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Abstract

In this review we identify a new category of methods for implementing and solving structural optimization problems that
has emerged over the last 20 years, which we propose to call feature-mapping methods. The two defining aspects of these
methods are that the design is parameterized by a high-level geometric description and that features are mapped onto a non-
body-fitted mesh for analysis. One motivation for using these methods is to gain better control over the geometry to, for
example, facilitate imposing direct constraints on geometric features, while avoiding issues with re-meshing. The review
starts by providing some key definitions and then examines the ingredients that these methods use to map geometric features
onto a fixed mesh. One of these ingredients corresponds to the mechanism for mapping the geometry of a single feature
onto a fixed analysis grid, from which an ersatz material or an immersed-boundary approach is used for the analysis. For
the former case, which we refer to as the pseudo-density approach, a test problem is formulated to investigate aspects of the
material interpolation, boundary smoothing, and numerical integration. We also review other ingredients of feature-mapping
techniques, including approaches for combining features (which are required to perform topology optimization) and methods
for imposing a minimum separation distance among features. A literature review of feature-mapping methods is provided
for shape optimization, combined feature/free-form optimization, and topology optimization. Finally, we discuss potential
future research directions for feature-mapping methods.

Keywords Structural optimization - Fixed-grid - High-level design - Feature-mapping

1 Introduction but without altering its topology, i.e., without adding or

removing holes. Topology optimization can simultaneously

Structural optimization methods can be classified into size,
shape, and topology optimization. Size optimization mod-
ifies dimensions of the structure such as the cross section
of truss members or the point-wise thickness of plates.
Shape optimization modifies the boundaries of the structure,
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change the shape of the structure and its connectivity.

A key aspect of these methods is the mechanism
they employ to update the analysis model upon design
changes. Some methods deform the analysis mesh when
the design changes. Most topology optimization methods,
and some shape optimization methods, use a mesh that
does not conform to the boundaries of the structure.
Density-based methods, which are the most prevalent
topology optimization techniques, employ a pixel/voxel
representation of the design, typically based on the analysis
grid. Level-set methods, which can be used for both shape
and topology optimization, use the zero level set of a
function to define the structural boundaries. Density-based
and level-set methods endow the optimizer with substantial
freedom, rendering organic, free-form designs.

In recent years, new methods have been developed
to implement and solve structural optimization problems
that are motivated by obtaining designs that have some
desired ‘“high-level” geometric features (which we will
define later in this article) without the need to re-create a
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body-fitted mesh upon design changes. These methods have
been largely motivated by the need to embed primitive-
shaped components in free-form designs, to design struc-
tures made of stock material, to control certain dimensions
of the structure, and ultimately, to provide a geometric
representation that is directly understood by computer-
aided design (CAD) systems. In addition, these meth-
ods may represent designs with a low number of vari-
ables, which may be beneficial to, for example, the
use of gradient-free optimizers. These methods build on
aspects of existing techniques in (density-based) topol-
ogy optimization, shape optimization and level-set meth-
ods. Despite their similarities, these methods originated
independently and hence do not describe themselves as
part of a common approach within structural optimization.
Consequently there is no commonly used label for these
new methods.

We propose the term feature-mapping, which is defined
as a method that uses a high-level geometric feature
parameterization that is mapped onto a non-body-fitted (and
typically fixed) mesh for analysis (see Section 2.4 for the
definition).

We note that density-based and level-set methods have
successfully incorporated techniques to introduce some
geometric constraints that are driven by manufacturing
considerations (so-called manufacturing constraints) (cf.,
for instance, the reviews by Liu and Ma 2016; Liu
et al. 2018b and the references therein). However, these
techniques with low-level geometric parameterizations
cannot readily impose constraints on high-level geometric
features, and thus, they are not considered in this review.

We recognize that some methods covered in this review
have possibilities that other methods do not. However,
from the perspective of numerical implementation, all
methods considered have two things in common: a high-
level geometric description and mapping to a non-body-
fitted mesh for analysis. Thus, the scope and focus of
this review is on the numerical implementation (e.g.,
the feature-mapping), regardless of what the method is
named, or whether it has other possibilities—although these
are discussed in detail in Sections 6 to 8. Furthermore,
we also recognize that some methods covered in this
review could, or have been implemented without using a
non-body-fitted mesh, e.g., they use the same high-level
geometric description, but use a fitted mesh or the boundary
element method (for example). However, this review is
from the perspective of numerical implementation and the
inclusion of a method here does not exclude it from being
implemented in different ways, or belonging to a different
categorization.

This review article is structured as follows. Section 2 pro-
vides some key definitions. Section 3 reviews methods for
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mapping a single feature to a fixed-grid, including pseudo-
density and immersed-boundary methods. For pseudo-density
methods we also use a test case to investigate material inter-
polation, boundary smoothing and numerical integration.
Methods for combining features are reviewed in Section 4.
Some feature-mapping methods employ separation con-
straints, which are reviewed in Section 5. We then give a
literature review of feature-mapping methods for the follow-
ing: shape optimization (Section 6), hybrid methods (which
combine feature-mapping with free-form topology opti-
mization; Section 7), and topology optimization (Section 8).
Finally, we discuss potential future research directions for
feature-mapping methods in Section 9.

2 Definitions and key components
2.1 High-level geometric features

In this paper, we define a geometric feature as a geometric
solid with a high-level parameterization. A geometric solid
is here understood as a closed regular set of points, i.e., a
set that equals the closure of its interior (cf. Shapiro 2002).
Physically, we consider the feature can either be a solid
component or a hole in a solid component. By high-level
parameters, we refer to those with a direct spatial dimension
associated with the feature’s size, position, or orientation.
Examples of these parameters are the radius of a fillet, the
thickness of a plate, or the location of a primitive (e.g., a
bar or circle). Notably, these high-level parameters are the
ones often employed to represent solids in CAD systems.
The advantage of having these dimensions as direct design
variables is that they simplify enforcing the presence of
these features and controlling their dimensions, as opposed
to the indirect and more verbose low-level representations
of solids, such as those that are pixel or voxel-based.

2.2 Design region, body-fitted mesh, and fixed-grid

The design region corresponds to the sole region of space
where material can be placed. A mesh is a spatial partition
of the design region for the purpose of computing a
numerical approximation of the structural response. A body-
fitted mesh is one that conforms to the boundaries of
the structure for any given design, i.e., a mesh in which
no element boundary is cut by a structural boundary.
While some changes in the shape of the structure can
be accommodated by re-positioning the nodes in a body-
fitted mesh, significant shape changes and all topological
changes require the mesh to be entirely re-created in at
least some portion of the structure. These changes can
be involved and computationally expensive, particularly
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for practical mesh sizes; and in the case of quadrilateral
and hexahedral element meshes, this re-meshing cannot be
robustly automated.

The opposite approach is that of non-body-fitted meshes,
in which the element boundaries need not follow the
structural boundaries. This is the prevalent approach
in density-based topology optimization techniques, as it
greatly facilitates accommodating design changes in the
analysis. Limitations or additional effort in interpreting
design boundaries are accepted in this approach. If the mesh
remains fixed during the optimization process, it is often
referred to as a fixed-grid. The term “mesh” is perhaps
more adequate to describe this spatial discretization in that
it does not necessarily convey that the partition is structured
(as in, for example, a “10 x 10 grid”). However, the term
“fixed-grid” is widely used in the structural optimization
and computational mechanics literature to refer to the same
concept and hence we adopt it here. Accordingly, when
used alone (i.e., “grid” or “mesh”), we use these terms
interchangeably.

The majority of the works reviewed in this manuscript
use a fixed-grid approach (with the exception of some
adaptive resolution methods referenced in Section 8.6),
therefore we henceforth only refer to feature-mapping to a
fixed-grid.

2.3 Explicit and implicit geometric representations

For reasons of clarity we first define the terms explicit and
implicit with respect to the geometric representation of solid
objects. During the course of our review, we encountered
inconsistencies in the way these terms are used in the
structural optimization community. In particular, the term
explicit seems to be used in several instances whenever the
geometric representation employs high-level parameters,
regardless of the actual representation mechanism. An
explicit representation is one where points on the solid
(or its boundary) are generated by a rule, whereas an
implicit representation is one where a rule provides a test
as to whether or not a point belongs to the solid (Shapiro
2002). For example, an explicit representation of a disc
of radius R centered at the origin is given by f(t,r) =
{r cos(t), r sin(t)}, where values of the parameters 0 < ¢t <
2w and 0 < r < R generate points within the disc. On
the other hand, an implicit representation of the same disc is
given by f(x) = {1 if ||x]l2 < R, 0 otherwise}.
Density-based and classical level-set methods are
implicit. In the discretized representation of density-based
methods, given a point X, the element-constant pseudo-
density of the element that contains x determines if x is
outside or inside the solid. This point classification test is
not “sharp,” however, since in most density-based meth-
ods the density is a relaxed continuous variable. Level-set

methods are implicit by definition, since the value of the
level-set function at x determines if x is inside or outside
the structure. In level-set methods, a sharp representation
of the boundary is available for any design throughout the
optimization. This is also true when a diffuse boundary is
used for the analysis, as in ersatz material methods (see
Sigmund and Maute 2013). The fact that free-form den-
sity and level-set methods use implicit representations of
the geometry is not fortuitous, since (a) implicit represen-
tations more easily accommodate topological changes than
explicit ones (Shapiro 2002), and (b) the mesh can be used
to parameterize the implicit representations, which facili-
tates coupling with fixed-grid analysis techniques, leading
to efficient, robust methods to solve the governing equation
and compute the design sensitivities.

We consider level-set methods as those that directly
represent the design using an implicit function, independent
of the design update approach, as discussed by van Dijk
et al. (2013). It should be noted that some feature-
mapping methods reviewed in this paper also utilize implicit
functions in their formulation. Thus, they could be viewed
as level-set methods. However, our aim is to emphasize
the ability of feature-mapping methods to control high-
level geometric features, which is not a property of level-set
methods in general.

2.4 Feature-mapping

We define feature-mapping methods as those that capture
high-level geometric features in their design parameteri-
zation and that map those features onto a non-body-fitted
mesh to perform the analysis. Note that the high-level
geometric description can be either explicit or implicit.

3 Geometry mapping to fixed-grid
There are currently two main approaches to mapping high-

level geometric features onto a fixed-grid for analysis:
pseudo-density-based mapping and immersed-boundary

(a) (b)

Fig. 1 Fixed-grid mapping methods: (a) pseudo-density, and (b)
immersed-boundary based
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mapping, as illustrated in Fig. 1. Both approaches utilize a
fixed-grid for the analysis, thus circumventing the need for
re-meshing during optimization.

Generally speaking, the purpose of fixed-grid analysis
methods is to replace volume integrals evaluated over the
structural domain @ with integrals over a domain 2 2 w
that encompasses the structure

/ Fx)dx = fQ Xo®) £ () dx, )

where x,, is the characteristic or indicator function defined
as

Yo (X) = {1 fxeow @)

0 otherwise

and f is the domain integrand (for example, the virtual
strain energy density in elasticity).

Feature-mapping techniques that employ element-
constant pseudo-densities accomplish this by replacing the
corresponding element volume integral over €2, as

/ Xo®) f (0 dX ~ p, / Fxdx, 3)
Qe Q2

with the element-constant pseudo-density

Pe Xo(X). S

1] Jo,
Further, p, might be subject to an interpolation function
© (see Section 3.1.1). Consequently, the element stiffness
matrix is: K, = wu(p.) K%, where K is the “fully-
solid” element matrix. This approach is also known as the
ersatz material approach. In feature-mapping methods, p,
depends explicitly and (ideally) smoothly on the high-level
parameterization of the geometric features. This mapping
typically leads to elements of intermediate pseudo-density
near the feature boundary (see Figs. 1(a) and 2). If the
mapping is differentiable, the chain rule can be readily
used to obtain sensitivities with respect to the high-level
geometric parameters, as we explain in Section 3.1.5.

