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Total Variation Isoperimetric Profiles\ast 

Daryl DeFord\dagger , Hugo Lavenant\ddagger , Zachary Schutzman\S , and Justin Solomon\P 

Abstract. Applications such as political redistricting demand quantitative measures of geometric compactness
to distinguish between simple and contorted shapes. While the isoperimetric quotient, or ratio of
area to perimeter squared, is commonly used in practice, it is sensitive to noisy data and irrelevant
geographic features like coastline. These issues are addressed in theory by the isoperimetric profile,
which plots the minimum perimeter needed to inscribe regions of different prescribed areas within
the boundary of a shape. Efficient algorithms for computing this profile, however, are not known in
practice. Hence, in this paper, we propose a convex Eulerian relaxation of the isoperimetric profile
using total variation. We prove theoretical properties of our relaxation, showing that it still satisfies
an isoperimetric inequality and yields a convex function of the prescribed area. Furthermore, we
provide a discretization of the problem, an optimization technique, and experiments demonstrating
the value of our relaxation.
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1. Introduction and motivation. A classic result in modern geometry, the isoperimetric
inequality states that the least-perimeter shape enclosing a fixed amount of area is a circle.
More formally, if L is the length of a simple closed curve in the plane and A is the area it
encloses, then 4\pi A \leq L2, with equality if and only if the curve is a circle; the observation that
a circle minimizes perimeter subject to a fixed area is a direct byproduct of this expression.
Inspired by this inequality, the isoperimetric quotient 4\pi A/L2 is a commonly used proxy for
measuring the compactness of a shape; here, compactness refers to geometric regularity, a
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586 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

4\pi A/L2 = 0.285 0.359 0.411 0.680 0.841 1.000

Figure 1. A variety of shapes marked with isoperimetric ratios 4\pi A/L2; the least compact shape is a small
perturbation of a circle.

piece of terminology that originated in the political geography literature (see section 1.2). This
quantity is scale-free, unitless, and bounded between zero and one. It is intended to capture
how efficiently a shape ``uses"" its perimeter to enclose its area and is maximized for a circle.

This quotient, however, is unstable in the sense that a small perturbation of the shape's
boundary can greatly increase its perimeter without significantly affecting its area; Figure 1
shows one example of this instability. Moreover, as a measure of compactness, the isoperimet-
ric quotient conflates multiple scales. At a coarse scale, a perturbed circle still appears fairly
compact, while at a fine scale, the noisy boundary differentiates it from a proper circle; this
distinction cannot be captured by a single number.

To address these issues, in this article we investigate a multiscale means of measuring
compactness that explicitly assesses aspects of compactness at different scales. Our measure
is easily and reliably computed, even on very distorted shapes. Although our work on this
problem was inspired by concrete challenges related to the evaluation of compactness of voting
districts (see section 1.2), we find that the isoperimetric profile and its convex relaxation have
intrinsic mathematical interest that inspire additional challenging problems in geometry and
convex analysis.

1.1. Mathematical overview. A modern construction in geometry offers a potential reso-
lution to the instability of the isoperimetric ratio. The isoperimetric profile of a shape replaces
the isoperimetric quotient with a plot of compactness values at different length or area scales.
For each area t between 0 and the area A of a shape (0 \leq t \leq A), the isoperimetric pro-
file measures the minimum amount of perimeter inscribed within the original shape needed
to enclose area t. As shown in Figure 2, by considering t < A we can use this to separate
perturbative boundary effects from larger-scale barriers to compactness.

Compared to most of the mathematical literature (see, e.g., [41]), we consider the full
perimeter of the inscribed shape rather than the relative perimeter; the latter does not account
for the perimeter shared with the boundary of the input shape. Considering only relative
perimeters---or, equivalently, the isoperimetric problem in domains without boundaries---leads
to an elegant mathematical structure with a strong interplay between the geometry of the
domain and the shape of the profile. The problem considered in our work, which takes the full
perimeter into account, is less studied theoretically (see [45] for some relevant discussion, as
well as the forthcoming article [34], which was informed by a preprint of the present article),
likely because the shape of the profile has less elegant qualitative properties. This case,
however, is relevant for computational problems in need of stable, multiscale compactness
measures.
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TOTAL VARIATION ISOPERIMETRIC PROFILES 587

4\pi A/L2 = 0.004 4\pi A/L2 = 0.359

Figure 2. The perturbed circle (left) is not compact as measured by the isoperimetric ratio, but it admits a
compact inscribed circle with slightly less area; the noncompact shape on the right does not contain a compact
inscribed shape that uses most of the interior area.

Although the isoperimetric profile is a promising theoretical construction, to date no algo-
rithms are known to compute this plot in practice. While special properties in two dimensions
suggest that a computational geometry technique may be possible to formulate for polygons
in the plane, this problem remains open; even less is known about computing the profile in the
higher-dimensional case or on Riemannian manifolds. One possible computational approach
might use a phase field approximation \`a la Modica--Mortola [9], but the resulting problem
would require the minimization of a nonconvex functional.

Given the potential applications of the isoperimetric profile and the challenges of comput-
ing it in practice, this paper proposes a convex relaxation built from total variation. Our basic
approach is to write the optimization problem underlying the isoperimetric profile in Eulerian
language and then to relax an integer variable to be real-valued. The resulting problem is
straightforward to optimize after using standard discretization techniques from mathematical
imaging. We show that a key theoretical property of the isoperimetric profile is preserved
in our convex relaxation, namely, that the lower envelope of our set of relaxed profiles is
provided by a circle---the most compact shape; we also provide theoretical results giving qual-
itative intuition for the behavior of our profile and its relationship to the original nonconvex
problem.

1.2. Compactness and political redistricting. A key application of the isoperimetric
quotient---known as the Polsby--Popper measure in political science [37]---is in measuring
the compactness of legislative voting districts. Here, we use the word compact, as used in
the political geography literature, to refer to plane regions that appear sufficiently regular,
as there is no legally agreed-upon definition of this concept; see [28] for further analysis and
discussion.

In representative systems like the U.S. House of Representatives, voters are clustered
geographically into districts, with each district electing a single representative to Congress.
Manipulating district shapes to engineer a particular outcome for a vote is a practice known
as gerrymandering, which undermines democratic principles and has been used to deny under-
represented minorities the opportunity to elect a representative of their choosing. While a
specific measure of geometric quality is not always mandated by law, scores like Polsby--
Popper are used as quantitative proxies for the reasonableness of a district or districting plan;
contorted, nonconvex district shapes may signal that a district was designed with motives
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588 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

other than those required by law.
While compactness scores like the isoperimetric quotient are widely used in arguments for

or against districting plans, they have significant mathematical drawbacks that undermine
their interpretability and reliability [20]. Most importantly, these scores are unstable. As
shown in Figure 1, the Polsby--Popper score is unstable under boundary perturbations. A
visually insignificant adjustment to the boundary of a circle, which has isoperimetric quotient
equal to one, can make the isoperimetric quotient arbitrarily close to zero; a minor perturba-
tion changes the shape from being the ``most"" compact to the ``least"" compact. This is by
no means a degenerate edge-case, but rather extremely common in geographic information
systems (GIS) data due to fractal-like structures resulting from the degree of precision with
which the geography is measured; maps of different resolution of the same district can lead to
Polsby--Popper scores that differ by a factor of 2 - 3 [2]. This particular sensitivity can greatly
distort the evaluation of the compactness of a district, since natural choices of boundaries
for districts, such as coastlines, geological features, or municipality boundaries, may be noisy.
This instability makes it difficult for the isoperimetric quotient to distinguish between districts
whose boundaries are contorted due to gerrymandering rather than those that simply contain
a coastline or follow a complicated municipal boundary.

The isoperimetric profile, which replaces a single isoperimetric quotient with a whole plot
of compactness scores and whose convex relaxation can be computed reliably, can be used to
discriminate between compact and noncompact districts without these drawbacks. To demon-
strate the interest of this new measurement, in this paper we accompany synthetic experiments
with illustrations of the (relaxed) isoperimetric profile of actual U.S. voting districts in the
state of North Carolina.

We mention a related notion in the political science literature: A compactness score
measuring the proportion of the area of the region filled by its largest inscribed circle is known
as the Ehrenburg test, presented in a critique of various compactness measures developed in
the nineteenth century to describe the geographic and human features of landmasses [21].
This measure captures information about an intermediate scale that depends on the shape of
the region being considered but again summarizes compactness with a single number.

2. Background and preliminaries. We begin our discussion with some basic notation and
background information setting the stage for our mathematical construction in section 3.

2.1. Isoperimetry. Although the basic isoperimetric problem dates back centuries, the de-
velopment of isoperimetric inequalities remains an active area of research in mathematics; for
a general survey, we refer the reader to [41] for a broad discussion of classical results and open
problems. Here, we restrict to basic Euclidean constructions relevant to our computational
task.

Take \Omega \subseteq Rn to be a compact region whose boundary \partial \Omega \subseteq \Omega is an (n - 1)-dimensional
hypersurface in Rn, and let B1 be the unit ball in that space. The general isoperimetric
inequality states

(2.1) n \cdot vol(\Omega )(n - 1)/n \cdot vol(B1)
1/n \leq area(\partial \Omega ).

