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Abstract Large networks are increasingly common
in engineered systems, and therefore, monitoring their
operating conditions is increasingly important. This
paper proposes a model-based frequency-domain dam-
age detection method for an infinitely large self-similar
network. The first aim is to exactly model the overall
frequency response for any specific damage case of that
network, which we show has an explicit multiplica-
tive relation to the undamaged transfer function. Then,
leveraging that knowledge from modeling, this paper
also proposes an algorithm to identify damaged com-
ponents within that network as well as quantifies their
respective damage amounts given a noisymeasurement
for that network’s overall frequency response.
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1 Introduction

Network systems exist everywhere in real life, for
instance, ventilating systems, plumbing networks, nat-
ural and robotic swarms, and power grids. Controlling
andmonitoring the operational health of such large net-
works are research topics which have a long history.
For examples of controlling networks, see the survey
paper [27], the book [29] and the paper [31] for multi-
vehicle cooperative control, and the papers [2,7,11,30]
for formation control. The convergence speed of a con-
sensus behavior within scale-free networks is studied
in [35]. Health monitoring of large networks and struc-
tures is another crucial consideration in modern indus-
try. Some related research can be seen in the survey
paper [39]. Different types of health monitoring meth-
ods have been proposed in [20,32,34]. One class of
approaches uses system identification to monitor a sys-
tem’s health as illustrated in [6,8,18,28]. The damage
detectionmethod proposed in this paper belongs to that
class.

In addition to those real networks, many researches
are also conducted on hypothetical networks which
are infinitely large and perfectly self-similar. Those
researches take advantage of the fact that those ideal-
ized networks have less computational burden tomodel
as opposed to real large-scale yet finite networks [15].
Moreover, as stated in [21,26], infinitely large net-
works’ behavior is good approximations for them. In
light of those considerations, we also choose those ide-
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alized networks as the starting point of our work. Other
real networks which are modeled as infinite networks
include bio-systems in human body. Fractal models of
human blood vessels using tree-like structures are pro-
posed in [14]. Fractal analysis for the vascular tree in
human retina is studied in [25].

The dynamics of an infinite network naturally leads
to fractional-order differential equations. As a result,
along with infinite networks mentioned above, this
research also has a potential impact on the systems
governed by fractional-order differential equations.
Some examples of using infinite networks to model
fractional-order systems can be seen in the following
literature. The paper [16] proposes that the network
shown in Fig. 1, which we call the tree network, can be
a rheological model of viscoelastic behavior. A ladder
network is used to model the lung impedance in [17].
The fact that a fractional-order viscoelastic model like
Fig. 1 can represent 1D relaxation of the aortic valve is
shown in [13].

Other researches regarding fractional-order systems
mainly leverage some intrinsic properties of fractional-
order derivatives to achieve a better model for compli-
cated systems. First of all, fractional-order derivatives
are non-local. The corresponding applications include
modeling epidemics as shown in [1]. A physically
based approach to non-local elasticity theory is intro-
duced in [12]. The fact that fractional-order dynamics
exist in non-local heat transfer and mechanics is shown
in [4] and [10]. Moreover, the time-domain response
for a linear fractional-order system can follow a power
law decay rate, which also leads to many applications.
Chapter 1 in [23] shows a modeling example of the
firing rate for premotor neurons in the visual system
while an eyeball is scanning words. A fractal network
model to describe a power law behavior in soft tissue
is proposed in [19].

This paper studies the infinite network as shown in
Fig. 1,motivated by a viscoelasticmodel from [16]. The
goal is twofold. On the one hand, we want to exactly
model its frequency response when it is damaged. On
the other hand, we aim at detecting the damaged com-
ponents and estimating their damage amounts given a
noisy measurement of its frequency response.

In the damagemodeling part, we propose a recursive
damage modeling algorithm which returns the closed-
form expression of that damaged network’s fractional-
order transfer function. More importantly, we discover
that any damaged transfer function can be explicitly

written down as a multiplicative disturbance imposed
upon the undamaged transfer function. Thatmultiplica-
tive model is classical in the robust control research
area, and thus, the damagemodeling result of this paper
also has potential impacts on that.

In the damage identification part, we propose a
model-based diagnostic procedure, which is an appli-
cation of our novel modelingmethodmentioned above.
That diagnostic procedure is non-trivial as it is applied
to such a large network characterized by a fractional-
order dynamics. Moreover, the fact that the diagnostic
procedure is model-based brings two advantages. First,
it is able to detect the damaged components and esti-
mate their damage amounts, which is more challeng-
ing and meaningful for the health monitoring purpose
as opposed to merely detecting the damage occurrence
[33]. Second, its identification result is more robust
to the measurement noise, thus having potential to be
employed in real damage detection scenarios.

Some of the second author’s previous work, such
as [22], set the similar goal. However, there are three
noticeable improvements of this paper. First, this work
obtains the explicit expression for the damaged trans-
fer function, which can be related to the undamaged
transfer function in the closed form. That explicit rela-
tion has never been revealed before. Second, the work
in [22] only attempted to identify damage by looking
into the changes of the system’s order. In contrast, this
paper uses exact modeling of damage cases in the dam-
age detection algorithm which is a superior approach
in the sense that it can now locate the damaged com-
ponents. Third, the damage detection method proposed
in this paper is tested against noisy frequency response
measurements,whereas previouswork always assumed
a perfect measurement.

Although this paper only focuses on one specific
network shown in Fig. 1, our initial analysis shows that
it has potential to be generalized to a broader class of
networks, which is discussed in Sect. 6. For that class
of networks, their damaged transfer functions can also
be modeled in a manner similar to the damaged tree
model [Eq. (5)]. Then, the damage identification pro-
posed here can also be applied to that class of networks.

The rest of this paper is organized as follows. Sec-
tion 2 defines the tree model, reviews existing litera-
ture about its recurrence formula, and about how to
compute its undamaged transfer function. Extending
from the undamaged version, Sect. 3 presents the first
main result of this paper which is about exactly mod-
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Fig. 1 Mechanical diagram of the tree model

eling damaged infinite trees. Then, Sect. 4 shows the
other main result which proposes a damage identifi-
cation algorithm for the infinite tree by leveraging the
knowledge from the damage modeling introduced in
Sect. 3. In addition, it also shows the test results for the
proposed identification algorithm. Section 5 discusses
the effects on both the proposed damage modeling and
the damage identification algorithms brought by deep
damages inside the tree model. Finally, Sect. 6 con-
cludes this paper and discusses future research plans in
regard to this topic.