L] wio

O o

L=

Fig. 2 Fixed-grid mapping in Garcifa-Ruiz and Steven (1999) with I
(inside), O (outside) and NIO (neither inside nor outside) elements
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The immersed-boundary approach employs techniques
widely used in finite element analysis, such as the extended
finite element method (XFEM), to capture sharp interfaces
on a fixed-grid. In other words, the element volume integrals
are evaluated as

/ Xo(X) f(X)dx = / fx)dx. &)
Q. Qe.Nw

These techniques have the advantage over pseudo-density
approaches that there are no “gray regions,” which require
some assumption on their material properties. For the same
reason, immersed-boundary methods (in principle) render
more accurate analysis solutions. These advantages come
at the expense of challenges on, e.g., numerical evaluation
of integrals in elements cut by the structure boundary
and sensitivity calculation. These challenges and proposed
solutions from the literature are discussed in Section 3.2.

In the remainder of this section some important aspects of
these approaches are discussed and examined using test case
examples, in relation to their application to feature-mapping
methods.

3.1 Element-constant pseudo-density

Feature-mapping techniques that use pseudo-densities essen-
tially differ in the way they compute p, to be used in (3).

An often used approach in earlier feature-mapping
methods is to compute the element pseudo-density p, as an
approximation of the volume fraction, defined as the portion
of the element that intersects the feature, | N 2.|/|2|.
By making simplifying assumptions about the shape of the
intersected region, it is possible to use simple expressions to
approximate this volume fraction.

Garcia-Ruiz and Steven (1999) is the earliest publication
where the volume fraction approach on fixed-grids is used
in the context of feature-mapping methods (see Fig. 2).
Elements are classified as completely inside (I), completely
outside (O), or neither inside nor outside (NIO) the
structure, i.e., if the element is cut by the boundary of the
geometric feature. I and O elements have pseudo-densities
of 1 and ppin, respectively (with 0 < ppin < 1 a small
bound to prevent an ill-posed analysis). The pseudo-density
of NIO elements is computed as the volume fraction of the
portion of the element that intersects the feature (albeit few
details are provided as to how this fraction is computed),
and there is no further interpolation, i.e., ;£t(p.) = p. (see
Sections 3.1.1 and 3.1.2 for discussion on the limitations of
the element volume fraction approach).

As we will detail in Section 4, all pseudo-density tech-
niques employ an implicit geometric representation of the
feature; even when the high-level parametric representation
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is explicit (e.g., using a B-spline), it is first converted to an
implicit representation ¢,, satisfying the properties

¢P(x) >0, xEew
¢(x) =0, x € dw 6)
$0(x) <0, x ¢ o,

where x is a point in the fixed-grid design domain and dw
is the feature boundary. Note that there is no convention
in the structural optimization literature on the meaning of
the implicit function sign. In (6), we define positive values
as being inside the feature. Also, the implicit function may
be defined as the signed-distance function, d(x), where the
magnitude is computed as the shortest distance from the
point x to the feature boundary dw and the sign is the
same as ¢, (x). The distance can be computed by different
approaches, which are discussed in Section 3.1.7.

With the implicit function ¢,, representing the feature,
the Heaviside function is:

L if ¢, (x) = 0

0 if ¢, (x) < O. @

H (¢ (X)) = {
Clearly, H can directly replace x, in the left-hand side
of (3). The volume fraction approach directly uses H.
However, H (and y,,) is not differentiable, and so it is often
replaced by a smooth approximation H (see Section 3.1.4
for a detailed discussion of smooth boundary modeling
functions). One could consider the function values of H as
a continuous pseudo-density field.

The element pseudo-density is then found by integrating
the Heaviside function, or continuous pseudo-density field,
over the element volume as

1 -
b= /Q H(go(x) dx, ®)

|
which may be evaluated directly, or approximated by
numerical integration in the form of a weighted sum

Nip

pe =Y wi H($u(x)). ©)

The process of mapping conceptually consists of firstly
generating the continuous pseudo-density field and then
its integration (see Section 3.1.6 for more information on
numerical integration).

Thus, feature-mapping using pseudo-densities requires a
choice of several key ingredients: (1) the type of material
interpolation function, w(p,); (2) the form of the Heaviside
(or smooth boundary) function, H ; (3) the form of the
implicit function, ¢,(x) (signed distance or otherwise);
and (4) the integration method used to evaluate (8). These
ingredients are now discussed in detail, using test cases to
highlight the effect of certain choices.

3.1.1 Material interpretation of pseudo-density

Pseudo-density-based feature-mapping approaches not only
inherit the advantages of density-based topology optimiza-
tion in terms of the easy analysis and sensitivity computa-
tion but also inherit one of its challenges, which is how to
interpret material properties for intermediate values of the
pseudo-density. This is dictated by the form of the function
H1(pe) in (3).

In the pioneering work on topology optimization by
Bendsge and Kikuchi (1988), the stiffness properties of
porous material, in between solid and void, were determined
by mathematical homogenization of a periodic structure.
This work showed that, due to its unfavorable stiffness-to-
porosity ratio, intermediate material was barely used. This
led to the famous power law approximation p” introduced
in Bendsge (1989), now known as the Solid Isotropic
Material with Penalization (SIMP) model, to replace the
homogenization step (see also Rozvany et al. 1992). In
Bendsge and Sigmund (1999) it was shown that the power
law

peL(p) = p” 10)

with exponent p = 3 never overestimates the maximal
physical stiffness-to-porosity relationship of isotropic mate-
rial given by the upper Hashin-Shtrikman bounds (see
Fig. 3). Homogenization and the Hashin-Shtrikman bounds
show that the relative stiffness of porous isotropic material
is below its volume fraction. In Fig. 3 two further graphs are
given: the linear interpolation

miin(p) = p an

corresponds to the case of interpreting the volume
fraction of an element covered by a geometry directly as
pseudo-density, and the RAMP (Rational Approximation
of Material Properties) (Stolpe and Svanberg 2001)
interpolation

uramp(p) = p/(1+q(1 = p)) 12)

is shown for ¢ = 1 and discussed further below. Both
linear and RAMP (with ¢ = 1) interpolations are above the
upper Hashin-Shtrikman bounds and therefore overestimate
the stiffness of intermediate material in a non-physical
way (particularly the linear interpolation). Consequently, we
want to emphasize that the term penalization in SIMP does
not indicate a mathematical trick to prevent intermediate
material in the optimal design, but a realistic and physical
modeling of stiffness-to-porosity relationship.

@ Springer



F. Wein et al.

1} Iihear g
RAMP (g=1) ———
Hashin Shtrikman
ower law
0.8 P P R
2
= 0.6 R
[&]
(%]
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»
0.2 R
0 n

0 0.2 0.4 0.6 0.8 1
pseudo density p

Fig. 3 Different material interpolation functions (see Section 3.1.1).
Only the Hashin-Shtrikman bound and the common SIMP power
law satisfy physical limits for an isotropic material with intermediate
density

3.1.2 Test problem to investigate the effect of intermediate
material

A test problem is introduced in Fig. 4 to investigate the
effect of intermediate material modeling, particularly in the
context of feature-mapping methods. The vertical bar is
subject to a continuous horizontal movement with position
s. The width of the bar is four elements. According to
Fig. 2 we assign a pseudo-density p = 1 for elements fully
contained in the bar (I), a very small value to elements fully
outside the bar (O), and for the partially covered elements
(NIO) a density value corresponding to the covered element
volume fraction (which is the same as using the exact
Heaviside in (3)).

Note that if NIO elements along the left-hand boundary
of the bar have pseudo-density p, then NIO elements along
the right-hand boundary have a pseudo-density 1 — p, since
the width of the bar is a multiple of the element size.

The element pseudo-density p, is then interpolated using
the functions shown in Fig. 3. We refer to u(p) as the
physical pseudo-density, since, according to (3), this is
the element-constant material property scaling in the finite
element analysis. The upper Hashin-Shtrikman bounds are
given for a Poisson’s ratio of 0.3 as u(p) = p/(3 — 2p)
(see Bendsge and Sigmund 1999). To measure the grayness
of the boundary elements we introduce

g(u(pe)) =4 p(pe) (1 = pe(pe)), 13)
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where (p.) = 0.5 results in the highest grayness value of
1.0.

The compliance for the test problem in Fig. 4 is evaluated
for the linear material interpolation (material stiffness
directly proportional to the covered element fraction) in
Fig. 5a and additionally for all material interpolation
functions from Fig. 3 in Fig. 5(c). The linear material
interpolation shows improved (lower) compliance when
the bar edge is positioned between elements, giving a
high grayness value (see Fig. 5(a)). Peaks of poorer
(high) compliance are seen when the bar is aligned with
element edges, resulting in no gray boundary elements.
Using the upper Hashin-Shtrikman bounds for material
interpolation shows an increased compliance when gray
elements are involved, reflecting the inefficient stiffness
of porous structures in reality. This effect is amplified for
the classical SIMP power law. Realistic compliance values
are obtained only when the bar edges align with element
boundaries, as there are no intermediate, gray densities.

These three material interpolation functions show that
the compliance is non-monotonic with respect to the
bar position s. In an optimization problem, the linear
interpolation function will likely favor intermediate bar
positions, while the Hashin-Shtrikman bounds and the
power law will likely favor bar positions aligned to mesh
elements - hence the problem becomes somewhat mesh-
dependent. We note that this effect is caused only by the
process of mapping the feature onto the fixed-grid using
pseudo-densities, since analysis of this example with a
conforming mesh would render a monotonic compliance
curve. Interestingly, the RAMP interpolation function with
parameter ¢ = 1, which is u(p) = ﬁ, exhibits an almost
monotonic compliance with respect to the design change for
this test problem.

AN

(a) Continuous (b) Discrete

Fig. 4 H-shape test problem where the horizontal position of the
vertical bar is given by the variable s. The force vector is applied on
the upper left corner: (a) continuous setting; (b) discretized problem
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i” linear
=157 1 1200 |
900 | =
1100 & | / \ | 900 ¢
[%2]
2
600 ¢ g 600 r
15 2o05¢ linear 1
g RAMP (g=1) —— 300 |
2 Hashin-Shtrikman
300 0 s 0 ,___bower law p ‘ 0 =
10 11 12 13 14 15 16 0 0.2 0.4 0.6 0.8 1 0 2 4 6 8 10 12 14 16

bar position s in elements
(a) Linear

Fig. 5 (a) Compliance and grayness for the benchmark from Fig. 4
with linear material interpolation (where stiffness is scaled by the vol-
ume fraction covered by the bar); (b) sum of grayness values of the
physical density g(u(p)) (13) for left and right edges of the vertical

The authors are only aware of one work in the literature
where this interpolation function is used in feature-mapping
methods (Zhang et al. 2017a). However, RAMP is not
introduced with the purpose of avoiding mesh dependency,
but to favor reintroduction of geometric features during
optimization.

In addition to non-monotonicity, Fig. 5(c) reveals another
aspect of the feature-mapping: the compliance is non-
smooth, as it exhibits “kinks” whenever the vertical bounda-
ries of the moving bar coincide with element bounda-
ries. This non-smoothness is present even for the seemingly
smoother RAMP interpolation.

3.1.3 Principal boundary modeling approaches

Mapping a feature to a fixed analysis grid requires modeling
the boundary when the design is not exactly aligned to
the mesh. However, as shown in the previous section,
this may lead to non-monotonicity, non-smoothness and
mesh dependency. The results in Section 3.1.1 assume the
boundary is modeled by an exact Heaviside function (7). In
this section, we investigate the effect of using a smoothed
Heaviside, or boundary smoothing, on the test problem.

pseudo density p

0 L1 ‘ ‘
0 5 10 15 20 25
element spacing

Fig.6 1D boundary modeling (in magenta): exact Heaviside function
(left), piecewise linear (14) (center) and tanh smoothing (15) (right)
and their element-constant pseudo-density values (in green)

pseudo density p
(b) Grayness

bar position s in elements
(c) Compliance

bar, corresponding to moving s by one element in Fig. 4 for dif-
ferent interpolation functions; and (c) their corresponding structural
compliance values. See Section 3.1.1 for a detailed discussion

First, we consider a 1D model of the bar cross section
in the test case example of Fig. 4. This feature is modeled
by assigning a pseudo-density p = 1 to any point
inside the feature and a very small value ppniy to points
outside the feature (similar to the characteristic function as
defined in (2)). In Fig. 6, three approaches to model the
transition between material and void across the boundary
are shown. The first is an exact Heaviside function, (7), as
in Section 3.1.1; this function is discontinuous, a fact we
denote as the function being C~!. The other functions are
as follows: a continuous, but non-differentiable piecewise
linear function, which is C°

Pmin ifd(x) < —h

Hiin(d(X), h) 1=} (1 = ppyin) 40 4 Demin if |4 (x)| < h
1 ifd(x) > h,

(14)

where h defines the size of the transition zone between
material and void, and a tanh-like function, which is C®°, as
used in Wein and Stingl (2018)

~ 1
Hianh (d (%), B) = (1= 0Omin) (1 - m)‘ﬁomin, (15)

where f is a parameter that controls the size of the transition
zone. The function is also known as sigmoid function. Note
that we have chosen the signed-distance function (d(x)) as
the implicit function in the above equations. For further
discussion on how the choice of implicit function affects
boundary mapping, see Section 3.1.4.

