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1  | INTRODUC TION

Palms (Arecaceae/Palmae) are an iconic and diverse group (>2,500 
recognized species worldwide) that have long delivered a wide range 
of provisioning services to humankind (Cámara-Leret et  al.,  2017; 
Eiserhardt, Svenning, Kissling, & Balslev,  2011; Levis et  al.,  2017; 
Tomlinson, 2006). Many palms are considered ecological keystone 
species because large numbers of animals depend on their fruit and 
flower resources (Onstein et al., 2017). In some areas, palms are also 
remarkably abundant. For instance, six of the 10 most common tree 
species in the Amazon rain forest are palms (ter Steege et al., 2013). 

Given the morphological and physiological distinctiveness of palms 
(which are monocots; Renninger & Phillips, 2016), palm abundance 
can have important consequences for tropical forest ecosystem 
function, including carbon sequestration. However, we currently 
lack a quantitative analysis of the biogeographical patterns and con-
ditions associated with palm abundance.

As a family, palms exhibit a variety of growth forms, ranging 
from small shrubs to lianas and large trees. Based on available data 
(Kissling et al., 2019), c. 40% of palm species are capable of growing 
stems ≥10 cm in diameter at 1.3 m above the ground (here defined 
as “tree palms”). Tree palms have often been pooled with non-palm 
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Abstract
Aim: Palms are an iconic, diverse and often abundant component of tropical ecosys-
tems that provide many ecosystem services. Being monocots, tree palms are evo-
lutionarily, morphologically and physiologically distinct from other trees, and these 
differences have important consequences for ecosystem services (e.g., carbon se-
questration and storage) and in terms of responses to climate change. We quanti-
fied global patterns of tree palm relative abundance to help improve understanding 
of tropical forests and reduce uncertainty about these ecosystems under climate 
change.
Location: Tropical and subtropical moist forests.
Time period: Current.
Major taxa studied: Palms (Arecaceae).
Methods: We assembled a pantropical dataset of 2,548 forest plots (covering 
1,191 ha) and quantified tree palm (i.e., ≥10 cm diameter at breast height) abundance 
relative to co-occurring non-palm trees. We compared the relative abundance of tree 
palms across biogeographical realms and tested for associations with palaeoclimate 
stability, current climate, edaphic conditions and metrics of forest structure.
Results: On average, the relative abundance of tree palms was more than five 
times larger between Neotropical locations and other biogeographical realms. Tree 
palms were absent in most locations outside the Neotropics but present in >80% of 
Neotropical locations. The relative abundance of tree palms was more strongly asso-
ciated with local conditions (e.g., higher mean annual precipitation, lower soil fertility, 
shallower water table and lower plot mean wood density) than metrics of long-term 
climate stability. Life-form diversity also influenced the patterns; palm assemblages 
outside the Neotropics comprise many non-tree (e.g., climbing) palms. Finally, we 
show that tree palms can influence estimates of above-ground biomass, but the mag-
nitude and direction of the effect require additional work.
Conclusions: Tree palms are not only quintessentially tropical, but they are also over-
whelmingly Neotropical. Future work to understand the contributions of tree palms 
to biomass estimates and carbon cycling will be particularly crucial in Neotropical 
forests.

K E Y W O R D S

above-ground biomass, abundance patterns, Arecaceae, local abiotic conditions, Neotropics, 
pantropical biogeography, tropical rainforest, wood density
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trees in forest inventory plots that are commonly used to mea-
sure terrestrial carbon stocks and parameterize vegetation models 
(Phillips et  al.,  2013). This raises several issues. First, biomass es-
timates are typically based on allometric equations developed for 
non-monocot trees (e.g., Chave et al., 2014; Feldpausch et al., 2012). 
These equations tend to perform poorly for palms because they lack 
secondary growth, which decouples diameter–height relationships 
(Goodman et  al.,  2013). Second, physiological and morphological 
differences between tree palms and other trees suggest the po-
tential for large differences in terms of the responses of tree palms 
to drivers of environmental change compared with non-palm trees 
(Emilio et  al.,  2014; Renninger & Phillips,  2016). From an ecosys-
tem functioning perspective, these issues are clearly most crucial in 
areas where palms account for a relatively high proportion of forest 
biomas, such as some swamp forests (Dargie et al., 2017). Here, we 
provide the first global analysis of tree palm abundance relative to 
other co-occurring trees to help reduce uncertainty about tropical 
ecosystem function.

Patterns of tree palm abundance may be associated with vari-
ation in contemporary ecological conditions that favour the estab-
lishment and persistence of palms over other types of trees (the 
contemporary conditions hypothesis). Most existing evidence for 
palm abundance distributions along contemporary environmental 
gradients comes from studies in Amazonian forests, where palms 
tend to be more abundant in areas with ample soil moisture and rela-
tively high soil fertility (Castilho et al., 2006; Costa, Guillaumet, Lima, 
& Pereira,  2009; Emilio et  al.,  2014; Kahn & Mejia,  1990; Schietti 
et  al.,  2014; Svenning,  1999, 2001). Palm root architecture is the 
most likely explanation for the observed patterns in relationship to 
hydrological and soil properties for at least two reasons. First, palms 
tend to have dense, superficial root systems that may provide them 
with better anchorage compared with relatively deep-rooted trees 
in dynamic fluvial systems. In an Ecuadorian forest, for example, 
Gale and Barford (1999) found that uprooting was c. 50% higher for 
dicotyledonous trees than for the dominant palm, Iriartea deltoidea. 
Second, higher investment in root biomass towards the soil surface 
might be beneficial in terms of competition for nutrients but could 
represent a limitation for growth in regions where plants must rely 
on seasonal access to deeper water. In these conditions, high annual 
precipitation and low precipitation seasonality should maximize the 
advantages of shallow root systems, and therefore, promote relative 
abundance of palms (Eiserhardt et al., 2011).

