracks 175
Dyna 9 Random dynamic 107 (24) 10 — Wide cracks 308
Mono 5 Monotonic 89 (20) — 22.3 (5) Wide cracks 520
Mono 6 Monotonic 134 (30) — 22.3 (5) Wide cracks 760
Mono 7 Monotonic 156 (35) — 22.3 (5) Wide cracks 880
Mono 8 Monotonic 180 (40) — 22.3 (5) Wide cracks 1000

Figure 9. View of the beam showing minor and excessive cracking patterns.

Table 3. Concrete compressive strength test results.

Concrete age (days) Compressive strength – MPa (psi)

1 31.7 (4600)
7 47.4 (6870)
28 52.9 (7670)
69 (flexural testing) 57.2 (8290)

Figure 10. Recorded strain at sensor 15 during Dyna 3 load test.
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Given the large size of the training dataset, statistical ana-
lysis was performed, and it was found that a randomly
selected 10% of the data can properly represent the statis-
tical properties of the whole training database. However,
higher percentage of the training dataset may be needed for
other applications. Accordingly, for training each individual
ANN, 10% of the training database was randomly selected
and used for training. The accuracy of each ANN was then
evaluated using the testing database. In order to account for
modelling uncertainty associated with ANN predictions,
1000 individual ANNs were trained in this example.

Levenberg-Marquardt (Levenberg, 1944; Marquardt, 1963)
optimisation method was employed to obtain the fitting
parameters that minimise the mean square error (MSE)
between the predicted strains and the defined target dataset
by optimising the fit parameters in Equation (1). The ANNs
were created and trained using the MATLAB (MathWorks,
2019) neural network toolbox. For damage detection and
localisation, the strain readings of the input sensors from the
other load tests were then fed to the 1000 trained ANNs and
the strain time histories for the target sensor were predicted.

Error estimation

The error between the experimentally- and ANN-generated
strains was estimated for the testing dataset to evaluate the
performance of the trained neural networks. The prediction
error associated with individual ANNs was found using
Equation (2) while the mean, lower bound, and upper bounds
of the strain prediction error were estimated using Equations
(3) (4), and (5), respectively. Figure 12(a) presents the prob-
ability distribution of the prediction error, as well as the mean
(ME), lower bound (ELB), and the upper bound error (EUB).
The mean prediction error was estimated to be very close to
zero (7.2823e-04 le), the standard deviation was estimated as
0.1905 le, whereas the lower and upper bounds at 95% confi-
dence intervals were �0.3825 and 0.3846 le, respectively.

The small mean error value shows that trained ANNs
were able to simulate the behaviour of the girder in the pre-
cracking state with high accuracy. In addition, there is 95%
confidence that the error in the pre-cracking stage falls

within the calculated lower and upper bounds. Figure 12(b)
shows the ME prediction versus the number of ANNs used
to monitor convergence of the proposed framework. As
shown, the fluctuation of the mean prediction error is stabi-
lised and limited to approximately 0.00015 le after employ-
ing 200 ANNs. A similar trend was also observed for
convergence of the lower and upper prediction error. This
can imply that the number of employed ANNs and the size
of training dataset was adequate to accurately predict the
flexural behaviour of the tested girder.

Damage detection

After training the ANNs and evaluating the prediction error,
the strain records of sensors 1, 2, 3, 10, 11, 12, 13, and 14
from the set-aside datasets were fed to the trained ANNs
and the resulting strain at sensor 15 was predicted. The pre-
dicted strains were then compared to the ones recorded
during the load tests and the associated mean error was cal-
culated using Equation (3) to predict the dam-
age occurrence.

Figure 13 compares the experimental strain time history
to ANN predictions at sensor 15 for two load cases in the
pre-cracking (i.e. Dyna 2 test) and post-cracking phases (i.e.
Dyna 6 test). As shown, the trained ANNs were able to
accurately predict the strains in the pre-cracking stage, while
there seems to be a significant prediction error associated
with the post-cracking stage. In other words, the predicted
strains at the target sensor are considerably different than
the recorded ones. This implies that it is highly likely that
damage has occurred. This is based on the fact that due to
damage in the post cracking stage, the stiffness of the sys-
tem changes compared to the pre-cracking state and the
relationship between different sensors, established in the
uncracked state, leads to an increase in the ANN predic-
tion error.

Figure 14(a) shows the mean prediction error for the
randomly generated variable amplitude load tests. This fig-
ure is divided into three zones, no cracking, minor cracking,
and excessive cracking. Referring to Table 2, Tests Dyna 1
and Dyna 2 were conducted before cracking the girder,
while Tests Dyna 4 and Dyna 5 occurred after load test
Crack 1 that resulted in the initiation of minor cracking.
Finally, Test Dyna 6 to Dyna 9 were conducted after apply-
ing the Crack 2 loading, in which cracks increased in width
and length. In the no crack zone, the two data points fall
within the previously defined upper and lower bounds of
prediction error (EUB and ELB). In the other two regions,
the prediction error falls outside of the defined criteria indi-
cating the presence of damage in the beam. This highlights
the ability of the proposed criterion to detect the damage
occurrence. In addition, the large difference between the
ME values in the minor and excessive cracking regions
shows that the proposed approach can indicate the relative
level of damage experienced by the girder during load tests.