To obtain the element-constant pseudo-densities for the
fixed analysis grid we evaluate (8). For simplicity, we
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Fig. 7 Compliance values for the boundary modeling functions in
Fig. 6 applied to the test problem in Fig. 4. Due to the linear density-to-
stiffness interpolation the compliance is underestimated (see Fig. 5(c)).
The compliance for a conforming mesh is plotted for reference

assume the linear material interpolation model from Fig. 3.
The corresponding element-constant pseudo-densities are
shown in Fig. 6. Again, the element grayness values depends
on the alignment of the boundary modeling function with
respect to the mesh (see Fig. 5(b)). However, the sum over
all elements attains a constant value for the piecewise linear
and tanh functions (see Fig. 12). Applying these functions
to the test problem, we get the compliance values shown
in Fig. 7. The result for the exact Heaviside function has
already been given in Fig. 5(c); the piecewise linear and tanh
functions result in visually smooth compliance functions
that are artificially good (low). The smoothness results
from the boundary smoothing, while the artificially low
compliance results from the linear material interpolation.

Upon evaluation of (8), the resulting pseudo-density
pe(s) and hence the compliance become CY for the exact
Heaviside function, C! for the piecewise linear function
and stays C* for the tanh function, with respect to a
change in s. For optimization we require C!, hence the
piecewise linear boundary modeling function is sufficient.
For more discussion on the effect of numerical integration,
see Section 3.1.6.

3.1.4 Further smooth boundary modeling approaches
In this section, we review further smooth boundary

modeling approaches used in feature-mapping methods.
Typically they are piecewise defined with a transitioning
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zone controlled by the parameter %, and transition function

Otrans 4S
Pmin if g, (X) < —h
H($o(X), 1) := { Oans (b (X), ) if [ ()| <h  (16)
1 if ¢y, (X) > h.

For example, the transition function for the piecewise linear
boundary model (14) is

¢ (x)

1 + pmi
olin = (1 — Pmin) W"'—mm

2

A common choice of transition function is based on a spline
representation as a cubic function with zero slope on both
sides of the transition zone, which is used by, e.g., Zhang
et al. (2016¢) and Dunning (2018)

_ 3(1 — pmin) (P (X) ¢(X)3 1 + Pmin
Tpoly = Ty 3w )T T

Another choice is based on a trigonometrical function:

G — (1 — pmin) cos P (x) _ l )+ 1 4 Pmin
s = 2 2h 2 2

19)

a7

(18)

Note that the tanh-like function (15) has no finite transition
zone.

In this section, the more general implicit function, ¢ (x),
is used instead of the signed-distance function, d(x), as not
all feature-mapping methods use a signed-distance function.
If a signed-distance function is used, then the magnitude
of the implicit function spatial gradient is 1, ||Vd|| = 1,
and the width of the transition zone between solid and
void is defined as follows: w = 2h. In Section 3.1.6 we
also introduce the discrete element transition zone wp. If
[IV@|| < 1, the transition zone will be stretched, with w >
2 h. Conversely, if ||V¢|| > 1, then the transition zone will
be compressed, with w < 2 h. This issue is discussed and
investigated by Zhou et al. (2016), where it is argued that
a signed-distance function should be used to avoid issues
caused by a varying spatial gradient of ¢ around the feature
boundary, as this influences the accuracy of the structural
response and gradient computation (see also Section 3.1.6).
For further discussion on computing the signed-distance
function, see Section 3.1.7.

Section 3.1.2 shows the limitations of obtaining the
element pseudo-density p, as volume fraction of a grid
cell e covered by a non-smoothed feature. A particular
issue demonstrated in Norato et al. (2004) is that the
volume fraction calculation becomes non-differentiable if
a portion with non-zero measure of the feature boundary
coincides with the element boundary—for instance, in the
test problem of Fig. 4 when the sides of the vertical bar
align with element boundaries. This problem can be readily
circumvented by using a circular (2D) or spherical (3D)
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Fig. 8 Smooth boundary modeling by polynomial (18) (almost
identical to cos (19)) and volume fraction with circular sampling
window (20) with transition zone 2 i equal to one element width. The
tanh-based function (15) is plotted with 8 = 6.5. All functions are
plotted assuming a signed-distance function

sampling window (instead of the element itself) to compute
the volume fraction, and by linearizing the boundary of the
feature within the sampling window (cf. Norato et al. 2015).
This leads to a closed formula for the transition function,

which is given for 2D as
d 2
{— < (X))
h

Ocirc = l cos™! (_—d(x)) + @
b4 h h

within the framework of (16). However, note that numerical
integration in (8) is not used in this case, as (20) is derived
from an exact analytical integration of the volume fraction
of the linearized feature boundary within the circular
sampling window and thus only requires the signed-distance
information from the element center to the feature boundary.

A comparison of boundary smoothing functions is shown
in Fig. 8.

(20)

3.1.5 Sensitivity analysis

One of the appealing features of the element pseudo-
density approach in feature-mapping methods is that, as
in density-based topology optimization, the computation of
design sensitivities is much simpler than for approaches that
must compute boundary sensitivities (as in some level-set
methods). Moreover, as we will show in this section, the
computation of sensitivities is closely connected to that of
density-based methods.

Sensitivity analysis in density-based topology optimiza-
tion is well established. It can be readily performed on
the discretized algebraic system resulting from a finite ele-
ment analysis for a wide range of functions, and even
multiphysics problems fit one of the known generalized
derivations (see Bendsge and Sigmund 2003).

We briefly review sensitivity analysis for standard
density-based topology optimization and consider the easy
static case, where the finite element system matrix K

depends explicitly on the vector of element pseudo-densities
p, the state solution u depends only implicitly on p and the
boundary conditions are assumed to be design-independent.
The system of linear equations arising from the finite
element discretization reads

K(p)u(p) =f. 2y

Using adjoint differentiation (e.g., Troltzsch 2010), the
sensitivity of a function J(p, u(p)) with respect to an
element pseudo-density can be written as

dJ 0J K

umT
d pe 8Pe

(22)

The partial derivative 2L a is for many functions zero, %I;
trivial to obtain and A solves the adjoint problem

aJ

-
K(p)A(p) = — (£> : (23)

Notably, the adjoint solution A is independent of the design
parameterization, because the pseudo-load in (23) does not
depend explicitly on the design variables. Consequently, the
adjoint solution needed for feature-mapping methods is the
same as the one obtained for other topology optimization
techniques.

Once the adjoint solution is computed, feature-mapping
methods with pseudo-densities only need to compute the
derivative of the boundary mapping function to obtain
derivatives of pseudo-densities with respect to the high-level
design parameters, s ;. The final derivative is obtained by the
chain rule as

€ T %
ds; _Xe:{[ape pe)'(p) K (p)] 35;’}' &4

Note that the boundary modeling function (16) is constant

outside of the transition region, hence 2 a = 0 in the void
Sj

region (i.e., H = = Pmin) and the sohd region (i.e., H =
1). It thus follows from (9) that = “_ is non-zero only in
regions with intermediate pseudo- dens1ty values, namely in
the gray regions around the boundaries of the structure (see
Fig. 9). The choice of width 4 of the smoothing functions in
Section 3.1.4 controls the amount of information collected
from (22).

3.1.6 Numerical integration of the boundary mapping
function

In principle, density-based feature-mapping requires the
element-constant pseudo-density to be found by integrating
the smoothed Heaviside, or boundary mapping function (8).
In the test case example from Fig. 4, the vertical feature
is aligned with the fixed-grid. This effectively makes the
volume integral of the boundary modeling function 1D.
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Fig.9 For a smoothly mapped
shape (left) the compliance
sensitivity with respect to
pseudo-density (22) is shown in
the center. The element-wise
summand of the sensitivity with
respect to shape variables (24) is
non-zero only where the
pseudo-density has intermediate
values (right). From Wein and
Stingl (2018)

Thus, analytical integration is reasonably straightforward
and is used to generate the results above.

However, analytical integration can become involved
in two and three dimensions. Therefore, many methods
compute the pseudo-density by numerical integration as a
weighted sum via (9).

The boundary modeling function (16) influences the
choice of quadrature rule and the number of sampling
points. We now examine the effect of the number of
sampling points when using Newton-Cotes formulae to
evaluate (9). Note that zero-degree quadrature corresponds
to midpoint integration (i.e., the value of the function at
the element center) and first-degree quadrature corresponds
to the trapezoidal rule (i.e., the average of function values
at the corner positions of the element). The number
of integration points for the Newton-Cotes formula with
degree deg is Nj, = (deg + 1)dim,

The investigation uses the piecewise linear (14) and poly-
nomial (18) boundary modeling functions with transition
zone w of one element. The tanh-like function (15) is
also included, with a similar maximal slope. The signed-
distance implicit function is used. It is clear that element-
wise numerical integration of the density function does not
increase the regularity with respect to the shape variables. In

particular the piecewise linear boundary modeling function
(17) stays non-continuous differentiable. Thus, this combi-
nation is not suitable for gradient based optimization, but
we feel it worth including in the discussion.

Figure 10 clearly shows that, for the test problem, the
smoothing effect shown with analytical integration in Fig. 7
is lost when the number of sampling points in numerical
integration is too low. Although, it should be noted that the
test case is selected to reveal extreme response.

When using numerical integration, the term 83—; in (24) is
found by

Nip

3 pe OH (x;)
e L 25
os Xi:w' as (25)

We note that the multi-resolution approach in Liu et al.
(2018) effectively also performs higher order numerical
integration. The test problem is now used to investigate
the effect of the number of sampling points in numerical
integration on (25). We consider the integral of the first
element from the left and vary the bar position (see the upper
row in Fig. 11). We also introduce the element transition
zone, w,, which is defined as the number of elements across

midpoint midpoint midpoint
trapezoid rule trapezoid rule trapezoid rule
250 | 2. degree F 2. degree AR 2. degree
3. degree
200 | {0t J 1
150 17 1
100 + 1 r Z/V/\ 1
50 / /
| = =
0 L L L ! ! ! ! ! ! ! ! ! ! ! ! ! ! L L L L L !
o 1 2 3 4 5 6 7 8 0o 1 2 383 4 5 6 7 8 o 1t 2 3 4 5 6 7 8
(a) linear (17) (b) polynomial (18) (c) tanh (15)

Fig. 10 We perform the similar experiment as in Fig. 7 but this time with numerical integration via low order closed Newton-Cotes formulae (see
Fig. 6). On the x-axis, the positional variable s is varied in element units, the y-axis shows the compliance. (a) Linear (17). (b) Polynomial (18).

(c) tanh (15)
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Fig. 11 For the first elemfsnt i dp oint ‘ 0.0 w w w
[0 : 1] we perform numerical 10 trapezoid rule |
integration (9) by closed ’ 2. degree
Newton-Cotes in the left column 3. degree 05 | i
(the y-axis shows the integrated 08 1 ]
pseudo-density p) and
numerically evaluate the shape 06 1-10r 1
sensitivity in the right columns
(the y-axis shows g—?), The 04 | i
x—a.xis gives the positional 151 midpoint |
variable s. The boundary 02 | | trapezoid rule
modeling functions are linear o0 | 2. degree |
(first row), polynomial (second e 3. degree
row) and tanh (last row) 00} | . . \ , . . 4 degreg .
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
‘midpoin‘t —_— 0.0
1.0 trapezoid rule —— |
2. degree
3. degree 05 | g
0.8 1 \ J
06 | 1-10 ¢+ v 1
041 | 15 ¢ o ]
midpoint ——
02 i trapezoid rule ——
2. degree
20 3. degree il
0.0 | ‘ ‘ ‘ ‘ ‘ ‘ 4. degree ‘
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5
‘midpoin‘t —_— 0.0
1.0 trapezoid rule —— |
2. degree
3. degree 05 | g
0.8 1 A P
0.6 1 -1.0 ¢t ]
041 | 15 ¢ o ]
midpoint ——
02 i trapezoid rule ——
2. degree
-2.0 | 3. degree |
0.0 | ‘ ‘ ‘ ‘ ‘ ‘ 4. degree ‘
-0.5 0 0.5 1 1.5 -0.5 0 0.5 1 1.5

the boundary with intermediate density (pmin < pe < 1)
multiplied by the element edge length, /.