This expression encodes the fact that the unit ball B1 minimizes (n - 1)-dimensional boundary
surface area over all regions \Omega in Rn with volume 1. As we have already seen, however, it is
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TOTAL VARIATION ISOPERIMETRIC PROFILES 589

\Sigma \Sigma \Omega 

Figure 3. The isoperimetric profile of a nonconvex shape may require a disconnected domain \Sigma inscribed
in \Omega ; for example, the most efficient use of area inscribed in the barbell shape above might be disconnected since
the rectangular portion in the middle has little area but considerable perimeter. Note this is a schematic rather
than computed algorithmically.

straightforward to perturb the boundary of \Omega slightly to increase the right-hand side (r.h.s.)
of this expression an arbitrary amount with minor impact on the left-hand side (l.h.s.); this
is a potential source of instability in practice.

More generally, take \Omega \subseteq Rn to be the same region, and take t \in [0, vol(\Omega )]. For each t
we could ask for the smallest surface area needed to enclose volume t completely within \Omega :

(2.2) I\Omega (t) := min\{ area(\partial \Sigma ) : \Sigma \subseteq \Omega and vol(\Sigma ) = t\} .

Here, we define area(\partial \Sigma ) to be the area of \partial \Sigma as a submanifold of Rn, that is, including the area
of the intersection \partial \Sigma \cap \partial \Omega ; we put no topological restrictions---in particular, connectedness---
on \Sigma . For our analysis in later sections to be relevant, the minimal regularity assumption
needed on \Omega is that the TV profile I\mathrm{T}\mathrm{V}

\Omega (t) (to be defined in (3.2)) is finite whenever t < vol(\Omega ).
This condition can be checked with minimal assumptions on \partial \Omega (including fractality); see
Appendix A for a discussion. A direct consequence of the isoperimetric inequality (2.1) is
that for any fixed t and prescribed volume V , minimizers of I\Omega (t) over all possible regions
\Omega \subseteq Rn with vol(\Omega ) = V are those containing a ball with volume t.

In any event, under fairly weak assumptions, a minimizer of problem (2.2) is known to
exist. Away from \partial \Omega , the boundary \partial \Sigma has constant mean curvature and is nonsingular for
n < 8 [23]. Because we include the area of \partial \Sigma \cap \partial \Omega in our variational problem, \partial \Sigma and \partial \Omega 
meet tangentially. The free boundaries of \Sigma are minimal surfaces (see, e.g., [41, Theorem 1]).

When n = 2, the free boundaries of \Sigma are circular arcs with the same signed radius [4, 5].
This property may be helpful in designing a computational geometry-style algorithm for com-
puting I\Omega (t) when \Omega is a polygon in R2, although to our knowledge no such algorithm has
been proposed; it remains unknown in which cases computing I\Omega (t) can be done in polynomial
time. As shown in Figure 3, the optimal \Sigma might be disconnected, even in two dimensions.
Additional open problems in the n = 2 case are posed in [19]. To make matters more chal-
lenging, this helpful structure does not appear to extend for n \geq 3, underscoring the potential
value of our construction in section 3 even if I\Omega is efficiently computable in some special cases.

Open Problem 2.1. Identify a polynomial-time algorithm or NP-hardness result for com-
puting isoperimetric profiles. The simplest open problem is computing the isoperimetric profile
of a polygon in the plane R2; if evaluating the profile of such a polygon is polynomial-time
solvable, higher-dimensional analogues are of interest as well.

2.2. Total variation. The definition of the isoperimetric profile (2.2) is Lagrangian: The
variable \Sigma explicitly parameterizes the boundary of an unknown shape. Our approach in
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590 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

section 3 will be to switch an Eulerian formulation, replacing the boundary shape optimization
variable with the indicator function of the unknown \Sigma . To do so, we need an Eulerian way to
compute the area of \partial \Sigma , which we can achieve using the total variation of its indicator.

For a function f \in L1(Rn), the total variation (TV) of f is defined as

(2.3) TV[f ] := sup

\biggl\{ \int 
Rn

[f(x)\nabla \cdot \phi (x)] dx : \phi \in C1
c (Rn \rightarrow Rn) and \| \phi \| \infty \leq 1

\biggr\} 
.

Here, C1
c (Rn \rightarrow Rn) denotes the space of compactly supported continuously differentiable

functions from Rn into Rn. For differentiable functions f \in C1(Rn) with compact support,
the divergence theorem implies an alternative formula for total variation introduced to math-
ematical image processing in [43]:

(2.4) TV[f ] =

\int 
Rn

\| \nabla f\| 2 dx.

An alternative way of computing total variation, which reveals its link with the isoperimetric
problem, is the coarea formula [22]. For a nonnegative f , this formula states

(2.5) TV[f ] =

\int +\infty 

0
area(\partial \{ f \geq s\} )ds.

For a region \Sigma \subseteq Rn, denote its indicator function 1\Sigma via

(2.6) 1\Sigma (x) :=

\biggl\{ 
1 if x \in \Sigma ,
0 otherwise.

Then a consequence of the coarea formula (2.5) is that

(2.7) area(\partial \Sigma ) = TV[1\Sigma ].

A detailed account of geometric information measured by total variation is provided in [14].

3. Total variation isoperimetric profile. Now that we have established basic notation and
the functionals we will use in our construction, we are ready to present our convex relaxation
of the isoperimetric profile for a shape embedded in Rn.

3.1. Definition. Inspired by the total variation formula (2.7), we can formally rewrite the
optimization problem (2.2) for the isoperimetric profile in an Eulerian fashion:

(3.1) I\Omega (t) =

\left\{       
inff\in L1(Rn) TV[f ]

subject to
\int 
Rn f(x) dx = t,
0 \leq f \leq 1\Omega ,
f(x) \in \{ 0, 1\} \forall x \in Rn.

Here, f is the indicator of the unknown shape \Sigma . The three constraints ensure that (1) the
area enclosed in \Sigma is equal to t, (2) \Sigma is inscribed within \Omega , and (3) f is properly an indicator
function. For convenience, we have written this problem using integrals over Rn, but in reality
the second constraint ensures that f is zero outside \Omega .
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TOTAL VARIATION ISOPERIMETRIC PROFILES 591

Since total variation is convex, the form (3.1) hides all the nonconvexity of the problem
in the third constraint. Hence, we propose using an alternative measure of compactness that
drops the nonconvex constraint, which we call the total variation (TV) profile of \Omega :

(3.2) I\mathrm{T}\mathrm{V}
\Omega (t) :=

\left\{   
minf\in L1(Rn) TV[f ]

subject to
\int 
Rn f(x) dx = t,
0 \leq f \leq 1\Omega .

The existence of a minimizer is an immediate consequence of Rellich's compactness theorem [1,
Theorem 3.23] (also see [13, Theorem 2]).

Since (3.2) is obtained by dropping a constraint from (3.1), we immediately have the
following.

Proposition 3.1. For all (\Omega , t), we have I\mathrm{T}\mathrm{V}
\Omega (t) \leq I\Omega (t).

Unfortunately, this inequality is not tight, which we demonstrate in the following example.

Example 3.2 (circle). Suppose \Omega \subset R2 is a circle of radius R, and take t = \pi r2 for r \in 
(0, R). In this case, by the isoperimetric inequality we know I\Omega (t) = 2\pi r. But suppose we
take f(x) \equiv r2/R2. Notice f(x) satisfies the constraints in (3.2), but by the coarea formula

I\mathrm{T}\mathrm{V}
\Omega (t) \leq TV[f ] = 2\pi R \cdot r

2

R2
= 2\pi r \cdot r

R
< I\Omega (t).

Hence, our relaxation is not tight.

As we will prove in Proposition 3.5, the TV profile still admits an elegant characterization
explaining why the relaxation is not tight: it is the lower convex envelope of the isoperimetric
profile.

The following monotonicity property can be derived directly from the definition of the
total variation profile.

Proposition 3.3. Suppose \Omega 1 \subseteq \Omega 2 \subset Rd are two compact domains. Then for all t \leq 
vol(\Omega 1) it holds that I\mathrm{T}\mathrm{V}

\Omega 2
(t) \leq I\mathrm{T}\mathrm{V}

\Omega 1
(t).

In particular, if a domain \Omega can be squeezed between two other domains, \Omega 1 \subseteq \Omega \subseteq \Omega 2,
then the TV profile of \Omega is squeezed between those of \Omega 1 and \Omega 2, at least for t \leq vol(\Omega 1). For
instance, the TV profile of the perturbed circle (Figure 2, left) must be very close, at least for
t away from vol(\Omega ), to a straight line, the TV profile of a circle. More generally, if we know
the domain \Omega with some uncertainty or only at a given resolution, which is roughly equivalent
to saying that we can squeeze it between two other domains with a controlled difference in
area, then we have guarantees for the value of the TV profile as soon as t is not too close to
vol(\Omega ).