2 Background and literature review

2.1 The tree model

Figure 1 shows the tree model, which has an infinite
number of generations. Proceeding to the right, at each
generation, the number of nodes is doubled compared
to the one on its left. For each pair of two nodes, the
upper one is connected to its left node through a lin-
ear spring, while the lower one is connected to its left
node through a linear damper. As shown in Fig. 1, xg,n

denotes the displacement of the node (g, n)which is the
n-th node on the g-th generation. All nodes on the last
generation are locked together, whose displacement is
represented by xlast. In addition, kg,n denotes the spring
to the right of the node (g, n), and bg,n denotes the
damper to the right of the node (g, n).

The input of interest for the tree model is the force
applied to its ends, that is f in Fig. 1. The output
is the relative displacement between both ends, that
is x1,1 − xlast. Therefore, unless stated otherwise, all

transfer functions for the tree model in this paper refer
to that system, i.e.,

G(s) = X1,1(s) − X last(s)

F(s)
.

The treemodel is called undamagedwhen all springs
have the same constant k, and all dampers have the
same constant b. Otherwise, we say the tree model is
damaged.

It is worth noting that the components used in this
work are all idealized models. More complicated net-
works can be obtained by using more sophisticated
models, such as the models which can accurately simu-
late hysteretic phenomenaofmaterials exhibiting either
kinetic hardening or softening [5,36–38]. However,
that is beyond the scope of our current work becausewe
aremore interested in the interaction of the components
within large-scale networks.

2.2 Self-similarity for the tree model

Existing literature states that the transfer function of
the entire tree model can be derived by focusing on
its first generation and by taking advantage of the tree
model’s self-similarity (the definition of self-similarity
is discussed in [24].) Suppose thatGU (s) andGL(s) are
two transfer functions representing the two sub-trees
between the second generation and the last generation,
that is,

GU (s) = X2,1(s) − X last(s)

F2,1(s)
,

GL(s) = X2,2(s) − X last(s)

F2,2(s)
,

F2,1(s) + F2,2(s) = F(s).

Then, the entire tree model can be illustrated by Fig. 2,
from which, using series and parallel relations for
mechanical components, we can conclude that the
transfer function for the entire treemodel can bewritten
as

G(s) = 1

1

1

k1,1
+ GU (s)

+ 1

1

b1,1s
+ GL(s)

. (1)
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Fig. 2 An illustration about the tree model where the sub-
networks after the first generation are represented by their trans-
fer functions GU (s) and GL (s)

Equation (1) is called the recurrence formula for the
tree model, as it transforms two transfer functions of
two sub-trees, GU (s) and GL(s), to the transfer func-
tion of the entire tree, G(s). Note that the recurrence
formula (1) works for all trees no matter damaged or
not. Only the explicit expressions for G(s), GU (s),
GL(s), k1,1, and b1,1 depend on the actual state.

Due to self-similarity, bothGU (s) andGL(s) should
have formulations similar to Eq. (1). Therefore, when
integer-order calculus can be used only, the transfer
function for the entire tree model inevitable becomes a
complicated infinite continued fraction, which consists
of unlimited copies of the recurrence formula (1):

G(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

1

k1,1
+ 1

1

1

k2,1
+ . . .

+ 1

1

b2,1s
+ . . .

+ 1

1

b1,1s
+ 1

1

1

k2,2
+ . . .

+ 1

1

b2,2s
+ . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(2)

Existing literature shows that when fractional-order
calculus is also allowed, the transfer function for the
undamaged tree model actually has a very concise rep-
resentation, which is discussed next. Furthermore, the
work in this paper shows that even when the tree model
is damaged, its transfer function is still well struc-

tured andmuch simpler than the infinite continued frac-
tion (2).

2.3 Transfer function for the undamaged tree

As defined in Sect. 2.1, for the undamaged tree, all
springs (dampers) have the same constant k (b). There-
fore, due to self-similarity, it is obvious that those two
sub-networks GU (s) and GL(s) are both undamaged,
and thus are exactly same as the entire undamaged tree
model. That is, if G∞(s) denotes the transfer function
for the entire undamaged tree model, then

GU (s) = GL(s) = G∞(s).

In addition, we also know that both the spring k1,1 and
the damper b1,1 are undamaged. Therefore, k1,1 = k
and b1,1 = b. Then, for the undamaged tree, the recur-
rence formula (1) becomes

G∞(s) = 1

1

1

k
+ G∞(s)

+ 1

1

bs
+ G∞(s)

, (3)

in which G∞(s) is the only unknown. Solving Eq. (3)
for G∞(s), we can see that the undamaged tree model
is exactly half-order:

G∞(s) = 1√
kbs

. (4)

By comparing Eq. (4) with (2), we see that fractional-
order calculus allows us to write down a much simpler
transfer function for such a large network.

The correctness of Eq. (4) is assessed by the conver-
gence of the undamaged tree’s response as the number
of generations increases to infinity. That convergence
was showed both in the frequency domain and in the
time domain by the second author’s previouswork [15].

3 Modeling damaged trees

In this section, we show that fractional-order calculus
still allows us to write down a more concise transfer
function even when the tree model is damaged. The
problem we solve in this section is a forward problem,
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Damage modeling and detection for a tree network 879

where the damage information for the entire tree model
is assumed to be known, and we show how to obtain its
transfer function given that damage information. First,
in Sect. 3.1, we prove the structure of that transfer func-
tion which is non-integer order and is much more con-
cise than Eq. (2). The proof then lays the foundation for
a recursive algorithm to compute that transfer function
for a specific damage case, which is proposed in Sect.
3.2.

3.1 The structure of a damaged tree’s transfer function

In this section, we show that a damaged tree model has
a particularly simple multiplicative form, namely

G(s) = G∞(s)Δ(s). (5)

As defined in Sect. 2.1, for a damaged treemodel, some
springs and/or dampers have their constants different
from the undamaged values, i.e., k and b. In addition,
we assume that all damages enter each component in a
multiplicative way. That is, a damaged spring (damper)
has a damage amount ε when its constant is kε (bε)
instead of k (b). Note that, by doing so, a damage case
for the treemodel can be completely described by a pair
of two lists, (l, ε), where the list l includes all damaged
components and the list ε includes their corresponding
damage amounts. For example,

(l, ε) = ([k1,1, b2,2, k3,3], [0.1, 0.2, 0.3])

represents the damage case where k1,1 = 0.1k,
b2,2 = 0.2b, k3,3 = 0.3k, while all the other springs’
(dampers’) constants stay at k (b).