However, local edaphic conditions in the Amazon region are also 
correlated with longer-term landscape evolution (Higgins et al., 2011; 
Hoorn et al., 2010) and forest stem turnover rates, which may also 
affect palm abundance indirectly (e.g., Emilio et  al.,  2014). For in-
stance, several studies have shown that at least some palm species 
can be successful in relatively dynamic forests by capitalizing on 
high-resource conditions after disturbance (Eiserhardt et al., 2011; 
Emilio et al., 2014; Salm, 2005). Additionally, some palms are resilient 
to certain types of disturbance, including hurricanes and blowdowns 
(Lugo & Scatena, 1996) and, in some cases, fire. As a result, we might 
expect tree palm relative abundance to exhibit a positive association 

with contemporary rates of forest turnover. In general, the extent to 
which relatively local ecological factors can help to explain biogeo-
graphical scale variation in tree palm abundance remains unknown. 
In summary, under the contemporary conditions hypothesis, we ex-
pect significant associations between local ecological conditions and 
tree palm relative abundance. In particular, we expect higher tree 
palm relative abundance in areas with higher annual and dry season 
rainfall, more fertile soils with shallower depth to the water table, 
and faster stem turnover rates.

It is also possible that patterns of palm abundance are associated 
with historical distributions of conditions that allowed the persistence 
of palm species and populations over long time periods (the climate 
stability hypothesis). Previous work on macroecological patterns 
of palm diversity provides context for hypotheses about historical 
drivers of tree palm abundance at biogeographical scales (Eiserhardt 
et al., 2011; Kissling, Eiserhardt, et al., 2012; Svenning, Borchsenius, 
Bjorholm, & Balslev,  2008). For example, Kissling, Eiserhardt, 
et al. (2012) reported that the extent of tropical rain forest biome in 
different biogeographical realms during the Cenozoic period (based 
on palaeoclimate reconstructions) was positively associated with cur-
rent palm diversity. Relatively low palm species richness in Africa has 
been attributed to extinctions during rain forest contraction (Faye 
et  al.,  2016; Kissling, Eiserhardt, et  al.,  2012). However, Baker and 
Couvreur (2013) argued that higher speciation rates outside Africa 
(as opposed to higher extinction rates in Africa) might better ex-
plain contemporary richness patterns. In Madagascar, Rakotoarinivo 
et al. (2013) reported higher palm diversity in areas that had higher 
precipitation during the Last Glacial Maximum (LGM; 21,000 years 
ago) compared with present-day precipitation. In general, palaeo-
climatic variability could also be associated with spatial variation of 
palm abundance. For example, larger areas with more stable tropical 
climates could facilitate larger populations of palms, which could also 
be associated with higher diversification rates (Blach-Overgaard, 
Kissling, Dransfield, Balslev, & Svenning, 2013; Couvreur et al., 2015; 
Kisel, McInnes, Toomey, & Orme, 2011; Rakotoarinivo et al., 2013; 
Rosenzweig, 1995). Therefore, under the climate stability hypothe-
sis, we expect a positive association between metrics of long-term 
climatic stability and tree palm relative abundance.

In this study, we use a large pantropical dataset of forest plots 
to quantify global-scale variation in tree palm abundance (quantified 
as the basal area and the number of stems) relative to co-occurring 
trees. We examine spatial patterns of tree palm relative abundance 
across major biogeographical realms, in addition to correlations with 
abiotic and biotic variables in light of the contemporary conditions 
and climate stability hypotheses outlined above. As a step towards 
assessing the potential ecosystem-level consequences of tree palm 
relative abundance patterns, we estimate the amount of error in-
troduced to standard calculations of above-ground biomass (AGB) 
when tree palms are pooled with other trees versus treated sepa-
rately. Finally, in light of the broad range of palm growth forms, we 
assess how the diameter size threshold commonly used in forest in-
ventory plots (10 cm) affects inferences of tree palm relative abun-
dance in different biogeographical realms. Our overarching aim is 
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to develop a quantitative understanding of patterns and drivers of 
tree palm relative abundance across broad geographical and envi-
ronmental scales that can help us to gain a better understanding of 
this important and unique group and to reduce uncertainty about 
tropical ecosystem functioning and dynamics.

2  | METHODS

2.1 | Forest inventory data

Our analysis is based primarily on data from ForestPlots.net (Lewis 
et al., 2009; Lewis et al., 2013; Lopez-Gonzalez et al., 2009; Lopez-
Gonzalez, Lewis, Burkitt, & Phillips,  2011; Malhi et al., 2002), 
which integrates data from research plot networks active in the 
Neotropics (RAINFOR and PPBio), Africa (AfriTRON) and Southeast 
Asia (T-FORCES), in addition to other networks and researchers, and 
also uses the pan-tropical Gentry 0.1-ha transect dataset (Phillips & 
Miller, 2002) and the database compiled by Slik et al. (2018).

We assembled data for 2,624 individual forest plots located in 
the subtropical and tropical moist broadleaf forest biomes as de-
fined by Olson et  al.  (2004). A list of publications associated with 
data used in this paper is found in the Supporting Information 
Appendix S1. In each plot, all individual stems with a diameter of 
≥10 cm in diameter at breast height (d.b.h., 1.3 m above the ground) 
were identified and measured for d.b.h. Our analyses focus on ar-
borescent palms that reach ≥10 cm d.b.h. (henceforth, “tree palms”), 
because smaller-diameter stems are excluded in the standard pro-
tocol of most forest inventories. Although palms occur in a wide 
range of tropical ecosystems (including rain forests, savannas and 
dry forests), we focused on moist forests because this biome houses 

the greatest palm diversity and it is where the majority of plots in 
our dataset are located. We restricted our analyses further to plots 
reported as “old-growth”, “primary” or “undisturbed” by the origi-
nal data collectors and excluded 57 plots described as swamps or 
“monodominant” palm forests. We analysed a total of 2,548 plots 
(covering a total of 1,191 ha; Supporting Information Appendix S2). 
To reduce spatial autocorrelation, we pooled data from plots within 
the same 10 km × 10 km grid cell; hereafter, we refer to these as ag-
gregated plots as “locations”. After aggregation, our dataset included 
842 locations (Figure 1a). The area sampled per location ranged from 
0.1 to 51.8 ha (median ± SD = 0.4 ± 3.5 ha), with 95% of the locations 
sampled were ≥0.1 ha. We assigned each location to one of the bio-
geographical realms defined by Olson et al. (2004), but we combined 
locations in Oceania with Australasia because of their strong his-
torical connection (Muellner, Pannell, Coleman, & Chase, 2008) and 
their relatively low sample sizes (n = 32 and 37, respectively).