3.2. Duality and convexity. We next derive a dual for the TV profile problem (3.2)
to provide additional insight into the structure of the problem and in particular to show
that I\mathrm{T}\mathrm{V}

\Omega (t) is convex in t. We begin by writing a minimax formulation of the problem by
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592 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

substituting (2.3):

(3.3) I\mathrm{T}\mathrm{V}
\Omega (t) = min

f\in L1(Rn)

\left\{       
sup\phi ,\lambda ,\psi ,\xi 

\int 
Rn [f(x)\nabla \cdot \phi (x)] dx
+\lambda 

\bigl( 
t - 

\int 
Rn f(x) dx

\bigr) 
 - 
\int 
Rn [\psi (x)f(x) + \xi (x)(1\Omega (x) - f(x))] dx

subject to \| \phi \| \infty \leq 1, \psi \geq 0, \xi \geq 0.

Here, the dual variables are \phi \in C1
c (Rn \rightarrow Rn), \lambda \in R, and \psi , \xi \in C1

c (Rn \rightarrow R).
A standard argument using the Fenchel--Rockafellar duality theorem [11, Theorem 1.12]

justifies swapping the inner and outer problems; for completeness, a formal argument is in
Appendix B. Removing extraneous terms, we are left with the following inner variational
problem for f , with the dual variables fixed:

inf
f\in L1(Rn)

\int 
Rn

f(x)[\nabla \cdot \phi (x) - \lambda  - \psi (x) + \xi (x)] dx.

This problem is unbounded unless \nabla \cdot \phi (x) + \xi (x)  - \psi (x) = \lambda a.e. x \in Rn. Hence, after
swapping the inner and outer problems in (3.3) and substituting this relationship we find

I\mathrm{T}\mathrm{V}
\Omega (t) =

\left\{   
sup\phi ,\lambda ,\psi ,\xi \lambda t - 

\int 
\Omega \xi (x) dx

subject to \| \phi \| \infty \leq 1, \psi \geq 0, \xi \geq 0,
\nabla \cdot \phi (x) + \xi (x) - \psi (x) = \lambda a.e. x \in Rn.

Define \eta (x) := \xi (x)  - \psi (x). From the objective of the problem above, we can see \xi (x) =
max(\eta (x), 0) and \psi (x) = max( - \eta (x), 0). Substituting and simplifying leads to the dual

(3.4) I\mathrm{T}\mathrm{V}
\Omega (t) =

\biggl\{ 
sup\phi \in C1

c (Rn\rightarrow Rn),\lambda \in R \lambda t - 
\int 
\Omega max(\lambda  - \nabla \cdot \phi (x), 0) dx

subject to \| \phi \| \infty \leq 1

While this dual formula provides an interesting---if abstract---reinterpretation of I\mathrm{T}\mathrm{V}
\Omega (t) in its

own right, it also allows us to derive another property of the function itself.

Proposition 3.4. I\mathrm{T}\mathrm{V}
\Omega (t) is a convex function of t.

Proof. Define

h(\lambda ) := inf
\| \phi \| \infty \leq 1

\int 
\Omega 
max(\lambda  - \nabla \cdot \phi (x), 0) dx.

From (3.4), we see that I\mathrm{T}\mathrm{V}
\Omega (t) = h\ast (t), the convex conjugate (Legendre--Fenchel transform)

of h, which is necessarily convex [6].

We can say even more: The TV profile I\mathrm{T}\mathrm{V}
\Omega is the lower convex envelope of the isoperimetric

profile I\Omega , i.e., the largest convex function upper-bounded by the isoperimetric profile.

Proposition 3.5. The function I\mathrm{T}\mathrm{V}
\Omega is the lower convex envelope of I\Omega .

Proof. It is known that the lower convex envelope of a function is equal to the Legendre
transform of its Legendre transform [40, section 12]. Since Proposition 3.4 shows that I\mathrm{T}\mathrm{V}

\Omega is
convex---and thus equals its convex envelope---it suffices to prove that the Legendre transform
of I\Omega coincides with that of I\mathrm{T}\mathrm{V}

\Omega .
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TOTAL VARIATION ISOPERIMETRIC PROFILES 593

By definition,

(3.5) (I\Omega )
 \star (\lambda ) = sup

t
[\lambda t - I\Omega (t)] =

\left\{   
supf \lambda 

\int 
\Omega f(x)dx - TV(f)

subject to 0 \leq f \leq 1\Omega ,
f(x) \in \{ 0, 1\} \forall x \in Rn.

On the other hand, the Legendre transform of I\mathrm{T}\mathrm{V}
\Omega is given by

(3.6) (I\mathrm{T}\mathrm{V}
\Omega ) \star (\lambda ) = sup

t
\lambda t - I\Omega (t) =

\biggl\{ 
supf \lambda 

\int 
\Omega f(x)dx - TV(f)

subject to 0 \leq f \leq 1\Omega .

Since there are more admissible competitors in (3.6) than (3.5), (I\mathrm{T}\mathrm{V}
\Omega ) \star (\lambda ) \geq (I\Omega )

 \star (\lambda ). On
the other hand, using the coarea formula (2.5), for any admissible competitor f in (3.6),

\lambda 

\int 
\Omega 
f(x)dx - TV(f) =

\int 1

0
(\lambda vol(\{ f \geq s\} ) - area(\partial \{ f \geq s\} ))
\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr] \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 

\leq (I\Omega ) \star (\lambda ) \mathrm{b}\mathrm{y} \mathrm{d}\mathrm{e}fi\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

ds \leq (I\Omega )
 \star (\lambda ).

Taking the supremum in f leads to (I\mathrm{T}\mathrm{V}
\Omega ) \star (\lambda ) \leq (I\Omega )

 \star (\lambda ), which concludes the proof.

The proof of the equality of (3.5) and (3.6) is just a slight adaptation of [13, Proposition
2.1], in a simpler case, since we want only the equality of the values of the minimization
problem rather than a correspondence between the minimizers.

3.3. Behavior for small \bfitt > 0. Continuing in our effort to describe the shape of I\mathrm{T}\mathrm{V}
\Omega (t)

as precisely as possible, we can accompany the convexity result in Proposition 3.4 with a
description of its behavior when t is close to zero. In particular, we will show that I\mathrm{T}\mathrm{V}

\Omega is
linear with positive slope for small t, a property we can verify in our experiments. This is not
surprising, given Proposition 3.5, since the isoperimetric profile of \Omega coincides with that of
Rn for small t, the latter being concave. Nevertheless, we can say more by describing exactly
the slope of I\mathrm{T}\mathrm{V}

\Omega for small volumes.
We use the following auxiliary problem, known as the Cheeger problem [36]. The Cheeger

constant of \Omega , denoted by h1(\Omega ), is defined as

h1(\Omega ) := inf
\~\Sigma \subseteq \Omega 

area(\partial \~\Sigma )

vol(\~\Sigma )
,

and a subset \Sigma \subseteq \Omega such that h1(\Omega ) =
\mathrm{a}\mathrm{r}\mathrm{e}\mathrm{a}(\partial \Sigma )
\mathrm{v}\mathrm{o}\mathrm{l}(\Sigma ) is known as a Cheeger set of \Omega . Such a set exists

as soon as \Omega has a Lipschitz boundary [36, Proposition 3.1] and is unique if \Omega is convex [36,
Proposition 5.2]. \Sigma can be interpreted as the largest ``smooth"" subset of \Omega . An explicit
description of Cheeger sets can be found for convex domains [29], as well as domains without
necks [32]; we emphasize, however, that domains appearing in redistricting applications are
not likely to satisfy the assumptions of these articles.

Furthermore, provided we know a Cheeger set of \Omega , we can describe the behavior of I\mathrm{T}\mathrm{V}
\Omega (t)

for small t.

Proposition 3.6. Let \Omega be compact, let h1(\Omega ) be the Cheeger constant of \Omega , and let \Sigma be
a Cheeger set of \Omega . Then for any t \leq vol(\Sigma ), we have I\mathrm{T}\mathrm{V}

\Omega (t) = h1(\Omega )t, and a solution f in
(3.2) is given by f := t

\mathrm{v}\mathrm{o}\mathrm{l}(\Sigma ) \cdot 1\Sigma .
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594 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

Proof. It is clear that \^f := t
\mathrm{v}\mathrm{o}\mathrm{l}(\Sigma ) \cdot 1\Sigma satisfies the constraints of problem (3.2) defining

I\mathrm{T}\mathrm{V}
\Omega (t) as soon as t \leq vol(\Sigma ), which ensures 0 \leq \^f \leq 1\Sigma \leq 1\Omega . Hence, I\mathrm{T}\mathrm{V}

\Omega (t) \leq h1(\Omega )t. On
the other hand, using the coarea formula (2.5), if f is any competitor for problem (3.2), then

TV(f) =

\int +\infty 

0
area(\partial \{ f \geq s\} )ds

=

\int +\infty 

0
vol(\{ f \geq s\} ) \cdot area(\partial \{ f \geq s\} )

vol(\{ f \geq s\} )
\Bigr) \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr] \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggl\lfloor \biggr) 
\geq h1(\Omega ) \mathrm{b}\mathrm{y} \mathrm{d}\mathrm{e}fi\mathrm{n}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

ds

\geq h1(\Omega )
\int +\infty 

0
vol(\{ f \geq s\} )ds = h1(\Omega )

\int 
Rd

f(x)dx = h1(\Omega )t.