Figure 14(b) provides a comparison between the mean
prediction error associated with different monotonic load
tests. The insert in the no cracking zone highlights the

Figure 11. Comparison between the measured strains using FGB sensor 15 and
the embedded VWSG at mid-span under various monotonic load values.
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mean prediction error in the first four monotonic runs with
respect to the upper and lower bounds. The ME values asso-
ciated with monotonic load tests applied before crack initi-
ation (i.e. Mono 1 to 4) fall within the defined bounds,
where the ME values for the other cases fall outside of the
defined bounds indicating the presence of damage. As
shown, larger monotonic loads resulted in larger mean error
values. This can be mainly attributed to the fact that larger

loads caused larger crack opening and resulted in larger
error compared to the ANN prediction. Note that the speci-
men was designed to be a fully prestressed with no cracking
under service loads. The presented approach can be adapted
to partially prestressed beams by relaxing the bounds on
prediction errors to permit allowable cracking and isolate
excessive cracking. However, more testing may be needed
on such cases to establish these new bounds.

Figure 12. (a) Probability distribution of the prediction error (E), mean error (ME), lower bound error (ELB), and upper bound error (EUB) associated with the testing
dataset (b) mean error convergence plot.

Figure 13. Comparison between experimental results and ANN predictions for two load cases in (a) pre-cracking and (b) post-cracking phases.

Figure 14. Mean prediction error for (a) randomly generated variable amplitude load cases (b) monotonic load tests.
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Damage localisation

In order to localise damage in the tested girder, two damage
regions and ANN configurations were defined and trained
using the strain records of Dyna 3 load test. Region one was
considered to span between the support and sensor 14
(1.5m [59 in.] away from the beam end), and region two
was defined to be between sensors 14 and mid-span (i.e.
1.25m [49 in.] away from the mid-span). ANN with config-
uration 1 (AN 1) used the strain records of sensors 1, 2, 3,
10, 11, 12, and 13 to predict the strain in sensor 14, and
ANN with configuration 2 (AN 2) was the same configur-
ation introduced in the damage detection process.

Figure 15 illustrates the defined regions and their associ-
ated sensors. These configurations are suitable for predicting
flexural damage in the tested beam; however, other configu-
rations may be needed to localise damage if other failure
modes are expected. The prediction error of each ANN
based on Dyna 6 load test was then used to localise damage
along the beam. The normalised mean error (NME) associ-
ated with the prediction of AN1 and AN2 configurations
was found using Equation (6) and Dyna 6 load test data.
Figure 16 shows the probability distribution of the

calculated NME values associated with 1000 AN1 and AN2
trained ANNs. The mean and standard deviation of the pre-
dicted NME for AN1 are 0.0233 and 0.0268, respectively.
While the mean and standard deviation for AN2 are found
to be 0.1767, and 0.0356, respectively. This shows that the
established relationship between the sensor readings in
Region 1 (see Figure 15) can predict the strains in the post-
cracking phase with ±2.3% mean error.

However, the 17.67% NME for AN2 reveals that the estab-
lished relationship between the sensors in Region 2 (see Figure
15) cannot accurately simulate the strains in the post-cracking
phase. Accordingly, it is more likely that the cracks occurred in
Region 2. This conclusion is also consistent with the observa-
tions made during the experiment, where the cracks initiated
and propagated in the pure bending zone (see Figure 9).

Conclusions

This paper presented a statistical damage detection and
localisation approach for evaluating the long-term perform-
ance of newly constructed prestressed concrete girders
instrumented with fibre Bragg grating sensors. The approach
was illustrated using experimental laboratory data obtained

Figure 15. Visualisation of AN1, AN2, Region 1, and Region 2.

Figure 16. Probability distribution of the calculated NME values associated with AN1 and AN2.
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from flexural testing of a large-scale prestressed concrete
girder under monotonic loads and randomly generated vari-
able amplitude loading. ANNs were employed to establish a
relationship between the strain time-histories at multiple
sensors distributed along the girder. The trained ANNs were
used to predict strain at a target sensors based on the read-
ings of other sensors during a load test.

The predicted strains were then compared to their experi-
mental counterparts for damage assessment. Lower and upper
error bounds were defined based on the intact girder condi-
tions. These bounds were then used to evaluate the condition
of the investigated prestressed concrete girder and localise
induced damage. The proposed damage detection approach
does not require any information on loading conditions and
detects the damage based only on the relationship between
different FBG signals. The following conclusions are drawn:

� The employed feedforward ANNs with the adopted char-
acteristics were capable of establishing a relationship
between strain readings recorded at various sensors along
the tested girders. The predication accuracy was high-
lighted by low mean error and standard deviation of
7.2823e-04 le and 0.1905 le, respectively.

� The proposed lower and upper error bounds led to suc-
cessful detection of various damage levels. The approach
was able to identify the occurrence of minor and exces-
sive cracking during testing. The identified damage levels
were consistent with observations made during testing.
The load tests conducted on the heavily cracked beam
showed a large mean error while tests at early cracking
stages showed relatively small mean error values that
were still out of the defined bounds.

� The proposed damage localisation approach was capable
of identifying the region that experienced higher damage
levels. The identified damage zone matched the observa-
tions made during the experimental testing. However,
more research is needed to optimise sensor placement
and region selection.

� The presented approach has been validated for flexural
damage in fully prestressed simply supported beams. More
research is needed to quantify the effect of loading location,
temperature gradients, boundary conditions, and shrinkage
and creep strains on the proposed approach. Additionally,
future efforts are required to implement the presented dam-
age identification and localisation approach for long-term
performance monitoring of bridges under field conditions.
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