For each location, we calculated the relative basal area (BApalm) 
and the relative abundance (RApalm) of tree palms as the sum of the 
tree palm basal area or number of tree palm individuals divided by 
the total basal area or total number of stems. These relative met-
rics of tree palm abundance reduce variation caused by differences 
in sample area and stem density across locations. Results based on 
BApalm and RApalm were highly correlated, and we present and dis-
cuss BApalm results in the main text (results based on RApalm are pro-
vided in the Supporting Information Figure S4).

2.2 | Environmental variables

To address our hypothesis about the link between long-term climatic 
stability and tree palm abundance (the climate-stability hypothesis), 

F I G U R E  1   (a) Locations of study plots coloured to reflect four biogeographical realms. The total number of locations is given along with 
the total area (in hectares) sampled in each realm. (b) Tree palm relative basal area (BApalm) in each location defined as palms that reach 10 cm 
diameter at breast height (d.b.h.), and thus, are included in typical forest inventory plots. Locations without tree palms present are shown as 
blue crosses. Red circles represent plots with tree palms present, and circle size is proportional to the BApalm at that location

(a)

(b)
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we used several variables that are likely to have had major impacts 
on the distributions of palms and their habitats (e.g., Melo, Freitas, 
Bacon, & Collevatti, 2018). Specifically, we calculated the absolute 
difference (or “anomaly”) between the LGM (21,000 years ago) and 
modern climatological averages (1979–2013), for both the mean 
annual precipitation (in millimetres per year) and the precipita-
tion in the driest quarter (in millimetres per quarter) using 30 arc s 
(c.  1  km2) resolution data from CHELSA (Karger et  al.,  2017). We 
used LGM variables based on data from the Palaeoclimate Modelling 
Intercomparison Project (PMIP3) and output from the Community 
Climate System Model (CCSM4) (Karger et al., 2017).

We used several datasets to address our hypothesis about con-
temporary ecological controls on tree palm relative abundance (the 
contemporary conditions hypothesis). For contemporary climate, 
we extracted the mean annual precipitation (in millimetres per year) 
and precipitation in the driest quarter (in millimetres per quarter) for 
each location from the 30 arc s (c. 1 km2) resolution CHELSA dataset 
(Karger et al., 2017). For edaphic conditions, we extracted cation ex-
change capacity (CEC; a general proxy for soil fertility; cmol+ kg−1) at 
250 m resolution from the SoilGrids website (https://soilg​rids.org/). 
We focused on CEC because prior work has shown associations be-
tween forest composition (including palm diversity) and soil fertility 
(Muscarella et al., 2019). We extracted the depth to the water table 
(in metres) from the 30 arc s (c. 1 km2) resolution database of Fan, 
Li, and Miguez-Macho (2013). We examined how conditions at the 
study locations reflect the range of conditions in their respective 
biogeographical realms by sampling each variable at 10,000 ran-
dom points in each realm (Supporting Information Figure  S1). We 
extracted values for the predictor variables listed above based on 
the mean latitude and longitude of plots in each location.

We calculated two proxies for turnover rates in each location. 
First, because forests with faster turnover rates tend to have shorter 
canopies (Feldpausch et al., 2011), we estimated the maximal canopy 
height for each location based on the tree inventory data. More spe-
cifically, given that most plots do not include measured data on tree 
height, we used the “BIOMASS” package (Réjou-Méchain, Tanguy, 
Piponiot, Chave, & Hérault, 2017) to estimate the height of each in-
dividual tree based on its diameter using the geographically based 
allometric equation of Chave et  al.  (2014). We used the 95th per-
centile of estimated tree height in each location as a metric of max-
imal canopy height (comparable results were obtained when using 
the 99th percentile). Second, we calculated the basal area-weighted 
mean (CWM) wood density for each location by matching wood den-
sity data from the global wood density database (Chave et al., 2009; 
Zanne et  al.,  2009) with the relative basal area of each species in 
each location. The CWM wood density reflects life-history strate-
gies of trees, and stands with lower values of CWM wood density 
tend to have more rapid turnover rates (Chave et al., 2009; Phillips 
et al., 2004, 2019). Given that we were interested in the relation-
ship between local environmental conditions and palm relative 
abundance patterns, we excluded palms when calculating CWM 
wood density. However, note that CWM wood density values per 
location were highly correlated whether or not palms were included 

(Pearson's r  =  .98). Species-level mean wood density values were 
available for 51% of the individual stems [representing 61% of the 
total basal area (BA)], genus-level mean values were used for 37% 
of the individuals (30% of the total BA), family-level mean values 
were used for 9% of the individuals (6% of the total BA), and we 
excluded the remaining 3% of individuals (representing 3% of the 
total BA) that were not identified to the family level. The computed 
CWM wood density values were highly correlated with CWM wood 
density values computed based only on species-level data (Pearson's 
r  =  .87), genus-level data (Pearson's r  =  .99) or family-level data 
(Pearson's r = .99).

2.3 | Statistical analyses

As a first step to assess general patterns of tree palm occurrence, 
we used t tests to compare each environmental covariate described 
above between locations with and without tree palms, separately 
for each realm. We log10-transformed all covariatesbefore analysis, 
except for CWM wood density.