Hence, for t \leq vol(C), we have I\mathrm{T}\mathrm{V}
\Omega (t) = h1(\Omega )t.

If \Omega is not convex, then there may exist more than one Cheeger set in \Omega [33, section 4].
In particular, in light of the proof of Proposition 3.6, there may be more than one minimizer
of (3.2). Since we use an interior point solver in our experiments, the presence of multiple
solutions for nonconvex boundaries explains why our solutions appear fuzzy in this case.

Considering Proposition 3.6, a byproduct of our numerical method detailed below is the
ability to compute Cheeger constants and Cheeger sets, at least when they are unique. This
problem was tackled numerically in [12], where the authors propose a method to compute the
largest Cheeger set of a given set \Omega . Compared to our numerical results, theirs are sharper;
they also can characterize precisely which set is selected. On the other hand, we are largely
interested in the optimal objective value, i.e., the Cheeger constant, which does not depend
on the fuzziness of the minimizer f ; moreover, the link to the Cheeger problem---and hence
the numerical method of [12]---is lost as soon as t becomes large. We leave as future work a
detailed exploration of the relationship between these two techniques.

3.4. Structure of the minimizers. As we have seen in the previous section, at least for
small t one can choose a solution f of the problem (3.2) that is proportional to an indicator
function, i.e., that takes only two values. Due to the potential nonuniqueness of Cheeger sets,
however, it is possible to construct optimal functions f that take on infinitely many values,
even for small t. Up to the selection of appropriate optimal minimizers for the TV profile,
however, we can prove the following.

Proposition 3.7. There exists a family (ft)t\in [0,1] such that the following hold:
\bullet For any t \in [0, 1], the function ft \in L1(Rn) satisfies 0 \leq ft \leq 1\Omega ,

\int 
Rn ft(x) dx = t and

TV(ft) = I\mathrm{T}\mathrm{V}
\Omega (t).

\bullet For any t \in [0, 1], there exist vt \in (0, 1) such that ft takes its values in \{ 0, vt, 1\} .
\bullet For a.e. x \in \Omega , the function t\rightarrow ft(x) is increasing.

Proof. Let S \subseteq [0, vol(\Omega )] be the union of \{ 0, vol(\Omega )\} and the set of t such that I\mathrm{T}\mathrm{V}
\Omega is not

an affine function in a neighborhood of t; the latter is closed in [0, vol(\Omega )]. Since I\Omega is lower
semicontinuous and I\mathrm{T}\mathrm{V}

\Omega is its lower convex envelope, for any t \in [0, vol(\Omega )], if I\mathrm{T}\mathrm{V}
\Omega (t) < I\Omega (t),

then I\mathrm{T}\mathrm{V}
\Omega is affine in a neighborhood of t. In particular, I\mathrm{T}\mathrm{V}

\Omega (t) = I\Omega (t) for any point t \in S.
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Let t \leq s with t, s \in S. By the previous remark, there exist subsets \Sigma t and \Sigma s of
\Omega , with respective volumes t and s, such that area(\partial \Sigma t) = I\Omega (t) = I\mathrm{T}\mathrm{V}

\Omega (t) = TV(1\Sigma t); a
similar identity holds for \Sigma s. Let us consider \Sigma + := \Sigma t \cup \Sigma s and \Sigma  - := \Sigma t \cap \Sigma s; we denote
r := vol(\Sigma  - ). By the inclusion--exclusion principle, vol(\Sigma +) = t+ s - r. On the other hand,
using [1, Proposition 3.38], the perimeter of \Sigma + satisfies

area(\partial \Sigma +) \leq area(\partial \Sigma t) + area(\partial \Sigma s) - area(\partial \Sigma  - ).

Using 1\Sigma + as a competitor for the problem (3.2) defining I\mathrm{T}\mathrm{V}
\Omega (t + s  - r), and given that

area(\partial \Sigma  - ) \geq I\mathrm{T}\mathrm{V}
\Omega (r), we deduce that

(3.7) I\mathrm{T}\mathrm{V}
\Omega (t+ s - r) \leq I\mathrm{T}\mathrm{V}

\Omega (t) + I\mathrm{T}\mathrm{V}
\Omega (s) - I\mathrm{T}\mathrm{V}

\Omega (r).

Convex nonnegative functions are superadditive, but the equation above indicates that I\mathrm{T}\mathrm{V}
\Omega 

exhibits subadditive behavior. More precisely, using Lemma C.1 proved in the appendix, we
see that I\mathrm{T}\mathrm{V}

\Omega is affine on [r, t+ s - r] as soon as r < t. Since t, s \in S, the only way to avoid a
contradiction is if r = t, which implies \Sigma t \subseteq \Sigma s.

As a consequence, using t = s, we see that for any t \in S there exists a unique \Sigma t \subseteq \Omega 
such that I\mathrm{T}\mathrm{V}

\Omega (t) = TV(1\Sigma t). Using t \leq s we deduce that the map t \in S \rightarrow \Sigma t is increasing
with respect to (w.r.t.) inclusion. In particular, for a.e. x \in Rn, the map t \in S \rightarrow 1\Sigma t(x)
is increasing.1 For t \in S, we set ft := 1\Sigma t ; such a choice satisfies all the requirements of
Proposition 3.7.

Since the set [0, vol(\Omega )]\setminus S is open, it can be decomposed as a countable union of open
intervals. Let (t, s) be one of such interval, i.e., t, s \in S and S \cap (t, s) = \emptyset . The definition of
S, helped by a connectivity argument and the continuity of I\mathrm{T}\mathrm{V}

\Omega , shows that I\mathrm{T}\mathrm{V}
\Omega is affine on

the segment [t, s]. On the other hand, for any r \in [t, s], the function

(3.8) fr :=
s - r
s - t1\Sigma t +

r  - t
s - t1\Sigma s ,

i.e., the convex combination of 1\Sigma t and 1\Sigma s whose total mass is r, satisfies
\int 
\Omega fr(x) dx = r,

0 \leq fr \leq 1\Omega and, by convexity of the TV norm,

TV(fr) \leq 
s - r
s - t I

\mathrm{T}\mathrm{V}
\Omega (t) +

r  - t
s - tI

\mathrm{T}\mathrm{V}
\Omega (t).

The r.h.s. of this equation is precisely the affine function joining (t, I\mathrm{T}\mathrm{V}
\Omega (t)) to (s, I\mathrm{T}\mathrm{V}

\Omega (s)),
which implies that the inequality is an equality. Hence, the function fr satisfies 0 \leq fr \leq 1\Omega ,\int 
Rn fr(x) dx = t, and TV(fr) = I\mathrm{T}\mathrm{V}

\Omega (r).
As \Sigma t \subset \Sigma s, the map r \in [t, s] \rightarrow fr(x) is increasing for a.e. x \in Rn. Moreover, the

function fr takes the value 0 on \Omega \setminus \Sigma s, the value 1 on \Sigma t, and only a third value, namely,
(r - t)/(s - t) on the set \Sigma s\setminus \Sigma t. In conclusion, on every open interval within [0, vol(\Omega )]\setminus S we
define fr by (3.8), and such a choice satisfies all the requirement of Proposition 3.7.

1For this to hold we have to choose a precise representative of \Sigma . For instance, we choose the set of points
in Rn such that the Lebesgue density of \Sigma is equal to 1.
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596 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

3.5. Isoperimetric inequality. So far, we have provided some propositions describing the
shape of I\mathrm{T}\mathrm{V}

\Omega ; our next task is to verify that it has properties in common with the isoperimetric
profile that make it useful for evaluating compactness. Although our relaxation does not
always recover the solution to the original problem, the following key property is preserved.

Proposition 3.8 (isoperimetry). Suppose B \subset Rn is a ball whose volume matches vol(\Omega ).
Then, for all t \in [0, vol(\Omega )], we have I\mathrm{T}\mathrm{V}

B (t) \leq I\mathrm{T}\mathrm{V}
\Omega (t), and if the equality holds for some

t > 0, then \Omega is a ball.

Proof. As recalled in the introduction, we already know that IB(t) \leq I\Omega (t) for any t.
Hence, any convex function bounded by IB is also bounded by I\Omega . Taking the supremum and
recalling Proposition 3.5, we see that I\mathrm{T}\mathrm{V}

B (t) \leq I\mathrm{T}\mathrm{V}
\Omega (t).

Now assume that I\mathrm{T}\mathrm{V}
B (t) = I\mathrm{T}\mathrm{V}

\Omega (t) for some t \in (0, vol(\Omega )]. Taking into account the
linearity of I\mathrm{T}\mathrm{V}

B (Example 3.2) and the convexity of I\mathrm{T}\mathrm{V}
\Omega , we know that the slope of I\mathrm{T}\mathrm{V}

B and
I\mathrm{T}\mathrm{V}
\Omega coincide at t = 0. Considering Proposition 3.6, this implies that the Cheeger constants
of B and \Omega agree, which can only happen if \Omega is a ball [36, Proposition 6.11].

4. Discretization and optimization. Having established theoretical properties of the TV
isoperimetric profile, our next step is to provide a discretization and algorithm for its approx-
imation in practice.