For the linear boundary modeling function (top row in
Fig. 11) with midpoint integration at Xq, 0. (Xg) varies from
I to 0 with w, = w. With trapezoidal rule, averaging the
boundary modeling function values at the left and right node
of element 0, p.(xg) “sees” the boundary a half element
earlier and a half element longer, and the element transition
zone is as follows: w, = w + [q1.

The polynomial function (18), shown in Fig. 8, has zero
slope at the end of its transition zone. Positioning the shape
in the center of the element, a variation of the position has
low impact when the boundary modeling function is only
sampled at the ends of the transition zone by trapezoidal rule

(see the center row in Fig. 11). The tanh-like function (15)
shows similar behavior, but less pronounced.

The transition zone parameter w for the smoothing
function and number of sampling points in numerical
integration are correlated. Enlarging the transition zone
allows for a lower degree of numerical integration.
Generally the density transition zone is w < w, < w + le.

In the following, we extend the transition zone w from
one element to up to four elements. We use polynomial
smoothing with midpoint integration. The left figure in
Fig. 12 shows that already a doubled transition zone of
two elements results in a significantly more monotonous
compliance function over the parameter. However, due to
the linear material interpolation (see Fig. 5), the compliance
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value becomes artificially good due to a more blurred
boundary. The grayness measured by (13) is shown in the
center image, revealing again that midpoint integration with
transition zone of one element is not sufficient. Note that a
wider grayness zone w,, allows to include more information
from the ersatz material sensitivity. Finally, we apply the
RAMP material interpolation, discussed in Section 3.1.2;
the right figure in Fig. 12 shows that it helps compensate
for the non-smoothness resulting from inaccurate numerical
integration.

3.1.7 Computing the signed distance

Feature-mapping methods often employ a signed-distance
implicit function when using pseudo-density mapping,
as this maintains the transition zone, as discussed in
Section 3.1.4.

For some explicit geometry descriptions, the signed
distance can be easily computed using an analytical
expression. For example, the distance to the edge of a
circular, or spherical feature can be directly computed
from the feature parameters (center coordinates and radius).
Features described by offset surfaces (Norato et al. 2015;
Zhang et al. 2016a), whose boundary is defined as the set
of all points equidistant to a medial line segment or surface,
readily provide direct expressions for the signed distance in
terms of the design parameters. Also, for a design feature
aligned to one principal axis, the signed distance is easily
computed. We use this approach in the test problem in
Section 3.1.2, where the design variable is simply the
position of the left edge of the vertical feature. Wein and
Stingl (2018) use a simplified spline model of horizontal or
vertical features, where the distance is obtained in the same
way (see Fig. 22(b)), although the distance in their model is
not necessary the exact distance to the feature.

To obtain the signed distance for more complex explicit
geometry descriptions, a popular method is to compute
an equivalent implicit function, which is also a signed
distance (i.e., a signed-distance level-set function). This
can be achieved using schemes popular with level-set
methods, such as the fast-marching method (Adalsteinsson
and Sethian 1999), or iteratively solving a Hamilton-Jacobi
equation in pseudo-time ¢
? + sign(¢ (x)) (I[Vd(x)[| — 1) = 0. (26)
The alternative is to directly compute the shortest distance
from a point to the boundary of the feature, as done by
Norato (2018) when using explicit features defined by
supershapes.

These methods can also be used to compute the signed
distance for other implicit geometry descriptions. However,
these methods can be computationally expensive, especially
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if required each time the design changes. Thus, for implicit
geometry representations, Zhou et al. (2016) propose using
a first-order Taylor approximation of the signed-distance
function in the form of

¢ (x)
dx)~ ————. 27
™ il @n
3.2 XFEM approaches

The alternative to pseudo-density mapping is to use
an immersed-boundary method. The main challenge of
mapping geometry onto a fixed-grid is that the boundary
does not align with the fixed-grid elements. Immersed-
boundary methods resolve this by introducing extra terms
that model discontinuities within elements, while preserving
the sharpness of the geometric interfaces. The eXtended
Finite Element Method (XFEM) is a popular immersed-
boundary approach that has been utilized by several feature-
mapping methods.

XFEM approaches model discontinuities by adding
enrichment functions and additional degrees of freedom to
nodes around the discontinuity. It was originally developed
to model crack propagation without re-meshing (Belytschko
and Black 1999; Moés et al. 1999). XFEM can also model
discontinuities between different materials, or material and
void, within an element. Thus, XFEM can be used to
model the material discontinuities created by mapping
features onto a fixed-grid. The literature on XFEM is vast
(Belytschko et al. 2009; Yazid et al. 2009) and an in-depth
review is not the focus of this paper. Instead we focus on
relevant methods and issues encountered when using XFEM
for feature-mapping methods.

There are two types of discontinuity that are consid-
ered in feature-mapping methods: material-void (or a strong
discontinuity) and material-material (or a weak discontinu-
ity). In general, three components are required to imple-
ment an XFEM scheme for material discontinuity: (1)
enrichment strategy, (2) interface conditions, and (3) numer-
ical integration.

3.2.1 The simple scheme

For the strong discontinuity case of a material-void
interface, a simple scheme may be used, whereby a
Heaviside enrichment is applied to the primary field (e.g.,
displacement or temperature) within the element

n
u®) =) H®)Ni®u;, (28)
i=1
where u(x) is the physical field at point x within an element
with n nodes and shape functions N;(x), and ¢(x) and
H (x) are implicit and Heaviside functions, as defined in
Section 3.1.
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Fig. 12 We vary the polynomial smoothing (center in Fig. 10) by increasing the transition zone w = 2 h from one to four elements, each time
with midpoint integration. In the right figure RAMP interpolation (12) is applied. On the x-axis, the positional variable s is varied in element units

In this scenario, if the boundary is traction-free then there ~ small (Wei et al. 2010). An alternative was proposed by
are no interface conditions and no additional degrees of =~ Makhija and Maute (2014), where each node is attached to
freedom are required (Villanueva and Maute 2014). This  a fictitious point in space by a soft spring. The advantages
leads to a simple scheme, where element matrices are com-  of this approach are that elements completely in the void
puted by numerical integration over the material domain.  phase are not assembled into the global matrix, reducing
This is usually achieved by automatically subdividing  computational effort, and it avoids spurious load transfer
the material domain into triangular sub-cells (e.g., using  through the void regions.

Delaunay triangulation) and using quadrature rules over The simple scheme is only valid if the smallest geometric
each sub-cell. However, integration schemes without  detail is larger than 2 elements (Villanueva and Maute
quadrature sub-cells have also been used (Li et al. 2012). 2014). However, situations may occur during optimization

when this is not true, potentially leading to interpolation
3.2.2 Numerical aspects error of the geometry and non-physical coupling between

disconnected material phases (when the width of void
The simple scheme for strong discontinuities has been  feature is smaller than an element—see Fig. 13). This issue
utilized in several feature-mapping methods (Li et al. 2012; ~ was demonstrated by Makhija and Maute (2014) using a 1D
Zhou and Wang 2013; Liu et al. 2014), its appeal being  bar example, where a non-zero reaction force was obtained
simplicity of implementation and ability to capture the = when a gap in the bar was less than the element edge length.
sharp interface at the material-void boundary. However, = To address this issue, Makhija and Maute (2014) proposed
there are several issues, or pitfalls, that can be encountered a generalized Heaviside enrichment strategy, based on the
when using the simple scheme. These issues are discussed ~ work of Hansbo and Hansbo (2004) and Terada et al.
in the following along with potential solutions from  (2003), which captures the physical discontinuity by adding
the literature. In addition, the weak material-material enrichment functions and additional degrees of freedom,
discontinuity requires a more complex treatment. depending on the order of discontinuity around a node.
During topology optimization, situations could occur It should be noted that the issue of non-physical coupling
where the design contains a material “island,” completely ~ within an element is more common in free-form topology
surrounded by void material and disconnected from the  optimization methods, compared with feature-mapping
main structure. This causes the global system matrix to
become singular, leading to numerical problems in solving
the discretized governing equations. This can occur in
feature-mapping methods if a solid component is mapped
onto the fixed-grid, but does not overlap any other part of
the solid region. A common remedy is to fill the void region
with a fictitious weak material, which has properties several
orders of magnitude lower than the real solid material (Wei
et al. 2010). If the fictitious material is sufficiently weak,
then the simple Heaviside enrichment scheme can still be
used, as the error in ignoring the interface condition is Fig. 13 Potential non-physical coupling in XFEM
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methods, as these methods have some high-level control
of the geometry. However, non-physical coupling can still
occur in feature-mapping methods if solid components are
close, such that the gap between them is less than the
size of an element, as shown in Fig. 13. This type of
non-physical coupling can also occur in pseudo-density
mapping methods. However, a similar treatment has not
been developed, possibly because pseudo-density methods
do not aim to create a sharp interface in the analysis and
therefore, this numerical artifact is not seen as an issue.

Modeling the weak discontinuity created by a material-
material interface requires a more advanced XFEM scheme.
Several authors have used an enrichment function proposed
by Moés et al. (2003), which is a CV-continuous enrichment
function that inherently satisfies continuity in the primal
solution (e.g., displacement, temperature) at an interface
with a weak discontinuity in material properties. Alterna-
tively, the generalized Heaviside enrichment strategy pro-
posed by Makhija and Maute (2014) can be used to model
both strong and weak discontinuities. However, an addi-
tional constraint is required to enforce continuity across the
interface for a weak discontinuity. This can be achieved
using a scheme such as the stabilized Lagrange multiplier
method, or Nitsche’s method.

A further issue that affects both simple and more advanced
XFEM schemes is the ill-conditioning of global system
matrices due to very small integration regions, compared
with the element size. This leads to convergence issues
for nonlinear problems and iterative linear solvers (Lang
et al. 2014). A standard solution is to use a preconditioner
to improve the condition number. For example, Lang
et al. (2014) introduced a simple and efficient geometric
preconditioner for the generalized Heaviside enrichment
scheme. It only requires knowledge of nodal basis functions
and the interface geometry, so it can be computed before
assembling the system matrix. This method proved effective
at reducing the condition number, while maintaining accuracy.

Small integration regions can also affect the accuracy
of results at the interface. For example, Van Miegroet and
Duysinx (2007) showed large errors in stress when the
integration region of an element on the solid-void boundary
was small. They discussed several possible remedies,
including: removing elements with small solid parts,
moving the closest mesh node or moving the boundary to
eliminate the small area, post-processing to remove stresses
in elements with small solid areas, or computing stresses
using a smoothing scheme.

Finally, Sharma et al. (2017) showed that the generalized
Heaviside enrichment strategy proposed by Makhija and
Maute (2014) produces a smooth, non-oscillatory response
function as the design changes. Thus, XFEM methods do
not appear to produce a non-smooth response function
when modeling the boundary using a sharp step function,
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in contrast to some of the pseudo-density material
interpolation schemes (as shown in Section 3.1.1). However,
it was also shown that the shape sensitivity for the XFEM
scheme can be oscillatory and that oscillations decreased
with mesh refinement. Thus, it was concluded that the
oscillations were mainly caused by the accuracy of mapping
the geometry to the fixed-grid elements for numerical
integration. Note that pseudo-density schemes can also
produce a smooth, non-oscillatory response function, if
implemented correctly (see discussion in Section 3.1).