Theorem 1 The transfer function for any damaged
trees has the following structure:

G(s) = G∞(s)
sn + cN ,1sn− 1

2 + · · · + cN ,2n

sn + cD,1sn− 1
2 + · · · + cD,2n

= G∞(s)
cN�μ(s; n)

cD�μ(s; n)
, (6)

where G∞(s) is the undamaged tree model’s transfer
function as defined by Eq. (4). Moreover, cN and cD

are two coefficient vectors in R
2n+1,

cN = [
1 cN ,1 . . . cN ,2n

]�
,

cD = [
1 cD,1 . . . cD,2n

]�
,

and μ(s; n) is a vector of univariate monomial basis of
s whose order decreases from n to 0 with a decrement

of 1/2, i.e., μ(s; n) =
[
sn sn− 1

2 . . . s
1
2 1

]�
.

There are three non-trivial properties in Eq. (6) which
we are going to show in the proof later.

Property 1 The monomial basis μ(s; n) of the numer-
ator is always same as that of the denominator.

Property 2 The coefficient of the highest order is
always 1 for both the numerator and the denomina-
tor, that is the first element of both cN and cD is always
1.

Property 3 Both coefficients of the lowest order are
always same for the numerator and the denominator,
that is cN ,2n = cD,2n .

Note that the structure of Eq. (6) holds for all trees,
and it is independent of the specific damage case for
a tree. Only the values for cN , cD and n depend on
the specific damage case. In fact, it even holds for the
undamaged tree where cN = cD = 1 and n = 0. A
similar idea is also true for the recurrence formula (1),
which holds no matter whether a tree is damaged or
not and no matter how much damage that tree is bear-
ing.Only the expressions forG(s),GU (s),GL(s), k1,1,
and b1,1 in the recurrence formula (1) rely on a specific
state. For example, as we saw in Eq. (3), when undam-
aged, G(s) = GU (s) = GL(s) = G∞(s), k1,1 = k,
and b1,1 = b.

Todetermine then, cN and cD inEq. (6) for a specific
damage case, we need the corresponding GU (s) and
GL(s) for that damage case, which themselves are also
trees due to self-similarity. Therefore, we can always
assume both of them have structures same as Eq. (6),
that is

GU (s) = G∞(s)
cNU

�μ(s; nU )

cDU
�μ(s; nU )

,

GL(s) = G∞(s)
cNL

�μ(s; nL)

cDL
�μ(s; nL)

.
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Moreover, we also know the damage amounts for k1,1
and b1,1 since the damage information for the entire
tree is assumed to be known in the modeling problem.
Therefore, we can suppose that the damage amount for
k1,1 is εk , and that for b1,1 is εb (εb �= 0), that is,

k1,1 = kεk,

b1,1 = bεb.

Then, we have the following results for the n, cN and
cD in Eq. (6):

Theorem 2 The n, cN and cD in Eq. (6) can be com-
puted through the following three equations given the
expressions of GU (s) and GL(s).

n = nU + nL + 1, (7)

cN = [
cNL ∗ cDU 0 0

]�

+
[
0

√
k
b

(
εk cNU ∗ cNL + 1

εb
cDU ∗ cDL

)
0
]�

+
[
0 0 kεk

bεb
cNU ∗ cDL

]�
, (8)

cD = [
cDU ∗ cDL 0 0

]�

+
[
0

√
k
b εk(cNU ∗ cDL + cNL ∗ cDU ) 0

]�

+
[
0 0 kεk

bεb
cDU ∗ cDL

]�
, (9)

where the operator ∗ denotes the convolution of two
vectors.

As we will see later, Theorem 2 forms the core of
the induction step in the following proof and also the
core of our damage modeling algorithm to compute
Eq. (6) for a specific damage case, which is proposed
in Sect. 3.2.

Note that the conclusion addressed here cannot be
applied to the case where the damage amount for some
damper is 0 as inferred by the fact that εb appears on
the denominator in Eqs. (8) and (9). In such a case, the
tree model is completely disconnected at some internal
nodes.

The proof here follows mathematical induction.

Proof Base Case: The base case, although trivial, is the
undamaged tree. For that case, since G(s) = G∞(s),
Eq. (6) trivially holds with cN = cD = 1, and n = 0,
i.e., the monomial basis is μ(s; 0) = s0 = 1. Note that
Properties 1 to 3 for Eq. (6) also hold trivially for this
base case.

Induction Step: Suppose that Eq. (6) holds for all
damage cases where damages do not happen deeper
than the generation g, and Properties 1 to 3 are also sat-
isfied. We are going to show that Eq. (6) also holds for
any damage case where damages do not happen deeper
than the generation g + 1, and meanwhile Properties 1
to 3 stay invariant. Note that the base case where the
tree is undamaged can be viewed as g = 0.

For a damage case where damages happen only in
first g +1 generations, due to self-similarity, those two
sub-networks GU (s) and GL(s) have to be two dam-
aged tree models whose damages can only happen in
first g generations. Then, according to the assumption
for the induction step, Eq. (6) holds for both GU (s) and
GL(s). Therefore, we can assume that

GU (s) = G∞(s)
NU (s)

DU (s)
= G∞(s)

cNU
�μ(s; nU )

cDU
�μ(s; nU )

,

GL(s) = G∞(s)
NL(s)

DL(s)
= G∞(s)

cNL
�μ(s; nL)

cDL
�μ(s; nL)

,

where

cNU = [
1 cNU ,1 . . . cNU ,2nU

]�
,

cDU = [
1 cDU ,1 . . . cDU ,2nU

]�
,

μ(s; nU ) =
[
snU snU − 1

2 . . . 1
]�

,

cNL = [
1 cNL ,1 . . . cNL ,2nL

]�
,

cDL = [
1 cDL ,1 . . . cDL ,2nL

]�
,

μ(s; nL) =
[
snL snL− 1

2 . . . 1
]�

.