4.1. Discretization. In our experiments, we assume that the shape \Omega is expressed as an
indicator function on a uniform grid; for example, when n = 2 we take as input an image
I with Ii,j = 1 inside \Omega and Ii,j = 0 outside. We use the fourfold discretization \nabla p of the
gradient operator \nabla proposed in [14] to promote rotational invariance for our model. Namely,
denote by P the total number of grid points and by \Delta x the grid size. Then the linear operator
\nabla p : RP \rightarrow RP\times 4 is defined at any point p = (i, j) as

(4.1) (\nabla pf)i,j =
1

\Delta x

\left(    
fi+1,j  - fi,j
fi,j+1  - fi,j

fi+1,j+1  - fi,j+1

fi+1,j+1  - fi+1,j

\right)    .

Using this operator, the total variation of a function defined on the uniform grid is approxi-
mated by \sum 

p

\| \nabla pf\| 2 =
\sum 
i,j

\| (\nabla pf)i,j\| 2,

where \| \cdot \| 2 is the Euclidean norm in R4. After padding the grid with zeros on all four sides,
we do not need to account for boundary conditions.

Our discretization of (3.2) becomes

(4.2) I\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}\Omega (t) :=

\left\{     
inff\in RP

\sum 
p \| \nabla pf\| 2

subject to 1
\top f = t,

0 \leq f \leq I.
While careful proof of convergence in the limit of grid refinement is outside the scope of
our discussion, we note that several analogous results exist for image processing models with
similar structure [3, 30].
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4.2. Optimization. Our problem (4.2) is a second-order cone program (SOCP) [8], for
which there exist extremely efficient industrial solvers. We find that MOSEK [35]---easily
called using the CVX library [24, 25]---is effective for up to medium-scale instances and
competitive with hand-designed algorithms. For scalability and simplicity, however, we can
also derive a first-order algorithm based on the alternating direction method of multipliers
(ADMM) [7], detailed below.

Suppose z \in [0, 1]P
\prime 
is the restriction of the unknown variable f in (4.2) to those pixels p

in the image I that are nonzero; the remaining entries of f must equal zero. We can write an
equivalent formulation of problem (4.2) as

(4.3) I\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}\Omega (t) :=

\left\{     
infz\in RP \prime 

\sum 
p \| \scrP pGz\| 2

subject to 1
\top z = t,

0 \leq z \leq 1.

Here, G \in R4P\times P \prime 
is the restriction of the gradient operator \nabla in (4.1) to the nonzero pixels,

and \scrP p \in \{ 0, 1\} 4\times 4P extracts the four elements of the gradient relevant to pixel p.
To derive tractable ADMM iterations, we rewrite (4.3) in a somewhat counterintuitive

form that leads to a tractable splitting:

(4.4) I\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{c}\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{i}\mathrm{z}\mathrm{e}\mathrm{d}\Omega (t) :=

\left\{       
infx,z,z\prime 

\sum 
p \| \scrP px\| 2 + \chi (0 \leq z\prime \leq 1)

subject to x - Gz = 0, : y
1
\top z = t, : \lambda 
z  - z\prime = 0. : q

This expression copies z into a second variable z\prime and isolates the gradient Gz as a third
variable x; \chi denotes a (convex) indicator function that equals \infty any time the constraint is
violated, and 0 otherwise. The augmented Lagrangian of this optimization problem is

\Lambda (x, z, z\prime ; y, \lambda , q) :=
\sum 
p

\| Ppx\| 2 + \chi (0 \leq z\prime \leq 1) +
\rho 

2
\| x - Gz\| 22 + y\top (x - Gz)

+
\tau 

2
(1\top z  - t)2 + \lambda (1\top z  - t) + \beta 

2
\| z  - z\prime \| 22 + q\top (z  - z\prime ).

Our two-block ADMM scheme cycles between three steps:

z \leftarrow min
z

\Lambda (x, z, z\prime ; y, \lambda , q) (linear system),(Primal 1)

(x, z\prime )\leftarrow min
(x,z\prime )

\Lambda (x, z, z\prime ; y, \lambda , q) (closed form),(Primal 2)

y \leftarrow y + \rho (x - Gz) (closed form),(Dual)

\lambda \leftarrow \lambda + \tau (1\top z  - t),
q \leftarrow q + \beta (z  - z\prime ).

Iteratively cycling these three steps is guaranteed to converge to the global optimum, as
justified by the discussion in [7, section 3.2.1]. Our splitting is carefully designed to make
each iteration above computationally tractable; z is obtained by solving a linear system of
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Algorithm 4.1. ADMM to solve problem (4.4).

\bff \bfu \bfn \bfc \bft \bfi \bfo \bfn TVProfileADMM
M \leftarrow \rho G\top G+ \tau 11\top + \beta IP \prime \times P \prime  \triangleleft \mathrm{C}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{d} \mathrm{o}\mathrm{n}\mathrm{c}\mathrm{e} \mathrm{b}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e} \mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

\bff \bfo \bfr i = 1, 2, . . . \bfd \bfo 
// Primal 1: z
r \leftarrow G\top (\rho x+ y) + (t\tau  - \lambda )1+ (\beta z\prime  - q)  \triangleleft \mathrm{R}\mathrm{i}\mathrm{g}\mathrm{h}\mathrm{t}-\mathrm{h}\mathrm{a}\mathrm{n}\mathrm{d} \mathrm{s}\mathrm{i}\mathrm{d}\mathrm{e} \mathrm{o}\mathrm{f} \mathrm{l}\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r} \mathrm{s}\mathrm{y}\mathrm{s}\mathrm{t}\mathrm{e}\mathrm{m}
z \leftarrow M - 1r  \triangleleft \mathrm{C}\mathrm{a}\mathrm{n} \mathrm{b}\mathrm{e} \mathrm{a}\mathrm{c}\mathrm{c}\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{d} \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g} \mathrm{C}\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{e}\mathrm{s}\mathrm{k}\mathrm{y} \mathrm{f}\mathrm{a}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{i}\mathrm{z}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

// Primal 2: (x, z\prime )  \triangleleft \mathrm{D}\mathrm{e}\mathrm{c}\mathrm{o}\mathrm{u}\mathrm{p}\mathrm{l}\mathrm{e}\mathrm{s} \mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r} x \mathrm{a}\mathrm{n}\mathrm{d} z\prime 

// Primal 2\mathrm{a}: x
H \leftarrow Reshape(Gz  - y/\rho , 4\times P )  \triangleleft \mathrm{I}\mathrm{s}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{e} \mathrm{i}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{v}\mathrm{i}\mathrm{d}\mathrm{u}\mathrm{a}\mathrm{l} \mathrm{g}\mathrm{r}\mathrm{a}\mathrm{d}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{t} \mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}\mathrm{s}
\bff \bfo \bfr p = 1, 2, . . . , P \bfd \bfo  \triangleleft \mathrm{P}\mathrm{e}\mathrm{r}-\mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n} \mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}

cp \leftarrow Max(1 - 1/\rho \| Hp\| 2, 0)  \triangleleft Hp \mathrm{i}\mathrm{s} \mathrm{c}\mathrm{o}\mathrm{l}\mathrm{u}\mathrm{m}\mathrm{n} p \mathrm{o}\mathrm{f} H
Xp \leftarrow cpHp

x\leftarrow Reshape(X, 4P \times 1)  \triangleleft \mathrm{U}\mathrm{n}\mathrm{r}\mathrm{o}\mathrm{l}\mathrm{l} \mathrm{b}\mathrm{a}\mathrm{c}\mathrm{k} \mathrm{t}\mathrm{o} \mathrm{a} \mathrm{v}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{o}\mathrm{r}

// Primal 2\mathrm{b}: z\prime 

z\prime \leftarrow Clamp(z + q/\beta , [0, 1])

// Dual: (y, \lambda , q)  \triangleleft \mathrm{D}\mathrm{u}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{s}\mathrm{c}\mathrm{e}\mathrm{n}\mathrm{t}
y \leftarrow y + \rho (x - Gz)
\lambda \leftarrow \lambda + \tau (1\top z  - t)
q \leftarrow q + \beta (z  - z\prime )

// Check for convergence and update (\rho , \tau , \beta ) here  \triangleleft \mathrm{S}\mathrm{e}\mathrm{e} [7, \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}. 3.3, \mathrm{s}\mathrm{e}\mathrm{c}\mathrm{t}. 3.4] \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{d}\mathrm{e}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{l}\mathrm{s}

\bfr \bfe \bft \bfu \bfr \bfn (x, z, z\prime )
\bfe \bfn \bfd \bff \bfu \bfn \bfc \bft \bfi \bfo \bfn 

equations, while the (x, z\prime ) step decouples over these two variables and is solvable in closed
form (soft thresholding and clamping). The linear system for z has the same matrix in each
iteration, which can be prefactored. Algorithm 4.1 fills in the details of the steps.

We found this iterative technique to be the most efficient among the many possible meth-
ods for convex problems in the form (4.2); for instance, one alternative might be to use
proximal splitting as described in [13, section 3.2.4] and [15, section 5]. It is worth noting,
however, that we are in the worst-case situation for these algorithms: the terms in the most
obvious proximal splitting are neither smooth nor strictly convex. Indeed, at least in the
continuous case, the form of the optimal f described in Proposition 3.7 indicates that typical
solutions of our problem are at points of nondifferentiability.