3.2.3 Sensitivity analysis

Sensitivity analysis for XFEM is generally more difficult
compared with the pseudo-density approach. This is mainly
because XFEM uses a more complex procedure to compute
element matrices that involves numerical integration over
material sub-domains. In the literature there are three main
approaches to computing sensitivities when using XFEM in
optimization.

The first approach is to differentiate, then discretize. This
avoids computing derivatives of the change in integration
regions as the interface moves, as sensitivities are derived
from the continuum equations. A common example of this
approach is to use shape sensitivities (Zhou and Wang
2013; Liu et al. 2014; Wang et al. 2014b). However, it is
well-known that convergence issues may occur due to the
discretization error and often some form of regularization or
smoothing is required (van Dijk et al. 2013; Liu et al. 2014).

The second approach is to discretize, then differentiate,
but with a semi-analytical approach. The idea is to compute
the derivative of the element matrices with respect to
the design variables using the finite difference method.
This derivative term is then inserted into the analytically
derived sensitivity formula. Thus, sensitivities are consistent
with the numerical discretization, but the semi-analytical
approach avoids explicitly computing derivatives with
respect to changes in the integration sub-domains. The finite
difference approach is reasonably efficient, as it is only
performed for elements that contain an interface and does
not require assembling and solving a system of equations.
This approach has proved effective and has been used
in several feature-mapping methods (Van Miegroet and
Duysinx 2007; Sharma et al. 2017).

However, the finite difference scheme should ensure that
the design variable perturbation does not cause a change
in element status, e.g., an element containing a material-
void interface does not become either fully void, or fully
solid. This causes problems in the derivative computation
as it changes the number of degrees of freedom (Zhang
et al. 2012; Noél et al. 2016). Several methods have been
proposed to avoid this issue. One method is to perform
both forward and backward finite differences and check if
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either cause a status change. If neither cause a change, then
the central difference is used. However, if the forward (or
backward) difference causes a status change then only the
backward (or forward) difference is used. Another method
is to perturb the interface such that the finite difference
perturbation cannot cause a status change (Sharma et al.
2017). Alternatively, the finite difference perturbation step
can be reduced to a magnitude that avoids a status change,
although if the step magnitude is too small, numerical
round-off errors can occur.

The third approach is to discretize first and then
differentiate using a full analytical approach, without finite
differencing. The challenge is to compute the analytical
derivative for the change in the integration sub-domains
with respect to the design variables. Zhang et al. (2012)
developed an analytical derivative for a material-material
interface, when the geometry is represented by nodal
implicit function values. Noél et al. (2016) and Najafi
et al. (2015) proposed schemes utilizing a velocity field
to efficiently compute the analytical derivatives. These
fully analytical schemes are more complex and difficult to
implement than the semi-analytical scheme, but are more
efficient and avoid the status change issue.

4 Combination of features

The foregoing section describes the approaches that existing
techniques use to map individual geometric features onto
the fixed analysis mesh. To be able to modify the topology
of the structure, it is also necessary to combine these
features. This is one of the key ingredients of performing
topology optimization with high-level geometric features,
and has received considerable attention in recent years. In
this section we specifically consider the combination of
closed regular sets (solids or holes). Unless otherwise stated
and for brevity, whenever we refer to combination of solids
we also refer to combination of holes.

The combination of solids in all approaches corresponds
in effect to Boolean operations between solids. Just like
other aspects in this review, it is possible to categorize
approaches that combine solids in different ways. The
main criterion we use to categorize combination methods is
whether the combination occurs before or after mapping to
the fixed analysis mesh.

4.1 Smooth combination functions

Many feature-mapping methods utilize smooth combination
functions so that derivatives with respect to the high-level
geometric parameters are continuous. For example, the non-
differentiable Boolean union of multiple solids represented
by implicit functions f; corresponds to their maximum, i.e.,

U; fi = max; (fi(x)) (Shapiro 2002). Common choices for
differentiable smooth approximations max; (f;(x)) include
the well-known Kreisselmeier-Steinhauser (K-S) function

N
ﬁ?{KS(f,-) = %IHZ(exp(pf,-)) (29)
and the p-norm
N P
max’ (f;) 1= (Zfi”) ! (30)

where N is the number of values and p is a parameter that
controls the sharpness and accuracy of the approximation
(a larger p results in a more accurate estimate of the
true maximum and a sharper function). The work by
Coniglio et al. (2019) makes a comparison of several smooth
maximum functions for the combination of geometric
features.

Another type of functions used to perform Boolean
operations is R-functions (cf., Shapiro 2007). The R-
conjunction corresponds to the logical AND, whereas the
R-disjunction corresponds to logical OR. Compositions of
these two fundamental R-functions can be used to construct
any Boolean expression. There are several forms of R-
functions; for example, Chen et al. (2007) use the following
definition

N fa=fi+ o=\ fE+f5
fiUfri=fi+ o+ fE+ 1

which is differentiable everywhere except at f1 = f> = 0.
It can be seen that f1 N f> is positive if and only if both f;
and f> are positive, whereas f1U f> is positive if either f7 or
J> is positive. For example, assume ¢ and ¢, are implicit
functions for two solid features and ¢, the implicit function
of a void feature. The combined implicit function can then
be defined as

¢ (x) == ($1(X) U $2(x)) Ny (x).

€19

(32)
4.2 Combine-then-map approaches

Since a geometric representation of the solids is available
that is independent of the analysis mesh, a natural approach
is to combine the solids directly using their geometric
representation, and then map the combined solid onto the
analysis mesh, as described in Section 3.

4.2.1 Implicit geometric representations

As mentioned in the previous section, the Boolean union
or intersection of features represented by implicit functions
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can be attained by computing their maximum or minimum,
respectively. This is a strategy that has been used to combine
both solids (Cheng et al. 2006; Zhou and Wang 2013; Guo
etal. 2014; Zhang et al. 2016c) and holes (Cheng et al. 2006;
Chen et al. 2007; Mei et al. 2008; Wang et al. 2012; Zhang
et al. 2017b).

This combination approach is illustrated in Fig. 14,
where three rectangular bars are modeled using hyperellipse
implicit functions (as used in, e.g., Guo et al. 2014; Zhang
et al. 2016¢). Figure 14(b)—(d) show contour plots of ¢; for
each of the three bars. All contour and fringe plots in this
section are produced using a grid of 48 x48 square elements.
The Boolean union of the implicit functions for these three
bars, as given by the true maximum function, is shown in
Fig. 14(e). Note that smooth maximum functions could also
be used. The combined implicit function is subsequently
mapped onto the analysis mesh using a pseudo-density or
immersed-boundary approach, as discussed in Section 3. A
combined implicit function subject to a smooth Heaviside
(16) is shown in Fig. 14(f) with the element-constant
pseudo-densities shown in Fig. 14(g) (which were obtained
by the method used by Zhang et al. 2016c¢).

This approach is notable for the simplicity of the
Boolean operations. The simplicity is inherited from the
implicit geometric representation, since in general it is much
easier to perform Boolean operations with implicit, rather
than with explicit geometric representations. Also, this

(b)

combination approach is readily extended to 3-dimensional
problems (e.g., Liu and Ma 2015; Zhang et al. 2016c).

Topological changes using this combination approach
occur in one of three ways: (1) as solids move and overlap,
the connectivity of the structure may change (holes may
appear or disappear); (2) if a solid is engulfed inside another
solid, it has no effect in the analysis due to the maximum
operation, and thus the engulfed solid is effectively removed
from the design; and (3) if one or more dimensions of a
solid become sufficiently small, the effect of the solid on the
analysis is negligible.

4.2.2 Explicit geometric representations

When the original geometric representation is explicit, two
approaches have been employed to combine solids. The first
approach consists of performing the Boolean union directly
on the explicit representation, and then converting the
resulting design into an implicit geometric representation
before mapping to the analysis mesh. This strategy is
illustrated in Fig. 15, where the three rectangles of the
previous example are modeled using cubic B-splines with
eight control points per side (see Fig. 15(a)). A combination
technique used in this case (Lee et al. 2007; Seo et al. 2010;
Zhang et al. 2017d; Gai et al. 2020) consists of deleting
from the current design those control points that lie in the
overlapping region between the bars, so that the union of

(c) (d)

L)

(f)

@

Fig. 14 Combination by union of implicit functions-then-mapping: (a)
rectangular bars modeled with hyperellipses; contour plots of (b)—(d)
implicit functions ¢;, (e) union of implicit functions ($) via maximum
function, and (f) smoothed Heaviside of ®; and (g) pseudo-density
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used for analysis. Thick red line corresponds to zero level set for
implicit functions, 0.5 level set for Heaviside (here and in following
figures)
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(a)

06660660

(e)

iz

Fig. 15 Combination by union of explicit functions-then-mapping:
(a) rectangular bars modeled with cubic B-splines, (b) union by
deleting B-spline control points in the overlapping region, (c)

the primitives is given by a single B-spline made of the
remaining control points, as shown in Fig. 15(b). In Gai
et al. (2020), cusps arising from merged holes are removed
by replacing the merged hole with the curve formed by the
trajectory followed by the touching points of a rolling circle.
These works all consider B-spline-shaped holes; however,
here we consider solid rectangles for consistency with the
examples given for the other strategies.

After combining the solids, the explicit representation
is transformed to an implicit representation, namely by
computing the signed distance to the combined B-spline,
as shown in Fig. 15(c). An exact or smooth Heaviside
approximation, such as the one presented in the preceding
section, is then applied to the signed-distance function, at
which point the mapping to the analysis can be completed
in the different ways discussed in Section 3, i.e., using
pseudo-densities or an immersed-boundary method.

This combination approach presents several challenges.
In the particular case of B-splines, it is possible for the
control points to be placed such that the B-spline can
present self-intersections, which requires placing bounds
on the positions of the control points (Lee et al. 2007),
or employing special parameterizations of the B-spline
(Zhang et al. 2017d). In both cases, it is necessary

signed-distance function of combined B-spline, (d) smoothed Heav-
iside of signed-distance function, and (e) pseudo-density used for
analysis

to determine the correct order of control points in the
combined B-spline to generate the correct shape. Another,
perhaps more pernicious challenge, is the potential lack
of differentiability introduced by the control-point deletion
approach. Suppose two solids overlap, and a control point
of one of them lies exactly on the boundary of the other.
Small positive and negative rotations of any of the primitives
will cause that control point to be deleted or retained
in the combined B-spline. Therefore, the combined B-
spline may look appreciably different in both cases, which
means the structural response will not be differentiable
with respect to the orientation angle of either solid. To
obtain an accurate union of the B-splines it is of course
possible to introduce control points at the intersections
with multiple knots to capture the sharp corners. However,
this introduces additional challenges in the optimization, as
the number of design variables (i.e., the positions of the
control points) would increase with the additional control
points. A third challenge lies in the computational cost
incurred in translating the explicit representation to an
implicit representation, e.g., the computation of the signed-
distance field. Although there exist computational strategies
to do this efficiently (see Section 3.1.7), it still adds
computational cost compared with directly using implicit
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Fig. 16 Combination by conversion of explicit to implicit

representation-then-mapping: (a) rectangular bars modeled with
cubic B-splines, (b)—(d) signed distance of individual bars, (e) union

geometric representations. Finally, while it is possible to
perform Boolean operations of explicit representations of 3-
dimensional solids, the aforementioned challenges are more
difficult to solve for 3-dimensional problems.

The second strategy to combine features with explicit
representations is to first convert the explicit representation
of each solid to an implicit representation, and then perform
the combination of the individual implicit representations
as in the previous section (Zhang et al. 2017e). This
strategy is depicted in Fig. 16, where each B-spline is first
converted to an implicit representation (a signed-distance
function), and then the combination of bars is achieved via
the true maximum—in the present case—of the implicit
functions. This approach circumvents the problems arising
from the deletion of control points and greatly facilitates
the combination of primitives. However, there is additional
computational cost, as a separate signed-distance function
must be computed for each solid. This strategy is arguably
similar to the map-then-combine approach described in
the next section, because in this method the individual
implicit functions are computed on the fixed-grid prior to
the combination.