Note that both GU (s) and GL(s) are supposed to sat-
isfy Properties 1 to 3 for Eq. (6) here according to
the assumption for this induction step. In addition, we
assume that the damages happening on the first gener-
ation are such that k1,1 = kεk and b1,1 = bεb (εb �= 0).
Note that this assumption includes those cases where
k1,1 and/or b1,1 are undamaged because εk and/or εb

can be 1.
Substituting those elements into Eq. (1), we have

G(s) = 1

1

1

kεk
+ G∞(s)

NU (s)

DU (s)

+ 1

1

bεbs
+ G∞(s)

NL(s)

DL(s)

.
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After simplification, the above equation leads to

G(s) = G∞(s)
N (s)

D(s)
, (10)

where

N (s) = NL(s)DU (s)s

+
√

k

b

(
εk NU (s)NL(s) + 1

εb
DU (s)DL(s)

)
s
1
2

+ kεk

bεb
NU (s)DL(s),

D(s) = DU (s)DL(s)s

+
√

k

b
εk (NU (s)DL(s) + NL(s)DU (s)) s

1
2

+ kεk

bεb
DU (s)DL(s).

Then, we can obtain Eqs. (8) and (9). For example,

NL(s) = cNL
�μ(s; nL),

DU (s) = cDU
�μ(s; nU ),

s = [
1 0 0

]
μ(s; 1),

then, the NL(s)DU (s)s in the numerator N (s) of
Eq. (10) becomes

NL(s)DU (s)s

= (cNL ∗ cDU ∗ [
1 0 0

]�
) · μ(s; nU + nL + 1)

= [
cNL ∗ cDU 0 0

]
μ(s; nU + nL + 1),

which corresponds to the first part of cN in Eq. (8).
Note that those Properties 1 to 3 of Eq. (6) still hold

here in Eq. (10), which is equivalent to Eqs. (8) and (9):

1. Those vector convolutions in both Eq. (8) and (9)
always take one coefficient vector from GU (s) and
the other one from GL(s). In our assumption for this
induction step, we see that both coefficient vectors
cNU and cDU from GU (s) are of length 2nU +1, and
both coefficient vectors cNL and cDL from GL(s)
are of length 2nL + 1. Therefore, all vector con-
volutions in Eqs. (8) and (9) have the same length

2nU +2nL +1, which leads to the fact that both cN
and cD are of length 2nU +2nL +3. As a result, the
coefficient vectors cN and cD for the numerator and
denominator of G(s) correspond to the same mono-
mial basis μ(s; nU + nL + 1), which also explains
Eq. (7).

2. Equations (8) and (9) show that the first element in
cN and cD is determined only by the first element
in cNL ∗ cDU and cDU ∗ cDL , respectively. Based
on our assumption for this induction step, we know
that the first element for cDU , cNL and cDL is all 1.
Therefore, the first element of both cNL ∗ cDU and
cDU ∗ cDL has to be 1, so as that of both cN and cD.

3. Similar to the above argument, Eqs. (8) and (9) show
that the last element in cN and cD is determined only
by the last element in kεk

bεb
cNU ∗ cDL and kεk

bεb
cDU ∗

cDL , respectively. Based on our assumption for this
induction step, we know that the last element of cNU

is same as that of cDU . Therefore, the last element of
both cNU ∗ cDL is same as that of cDU ∗ cDL , which
means that the last element of cN is same as that of
cD.

��
The above proof treats the undamaged case as the

starting point to prove all damaged cases which may
seem suspicious. However, it can be shown that the
cases where damages only occur at the first genera-
tion are actually one induction step from the undam-
aged case. In fact, following the same argument of the
induction step in the above proof, when damages only
happen on the first generation, those two sub-networks
represented by GU (s) and GL(s) in Fig. 2 are both
undamaged, that is g = 0 in the language of the above
proof. As a result,

GU (s) = GL(s) = G∞(s).

Then, when damages only happen at the first genera-
tion, Eq. (1) becomes

G(s) = 1

1

1

kεk
+ G∞(s)

+ 1

1

bεbs
+ G∞(s)

.
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After simplification, this leads to

G(s) = G∞(s)

s +
√

k

b

(
εk + 1

εb

)
s
1
2 + kεk

bεb

s + 2εk

√
k

b
s
1
2 + kεk

bεb

.

Hence, Eq. (6) holds in this case with

n = 1,

cN =
[
1

√
k
b

(
εk + 1

εb

)
kεk
bεb

]�
,

cD =
[
1 2εk

√
k
b

kεk
bεb

]�
.

The above result satisfies Eqs. (7) to (9) in Theorem 2
withnU = nL = 0 and cNU = cDU = cNL = cDL = 1.
Therefore, this case is indeed one induction step from
the undamaged case. Note that Properties 1 to 3 for
Eq. (6) also hold for this case.

3.2 A recursive algorithm to model damaged trees

In Sect. 3.1, we show the structure for the damaged
tree’s transfer function G(s), which holds for all trees.
In this section, we propose an algorithm to compute the
expression of that transfer function for a specific dam-
age case (l, ε) which is denoted by G(l,ε)(s). Namely,
we want to determine the coefficient vectors cN and
cD in G(l,ε)(s) given a damage case (l, ε). Note that n
and the completed expression of G(l,ε)(s) can be deter-
mined immediately from those two coefficient vectors.

The core of our algorithm is Eqs. (8) and (9), which
show how to compute cN and cD. Note that Eqs. (8)
and (9) rely on two things. First, they require damage
information at the first generation, that is εk and εb in
Eqs. (8) and (9). Second, they need knowledge about
GU (s) and GL(s) whose coefficient vectors cNU , cDU ,
cNL , and cDL are in the formula. As a result, the follow-
ing is the basic idea of our modeling algorithm. Upon
receiving the damage case (l, ε), the algorithm first
divides it into three parts, where (l1, ε1) is the damage
information at the first generation, (lU , εU ) is the dam-
age information for the upper sub-tree represented by
GU (s), and (lL, εL) is the damage information for the
lower sub-tree represented by GL(s). Then, (l1, ε1) is
processed to obtain εk and εb which are passed directly

Table 1 Pseudocode for our damage modeling algorithm

Compute the coefficient vectors cN and cD inG(l,ε)(s)
given a specific damage case (l,e) and the undamaged
constants k, b for the tree model.