Figure 4 tests the efficiency of the ADMM algorithm in section 4.2 on small-scale and
large-scale examples. Our experiments involve computation of evenly spaced samples from
the TV profile of a nonconvex shape; the size of the image and number P \prime of unknowns in the
convex optimization problem are shown below the plots. Our experiments were carried out in
MATLAB 2018b on an Ubuntu 16.04 machine with 64 GB memory and an Intel Xeon Gold
6136 CPU (3.00 GHz).

For each example, we plot the error of the ADMM variable z relative to ground truth
computed using MOSEK [35] with relatively high precision (\epsilon 3/4, where \epsilon \approx 2.22 \times 10 - 16 is
machine precision); the relative error of the duplicated variable z\prime converges similarly. While
it is difficult to match MOSEK's and ADMM's convergence criteria exactly, as a point of
reference the ground truth computations in MOSEK took an average of 0.726 seconds per
small-scale example and 265.5 seconds per large-scale example to converge.
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(a) 100× 75 (P ′ = 1217) (b) 1600× 1200 (P ′ = 375088)

Figure 4. Error relative to ground truth for the ADMM algorithm presented in section 4.2, as a function
of time (top) and iteration (bottom). The image used for testing is district 12 in Figure 8. The different tests
correspond to evenly spaced t values, t \in \{ 1/6, . . . , 5/6\} for total area A = 1.

Our ADMM implementation is far from optimized, but it does include a few straightfor-
ward improvements to accelerate convergence and iteration time. In particular, we use the
heuristic suggested in [7, section 3.4.1] to adjust the ADMM penalty parameter up to 50 times
during the optimization procedure; we check the heuristic once every 20 iterations. Sparse
Cholesky factorization is used to prefactor the linear system for z before iterations begin; this
factorization has to be recomputed any time the penalty parameter changes.

Although ADMM has guaranteed linear convergence in theory, these plots verify that the
convergence rates are practical even for large-scale examples, and that they are competitive
with highly optimized industrial solvers. Derivative discontinuities in the error plots largely
correspond to automatic adjustments of the penalty parameter. Fairly high relative error
(\sim 0.1\%) is tolerable for our target applications, which typically involve simply plotting the
TV profile; from our experiments we can see that ADMM reaches this tolerance level quickly.

Source code including acceleration techniques above is provided in the GitHub repository
accompanying this paper.2

5. Examples and experiments. We evaluate the value of TV profiles through a number
of experiments on synthetic shapes as well as American political districts. Our results not
only confirm the theoretical properties explored in previous sections but also demonstrate that
I\mathrm{T}\mathrm{V}
\Omega (t) provides a fairly intuitive description of a shape at different length/area scales.

5.1. Synthetic examples. Figure 5 shows the optimized image f for a variety of domains
\Omega and values of t \in [0, 1]. As suggested in section 3.3, for small values of t the images are

2https://github.com/justso1/tv profile

D
ow

nl
oa

de
d 

12
/1

6/
20

 to
 1

8.
9.

61
.1

11
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://github.com/justso1/tv_profile
https://github.com/justso1/tv_profile


600 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

t
=

0
.1
2

t
=

0
.2
3

t
=

0
.3
4

t
=

0
.4
5

t
=

0
.5
6

t
=

0
.6
7

t
=

0
.7
8

t
=

0
.8
9

t
=

1
.0

Figure 5. The optimal function f as a function of t for different shapes \Omega \subseteq R2; here, values of f are
scaled from zero (white) to one (black).

simply rescalings of each other, concentrated in a compact subdomain of \Omega . For larger values
of t, the optimization problem fills in progressively less compact regions within \Omega ; at t = 1.0
the entire domain is filled.

The corresponding plots of I\mathrm{T}\mathrm{V}
\Omega (t) are shown in Figure 6. In these and other plots, we

scale the horizontal axis to the range [0, 1] and the vertical axis by the perimeter of a circle
whose area is vol(\Omega ). With this scaling, the profile of a circle is the diagonal line with slope 1.
As would likely be expected, the text image is the least compact at all t scales. Other more
fine-grained information can be obtained by examining these plots, however. For instance, the
square and hexagon are considered equally compact at nearly all t \in [0, 1] except near t \approx 1.
The spiral of circles connected by straight edges has similar compactness values for both edge
thicknesses until t \approx 0.9, at which point the example with thinner edges distinguishes itself.

For values of t less than 0.75, the dissected circle and the chain of circles connected by
increasingly narrow bridges have almost identical TV profiles. Examining Figure 5, we can see
that at coarse scales both of the corresponding functions f look like three relatively compact
regions connected to each other. At finer scales, however, the dissected circle still appears as
three compact connected regions, whereas the three smallest circles in the chain are highly
noncompact; this difference leads the two plots to diverge.

We can also observe that the donut shape and the S shape have similar TV profiles at
nearly all values of t, with the S being slightly less compact at all resolutions. Again examining
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Figure 6. TV profiles (left) and their first derivatives (right) for the shapes in Figure 5.

the images in Figure 5, we can see that the S is highly symmetric and fills in almost uniformly;
the donut is truly symmetric and fills in uniformly. Since the figures are of similar width and
have similar perimeters, their TV profiles are also similar.

Figure 6 also shows the first derivative of I\mathrm{T}\mathrm{V}
\Omega (t), computed from the first plot using divided

differences. As predicted by Proposition 3.6, all the plots have constant slope starting from
t = 0. More surprisingly, the plots appear to have several flat regions, suggesting, together
with Proposition 3.7 that the set S that appears in the proof of this proposition is discrete.
Note that a t for which the derivative of I\mathrm{T}\mathrm{V}

\Omega switches from one value to another corresponds
to a value for which the isoperimetric profile I\Omega (t) and the TV profile I\mathrm{T}\mathrm{V}

\Omega (t) coincide.

5.2. Geographic examples. We next evaluate the TV profile on a panel of real congres-
sional districts defined by three different plans for North Carolina's districts for the U.S. House
of Representatives. Following the 2010 Census, North Carolina was apportioned 13 seats, and
in 2011 the Republican legislature enacted the districts labeled ``2011 districts""3 which were
in effect for the 2012 and 2014 congressional elections. After a long court process, this plan
was ruled a racial gerrymander by the U.S. District Court for the Middle District of North
Carolina in 2016 [26]; the U.S. Supreme Court affirmed the lower court's decision in 2017 [18],
deeming the 2011 plan unconstitutional.

Following these events, the Republican legislature enacted a new map, which took effect
before the 2016 elections and is labeled ``2016 districts""4 in our figures. While more geograph-
ically compact, it was again challenged as a racial and partisan gerrymander and was struck
down by the same U.S. district court [16]. In 2019, the U.S. Supreme Court overruled the
district court, holding that partisan gerrymandering is not federally justiciable, and reinstated
the 2016 plan [17].

Additionally, a panel of retired judges simulated a nonpartisan, independent redistricting
commission and drew their own proposed plan, henceforth referred to as the judges' plan.
An analysis performed by Common Cause North Carolina, using past election data from four
election cycles, found that in contrast with the legislature's enacted plans, which both have
ten likely Republican and three likely Democratic districts, the judges' plan has six likely
Republican, four likely Democratic, and three toss-up districts, which more closely matches

3https://www.census.gov/geo/maps-data/data/tiger-line.html
4https://www2.ncleg.net/RnR/Redistricting/Main
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Figure 7. TV profiles for North Carolina districts (a) enacted in 2011 (see Figure 8), (b) enacted in 2016
(see Figure 9), and (c) proposed by a nonpartisan panel of retired judges (see Figure 10). (d) The means and
one-standard deviation bands for the TV profiles for the three plans. In (a), (b), and (c) the districts are
ordered sequentially from left to right and top to bottom to correspond with the numbering in Figures 8, 9,
and 10.

North Carolina's statewide partisan vote shares [46].
We perform our analyses on North Carolina because all three plans are drawn with respect

to the 2010 Census population data, reducing the number of confounding factors. Meaning-
ful conclusions about relative compactness are difficult to draw when comparing plans from
different states, since factors such as state boundaries, specific laws and rules governing the
redistricting process, and number of seats can affect the compactness profile.

For this analysis, we extracted the polygonal boundary of each district, scaled to fit in
a 250 \times 250 bounding box; indicator functions of the polygon interiors sampled on this grid
were used to approximate I\mathrm{T}\mathrm{V}

\Omega (t). Plots of the TV profile for each of the 36 districts are
shown in Figures 7(a)--(c). Examining the mean curves and standard deviation bands for the
collection of districts in each plan in Figure 7(d), we can see that the 2011 plan appears less
compact than the judges' plan, and the judges' plan appears less compact than the 2016 plan.
The wide standard deviation band for the 2011 plan is strongly driven by the profile for the
twelfth district, which is extremely noncompact. This data reaffirms that noncompactness
and gerrymandering are not equivalent: the 2016 map is more compact but less politically
representative than the judges' plan.