4.3 Map-then-combine approaches
The alternative to the combination strategies described in

the previous section, is to first map each individual solid
to the analysis mesh and then combine the ensuing mapped

@ Springer

of implicit signed-distance functions via maximum function, (f)
smoothed Heaviside of implicit union, and (g) pseudo-density used
for analysis

variables, such as pseudo-densities, Heaviside function
values, or even material property values. The combination
could be done element-wise (e.g., element-constant pseudo-
densities), or at integration points (e.g., when using (9)).

All existing map-then-combine approaches require an
implicit geometry description to achieve the mapping. Thus,
map-then-combine approaches that start with an explicit
geometry description first convert each feature to an implicit
function before mapping the individual implicit functions
to the analysis grid. This is the same as the first step
in Fig. 16(a—d), where the geometry of each solid is
described by a B-spline, which are then converted to implicit
signed-distance functions. Therefore, the remainder of this
section describes map-then-combine methods starting from
an implicit geometry description.

4.3.1 Property interpolation for hybrid approaches

Some hybrid approaches described in Section 7 combine a
free pseudo-density field (as in density-based methods) with
features using an extended material interpolation function,
which interpolates between the solid-void pseudo-density
field and solid features, e.g., Qian and Ananthasuresh
(2004) and Wang et al. (2014b), or holes, e.g., Kang
and Wang (2013). For example, if E; is the Young’s
modulus of the solid phase of the free pseudo-density field
p, and E, modulus of the embedded solid component
(assuming isotropic materials), an interpolation of the
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Young’s modulus may be given by (cf., Wang et al. 2014b)
EX) = H@X)E.+[1 — Hex)] [p"®] Es,  (33)

where ¢ is an implicit representation of the embedded solid
primitive, H is a smooth approximation of the Heaviside
function and p is the SIMP penalization power. Note
that in (33), x is usually the element center, which is
equivalent to mid-point integration (see Section 3.1.6).
Further approaches are discussed in Section 7.1.

4.3.2 Combining Heaviside functions

Combination of multiple features can be achieved by
combining Heaviside function values of each mapped
feature using a maximum function. The single, combined
Heaviside function can then be used to compute element
pseudo-densities, or in immersed-boundary methods (as
discussed in Section 3). This approach was used by Wein
and Stingl (2018) to obtain element pseudo-densities by

numerical integration via
Nip ~
= w; max H;(x), 34)
Pe Z jm i
J

where the combination is done at the integration points. In
(34) a smooth maximum and smooth Heaviside are used,
thus making sensitivity analysis straightforward.

It is interesting to note that in the case of midpoint
integration and using (9), (34) simplifies to
pe =Max p;, (35)

1
which is effectively the same as combining mapped element
pseudo-density values (see Section 4.3.3). This highlights

the close connection between the Heaviside function and
pseudo-densities in feature-mapping.

4.3.3 Combining pseudo-density values

Another map-then-combine approach is to compute element
pseudo-density values with respect to each feature, as
described in Section 3.1, and then perform the combination
using a true or smooth maximum function. This approach
also allows for an additional control of the combined
features, by introducing variables that penalize the mapped
densities of each solid feature separately. These are called
size variables, which are penalized in the spirit of SIMP,
so that a zero value indicates the solid has no effect on the
analysis and thus can be removed from the design, whereas
a value of unity indicates the solid must be retained (Norato
et al. 2015; Zhang et al. 2016a).

Without consideration for the aforementioned penalized
size variable (that is, assuming all bars have a size variable
of unity), the pseudo-density map-then-combine strategy

(a) ﬁ/> @ (b) (c) (d)
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Fig. 17 Map-then-combine by union of implicit functions: (a) bars modeled with hyperellipses, (b)—(d) signed-distance field for each bar, (e)—(g)
corresponding mapped pseudo-density for each bar, and (h) union of mapped densities using a smooth approximation of the maximum
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is depicted in Fig. 17. Figure 17(a) shows the three bars
modeled as hyperellipses as before; Fig. 17(b)-(d) are
the signed-distance fields corresponding to these surfaces;
Fig. 17(e)—(g) show the mapped pseudo-densities for each
bar, computed at each element of the mesh using (20); and
Fig. 17(h) shows the Boolean union of bars, obtained using
a smooth approximation of the maximum function (here the
p-norm (30)).

The combination of solids when a penalized size variable
is used is as follows. First, element pseudo-densities are
computed. The effective density at element e for bar i is
subsequently computed as

Py = (@")?pl, (36)

where o) is the size variable corresponding to solid i and
p is the penalization power. We note that if «® = 0,
then the effective density at element e for bar i is zero,
hence this solid has no effect on the material properties at
element e; this is true for every element for which p, # 0,
and so making the size variable zero effectively removes
the solid from the design. The combination of the solids is
subsequently obtained via, for example, a smooth maximum
of the effective densities as

De = MAX D). (37
l
Figure 18 shows the combined density after the union of all
three bars when the diagonal bar has different values of its
size variable « (while the other two bars have a size variable
of unity). Clearly, as its size variable nears zero, the effect
of the diagonal bar on the combined density vanishes.
Topological changes using this approach can occur in
different ways. As in the methods of Section 4.2, when
solids “move” in the optimization, holes can be created or
disappear. We also note that some approaches (e.g., Norato
et al. 2015; Zhang et al. 2016a) have the limitation that
a solid cannot be removed by collapsing its dimensions,
because for the sensitivities to be always well defined, it
is necessary that the size of the sample window used to

0 0.2 0.4 0.6 0.8 1

compute the volume fraction is smaller than the dimensions
of the solid. The other removal mechanism, as afore-
mentioned, is to make the size variable of the solid zero.

4.4 Local minima

The combination of geometric features may lead to unfa-
vorable local minima. To illustrate this, we consider the
example shown in Fig. 19. Four bars are modeled with
hyperellipses. Three of the bars are fixed, and another one
is rotated about the left edge midpoint by changing %. For
h € {0, L/2, L} the moving bar entirely overlaps with one
of the fixed bars. The design region is meshed with square
bilinear elements with a relatively fine mesh. A binary
pseudo-density mapping is used, where the element pseudo-
density is either ppiy or 1 depending on whether the element
centroid is outside or inside of a bar, respectively. The com-
bination is performed using a map-then-combine approach
with a true maximum of the pseudo-density values.

Figure 19 shows the compliance as a function of 4 /L.
The actual magnitude of the compliance is not important;
what is important is the presence of two distinct local
minima, one of which (/L = 0.43) is clearly worse than
the other (h/L =~ 0.79). Therefore, if a gradient-based
optimizer is used and the initial design has h < L/2,
the optimizer will most likely converge to the poor local
minimum. Thus, the more compact design representation
used by feature-mapping methods (as opposed to the
verbose representation used by density-based and level-
set methods) is more prone to falling into unfavorable
local minima depending on the initial design. Although
all topology optimization techniques are dependent on the
initial design (e.g., as shown by Yan et al. (2018) for density-
based topology optimization of heat conduction structures),
this dependency is more pronounced in feature-mapping
techniques, as noted in Norato et al. (2015) and Zhang
et al. (2016a). We note that this has nothing to do with
the particular feature-mapping technique used, but with the
more restrictive geometric representation.

*++++

Fig. 18 Three-bar example, where the diagonal bar has a size variable of « = 1.0, 0.8, 0.6, 0.1 and 0, from left to right. A power value of p = 3

is used in (36) in all cases
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
h/L

(b) Compliance

Fig. 19 Example of effect of combination on local minima. Top: setup.
Bottom: compliance. The crosses mark the locations of the minima

5 Separation constraints

Separation constraints are high-level geometric constraints
that specify a minimum distance between solid components
(or holes). When the minimum distance is set to zero, sep-
aration constraints are often called non-overlap constraints,
as component overlap is prevented. These constraints can
also be used to prevent components from leaving the design
domain. Several techniques have been proposed to enforce
this type of constraint in feature-mapping methods.

The earliest method is the finite circle method (FCM). The
main idea is to approximate the shape of each component with
a number of circles (Fig. 20). Separation constraints can

Fig.20 Finite circle method

then be posed as simple geometric constraints on the
minimum distance between circle centers. Qian and Anan-
thasuresh (2004) used a single circle for each component
and Zhang and Zhu (2006) extended the idea to use multiple
circles to approximate the shape of each component.

The main benefits of FCM are the simple definition of
the constraints, which are continuous and differentiable.
However, if there is a large number of components, then a
large number of separation constraints is required, although
most are usually inactive at the optimum. For example, even
if only one circle is used to approximate each component,
then N (N —1)/2 constraints are required for N components.
Also, component shapes are only approximated by circles,
SO separation constraints may not be able to reach their
lower bound in some situations (due to circles covering a
larger volume than the actual component). If high accuracy
in the separation constraint is required, then more circles can
be used for each component, which adds more constraints.
A large number of constraints may affect the efficiency of
the optimization (Zhang et al. 2011), although the number of
constraints can be reduced by using different sized circles.
Xia et al. (2012b) also showed that to prevent components
leaving the design domain using FCM, only a small circle
at each corner of the component is required.

To use FCM more efficiently with a large number
of components and constraints, Gao et al. (2015) used
constraint aggregation to combine all finite circle separation
constraints into a single constraint function. An adaptive
Kreisselmeier-Steinhauser (K-S) function is used, where
the aggregation parameter is automatically determined to
ensure the accuracy of the aggregation function. Another
approach was proposed by Zhu et al. (2017) where the finite
circle separation constraints are added to the objective using
a combination of exterior and interior penalty methods.

A further limitation of the standard FCM is that it does
not automatically adapt to components that are changing
in size or shape. This is a challenging problem if the
constraints are to remain continuous and differentiable
throughout the optimization. However, Zhang et al. (2012)
showed how this can be achieved for elliptically shaped
components by linking the location and radius of each circle
to the parameters of the elliptical shape.
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An alternative to the FCM, which is suitable for feature-
mapping methods where solid and/or void features are
represented by an implicit function, was first proposed in the
master’s thesis of Shan (2008) and later refined by Kang and
Wang (2013). The idea is to compare the integral of the solid
region represented by the combination of implicit functions
with the known volume of solid components. (The same
idea also applies to void components.) If the integral is less
than the known volume, then there must be some overlap
of components, or part of a component has left the design
domain (Fig. 21). This observation is used to formulate
a single, differentiable constraint that prevents overlap for
arbitrary shaped components and also prevents components
leaving the design domain.

The integral method has also been extended for minimum
distance separation constraints (Zhang et al. 2015). To
achieve this, each component is represented by a signed-
distance implicit function. The signed-distance information
is used to construct “virtual” components, whose boundaries
are offset by half the minimum distance constraint value.
The original separation constraint formulation is then
applied to the “virtual” components to ensure a minimum
distance between components.

Zhang et al. (2015) introduced an approach using the
structural skeleton, which is also suitable for methods
where features are represented by implicit functions. The
structural skeleton is defined as the set of interior points
that have at least two closest boundary points (this is
also called the medial axis). To enforce a minimum
distance separation constraint between two components, a

Solid volume = volume 1 + volume 2

Solid volume < volume 1 + volume 2

Fig. 21 Integral method for preventing component overlap
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signed-distance function is constructed for the combined
implicit function of both components. A skeleton is then
constructed to identify all points that are equidistant
from both components. Finally, an explicit constraint is
imposed on the minimum signed-distance value of all
points belonging to the skeleton. This method can also be
used to set maximum separation constraints. However, it
requires construction of the signed-distance functions in
each iteration and the number of constraints is linked to
the number of components. Furthermore, the formulation
is not differentiable and derivatives are approximated using
finite differences and by assuming that the skeleton does not
change when components move.

For methods based on pseudo-densities, Zhang and
Norato (2017) proposed a simple method using a map-
then-combine approach. First the pseudo-densities for each
component are mapped onto the fixed-grid. These are then
combined using simple summation to create an auxiliary
pseudo-density field. If any density value in the auxiliary
field is greater than 1, then there must be some component
overlap. Thus, an aggregated constraint function can be de-
fined that ensures the maximum value of the auxiliary pseudo-
density field is unity and hence prevent component overlap.
This idea can easily be extended to provide a minimum
separation constraint, by uniformly enlarging the size of
the components by half the minimum separation distance
before computing the auxiliary pseudo-density field.