[cN,cD] = modelAlg(l,e,k,b)

if isEmpty(l)

cN=1;

cD=1;

else

[l1,e1,lU,eU,lL,eL] = partition(l,e);

[eK,eB] = determineEKEB(l1,e1);

[cNU,cDU] = modelAlg(lU,eU,k,b);

[cNL,cDL] = modelAlg(lL,eL,k,b);

[cN,cD] = merge(k,b,eK,eB,cNU,cDU,cNL,cDL);

end

to Eqs. (8) and (9). Next, both (lU , εU ) and (lL, εL) are
passed to our modeling algorithm twice recursively to
compute their respective coefficient vectors cNU , cDU ,
cNL , and cDL . After that, Eqs. (8) and (9) have every-
thing they need, so the value of the coefficient vectors
cN and cD in G(l,ε)(s) can be returned.

The pseudocode for our damagemodeling algorithm
is formally listed in Table 1. Since our modeling algo-
rithm has a recursive nature, it requires a base case to
terminate, which is determined by the if condition.
As discussed in the proof in Sect. 3.1, the base case is
the undamaged tree, which is thus characterized by an
empty list of damaged components l . Therefore, for this
base case, our algorithm directly returns cN = cD = 1.

As a concrete example, supposewewant to compute
the transfer function, G(l,ε)(s), for the damage case

(l, ε) = ([k1,1, b2,1, k3,2, b3,3], [0.1, 0.2, 0.3, 0.4]),
(11)

when the undamaged constants are k = 2N/m and
b = 1N · s/m. Then, we should call our modeling
algorithm with the following arguments

l = [k1,1, b2,1, k3,2, b3,3],
e = [0.1, 0.2, 0.3, 0.4],
k = 2,

b = 1.
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First, the partition function returns the damage
information at the first generation:

l1 = [k1,1],
e1 = [0.1],

the damage information with respect to the upper sub-
network, GU (s):

lU = [b1,1, k2,2],
eU = [0.2, 0.3],

and the damage information with respect to the lower
sub-network, GL(s):

lL = [b2,1],
eL = [0.4].

Note that the subscripts in lU and lL are for their
respective sub-networks, so they are different from
those in l. For example, k3,2 for the entire tree is equiv-
alent to k2,2 in the upper sub-tree, so k3,2 in l is con-
verted to k2,2 in lU by the partition function.

Next, based on l1 and e1, the determineEKEB
function computes the damage amounts at the first gen-
eration, that is εk for k1,1, and εb for b1,1. In this exam-
ple, the determineEKEB function returns

eK = 0.1,

eB = 1,

since b1,1 is undamaged. After that, our modeling algo-
rithm recursively calls itself twice to compute the coef-
ficient vectors of two sub-trees, cNU, cDU, cNL, and
cDL, given their respective damage information lU,
eU, lL, and eL. Finally, our algorithm has everything
it needs, which are then fed to the merge function in
order to determine cN and cD based on Eqs. (8) and
(9) for this specific damage case (l,e).

For the example (11), our algorithm returns

cN = [1 10.9 68.9 273.8 738.5 1336.5

1507 1128.5 525.4 144.2 12]�,

cD = [1 9.6 57 200.5 488.3 725.1

727.3 479.1 221.5 61.1 12]�.

Fig. 3 Bode plot for the damaged tree’s transfer function
G(l,ε)(s) whose damage case (l, ε) is described by Eq. (11)

Note that both cN and cD have length 11, which imme-
diately tells us that n = 5 in this case. Consequently,
we know that the transfer function for the damage case
(11) is

G(l,ε) = G∞(s)(
s5 + 10.9s4.5 + · · · + 144.2s0.5 + 12

s5 + 9.6s4.5 + · · · + 61.1s0.5 + 12

)
, (12)

whose Bode plot is shown in Fig. 3.
Similar to the undamaged tree, the correctness of the

damaged transfer function Eq. (12) can also be shown
by the convergence of the damaged tree’s response as
the number of generations increases to infinity. Fig-
ure 4 shows that convergence in the frequency domain,
and Fig. 5 shows that in the time domain. The unit-step
response of the finite trees in Fig. 5 are obtained by inte-
grating the system of differential equations describing
the motion using the ode45() function in MATLAB.
However, the unit-step response of the infinite tree in
Fig. 5 is computed by using thestep() function in the
FOTF MATLAB toolbox [9] given the analytical trans-
fer function Eq. (12).

4 Identifying damages in the tree model

In this section,we propose amethod to solve the inverse
problem using the knowledge of the forward problem
as discussed in Sect. 3. Specifically, we hope to iden-
tify the damaged components and quantify their dam-
age amounts within the tree model given its (perhaps
noisy) frequency response measurement. We test our
identification algorithm on all damage cases where at
most two components are damaged in the first three
generations.
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Fig. 4 As the number of generations increases, the frequency
response of the damaged tree whose damage case is Eq. (11)
converges to the infinite case whose analytical transfer function
is Eq. (12)

Fig. 5 As the number of generations increases, the unit-step
response of the damaged tree whose damage case is Eq. (11)
converges to the infinite case whose analytical transfer function
is Eq. (12)

4.1 Damage identification algorithm for the tree
model

From Eq. (6), we can observe that the transfer function
for all trees contain G∞(s). Therefore, for the identi-
fication, we only focus on the other part which varies
for different damage cases. That is, we only focus on
Δ(l,ε)(s) in the transfer function:

G(l,ε)(s) = G∞(s)Δ(l,ε)(s) = G∞(s)
cN�μ(s; n)

cD�μ(s; n)
.

A crucial advantage brought by solving the dam-
age modeling problem is that it maps a damage case
(l, ε) to its frequency response G(l,ε)(s). Without that
knowledge, those coefficients, namely cN and cD in
Eq. (6), surely can be found through, for example, the
least squares regression.However, that does not provide
any damage informationwhich is our goal of identifica-
tion. Moreover, without solving forward problems, the

proposed identification method would not work well
when there is noise in the frequency response mea-
surements.

As a result of that mapping, we are able to formu-
late the damage identification problem as an optimiza-
tion problem where the damage case (l, ε) is the deci-
sion variable directly. Inspired by [22], the optimization
problem for damage identification can be formulated as

min
(l,ε)

J (l, ε) =
∑

s

‖Δ(l,ε)(s) − Δ(s)‖
‖Δ(s)‖ , (13)

such that

l ∈ L ,

length(ε) = length(l),

0 < ε < 1 for all ε ∈ ε,

Δ(l,ε) = cN�μ(s; n)

cD�μ(s; n)
.