In order to assess associations between tree palm abundance 
and covariates, we fitted a Bayesian zero-inflated version of the beta 
regression (BeZI; Ospina & Ferrari, 2010), because our response vari-
able of interest (BApalm) is a proportion, and tree palms were absent 
from many (61%) locations. We modelled BApalm at each location, i, 
using a beta-distributed random variable yi~ BeZI (p0i, �i, �), which 
represents a mixture of beta and Bernoulli distributions defined as:

The parameter p0 is the probability of tree palms being absent 
from a location, andf(y;�, �) is the beta density function of BApalm at 
locations where tree palms are present: � is the expected value and 
� is a precision parameter (Ospina & Ferrari, 2010). For both compo-
nents of the model (occurrence and relative basal area), we modelled 
the relationship between the response variable, y, at each location, 
i, including biogeographical realm as a random grouping variable, ei. 
We used the following model:

Where y is palm occurrence (for the Bernoulli part of the model) 
and BApalm (for the beta part of the model), �0 is the intercept, 
and the terms MAP|LGM - curr|i

 and DRY|LGM - curr|i
 correspond to the 

anomalies between the LGM and contemporary mean annual and 
dry quarter precipitation, respectively; MAPcurri

 and DRYcurri
 repre-

sent current climatological means for mean annual and dry quar-
ter precipitation; CECi, WTDi, CHi and WDi correspond to cation 
exchange capacity, water table depth, canopy height and CWM 
wood density, respectively; and Areai, corresponds to the sum of 

BeZI
�
p0i,�i,�

�
=

⎧
⎪⎨⎪⎩

p0, y=0

�
1−p0

�
f (y;�,�) , y∈

�
0,1

�

yi∼�0+�1MAP|LGM - curr|i
+�2DRY|LGM - curr|i

+�3MAPcurri
+�4DRYcurri

+�5CECi+�6WTDi+�7CHi+�8WDi+�9Areai+ei

https://soilgrids.org/
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area sampled in component plots at location i. We included the area 
term to account for possible correlation between the area sampled 
and BApalm. Before fitting the model, we centred and scaled each 
predictor variable by subtracting its mean and dividing it by its 
standard deviation. This procedure facilitates model convergence 
and allows for the direct comparison of relative effect sizes across 
predictor variables (Gelman & Hill,  2006). The majority of model 
covariates were little correlated (Pearson's |r|  <  .3), but historical 
climate anomalies and current climate conditions were moderately 
correlated (Pearson's r = .47–.71; Supporting Information Table S1). 
Nonetheless, models fitted separately with either historical climate 
anomalies or current climate conditions gave similar estimates for 
all parameters, and we report results from the full model. We fitted 
models using STAN (Stan Development Team, 2016) via the “brms” 
R package (Bürkner,  2017) and with default (uninformative) priors 
(see model code in the Supporting Information Appendix S3). We 
used four chains with 1,000 burn-in samples and 1,000 sampling 
iterations per chain. All parameters had R̂ values  <  1.1, indicating 
successful convergence. Plots showing posterior distributions, trace 
plots and a posterior predictive check are provided in the Supporting 
Information (Figures S5 and S6). We computed R2 of the model using 
the “add_ic” function of the “brms” R package (Bürkner, 2017). To 
evaluate spatial autocorrelation, we computed Moran's I for model 
residuals using geographical coordinates of locations. Observed and 
expected values did not differ significantly (p = .83), indicating a lack 
of spatial autocorrelation among residuals. All analyses were con-
ducted in R v.3.5.1 (R Development Core Team 2019).

2.4 | Implications for above-ground 
biomass estimates

To quantify the magnitude of error introduced to estimations 
of AGB if tree palms are pooled with other trees, we first used 

the geographically based allometric equation (i.e. using the en-
vironmental factor, E) of Chave et al.  (2014), implemented in the 
BIOMASS R package (Réjou-Méchain et al., 2017) to estimate the 
total AGB for each location (including tree palms and non-palm 
trees): AGBChave-only. Ideally, we could compare these estimates 
with values where tree palm biomass was calculated using spe-
cies-specific allometric equations developed specifically for palms 
that include information on plant height (Feldpausch et al., 2012; 
Marshall et  al.,  2012). Unfortunately, allometric equations have 
not yet been developed for most palm species, and most ground-
based forest inventory datasets do not include height measure-
ments. As an alternative, we calculated tree palm AGB using the 
family-level allometric equation (based on diameter only) from the 
study by Goodman et al. (2013). We then added this value of tree 
palm AGB to non-palm tree AGB calculated with the method of 
Chave et al. (2014) described above to arrive at a hybrid estimate 
of AGB for each location: AGBGoodman+Chave. We report the ratio of 
AGBGoodman+Chave to AGBChave-only as a step towards quantifying the 
error in AGB estimates introduced by palms.

2.5 | Effect of size threshold on tree 
palm abundance

To examine how the 10 cm d.b.h. threshold (commonly used by for-
est inventories) could affect conclusions about palm abundance pat-
terns, we analysed separately Alwyn Gentry's transect data (Phillips 
& Miller,  2002), which includes all woody stems ≥2.5  cm d.b.h. in 
144 locations (0.1 ha each) distributed globally throughout the (sub)
tropical moist broadleaf biome (Supporting Information Figure S2). 
For each transect, we compared BApalm (and RApalm) based on the 
full dataset (i.e., all stems ≥2.5 cm d.b.h., n = 80,712 individual stems) 
and a subset of the data using a ≥10 cm d.b.h. threshold (n = 16,665 
individual stems).