The FCM- and integral-type methods for preventing
component overlap can also be used to prevent components
leaving the design domain. The integral approach achieves
this without any modification to the original method, as it
automatically detects when any part of a component has
left the design domain. The FCM approach needs additional
distance constraints to prevent components leaving the
domain. This is straightforward for convex design domains
(Zhu et al. 2008), but non-convex domains present
difficulties in defining continuous differentiable distance
constraints. An approach for pseudo-density methods is
to use a layer of ghost points that lie a short distance
outside the design domain (Zhang et al. 2018a). The pseudo-
densities at ghost points are then computed and if any value
is non-zero, then a component must be outside the domain.
This idea is used to create an aggregated constraint function
that ensures the maximum pseudo-density value at all ghost
points is zero. This approach can be used for both convex
and non-convex design domains without modification.

6 Feature-mapping methods for shape
optimization

In this section we discuss the application of feature-mapping
to solve shape optimization problems, which is essentially a
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classical shape optimization approach with the design
mapped to a fixed-grid. To this end we start with a brief des-
cription of what we consider as classical shape optimization.

6.1 Classical shape optimization

In classical shape optimization, only the structural part is
discretized using finite elements. The structural interface is
exactly modeled, which is for some applications an essential
feature. Void regions are not part of the finite element analy-
sis, which can significantly reduce the computational effort.

As a consequence, the boundary mesh nodes are moved
during optimization. To maintain mesh quality for accurate
analysis, mesh smoothing and/or re-meshing is necessary.
However, re-meshing can become rather involved and if the
quality of the finite element approximation is insufficient,
there is the potential for the mesh to be optimized for
numerical artifacts, similar to the checkerboard effect in
density-based topology optimization.

Classical shape optimization has been successfully
applied over several decades. However, the mathematical
and technical realization is rather involved, especially
compared with density-based topology optimization. The
mathematical approach is often formulated in an infinite
dimensional setting (see e.g., Sokolowski and Zolesio 1992
or Haslinger and Mikinen 2003) and differentiable mesh
generation must be provided (Haslinger and Mikinen 2003).
The gradient information is based on the shape gradient.

Shape optimization is performed with a wide range
of different parameterizations. These can be categorized
as either boundary-node-based parameterization, or higher
order forms of design parameterization. We begin with the
first variant where each surface node is a design variable.
This is called the independent node movement approach
(Imam 1982) or parameter free shape optimization. This
provides a large space of admissible shapes, but it comes
with its own challenges in terms of regularization and
feature size control (see, e.g., Le et al. 2011). Closing
and creation of holes are generally difficult to achieve,
or even impossible. During the optimization process,
insertion or deletion of boundary nodes may be necessary,
as well as re-meshing. This generally prevents the use
of first-order mathematical programming algorithms. As
a consequence, constraint functions need to be handled
indirectly. Furthermore, no rigorous convergence criteria are
available.

Aside from the parameterization of boundary nodes there
are many variants of higher order parameterizations estab-
lished in shape optimization (see Haftka and Grandhi 1986
for an early survey). Conveniently, this corresponds to the
construction of geometries by spline functions in computer-
aided design (CAD). Here, the mapping from the design
parameters onto the boundary nodes is differentiable and

thus allows gradient-based optimization (see Braibant and
Fleury 1984). The separate meshing of the geometry can
be alternatively handled by isogeometric shape optimization
(see Wall et al. 2008). Provided a differentiable parameter-
to-boundary mapping, the shape sensitivity of an arbitrary
parameterization can be obtained from the nodal shape
gradient by the chain rule.

6.2 Using pseudo-density feature-mapping

Some major advantages of shape optimization are the crisp
boundary description and the wide and versatile range
of design parameterizations. However, the modeling and
technical realization is often quite involved. Density-based
topology optimization is known for its elegant and easy
modeling, standard approaches for sensitivity analysis and
straightforward technical realization, e.g., no re-meshing
is necessary. On the other side, the extremely rich design
space allows only an implicit design description and is, for
some applications, difficult to control. Enforced by standard
regularization approaches, one has to deal with a more or
less blurred interface description which is anyway rasterized
by the fixed analysis mesh.

It is now a natural approach to combine features of both
worlds, density-based topology optimization and parameter-
ized shape optimization. This can be seen from two points of
view. One can perform standard parameterized shape opti-
mization, but skip the re-meshing by using a fixed analysis
grid, leading to an inexact boundary modeling. The same
picture is given from the point of view of density-based
topology optimization, where a higher level design param-
eterization is mapped to the pseudo-density field, allowing
much closer control of the design and, as such, intentionally
sacrificing the rich design space of density-based topology
optimization. Under certain circumstances, this approach
can be seen as a simplified shape optimization where,
aside from the design to density mapping, the technical
implementation and sensitivity follows that of density-based
topology optimization.

In principle, any higher order classical shape parame-
terization can be combined with feature-mapping, by sim-
ply mapping the boundary transition to a fixed-grid using
pseudo-densities (see Section 3.1).

In Garcia and Gonzalez (2004) B-splines are optimized
with a small number of control points (see Fig. 22). The
design parameters are the location of the control points. The
optimization in Garcia and Gonzalez (2004) is performed
without sensitivity analysis using a gradient-free method.

The first rigorous high-level geometry-to-density map-
ping was demonstrated in Norato et al. (2004), where
boundary smoothing is discussed and the convergence of the
rasterization of an explicitly given primitive is shown the-
oretically and numerically. Optimization results based on
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Fig. 22 (a) B-spline parameterization in Garcia and Gonzalez (2004);
(b) piecewise linear spline with mesh aligned control points in Wein
and Stingl (2018)

implicit shapes (via radial basis functions) are also shown,
but the approach is not discussed in detail.

In Wein and Stingl (2018), splines of order 1 (piece-
wise linear functions) are used, where the control points
are aligned to the analysis mesh. The design space is rather
restricted, as either the y- or x-component of the control
points are design variables for horizontal or vertical struc-
tures, respectively. Additionally, the width is parameterized
by thickness variables. This facilitates, but also requires,
the control of first and second spatial derivatives of the
design variables in the form of slope constraints and cur-
vature constraints, which are both directly defined from the
design variables. Also, as the strips are primarily aligned
with one of the axes (see Fig. 22), the computation of an
approximate signed-distance function is easily obtained and
is differentiable with respect to the control points.

An interesting variant of the first-order spline represen-
tation is used in Kasolis et al. (2012). Here the angle 9;/1
between line segments of length / expressing the boundary
['q is the design variable (see Fig. 23). The application is
the optimization of an acoustic horn. The line segments are
larger than the mesh element size and no regularization is
necessary. The structure is of constant thickness and fixed
on the left side. A change in the angle ¥; leads to a rigid

Q4 I—

Y
152

Fig. 23 Optimization of the angle between line segments in Kasolis
et al. (2012). The right figure shows an optimized acoustic horn in 2D
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body movement of all line segments to the right. The design
to pseudo-density mapping is differentiable.

6.3 Using immersed-boundary feature-mapping

Combining immersed-boundary feature-mapping with higher
order classical shape parameterization has also been demon-
strated. Again, in principle, any higher-order parameter-
ization can be combined with feature-mapping using an
immersed-boundary method, such as XFEM.

Van Miegroet and Duysinx (2007) use XFEM and
a fixed-grid to optimize the shape of a 2D fillet for
stress minimization. The fillet is parameterized by an
implicit geometry description, such as a super-circle, or
super-ellipse. Noél et al. (2016) use XFEM and feature-
mapping for shape optimization of bi-material structures,
such as those with elliptical stiff and soft inclusions. The
same framework is also used to optimize the shape of
inclusions when designing micro-structural material layout
to minimize the maximum stress (Noé€l and Duysinx 2017).

The interface-enriched generalized FEM (IGFEM) is
used by Najafi et al. (2015) for shape optimization of
bi-material structural and thermal problems, where an
explicit geometry parameterization is used, e.g., circular and
elliptical shaped inclusions. XFEM and IGFEM both use a
fixed-grid and enrichment functions. The main difference is
that the additional degrees of freedom in XFEM enrichment
are added to the fixed-grid nodes, whereas in IGFEM
they are added to points where the interface intersects a
fixed-grid element edge.

7 Hybrid feature-mapping/free-form
methods for topology optimization

Hybrid methods are defined as those that combine feature
optimization with free-form topology optimization, where
free-form means topology optimization without any high-
level feature control (such as conventional density-based
and level-set methods). Features can be solid or void and
feature design variables can include position, orientation,
size, shape, and/or number. Historically, the development
of hybrid methods began before pure feature-mapping
methods for topology optimization (“pure” meaning without
any free-form optimization). Some techniques developed
for hybrid methods were later exploited in the development
of pure feature-mapping methods.

7.1 Combining free-form with features
A key technical challenge of hybrid methods is to combine

the properties of features with the properties of the free-
form structure in a single analysis model. Ideally, the
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method should enable gradients of all design variables to be
computed, so that an efficient gradient-based optimization
approach can be used to solve the problem. This is achieved
by combining feature and free-form geometry using either
a map-then-combine, or combine-then-map approach (as
discussed in Section 4).

Qian and Ananthasuresh (2004) used an implicit Gaus-
sian, or peak function to map the stiffness of rectangular
solid features onto the analysis mesh via
Ei(x,y) = E;exp (_(sz,)’? - (A);)”)

Oxi Oyi

(38)

with

(A)Ei> _ (cos.é’i sin 6; ) (x—x,->’ (39)
AY; —sinb; cosb; y =y

where Ei (x, y) is the stiffness of the feature at location
(x, ¥); E; is the stiffness of the feature material, x; and y;
are the location design variables; and 6; is the orientation.
If the exponent  >= 4, then the feature is approximately
rectangular and the o values control the dimensions.

The peak function was originally developed for multi-
material topology optimization. Here, it is used to combine
the stiffness of the features with the stiffness of free-form
structure using a simple summation as

N
E(x,y) = Eo(x, ) + Y _Ei(x, ), (40)

where N is the number of components and Eq is the
stiffness of the free-form structure, which is defined by
element-wise density design variables and penalized using
a similar peak function. This map-then-combine approach
allows straightforward computation of sensitivities, as the
effective stiffness of an element in the fixed mesh is a linear
combination of free-form and feature design variable values.
The multi-material formulation also allows for features and
free-form structure to have different properties. However,
the implicit geometry representation in (38) is limited by the
shapes it can represent.

Several methods define features using implicit functions
with more geometric freedom. A popular choice is to define
the boundary of a feature as the zero level set of an implicit
scalar function (6).

Chen et al. (2007) represent both the features and free-
form structure using implicit functions. The benefit of this
approach is that the free-form structure can be combined
with arbitrary features using a combine-then-map approach
with Boolean operations, resulting in a single implicit
function that describes the overall structure. However,
Boolean operations cannot be differentiated. Thus, smooth
approximations of Boolean operations are used instead,
such as smooth R-functions (see Section 4.1). However,

this combine-then-map approach makes solid features
become indistinguishable from the free-form structure
in the analysis model. Thus, solid features are limited
to have the same material properties as the free-form
structure. R-functions have also been used in other hybrid
methods to create complex features by combining primitives
represented by implicit functions (Xia et al. 2013).

If features are defined using implicit functions then a
smoothed Heaviside function, e.g., (16), can be used to
map feature properties onto a fixed-grid using pseudo-
densities (Xia et al. 2013; Zhang et al. 2015). This method
is discussed in more detail in Section 4.2.1. Using the
smoothed Heaviside also allows for features with different
stiffness values to be combined in the analysis model.
For example, Xia et al. (2013) combined implicit feature
representations with an element density-based free-form
structure representation and used the following map-then-
combine approach to define the Young’s modulus within
each element of the fixed mesh

N
Ee=p” <Eo + H@)(E: ~ Eo)) : @1
i=1

This formulation works for void features where E; ~ 0,
although it does not inherently prevent element density
variables beneath solid features from becoming zero,
potentially leading to changes in the shape or topology of a
feature. However, this can be avoided in the optimum for the
minimization of compliance problem (subject to a volume
constraint on the free-form structure) by excluding elements
associated with solid features from the volume calculation.
Pollini and Amir (2020) used a similar approach when using
geometric features to specify different material properties
within an interface region in a structural assembly.