The noisy frequency response measurement is Δ(s),
and Δ(l,ε)(s) is computed by our modeling algorithm
listed in Table 1 providing a damage case (l , ε). The
operator ‖ · ‖ means the 2-norm of a complex num-
ber. The relative difference is summed over all s = iω
where ω is the frequency at which the measured fre-
quency response Δ(s) is sampled. The set of all pos-
sible lists of damaged components, L , is defined in
advance, so that the variable l is not left unconstrained.

However, because the list of damaged components l
is a discrete variable, and the list of damage amounts ε is
a continuous variable, the optimization problem (13) is
in fact a mixed-integer programming problem which is
usually hard to solve [3]. Therefore, we separate l from
ε, and thus convert amixed-integer programming prob-
lem to many continuous nonlinear programming prob-
lems. Specifically, our identification algorithm iterates
inside the set of all possible lists of damaged compo-
nents L . For each possible list of damaged components,
l ∈ L , it solves a nonlinear programming problem for
the best ε at that l locally:

min
ε

J (l, ε) =
∑

s

‖Δ(l,ε)(s) − Δ(s)‖
‖Δ(s)‖ , (14)
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Table 2 Pseudocode of our algorithm to identify the damage
within the treemodel given its frequency responsemeasurements

Identify the damage case (l∗,ε∗) given the frequency
response measurement for a damaged tree.

JMin← +∞;

for l ∈ L do

for ε0 ∈ E0 do

Find ε and J where ε solves the nonlinear
programming problem (14) at l, and J is the
corresponding value for the objective function.

if J < JMin

JMin←J;

l∗ ← l;

ε∗ ← ε;

end

end

end

such that

length(ε) = length(l),

0 < ε < 1 for all ε ∈ ε,

Δ(l,ε) = cN�μ(s; n)

cD�μ(s; n)
.

Finally, among all locally best (l, ε), the globally best
one (l∗, ε∗) is returned as the final identification result.
Note that ε is the only decision variable in the opti-
mization problem (14), which renders it continuous.

The pseudocode of our damage identification algo-
rithm is formally listed in Table 2. Note that at each
possible list of damaged components l , our algorithm
starts at different initial guesses in the ε-space as indi-
cated by the inner for loop. This is mainly because
the objective function (14) is pretty “flat” in the ε-space
away from the optimal point. Therefore, by starting at
different initial guesses for the same l , the possibility
where the optimization solver stalls within that “flat”
region is reduced. As an example, Fig. 6 plots the value
of the objective function J (l, ε) versus ε, where Δ(s)
is a perfect frequency response measurement for the
damage case ([b1,1, k2,1], [0.05, 0.15]), and Δ(l,ε)(s)
is computed when l is fixed at [b1,1, k2,1] while both
elements in its ε vary from 0 to 1. From Fig. 6, we can
observe that the region where both elements in ε are
close to 1 is quite “flat.”

Fig. 6 The objective function J (l, ε) may have a “flat” region
in the space of the optimization variable ε

Asa concrete example, Fig. 7 plots a noisy frequency
response measurement Δ(s) for the damage case

(l, ε) = ([b1,1, k3,1], [0.45, 0.65]),

which needs identification. Suppose thatwe know there
exist two damaged components within the first four
generations in advance. Then, we can define the set of
all possible lists of damaged components L as

L = {[k1,1, b1,1], [k1,1, k2,1], · · · , [k4,8, b4,8]}.

As a result, the identification algorithm would iterate
through all l ∈ L . At the first iteration, l = [k1,1, b1,1],
after solving the optimization problem (14), the iden-
tification algorithm finds that ε = [0.814, 0.517] is the
local best at that l with the corresponding objective
function value equal to 26.2. Then, l goes to the next
element in L , which is [k1,1, k2,1] and the identification
algorithm repeats the same procedure. At some point,
l = [b1,1, k3,1] ∈ L at which solving optimization
problem (14) returns ε = [0.814, 0.517] with the cor-
responding objective function value equal to 23.8. Note
that the identification process would not terminate until
l reaches [k4,8, b4,8], which is the last element in L .
After that, the identification algorithm determines that
23.8 is the globally smallest objective function value.
Therefore, it returns the corresponding (l∗, ε∗) =
([b1,1, k3,1], [0.437, 0.665]) as the identification result.
The identified frequency responseΔ(l∗,ε∗)(s) is plotted
in Fig. 8 along with the same noisy measurement from
Fig. 7. Note that in this case, we say the algorithm cor-
rectly identifies the damage because the identified dam-
aged components are correct, and the identified damage
amounts are close to their actual values.
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Fig. 7 Anoisy frequency responsemeasurementΔ(s) for a dam-
aged treewhose damage case (l, ε) = ([b1,1, k3,1], [0.45, 0.65]).
(50% noise added)

Fig. 8 The noisy measurement from Fig. 7 is plotted along with
its identified Δ(l∗,ε∗)(s)

4.2 Test scheme for the damage identification
algorithm

The proposed damage identification algorithm is tested
for all damage cases where at most two components
are damaged within the first three generations. We use
fmincon() from MATLAB to solve the optimization
problem (14). For each damaged component, 10 differ-
ent damage amounts starting from 0.05 to 0.95 with an
increment of 0.1 are tested. From Fig. 1, we can con-
clude that there are 2 + 22 + 23 = 14 components in
the first three generations for the treemodel. Therefore,
the number of different damage cases is

(
14

1

)
× 10 +

(
14

2

)
× 102 = 9, 240.

To imitate real measurements, we also add 21 differ-
ent levels of noise to the frequency response measure-
ments Δ(s). Therefore, our identification algorithm

Fig. 9 Damaged transfer functions G(l,ε)(s) for 7 different dam-
age caseswhere the damaged component is k1,1 through k7,1, and
the damage amount stays at 0.5

goes through 21 × 9, 240 = 194, 040 tests in total.
Such a large number of different cases is the main rea-
son why we limit ourselves to only two damaged com-
ponents at most in the first three generations. For exam-
ple, supposewe extend that limitation to three damaged
components at most, then there are 7, 838, 040 dam-
age cases in total, which is increased by a factor of
40.