F I G U R E  2   (a) Percentage of locations in each realm where tree palms (≥10 cm diameter at breast height) are present. Text on bars shows 
the number of locations with tree palms, total number of locations and total area (in hectares) sampled. (b) Relative basal area of tree palms 
(BApalm, as a percentage, shown on a log10 scale) in each realm among locations where at least one tree palm was present. Circles show data 
for individual locations, with the size being proportional to the location sample area. The dotted horizontal line is a reference line delineating 
5% relative tree palm basal area. In boxplots, the bold horizontal line indicates the median; top and bottom edges of the boxes reflect the 
first and third quartiles, respectively; and whiskers extend to the most extreme data point that is not > 1.5 times the interquartile range. 
Circles show the values for individual locations

(a) (b)
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3  | RESULTS

Across all 842 locations, tree palms (≥10 cm d.b.h.) accounted for 
a total of 20,029 out of 661,194 individual stems (3%). The major-
ity of tree palms (95%) belonged to 126 species and 71 genera 
(representing c.  5 and c.  39% of globally accepted palm species 
and genera, respectively). The remaining 5% of tree palm indi-
viduals in our dataset were identified to genus only. Across all 
locations, tree palms accounted for c. 1.4% of the total basal area 
sampled.

We found a striking pattern across biogeographical realms in 
terms of tree palm occurrence, relative basal area and relative abun-
dance (Figures 1b and 2). The proportion of locations where tree 
palms were recorded was, by far, highest in the Neotropics (84%) 
compared with any other realm (41% in Australasia/Oceania, 13% 
in Afrotropics and 11% in IndoMalaya; Figure 2a). On average, loca-
tions in the Neotropics had higher BApalm (5.5%) and RApalm (8.4%) 
than locations in all other realms (mean of BApalm across other 
realms ranged from .15 to .84%; Figure 2b). In other words, palms 
represent <5% of the total basal area for trees ≥10 cm d.b.h. in 99% 
of the sampled locations outside of the Neotropics. Nonetheless, 
especially within the Neotropics, BApalm was highly variable, rang-
ing globally from 0 to 60%.

3.1 | Tree palm occurrence, abundance and 
environmental conditions

Based on t tests, there were some significant differences in environ-
mental variables between locations where tree palms were present 
versus those where they were absent, but these were not always 
consistent or significant across realms (Supporting Information 
Figure S3). For example, soil fertility (CEC) and palm occurrence were 
negatively associated among Neotropical locations and positively 
associated among Afrotropical locations. Palms were more likely to 
occur in locations with shallower water tables in Neotropical loca-
tions and deeper water tables in IndoMalayan locations. Notably, 
tree palm occurrence was associated with higher dry season rainfall 
in all realms, although the relationship was not statistically signifi-
cant in Australasia/Oceania. Results from the occurrence compo-
nent of our zero-inflated model were consistent, in part, with results 
from the t tests (Figure 3a). Specifically, palms were more likely to 
occur in locations with higher precipitation in the driest quarter and 
in locations with smaller anomalies between historical and contem-
porary dry season precipitation. Palms also tended to be recorded in 
locations with larger total area sampled.

In contrast, palm relative basal area (BApalm) was not signifi-
cantly associated with either palaeoclimate stability or current 

F I G U R E  3   Standardized effect size (estimated coefficients) with 95 and 90% credible intervals (thinner and thicker lines, 
respectively) for variables explaining (a) palm occurrence and (b) relative palm basal area (BApalm). For visualization, estimated 
coefficients in (a) were multiplied by minus one to allow a more intuitive interpretation (i.e., meaning that they correspond to the 
probability of palms being present rather than absent). Points represent median values of posterior distributions and are filled when 
95% credible intervals do not overlap zero. See the Supporting Information Figure S5 for full posterior parameter distributions. 
The mean annual precipitation anomaly and the driest quarter precipitation anomaly refer to the absolute difference between the 
Last Glacial Maximum (21,000 years ago) and modern climatological averages (1979–2013) for each of those climate variables, 
respectively. The CWM wood density refers to the basal area-weighted mean wood density value among non-palm trees recorded in 
each location
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precipitation in the driest quarter (Figures  3b and 4). However, 
BApalm was positively associated with current mean annual pre-
cipitation (Figures  3b and 4c). There were also significant nega-
tive associations between BApalm and CEC (soil fertility), depth to 
water table and CWM wood density (Figures  3b and 4e–h). The 
relationships between BApalm and canopy height and area sampled 
were not statistically significant. Together, these results indicated 
that tree palms accounted for a greater proportion of total basal 
area in locations with lower soil fertility, closer access to ground-
water and lower CWM wood density. The R2 of the full model was 
.26 [95% credible intervals (CIs) = .21–.32; Supporting Information 
Tables S2-3].

3.2 | Implications for above-ground 
biomass estimates

As expected, the difference in AGB estimated by the two meth-
ods (AGBGoodman+Chave versus AGBChave-only) increased with BApalm 
(Figure  5). However, the direction and magnitude of the change 
in AGB predictions were not consistent. For example, where 
palms accounted for >10% of total basal area, the ratio of AGB 
calculated using the two methods ranged from 0.84 to 1.05. 
Notably, for non-Neotropical locations with BApalm > 1%, values of 

AGBChave-only were always higher than those of AGBGoodman+Chave 
(Figure 5).

3.3 | Effect of size threshold

In total, 116 of the 144 Gentry transects considered included at least 
one palm. Across all transects and using a 2.5 cm d.b.h. threshold, 
4,502 palm individuals (from 177 species) accounted for 5.5% of the 
total individuals (80,712) and 2.8% of the total basal area. When 
using a 10 cm d.b.h. threshold, there were 880 palm individuals (from 
76 species) that accounted for 5.3% of the total individuals (16,665) 
and 2.5% of the total basal area. Among Neotropical transects, 
changing the size threshold from 2.5 to 10 cm d.b.h. caused palm 
relative basal area (BApalm) to increase or decrease in 60 and 40% of 
the transects, respectively (Figure 6). In the other realms, however, 
BApalm increased in 16 out of 17 transects (94%) when stems down to 
2.5 cm d.b.h. were included. In fact, outside of the Neotropics, 53% 
of the transects with at least one palm present at the 2.5 cm d.b.h. 
threshold had no palms recorded above the 10 cm d.b.h. threshold. 
These results indicate that the majority of palm abundance in lo-
cations outside the Neotropics occurs in the 2.5–10 cm d.b.h. size 
class. The different d.b.h. thresholds changed the value of BApalm in 
each transect by ≤ 14% (Figure 6).