The curves for the first and ninth districts in the 2011 plan cross around t = 0.8, with
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Figure 8. The optimal function f as a function of t for each of the 13 districts in the districting plan
enacted in 2011; values of f are scaled from zero (white) to one (black).
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Figure 9. The optimal function f as a function of t for each of the 13 districts in the districting plan
enacted in 2016; values of f are scaled from zero (white) to one (black).

the ninth district appearing more compact at larger values of t. This occurs because the
ninth district consists of three small compact cores joined with thin connectors, while the
first district has a large, fairly compact core on the northern side with several thin, snakelike
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Figure 10. The optimal function f as a function of t for each of the 13 districts in the districting plan
proposed by the nonpartisan panel of retired judges; values of f are scaled from zero (white) to one (black).

pieces reaching in various directions. These pieces add a large amount of perimeter and a
small amount of area, but the algorithm does not begin filling these appendages until roughly
t = 0.8; at coarser resolutions, the region is fairly compact.

A similar observation can be made of the eighth district in the judges' plan, which consists
of a compact core with a single arm stretching east. At coarse scales, the algorithm fills in
this core; given that the other districts are also relatively compact, the curve for the eighth
district sits in the middle of this range. Around t = 0.75, however, the curve bends upwards
and crosses several others. Figure 10 reveals that the algorithm begins filling in this appendage
around that time, whereas the algorithm is still filling the core in other districts.

Our analysis above shows the detailed information about compactness encoded in the TV
profile. By examining and comparing TV profiles and the corresponding optimized functions
f , we can explain quantitative scores for evaluating geometric quality.

6. Extensions. We briefly mention some potential extensions of I\mathrm{T}\mathrm{V}
\Omega that may be of in-

terest in different applications. In each case, we show that the extension is a small change of
our basic convex optimization problem. Rather than adapting the technique in section 4.2, for
simplicity in this section we compute our examples using standard convex cone programming
software [35]; our goal is to demonstrate qualitative aspects of these extensions empirically.

6.1. Higher dimensions. The definition (3.2) and discretization (4.2) easily extend to
dimensions n > 2. This extension allows us to evaluate the compactness of volumes embedded
in R3 using a cubic lattice discretization of the domain.

Figure 11 shows example shapes computed using this volumetric version of the opti-
mization problem for I\mathrm{T}\mathrm{V}

\Omega (t). In this example, we represent \Omega \subseteq R3 as an indicator on a
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t = 0.12 t = 0.23 t = 0.34 t = 0.45 t = 0.56 t = 0.67 t = 0.78 t = 0.89 t = 1.0

Figure 11. The identical optimization problem for TV profiles can be used for volumetric shapes in R3.

100 \times 100 \times 100 volume. While gathering enough samples to plot I\mathrm{T}\mathrm{V}
\Omega (t) as a function of t

is prohibitively expensive, here we show the result of the optimization procedure at sparsely
sampled t values; at each t we render the level set of the unknown f at the mean nonzero
intensity. Once again, for small t the shape remains fairly constant, as predicted by Propo-
sition 3.6. Simple shapes like the torus remain preserved for most t's, while more complex
shapes like the humanoid start from a nearly convex core when t \ll 1 and build up piece by
piece.

6.2. Accounting for population density. Our profile (3.2) is defined to be purely geomet-
ric and is unaware of any measure on Rn other than the standard one. Given a distribution
\rho \in Prob(Rn)---e.g., the population distribution of a state---we can extend our definition to
evaluate compactness with respect to \rho :

(6.1) I\mathrm{T}\mathrm{V}
\Omega ,\rho (t) :=

\left\{   
minf\in L1(Rn) TV[f ]

subject to
\int 
Rn f(x) d\rho (x) = t,
0 \leq f \leq 1\Omega .

A related formulation is investigated theoretically in [38] for the unrelaxed problem.
Figure 12 shows an experiment using this model. Here, we show the functions f(x)

computed on the same district shape, with three different density functions \rho (x). Here we see
how the choice of \rho (x) can affect our assessment of compactness; it becomes less expensive
to draw circles around densely populated regions contained within the interior of the district,
and the boundary of the district becomes less relevant because it is sparsely populated.

6.3. Compactness on a graph. Even though the end result of political redistricting is
a collection of geographic districts on a map, redistricting can often be described as a graph
theory problem. In particular, districts commonly are built out of small geographic subunits,
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t = 0.12 t = 0.23 t = 0.34 t = 0.45 t = 0.56 t = 0.67 t = 0.78 t = 0.89 t = 1.0

Figure 12. Fictional population distributions in the same district (top, left to right), and the frames of
their corresponding weighted TV profiles (bottom, top to bottom).

such as voting tabulation districts (VTDs) or census blocks. Each VTD becomes a vertex in
the graph, and two vertices are connected by an edge if and only if their corresponding VTDs
are geographically adjacent.5 We can then define a graph for each district as the one induced
by the vertices corresponding to VTDs in that district. For this reason, it may be of interest
to evaluate the compactness of a subset of graph vertices, bypassing embedding into Rn.

Given a graph G = (V,E), take V0 \subseteq V to be a subset of vertices representing a potential
district. We can imitate (3.2) using graph-based constructions to define a TV profile of V0:

(6.2) I\mathrm{T}\mathrm{V}
V0 (t) :=

\left\{       
minf\in RV

\sum 
(v,w)\in E | f(v) - f(w)| 

subject to
\sum 

v\in V0 f(v) = t| V0| ,
f(v) = 0 \forall v \not \in V0,
f(v) \in [0, 1] \forall v \in V.

Note that this definition is not the same as the version of the isoperimetric profile on a graph
proposed in [39].

Figure 13 shows the graph-based TV profile for a discretized version of North Carolina's
2011 districting plan, using the same underlying geography as the continuous experiments in
section 5.2. To perform the discretization, we use the U.S. Census Bureau's 2010 file of VTDs6

and assign each VTD to the district in which it is contained.7

5Adjacent here is as according to rook contiguity, meaning that two VTDs must share a nontrivial segment of
their borders to be considered adjacent. Two VTDs whose borders share only a single point are not considered
adjacent in our construction.

6https://www.census.gov/geo/maps-data/data/tiger-line.html
7Since every VTD is not necessarily contained in a single congressional district, we use areal interpolation

to assign VTDs to districts, where each is defined to belong to the district with which it shares the most area.
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t = 0.12 t = 0.23 t = 0.34 t = 0.45 t = 0.56 t = 0.67 t = 0.78 t = 0.89 t = 1.0

Figure 13. TV profile indicators for different subsets of vertices on a graph of North Carolina voting
tabulation districts (VTDs). Images are cropped for each district; the top row shows how the districts are
situated in the state. The algorithm is unaware of this embedding and sees only an abstract representation of
the graph.
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Figure 14. Graph-based TV profiles for the North Carolina districts in Figure 13.

Figure 14 shows the corresponding plots of the TV profile for the discretized version of the
2011 North Carolina districting plan. As in the region-based profiles, the twelfth district is
the least compact, and the fourth, tenth, and eleventh are all relatively compact compared to
the rest of the districts. Beyond this connection, however, there are many points of difference
between the two sets of profiles. One explanation is that areas with higher populations
have more VTDs, and hence the graph-based model is in a sense aware of the population
distribution. This makes it comparably less expensive to fill in densely populated urban
areas, which appear as compact cores under this measure. Conversely, geographically large
rural zones have fewer VTDs and therefore appear less compact, as they are more expensive
to fill.

To highlight this difference, recall that in the image-based model, most of the tenth district
was filled in fairly uniformly, with the small chunk of Asheville in the northwest being filled
at large values of t, but under the graph-based algorithm, the bulk of the district is filled in
from east to west, beginning in the populous suburbs of Charlotte and spreading through the
less heavily populated Western Foothills. Then the portion of the district in Asheville is filled
in before these two components are finally connected

7. Discussion and conclusion. Beyond their interest in the theory of geometry, isoperi-
metric profiles provide an intuitive, multiscale technique for evaluating the compactness of
a shape \Omega \subseteq Rn that is not completely undermined by the instabilities of the isoperimetric
quotient. By considering the entire plot, we gain a fairly complete description of a shape's
level of contortion at different length/area scales. Furthermore, our TV-based relaxation of
the classical profile admits simpler analysis using convex techniques.

Our initial work in proposing these profiles suggests several avenues for future mathemat-
ical, computational, and application-oriented research:
\bullet A key consideration for our long-term target application of political redistricting is to eval-

uate methods for summarizing these plots and developing useful tests and benchmarks for
existing and proposed districting plans. It will also be important to identify the most effec-
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tive way to communicate the contents of the TV profile to an end user: nonmathematicians,
including politicians and judges, must be able to interpret the results.

\bullet Our formulation currently lacks a formal proof of convergence of our grid-based discretiza-
tion in the limit of refinement, although this likely is a standard computation adjacent to
results in TV-based image denoising.
\bullet Related to convergence, the graph-based model explored experimentally in section 6.3
appears to share many qualities with the TV profile for planar shapes. Exploiting the
properties we have developed in the measure-theoretic case may lead to new insight into
problems on graphs; ideally the two might be connected formally by examining convergence
in the limit of refinement when the graphs are constructed by sampling planar regions.
\bullet Inspired by the Lasserre hierarchy in semidefinite programming [31, 42], we might also ask
whether there exist successively tighter convex approximations of the true isoperimetric
profile, since our current relaxation is not tight (see Example 3.2); this question is intricately
linked with Open Problem 2.1 above.