The reason why we limit the test to only first
three generations is because the frequency response
for a damaged tree becomes less identifiable as the
damage goes deeper. For example, the frequency
responses G(l,ε)(s) for 7 damage cases from (k1,1, 0.5)
to (k7,1, 0.5) are shown in Fig. 9, from which we
can observe that the discrepancy between two fre-
quency responses becomes smaller as the damage goes
deeper. This also reveals one intrinsic challengeof dam-
age identification for a large network given its over-
all response which is less sensitive to deeper dam-
ages.

However, those limitations set for the identification
test are only due to above two practical considerations.
Theoretically, the proposed damage identification algo-
rithm is able to handle any damage cases for the tree
model.

Since the damages are limited to the first three gen-
erations, during the test, the outer for loop in Table 2
only iterates within the first four generations, so as to
cover all neighboring generations surrounding possi-
ble damages while reduce the test’s total running time.
Suppose we also know there exist at most two damaged
components. As a result,
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L = {k1,1, b1,1, · · · , b4,8, [k1,1, b1,1], · · · , [k4,8, b4,8]}.

In addition, for this test, the initial guesses are chosen to
form a uniform grid from 0.1 to 0.9 with an increment
of 0.2. That is,

E0 = {[0.1, 0.1], [0.1, 0.3], · · · , [0.1, 0.9], · · · , [0.9, 0.9]}.

As said above, different levels of noise are added to
the frequency response measurement Δ(s). The mean-
ing of adding nmax% noise toΔ(s) is that if the analyti-
cal value ofΔ(s) = A + i B at some angular frequency
ω (s = iω), what the identification procedure can see
is its corresponding noisy value of Δ(s) where

‖Δ(s)‖ = 10(1+n%) log10(
√

A2+B2),

� Δ(s) = (1 + n%)atan2(B, A),

and n is a uniformly distributed random variable
between −nmax and nmax. For example, Fig. 7 shows
the Bode plot when 50% measurement noise is added
toΔ(s) for the damage case ([b1,1, k3,1], [0.45, 0.65]).
During the test, 21 different levels of noise are added
to the frequency response measurementΔ(s) from 0 to
100% with a increment of 5%.

4.3 Test results for the damage identification
algorithm

When no noise presenting in the frequency response
measurement Δ(s), our algorithm does very well, as
expected. Out of 9240 damage cases, our algorithm
only misidentifies the following two cases:

1. It misidentifies ([k3,2, k3,3], [0.95, 0.85]) as
([b3,2, k3,3], [0.9622, 0.8395]);

2. It misidentifies ([b3,2, b3,3], [0.85, 0.95]) as
([b3,2, k3,3], [0.8395, 0.9622]).

The above two misidentified cases reveal the nature of
how difficult it is to identify damages within large net-
works. Ideally, when the measurements are perfect, our
algorithm should identify the damage exactly, since it
uses the knowledge from solving the modeling prob-
lem. However, that is not the case as indicated by the
existence of the above two misidentified cases, even
when we limit ourselves to just two damaged compo-
nents within the only first three generations. The main

Fig. 10 The transfer functions G(l,ε)(s) of two different damage
cases overlap each other, which reveals the fact that the mapping
from a damage case to its frequency response is not completely
one-to-one

reason is that themapping from a damage case to its fre-
quency response is not completely one-to-one. There-
fore, not all inverse problems can be solved exactly. As
an example, Fig. 10 shows the Bode plot for those two
different damage cases in the first misidentified case
above, from which we can confirm that their frequency
responses G(l,ε)(s) are the same.

Except for the above two misidentified cases, all the
other damage cases are correctly identified, with the
maximum absolute error for the list of damage amounts
ε being 1.2637 × 10−4, which happens at the damage
case ([b2,2, k3,4], [0.05, 0.45]).

When noise presents in the frequency responsemea-
surements, the number of misidentified cases increases
with the level of noise added to the frequency response
measurements. However, the performance of our iden-
tification method is still very good. Figure 11 plots
the percentage of misidentified cases out of total 9240
damage cases versus the level of noise added to the
frequency response measurements. From Fig. 11, we
can observe that, for example, even when 50% noise is
added to the frequency response measurements, which
should be as noisy as that shown in Fig. 7, only 35% of
total 9240 damage cases are misidentified.

Based on the test results, we also have the following
two observations when measurement noise presents in
the test for our identification algorithm:

1. The possibility of misidentification increases as the
damage goes deeper.

2. On the same generation, damages happening on the
inner components are more inclined to be misiden-
tified comparing to those on the outer components.
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Fig. 11 Percentage of misidentified cases during the test versus
the level of noise added to the measurement

Fig. 12 Percentage of misidentified cases versus level of noise
added to the measurements for those damage cases which are
purely on the second and the third generation

Both of the above observations are intuitive. Obser-
vation 1 can be seen from Fig. 12, which compares
the percentage of misidentified cases for those damage
cases happening purely on the second and the third gen-
eration. From Fig. 12, we can observe that throughout
all levels of added noise, the damages purely happening
on the second generation always have less possibility of
misidentification comparing to those on the third gen-
eration. The reason for such trend can be seen in Fig. 9
again, which shows that the discrepancy between two
frequency responses becomes smaller when damages
go deeper in the network.

For the second observation, we focus on the third
generation, where we call k3,1, b3,1, k3,4, b3,4 outer
components, and call k3,2, b3,2, k3,3, b3,3 inner compo-
nents. During our test, among all damage cases within
the above four outer components, 19% are misiden-
tified. However, among all damage cases within the
above four inner components, 42% are misidentified,
which is more than twice larger than the previous one.

4.4 Computation time

We use MATLAB R2019b on a single CPU of Intel
Core i7-4510U. On average, solving the optimization
problem (14) for one initial guess, that is the part inside
the double for loop of our damage identification algo-
rithm listed in Table 2, takes 0.01 seconds. This time
mainly depends on the nature of damage: the number
of damaged components and the deepest generation
where damages happen. The reason is that the nature
of damage impacts the time required by the modeling
algorithm to compute Δ(l,ε)(s) during each optimiza-
tion iteration. Built upon that time, the total running
time of our identification procedure is further affected
by how many optimization iterations the solver takes
to find the solution starting from one initial guess, and
also by how that double for loop in the identification
algorithm is implemented. For example, the total run-
ning time can be largely reduced by parallelizing the
identification algorithm, and it can also be reduced by
taking less initial guesses at the second for loop. A
detailed analysis of running time can be found next in
Sect. 5.

5 Effects brought by deeper damages

In this section, we discuss the effects on both dam-
age modeling and damage identification brought by
damaged components which locate deep inside the tree
model.