F I G U R E  4   Bivariate plots of tree palm relative basal area (BApalm, as a percentage, shown on a log10 scale) versus environmental 
covariates for locations in four biogeographical realms. The tick marks along the x axis represent locations without tree palms recorded; 
symbol size is proportional to the sample area of the location. Covariates with significant effects (i.e., 95% credible intervals did not overlap 
zero) are indicated with an asterisk (*), and fitted slopes are shown; covariates with non-significant effects are indicated with NS. Mean 
annual precipitation anomaly and driest quarter precipitation anomaly refer to the absolute difference between the Last Glacial Maximum 
(21,000 years ago) and modern climatological averages (1979–2013) for each of those climate variables, respectively. The CWM wood 
density refers to the basal area-weighted mean wood density value among non-palm trees recorded in each location

(a)

(e) (f) (g) (h)

(b) (c) (d)
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4  | DISCUSSION

4.1 | Patterns and drivers of tree palm abundance 
and diversity

Tree palms were clearly most abundant in Neotropical forests, 
where they composed ≤ 60% of the total forest basal area and stem 
abundance. We consider these figures to be conservative estimates 
because we did not consider areas of tree palm monodominance, 
which will require a separate and focused treatment. Reinforcing 
prior work (e.g., Dransfield et  al.,  2008; Moore,  1973; ter Steege 
et  al.,  2013, 2019), tree palms are particularly abundant compo-
nents of forests in western Amazonia, which is also a hotspot of 
palm diversity (Svenning et al., 2008). In contrast, tree palms play a 
relatively minor role in terms of abundance in other biogeographical 
realms, especially the Afrotropics and IndoMalaya [with notable ex-
ceptions of tree palm monodominance in some swamps of these re-
gions (Dargie et al., 2017)]. Tree palms do, however, reach relatively 
high levels of relative abundance in some plots in Madagascar and on 
the northeast coast of Australia (≤ 14% of the total basal area), but 
these locations were exceptional in comparison to most locations in 
those realms.

In our study, local conditions, including current climate, edaphic 
properties and proxies for turnover rates, were more strongly re-
lated to tree palm abundance within biogeographical realms than 
our metrics of palaeoclimate stability. In particular, tree palms had 

greater relative abundance in locations with higher mean annual 
rainfall, lower soil fertility, shallower water tables and lighter CWM 
wood density. These results are broadly consistent with a number 
of previous studies at smaller spatial scales that have linked spatial 
distributions of palms to hydrology, edaphic conditions and stand 
turnover rates (Costa et  al.,  2009; Eiserhardt et  al.,  2011; Emilio 
et al., 2014; Svenning, 2001).

Our finding that palms were relatively more abundant in loca-
tions with low soil fertility, shallow water tables and lighter CWM 
wood density might reflect related underlying processes. For 
instance, Schietti et al.  (2014) reported a strong relationship be-
tween water table depth and palm community composition in for-
ests of central Brazilian Amazonia. Likewise, Castilho et al. (2006) 
found greater palm biomass in sites with poorly drained, sand-rich 
soils. Quesada et al. (2012) reported that forests with lighter CWM 
wood density are associated with shorter stem residency times, 
and palms may be more likely to be abundant at sites that face 
more severe or frequent disturbances. In fact, some areas regu-
larly exposed to wind disturbance, for example, show high lev-
els of tree palm abundance (e.g., Caribbean islands, east coast of 
Australia). Emilio et al. (2014) linked palm abundance in Amazonian 
forests with aspects of soil structure and suggested that edaphic 
properties, such as soil depth and texture, might affect plant com-
position and abundance indirectly by influencing stem turnover 
rates. Additionally, CWM wood density is geographically struc-
tured in our dataset; locations in western Amazonia tend to have 
lighter CWM wood density than locations in eastern Amazonia, 

F I G U R E  5   Palm relative basal area (BApalm, as a percentage, 
shown on a log10 scale) versus the ratio of estimated total above-
ground biomass (AGB) in each location calculated using the 
family-level (diameter-only) equation from Goodman et al. (2013) 
for palms and the equation from Chave et al. (2014) for trees 
(AGBGoodman+Chave) versus total AGB when palms are treated as 
trees using the equations of Chave et al. (2014) (AGBChave-only). 
Values on the y axis less than one indicate that using the equation 
from Goodman et al. (2013) for palms leads to a decrease of the 
estimated plot-level biomass, and vice versa

 F I G U R E  6   Effect of size threshold on palm abundance. 
Difference of BApalm (as a percentage) for 116 Gentry transects 
when using a 2.5 versus 10 cm diameter at breast height (d.b.h.) 
size threshold. Each bar represents one transect where at least one 
palm was present. Positive values indicate that BApalm was higher 
when stems down to 2.5 cm d.b.h. were included, and vice versa. 
Asterisks indicate transects where palms were recorded in the 
2.5 cm d.b.h. data but absent from the 10 cm d.b.h. data. The inset 
shows the percentage of transects where palms were present with 
a 2.5 cm d.b.h. threshold and absent at the 10 cm d.b.h. threshold

∆ 
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potentially reflecting gradients in drought and nutrient stress (ter 
Steege et al., 2006).

We hypothesized that long-term climatic conditions could also 
influence current patterns of tree palm abundance based on the 
climatic sensitivity of palms (Reichgelt, West, & Greenwood, 2018; 
Tomlinson, 2006). In some respects, our results are broadly similar 
to global patterns of palm diversity (i.e., high diversity and relative 
abundance of tree palms in the Neotropics but not the Afrotropics). 
However, variation of tree palm relative abundance within realms was 
not significantly related to the anomaly of either mean annual precip-
itation or dry season precipitation between the LGM (21,000 years 
ago) and the current period. It appears that local environmental het-
erogeneity mediates palm relative abundance more strongly within 
biogeographical realms, whereas legacy effects of palaeoclimate 
might be more apparent at larger scales. Interestingly, palaeoclimate 
stability (anomaly of dry quarter precipitation) was (negatively) asso-
ciated with palm occurrence. We might generally expect abundance 
to exhibit less coupling to historical legacies than diversity, given that 
species present in a locality have the potential to respond in a rel-
atively rapid manner to current environmental conditions through 
population growth. In other words, processes governing abundance 
are likely to occur along shorter time-scales than processes affecting 
species richness (i.e., speciation, extinction, immigration).