\bullet Total variation is well-defined for functions on curved manifolds rather than the flat space
Rn; for instance, we could use our profile to evaluate the compactness of curved segments on
a surface, e.g., in the case of geographic data accounting for the curvature and topography
of the earth. To compute TV profiles in the presence of curvature, we easily could use a
finite element formulation on triangulated surfaces, as suggested in [27].
\bullet Our discussion focuses on total variation as an objective function, but we could attempt to
generalize the construction of our profile by considering higher-order measurements popular
in mathematical imaging like total generalized variation [10].
\bullet Finally, we could seek uniqueness results about our profile: Is it possible to encounter two
shapes \Omega with the same TV profiles for all t?

These open questions aside, given our current analysis and optimization algorithm, the TV
profile is already a viable candidate for a nuanced and interpretable multiscale analysis of
geometric compactness.

Appendix A. Regularity of the boundary \bfpartial \Omega . Throughout the text, the proofs about
the properties of the TV profile work as long as

(A.1) I\mathrm{T}\mathrm{V}
\Omega (t) < +\infty for t < vol(\Omega ).

Since I\mathrm{T}\mathrm{V}
\Omega is convex (Proposition 3.4), this condition holds as soon as I\mathrm{T}\mathrm{V}

\Omega (t) is finite for some
t arbitrarily close to vol(\Omega ). We provide two cases where this can be shown to be true.

Proposition A.1. Assume that area(\partial \Omega ) < +\infty . Then (A.1) holds.

Proof. With this assumption, I\mathrm{T}\mathrm{V}
\Omega (vol(\Omega )) < +\infty . Together with the convexity of I\mathrm{T}\mathrm{V}

\Omega 

and I\mathrm{T}\mathrm{V}
\Omega (0) = 0, the conclusion clearly holds.

In the case where the boundary of \Omega is fractal, we can still provide a criterion for (A.1).

Proposition A.2. Assume that the topological boundary of \Omega has zero (n-dimensional)
Lebesgue measure. Then (A.1) holds.

If the boundary of \Omega is fractal, in the sense that its d-dimensional Hausdorff measure is
finite for some d \in (n - 1, n), then we satisfy the assumptions of the proposition above.
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610 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

Proof. Let D be the distance function to Rn\setminus \Omega . For \delta < 0, we set

\Sigma \delta := \{ x \in \Omega such that D(x) \geq \delta \} .

Because of the assumption on the boundary of \Omega , vol(\Sigma \delta )\rightarrow vol(\Omega ) as \delta \rightarrow 0. As the function
D is Lipschitz---and hence TV(D) < +\infty ---for a.e. \delta we know that area(\partial \Sigma \delta ) < +\infty . As a
consequence, using 1\Sigma \delta 

as a competitor, I\mathrm{T}\mathrm{V}
\Omega (t) < +\infty for a.e. t \in (0, vol(\Omega )). Together with

the convexity of I\mathrm{T}\mathrm{V}
\Omega , we see that the conclusion holds.

Appendix B. Duality. Here we carefully justify the duality needed to derive (3.4). The
proof relies on the Fenchel--Rockafellar duality theorem [11, Theorem 1.12]. For technical
purposes (namely, compactness), we consider B \subset Rn a closed ball large enough to contain a
neighborhood of \Omega . All the definitions considered in this paper do not change if we replace
Rn by B.

Let X = C(B) be defined as the space of continuous functions over B valued in R. Its dual
X \star is the set of signed measures over B [44, Theorem 2.14].8 Define F,G : X \rightarrow R\cup \{ +\infty \} as

F (\eta ) :=

\int 
\Omega 
max(\eta (x), 0) dx

and

G(\eta ) :=

\Biggl\{ 
 - \lambda t if \eta = \lambda  - \nabla \cdot \phi with \lambda \in R, \phi \in C1

c (B \rightarrow Rn) and \| \phi \| \infty \leq 1,

+\infty otherwise.

G is well-defined because \lambda is uniquely defined from \eta as the mean value of \eta , if the decom-
position \eta = \lambda  - \nabla \cdot \phi holds. One can check that F and G are convex. Moreover, at the point
\eta = 0 \in X, the function F is continuous/finite and G is finite.

Hence, we can apply the Fenchel--Rockafellar duality theorem [11, Theorem 1.12], which
states that

(B.1) min
f\in X

[F (x) +G(x)] = sup
\mu \in X \star 

[ - F  \star (\mu ) - G \star ( - \mu )],

where F  \star , G \star are the Legendre transforms of F,G. The l.h.s. can be written as\biggl\{ 
min\eta ,\lambda ,\phi  - \lambda t+

\int 
\Omega max(\eta (x), 0) dx

subject to \| \phi \| \infty \leq 1 and \nabla \cdot \phi + \eta = \lambda ,

recovering the r.h.s. of (3.4) up to sign.
On the other hand, we can compute the Legendre transforms of F and G. For \mu \in X \star ,

F  \star (\mu ) = sup
\eta 

\int 
B
\eta \mu  - 

\int 
\Omega 
max(\eta (x), 0) dx.

If \mu is negative somewhere, taking \eta \leq 0 at the same place, one gets larger and larger values
for F  \star (\mu ) by integrating against s\eta , where s \rightarrow +\infty . On the other hand, if \mu is larger than

8This would not hold if B = Rn, justifying our introduction of B.
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the Lebesgue measure restricted to \Omega at some point, taking \eta \geq 0 and testing against s\eta ,
s \rightarrow +\infty , we reach the conclusion that F  \star (\mu ) = +\infty . In particular, our argument implies
that if F  \star (\mu ) < +\infty , then \mu has a positive density w.r.t. the restriction of the Lebesgue
measure to \Omega and that this density is between zero and one. In short,

F  \star (\mu ) =

\Biggl\{ 
0 if d\mu (x) = f(x) dx with 0 \leq f \leq 1\Omega a.e.,

+\infty otherwise.

As far as G is concerned,

G \star (\mu ) = sup
\eta 

\int 
B
\eta d\mu  - G(\eta )

= sup

\biggl\{ \int 
B
(\lambda  - \nabla \cdot \phi )d\mu + \lambda t : \lambda \in R and \phi \in C1

c (B \rightarrow Rn), \| \phi \| \infty \leq 1

\biggr\} 
= sup

\phi 

\biggl\{ \int 
B
(\nabla \cdot \phi )d\mu : \phi \in C1

c (B \rightarrow Rn), \| \phi \| \infty \leq 1

\biggr\} 
+ sup
\lambda \in R

\lambda 

\biggl( \int 
B
\mu + t

\biggr) 
.

Provided that \mu has a density f w.r.t. the Lebesgue measure (and this is the case if F  \star (\mu ) <
+\infty ), the first term is none other than TV(f), and the second is finite if and only if

\int 
B f(x)dx =

 - t. In short,

G \star (f(x)dx) =

\Biggl\{ 
TV(f) if

\int 
B f(x)dx =  - t,

+\infty otherwise.

Hence, the r.h.s. of (B.1) reads exactly as  - I\mathrm{T}\mathrm{V}
\Omega (t), where the latter is defined in (3.2). In

conclusion, (B.1) gives the equality between (3.2) and (3.4).

Appendix C. (Generalized) subadditivity for convex function. It is known that convex
functions have a tendency of being superadditive. Hence, if they also are subadditive, they
must behave like affine functions. This is the subject of the following lemma, which we used
in the proof of Proposition 3.7.

Lemma C.1. Let F : [0,+\infty ) \rightarrow [0,+\infty ) be a nonnegative convex function and take r <
t \leq s such that

(C.1) F (t+ s - r) \leq F (t) + F (s) - F (r).

Then the function F is affine on [r, t+ s - r].
Proof. Let \Psi be the function defined by \Psi (x) := F (x) + F (s)  - F (r)  - F (x + s  - r)

(i.e., we consider t as a variable). If \Psi were differentiable, we would easily conclude that it is
nonincreasing, but to prove it rigorously we use finite differences. If r \leq x < y \leq s,

(C.2)
\Psi (y) - \Psi (x)

y  - x =
F (y) - F (x)

y  - x  - F (y + s - r) - F (x+ s - r)
y  - x \leq 0,

where the last inequality comes from the inequality x \leq x+ s - r and the convexity of F .
On the one hand, \Psi (r) = 0, and on the other hand, \Psi (t) \geq 0 thanks to (C.1). As \Psi is

nonincreasing, it is identically 0 on [r, t]. Plugging this information back into (C.2) and using
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612 DEFORD, LAVENANT, SCHUTZMAN, AND SOLOMON

the fact that the finite difference quotients are nondecreasing thanks to convexity of F , we
deduce that

F (y) - F (x)
y  - x =

F (y + s - r) - F (x+ s - r)
y  - x = const.

for any r \leq x < y \leq t. Hence the function F is affine on [r, t] and [s, t+ s - r] with the same
slope, which implies, by convexity of F , that F is affine on [r, t+ s - r].

Note that we needed r < t in the proof; otherwise we could not plug such an x < y into
(C.2).
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