5.1 Effects on damage modeling

There are two effects on damage modeling brought by
deeper damages. A deeper damage case requires more
time to compute its transfer function, and its coeffi-
cients are more inclined to numerical overflow.

To see how a deeper damage case affects the run-
ning time to compute its transfer function, we need to
revisit the modeling algorithm listed in Table 1. The
algorithm takes a divide-and-conquer approach, which
divides the tree into two sub-trees, recursively com-
putes the transfer functions for those two parts, and
finally merges those two transfer functions into one
describing the entire tree’s dynamics. For the dam-
age case where both components at the first generation
are damaged, those two sub-trees are undamaged. As
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Fig. 13 log2() of the total running time for the modeling algo-
rithm versus the generation g where all components in the first
g generations are damaged with damage amount at 0.5. The
undamaged constants’ values are k = 2N/m and b = 1Ns/m

a result, those two recursive calls would immediately
return since their if condition are both satisfied. After
that, the merge() function is called once to compute
the final result. For the damage case where all compo-
nents in the first two generations are damaged, those
two sub-trees have damages only at their first gener-
ations. As a result, each of them calls the merge()
function once. After that, there is an additional call
of the merge() function for the entire tree. There-
fore, the merge() function is called three times in
total for this case. Continuing the similar reasoning, we
can prove that in the worst case, where all components
are damaged in the first g generations, the merge()
function would be called 2g − 1 times. Because the
merge() function is the only time-consuming part
of the modeling algorithm, the total running time for
the modeling algorithm is expected to double when a
damaged component goes one generation deeper. Such
trend is confirmed by Fig. 13 where the slope of log2()
of the total running time is about one per generation.
The computation environment is same as that in Sect.
4.3.

Another effect brought by a deeper damage case is
that the coefficients in its transfer function are more
inclined to numerical overflow. Although, ideally, our
modeling algorithm can compute transfer functions for
any damage cases, its practical ability is limited by the
computational machine in use. The reason for numer-
ical overflow is that there exist vector convolutions in
Eqs. (8) and (9). As damages go deeper, more convo-
lutions are used, which causes the middle elements of
those coefficient vectors cN and cD to grow larger com-

pared to the boundary elements of those two coefficient
vectors. As damages continue going deeper, at some
point, those middle elements would break the numeri-
cal limit of the machine in use. For example, in 64-bit
MatlabR2019b, the coefficients start overflowwhen
all components in the first nine generations are dam-
agedwith damage amount 0.5, and the undamaged con-
stants’ values are k = 2N/m and b = 1Ns/m. Once
the numerical limit of the computationalmachine in use
is violated, the result returned by our modeling algo-
rithm is no longer useful. As a result, it is very impor-
tant to monitor the numerical overflow status when our
modeling algorithm is implemented on some machine
which does not do that by itself.

5.2 Effects on damage identification

There are two effects on damage identification brought
by deeper damages. First, a deeper damage case ismore
difficult to be identified through the overall frequency
response of a network. Second, to identify a deeper
damage case requires more time using our damage
identification algorithm.

The first effect means that a deeper damage case is
more likely to be misidentified, which has already been
discussed in Sect. 4.2 and is shown in Fig. 9. The reason
is that a deeper damage has less effect on a network’s
overall behavior which follows the intuition. This is an
intrinsic challenge of identifying deep damages inside
a large network given its overall behavior only.

There are two factors which increase the running
time of our identification algorithm for a deep damage
case. First, note that our identification algorithm com-
putes the damaged transfer functions online. That is,
at each optimization iteration, the optimization solver
proposes a candidate list of damage amounts, ε, which
is combined with the current list of damaged compo-
nents, l , to create a candidate damage case, (l ,ε). Then,
that (l ,ε) is passed to our damagemodeling algorithm to
computeΔ(l,ε)(s). Therefore, due to the reason we dis-
cuss in Sect. 5.1, the time required at each optimization
iteration would double when a damage case goes one
generation deeper. The second factor is that a deep dam-
age case increases the size of the set L which includes
all possible lists of damaged components. As a result,
that increment in size leads to more iterations taken
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by the outer for loop in our identification procedure.
For example, as we see in Sect. 4.2, if the set L is
constructed by the premise that at most two damaged
components exist in the first three generations, the size
of L is

(
14

1

)
+

(
14

2

)
= 105.

Now, if that assumption becomes at most two damaged
components exist in the first four generations, the size
of L would increase to

(
30

1

)
+

(
30

2

)
= 465.

6 Concluding remarks

In this paper, we show that the structure of the transfer
function for a damaged tree always follows Eq. (6). In
addition, we propose a recursive algorithm to compute
the expression of that transfer function for a damage
case. Then, using the knowledge from damage model-
ing, we also propose a damage identification algorithm
trying to identify the damaged components and quan-
tify their damage amounts inside the treemodel through
its overall frequency response.

Themain assumption for the proposed damage iden-
tification method to work is that we know the map-
ping from a damaged network to its overall frequency
response. However, one limitation of this work at its
current state is that we only know that mapping for a
very specific network, the tree model. Therefore, the
urgent future work is to generalize this idea to other
networks. Our initial analysis shows that promising.
Recently, we believe that for a self-similar infinite net-
work, if its recurrence formula is similar to Eq. (1), and
that recurrence formula also leads to an analytical solv-
able undamaged transfer function, similar to Eq. (4),
then its damaged transfer function always has the mul-
tiplicative structure which is similar to Eq. (5). Thus,
we are working to extend these results to any infinitely
large self-similar network, not only the specific tree
network. The problem left is then how to determine the
coefficient vectors for that damaged network as we did
for the treemodel in Sect. 3. Note that the transfer func-
tion for a damaged tree is commensurable as shown in
Eq. (6), whichmeans that all orders of s have a common
factor 1/2.Our initial analysis shows that even for those

networks whose transfer function has irrational parts,
for example

√
s + 1, their damaged transfer function

can still be modeled by Eq. (5). An additional advan-
tage brought by Eq. (5) is that it is a classical model in
the area of robust control. Therefore, thatmultiplicative
nature may help us to control those damaged networks,
which is another goal of our future work. On top of
the above-mentioned two, we also plan to characterize
the difference between the response of a finite network
with respect to its infinite version. By doing that, we
hope to make the damage detection method proposed
in paper more applicable to the real networks’ health
monitoring setting.
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