In this study, we were unable to assess the role of several po-
tentially important drivers of palm abundance directly. First, hu-
mans have affected tropical landscapes for millennia (Roberts, Hunt, 
Arroyo-Kalin, Evans, & Boivin, 2017) and, especially given the many 

uses of palms (Cámara-Leret et  al.,  2017), past and recent human 
activity could influence observed contemporary patterns of palm 
abundance. Levis et al. (2017) showed that domesticated tree spe-
cies, including several tree palms, were more abundant in forests 
near archaeological sites in Amazon forests, suggesting long-term 
human impacts on the composition and structure of tropical for-
ests. In contrast, Piperno, McMichael, and Bush (2019) reported a 
lack of evidence for ancient human impacts on palm abundance in 
Amazonian terra firme forests. Humans have clearly impacted forests 
in other biogeographical realms also (Hunt & Rabett, 2014; Malhi, 
Adu-Bredu, Asare, Lewis, & Mayaux, 2013; Roberts et al., 2017), but 
we do not expect human activity to have altered the broad biogeo-
graphical patterns we report. The degree to which human activities 
have impacted populations of palms and other trees requires more 
study.

Second, we cannot rule out the possibility that the historical 
presence or absence of certain palm lineages influences patterns of 
palm abundance. Palms display strong spatial phylogenetic structure 
(Kissling, Baker, et al., 2012; Figure 7), showing that different regions 
are characterized by different lineages. If certain lineages have a 
particular tendency to evolve highly abundant tree palms, this could 
drive patterns like the ones observed here. For example, the palm 
tribes Euterpeae, Iriarteae and Cocoseae, which include the most 
abundant palms in Amazonia (ter Steege et al., 2013), are absent out-
side the Neotropics (except for a few Attaleinae species in South 
Africa and Madagascar, which, interestingly, are not particularly 
abundant there). Also, non-human animal seed dispersers influence 
palm diversification and diversity via eco-evolutionary interactions 
(Onstein et al., 2017), and these mutualisms could also potentially 
influence contemporary palm abundance patterns. For instance, 
Onstein et al. (2018) argued that palms with megafaunal fruits (some 
of which could also be large tree palms) may have reduced abun-
dance and increased extinctions owing to the extinction of their 
megafaunal dispersers (also see Doughty et al., 2016). Quantifying 
these effects will require additional phylogenetic analyses, which 
will be attempted soon, once a comprehensive species-level phylog-
eny of the palm family is available.

Finally, our dataset does not include swamp habitats, and some 
tree palms are known for forming monodominant stands, especially 
in swampy conditions associated with large carbon pools. For exam-
ple, palm swamps in the Congo basin, Amazonia and southeast Asia 
cover millions of hectares and store huge amounts of biomass both 
above and below ground (Dargie et al., 2017; Kahn & Mejia, 1990). 
Better understanding of these unique habitats requires additional 
work; recent progress has been made using various remote sensing 
techniques (e.g., Dargie et al., 2017).

4.2 | Implications for above-ground 
biomass estimates

One motivation for our study was to gain a better understanding of 
the potential error introduced to estimates of AGB when tree palms 

F I G U R E  7   Phylogeny of palms (Faurby, Eiserhardt, Baker, & 
Svenning, 2016) showing the presence (in bold colour) or absence 
(in faint colour) for each species in each biogeographical realm 
based on the world checklist of palms (WCSP, 2017) in the “level 
3” geographical units defined by the International Working 
Group on Taxonomic Databases (TDWG; Brummitt, 2001) and 
biogeographical realms defined by Olson et al. (2004). The 
outermost ring is black for species known to reach a maximal 
diameter at breast height (d.b.h.) ≥ 10 cm (“tree palms” in this 
study), grey for species with maximal d.b.h. < 10 cm, and white for 
species for which maximum d.b.h. information was not available 
(28%) (Kissling et al., 2019)
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are pooled with other trees. Specifically, standard allometric equa-
tions generated for trees that estimate AGB from stem diameter per-
form in a relative poor manner when estimating biomass for palms 
because, unlike other trees, growth in diameter and growth in height 
of palms are largely decoupled. The magnitude of error this intro-
duces clearly depends, in part, on tree palm relative abundance. In 
our dataset, pooling tree palms with other trees added error to AGB 
estimates, but the direction of the error was not consistent. Pooling 
palms with dicots most often led to an overestimation of AGB [com-
pared with estimates based on using the family-level model from 
the study by Goodman et al. (2013) for palms and the dicot models 
of Chave et al.  (2014) for non-palm trees]. Variation in the magni-
tude and direction of these estimates emerged, in part, from the 
geographical variation in the equation of Chave et  al.  (2014). The 
differences in AGB estimates between the two methods used here 
(AGBGoodman+Chave and AGBChave-only) were <1% in >90% of locations 
where BApalm was <5%, indicating that error from palms is prob-
ably negligible when palms are minor components of the total for-
est basal area. However, the difference between the two methods 
increases with BApalm, and the difference ranged from −15 to 6% in 
our dataset. Future analyses using data on stem height are needed 
to refine these estimates, and additional species- and region-spe-
cific palm allometric models will be important to improve AGB esti-
mates in many Neotropical forests where tree palms are abundant. 
Fortunately, increasingly available remote sensing data on canopy 
height (e.g., NASA GEDI) will improve this situation when paired with 
appropriate ground-based data. Additionally, recent advances in re-
mote sensing to identify palms (Tagle Casapia et al., 2020) will also 
help to identify areas where attention to palm abundance is impor-
tant to reduce the error in biomass estimates.

4.3 | Palm life-forms and the effect of size threshold

To some extent, the patterns we report reflect these differences in 
palm life diversity across biogeographical realms. For example, clades 
that assume a climbing form (e.g., rattans in the subfamily Calamoideae) 
constitute a major component of palm diversity in the IndoMalayan 
and Australasian biogeographical realms (Couvreur et al., 2015). In the 
Neotropics, in contrast, many abundant palm species grow as large 
canopy trees (e.g., Astrocaryum chambira, Euterpe precatoria, Iriartea 
deltoidea, Oenocarpus bataua), which are among the hyperdominant 
species of Amazonia (ter Steege et  al.,  2013). Meanwhile, under-
storey species also make up a large portion of palm diversity in the 
Neotropical, IndoMalayan and Australasian biogeographical realms 
(e.g., Bactris and Geonoma species in Amazonia; Dypsis in Madagascar; 
Pinanga and Licuala in IndoMalaya; Pritchardia in parts of Oceania).

Contrasting patterns of life-form diversity influence the patterns 
of abundance we report, because the forest inventory datasets we 
used only include trees with a large diameter (e.g., 10 cm). On the 
one hand, plots censused with this size threshold are adequate for 
quantifying important forest properties (Bastin et  al.,  2018; Lutz 
et al., 2018; Slik et al., 2013; Stephenson et al., 2014). For example, 

Lutz et al. (2018) showed that half the above-ground living biomass 
in a global dataset of forest plots was stored in the largest trees, 
which made up 1% of the total stems. On the other hand, major 
components of biodiversity are neglected by using a size thresh-
old of 10  cm d.b.h., because a substantial amount of tropical rain 
forest diversity exists as understorey and slender climbing plants 
(Cicuzza et al., 2013; Hubau et al., 2019). For palms, we estimate that 
c. 40% of all species reach a diameter of 10 cm (Kissling et al., 2019; 
Figure 7). The plot dataset we analysed included a total of 126 palm 
species, which represent c. 5% of the total known palm species and 
nearly 20% of the species known to reach 10 cm d.b.h. Meanwhile, 
lowering the diameter cut-off for the Gentry transect dataset from 
10 to 2.5 cm resulted in the inclusion of 51 additional palm species 
despite containing < 25% the number of palm individuals.

Our analysis of the Gentry transect data provides additional con-
firmation that biogeographical differences in palm life-form diversity 
can affect the perception of palm abundance. For example, small-di-
ameter climbing palms are diverse and more common in IndoMalaya 
compared with arborescent palms (Couvreur et  al.,  2015). In fact, 
many IndoMalayan palm species (e.g., rattans) are unlikely to reach 
even the 2.5  cm d.b.h. used by Gentry; a major part of palm di-
versity in the IndoMalayan realm is contributed by the subfamily 
Calamoideae, which comprises mostly climbers. Notably, acaules-
cent (or stemless) palms can also be common in Neotropical forests. 
Overall, a comprehensive understanding of the abundance of palms 
across the entire phylogenetic tree will require additional data that 
include small size classes and different life-forms.

We propose several additional potential reasons for generally low 
tree palm abundance in the Afrotropics and IndoMalaya in addition 
to the differences in life-forms described above. The first reason may 
be related to the generally tall forest canopies in these realms, espe-
cially IndoMalaya, compared with the Neotropics (Banin et al., 2014). 
These conditions may favour the evolution of alternative life-forms, in-
cluding climbers (Couvreur et al., 2015). In fact, Couvreur et al. (2015) 
reported a link between diversification of the climbing life-form in 
palms and forest canopy height. Additional synthetic work integrating 
abundance patterns with evolutionary drivers of palm life-form varia-
tion could be a fruitful research avenue. Second, for IndoMalaya, we 
note that dry quarter precipitation is greater in locations with palms 
than in locations where palms were absent (Supporting Information 
Figure S2d). On average, locations in this realm without palms have 
only c. 50 mm rain during the driest quarter, whereas sites with palms 
have >100 mm. It is possible that the minimum monthly rainfall gener-
ally limits palm occurrence in many areas that have months of rainfall 
<100 mm, which includes much of mainland Southeast Asia.

4.4 | Conclusions and future directions

The results of our analysis of tree palm abundance show that tree 
palms are not only quintessentially tropical, but also overwhelmingly 
Neotropical. Although palaeoclimatic conditions appear to have a 
strong influence on global palm diversity, tree palm relative abundance 
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was more strongly related to current ecological conditions, and tree 
palm abundance patterns might be particularly sensitive to future cli-
mate change. Future research should focus on specific drivers (and 
interactions among drivers) linked to tree palm abundance within 
biogeographical realms. We suggest that stronger consideration of 
the influence of palms can reduce uncertainty in biomass estimates. 
Especially in the Neotropics, improvement of our understanding of 
carbon cycling will require additional fieldwork to measure palm 
height and develop new allometric equations for palms. High tree 
palm relative abundance in locations with low average wood density 
(presumably, high-turnover forests) might also dramatically impact 
field estimates of forest productivity, because measurements of palm 
height growth are typically neglected. We also show that understand-
ing the general patterns of abundance across the entire palm family 
will require additional work to understand macroevolutionary drivers 
of palm life-form diversity. Finally, our study illustrates the synergistic 
research potential of large data-sharing networks such as RAINFOR 
in South America and AfriTRON in Africa (Hubau et al., 2013; Lewis 
et al., 2013, Lopez-Gonzalez et al., 2009; Lopez-Gonzalez et al., 2011). 
Besides storage and organization of data to facilitate research, these 
networks strengthen the entire research chain (seeking field funding, 
fieldwork, developing protocols, allometries, collaborations, training, 
database design and quality control). Networks such as these are es-
sential for conducting broad-scale and data-rich analyses. As develop-
ment of these networks continues, it will be especially useful if they 
are even denser than today and even more balanced in terms of bi-
omes, biogeographical realms and natural and disturbed sites.
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