It is also possible to use an exact Heaviside function
when mapping implicit void features onto the fixed mesh
(Shan 2008; Kang and Wang 2013). The free-form structure
is parameterized using element-wise density variables and
the pseudo-density within an element, centered at x, is
simply computed by

p(x) = p(x)H (¢ (X)), (42)

where p is the physical density used to formulate
the finite element stiffness matrices and p is obtained
using a density filter of the free-form density design
variables. The inherent discontinuity of the exact Heaviside
function does not allow explicit derivative calculation for
feature location and orientation. Thus, shape derivatives
(obtained from the analytical pre-discretized governing
equations) are used to update the location and orientation
variables. These shape derivatives are then used to obtain
velocity components for feature location and orientation,
which are then used with the Hamilton-Jacobi equation
to update the implicit functions that define the void
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features. However, using this approach does not allow
for feature design variables (location and orientation) to
be combined with free-form structure density variables in
the same nonlinear programming optimization problem.
Thus, to achieve simultaneous optimization of free-
form structure and feature location/orientation, the feature
velocity components are included as design variables when
using a gradient-based optimizer.

Lietal. (2017) introduced the stiffness spreading method
to combine properties of explicit geometry features and
the free-form structure. The method starts with a fitted
finite element mesh of the component whose shape does
not change, but it only moves and rotates. To combine
this with the free-form structure, defined on a fixed mesh,
the component stiffness matrix is transformed into an
equivalent matrix that has the same dimensions and degrees
of freedom as the fixed mesh. The free-form structure and
transformed feature matrices are then simply summed for
analysis. Thus, this can be considered a map-then-combine
approach. The transform essentially provides a linear map
between a solid feature and fixed-mesh degrees of freedom.
This could be achieved by a local transform, where feature
nodes are simply mapped to the closest fixed-mesh nodes
(i.e., those associated with a single element). However,
this creates a discontinuity in the derivatives of the feature
location and orientation. Thus, a non-local transform is
used, where the connection is smoothed, or spread over
several nodes in the fixed mesh within a predefined radius.

Multi-point constraints (MPCs) have also been used to
connect explicit solid features to the fixed mesh used to
parameterize the free-form structure (Zhu et al. 2015; Gao
et al. 2015). The solid features are meshed independently
and connected to the free-form structure fixed mesh at a
number of predefined locations that represent bolts or rivets.
This approach is in contrast to other methods that assume a
perfect bonding at the interface between solid features and
free-form structure. The use of MPC connections has also
been extended to a multi-frame problem, where component
locations and free-form structure for a number of frames are
simultaneously optimized with the location of the frames in
a larger design space (Zhu et al. 2017). MPCs are also used
to connect frames to the free-form structure in the larger
design space.

The above methods all aim to map feature properties
onto a fixed analysis mesh in the spirit of feature-mapping
methods as defined in this review. The alternative approach
of re-meshing has also been used in hybrid methods. Solid
features of fixed size and shape are discretized using a fitted
mesh, whereas a fixed regular mesh is used to parameterize
the free-form structure. The two meshes are combined into
a single fitted mesh for analysis. This is achieved by first
placing feature meshes over the fixed mesh. Elements in
the fixed mesh that are partly covered by a feature are then
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divided, or re-meshed, to create a single conforming mesh
for analysis (Zhu et al. 2008).

This local re-meshing at the boundary leads to changes
in the free-form mesh whenever a feature moves. Thus, the
usual element-wise density parameterization for the free-
form structure cannot be used. Instead, the concept of densi-
ty points is introduced, where the density at a point influen-
ces several elements within a local domain (Zhu et al. 2008).

Re-meshing approaches add computational complexity
and cost (especially in 3D) compared with the fixed-grid
mapping methods. Also, semi-analytical derivatives of feature
design variables are required, where the derivative of the
global stiffness matrix with respect to a small perturbation
in the variables is computed using finite differences
(Zhang et al. 2011). This process also adds significant
computational cost, as the mesh is perturbed and stiffness
matrices recomputed for each feature design variable.

Techniques have been proposed to reduce the com-
putational cost of semi-analytical derivatives. Xia et al.
(2012b) used a superelement formulation to reduce the
size of feature stiffness matrices. The same authors also
proposed using a smoothed Heaviside approximation of
the boundary to facilitate full analytical derivatives (Xia
et al. 2012a). The idea is to compute stiffness matrix
derivatives based on the change in material properties as
a feature moves. The smoothed Heaviside approximation
is required to smooth the sharp discontinuity in material
properties. However, re-meshing is still performed when
features move.

One benefit of re-meshing is that the interface between
solid features and free-form support structure is explicitly
modeled. This could be important if the bonding between
solid features and free-form support structure is included
in the analysis as a nonlinear interface behavior. A recent
example of this was presented by Liu and Kang (2018),
where a cohesive zone interface model was used and the
dissipated interface energy added to a compliance objective
function. It was observed that features move to positions
where the free-form support structure is under compression,
as this helps minimize the dissipated interface energy.

XFEM is an alternative to re-meshing that can also
capture the explicit interface (see Section 3.2). Hybrid
methods that use XFEM also use implicit functions to
describe features, as this provides a natural way to identify
elements in the fixed mesh that contain an interface
between the free-form structure and a feature. Furthermore,
analytical derivatives of feature location/orientation design
variables can be obtained using the chain rule (Zhang
et al. 2012). XFEM has been combined with density-based
(Zhang et al. 2012; Wang et al. 2014b), level-set-based
(Zhou and Wang 2013) and parameterized level-set (Liu
et al. 2014) methods for simultaneous optimization of
features and free-form structure.
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In summary, various methods have been proposed to
combine properties of features and free-form structure in
hybrid methods. Implicit and explicit features have been
combined with density and level-set-based free-form struc-
ture. A key difference in the methods is whether they fol-
low a combine-then-map or map-then-combine approach,
as only the latter allows different material properties for
solid features and free-form structure.

7.2 Feature design variables

The original motivation for developing hybrid methods was
to simultaneously optimize the location and orientation of
a number of solid features (with predefined shapes) and
a free-form structure to support the features (Qian and
Ananthasuresh 2004). The solid features represent com-
ponents to be embedded within a free-form structure and
their properties (such as stiffness) contribute to the overall
performance of the structure. Thus, by simultaneously opti-
mizing the free-form structure and position/orientation of
solid features, an overall optimum can be found.

This idea also applies to void features of fixed size, which
could, for example, represent necessary cutouts for systems
to pass through the structure. Again, by simultaneously
optimizing the position/orientation of void features and the
free-form structure, an overall optimum can be found.

Beyond features of fixed shape and size, hybrid methods
have been proposed that can also simultaneously optimize
the size and/or shape of features. Cai and Zhang (2015)
demonstrated the simultaneous optimization of circular
hole radius and support structure. The hole had a fixed
location and the solution was trivial, as the optimal radius
is simply the lower bound. The method presented by Zhou
and Wang (2013) can simultaneously optimize the location,
orientation and shape of features. Furthermore, the method
can be used to optimize only the shape of selected feature
edges, thus providing several levels of control over feature
geometry. This is achieved by modeling the free-form and
feature geometries using implicit functions. These are then
combined by multiplying Heaviside functions to give an
indicator function

M
Xo®) = [ [H (¢ (), (43)

where M is the total number of implicit functions (i.e., one
for the free-form structure and M —1 features). The indicator
function is then used to map the combined structure onto
the fixed mesh for analysis (i.e., a combine-then-map
approach). Note that this formulation assumes solid features
and free-form structure have the same material, although the
framework does allow for regions with different material
properties.

The method presented by Liu et al. (2014) also uses
implicit functions to represent both free-form and feature
geometries, which are combined together using R-functions
(also a combine-then-map approach). The features consid-
ered are primitives that can also change shape and size.
For example, the semi-major and semi-minor axes of an
elliptical void feature were simultaneously optimized with
the free-form structure. In addition, Liu et al. (2014) intro-
duced the idea of a tolerance zone, which is a fixed-width
region of material around a void feature. This was achieved
by ensuring the presence of free-form structure within a
certain region around void feature edges.

Lin et al. (2015) proposed a hybrid method that can
optimize the size, shape, and number of features. Features
are defined explicitly using splines and the free-form
topology is parameterized using a pseudo-density type
approach. A criterion based on the topological derivative is
used to create new features, such as holes and inclusions.

The hybrid method proposed by Pollini and Amir (2020)
uses a piecewise linear feature to define an interface region
between parts of a structural assembly. The geometric
variables are simply the horizontal positions of points
on the line (with vertical positions fixed). This enables
simultaneous optimization of the free-form geometry (via
an element-wise density field) and the interface region in
a structural assembly, while taking account the different
material properties and geometric restrictions within the
interface region.

7.3 Optimization strategy

Most hybrid methods aim to simultaneously optimize the
features and free-form structure. However, it has long
been recognized that the hybrid problem formulation with
movable features is non-convex and the solution is often
highly dependent on the starting position of the features
(Qian and Ananthasuresh 2004; Zhu et al. 2015; Cheng et al.
2018; Liu and Kang 2018).

A simple method to overcome this is to solve the problem
several times with different starting positions of the features,
although this adds computational cost. Another approach
is to initially optimize just feature positions/orientations.
Then, after a set number of iterations, or after the
feature-only problem converges, both features and free-form
structure are optimized simultaneously (Kang and Wang
2013; Wang et al. 2014b; Li et al. 2017). This strategy may
provide a better design, as features can get stuck near their
starting positions if the simultaneous approach is used from
the start.

A variant of this approach is to fix feature designs and
positions after the initial optimization (Bakhtiarinejad et al.
2017). This results in a sequential optimization approach
that could be repeated several times, i.e., optimize the
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feature design and then the free-form structure alternately,
until convergence (Xia et al. 2012b). An advantage of the
sequential approach, is that different optimization strategies
can be applied to feature design and free-form structure.

7.4 Applications

Most hybrid methods have been applied to maximize the
stiffness (minimize compliance) of the combined feature
and free-form structure. Thus, solid features are placed to
best utilize their stiffness, whereas void features are placed
to least disrupt the free-form structure from obtaining the
stiffest design.

Developments for other applications include the design
of compliant smart structures with embedded movable
actuators (Wang et al. 2014b), where the actuator features
provide an input force and the free-form structure is
used to design the compliant part of the mechanism. By
simultaneously optimizing embedded piezoelectric actuator
placement and the compliant mechanism design, an overall
optimum can be found. Cai and Zhang (2015) used features
and free-form structure defined by implicit functions and
combined by R-functions to optimize structures with stress
constraints. Finally, there have also been applications for
heat transfer problems (Li et al. 2017; Cheng et al. 2018),
where the position of solid features are optimized to take
advantage of their thermal conductivity and/or heat flux
boundary conditions.

Currently, there are few applications of hybrid methods
beyond designing stiff structures. Thus, there is potential
for future research into other application areas, such as
electromagnetic and electrical-mechanical problems, fluid
flow and fluid-structure interactions problems and problems
involving nonlinear mechanics.

8 Feature-mapping methods for topology
optimization

In this section we discuss feature-mapping methods for
topology optimization, where the structure is exclusively
defined by the combination of high-level parametric
descriptions of voids in a solid design region, or of solids
in a void design region. For brevity in the discussion,
we will refer to the former as holes and the latter as
components. We note that topology optimization using only
solid components has also been called the adaptive ground
structure approach by Guo et al. (2014).

The choice between using components or holes for topol-
ogy optimization may seem arbitrary. However, if compo-
nents are used, then each component may have different
functionalities and/or different physical models could be
used for each component, as discussed by Guo et al. (2014).
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As a historical note, a mention is due to the bubble
method (Eschenauer et al. 1994), which describes holes
in a solid region using B-splines and is, in fact, one of
the first topology optimization techniques. However, this
method does not fit into the family of methods covered
in this review, as it employs a conforming mesh and thus
requires re-meshing upon design changes, and also lacks a
mechanism to merge holes.

We also note that the methods discussed in this section
can be shown to be essentially equivalent to density-based or
level-set techniques under certain conditions—for instance,
by having a geometric component per element in the mesh
such that the component size does not exceed the element
size, as discussed in Liu et al. (2018). However, exploring
this relationship is outside of the scope of this review.

8.1 Combine-then-map methods

As described in Section 4, feature-mapping methods for
topology optimization render structures exclusively made
of the combination of geometric features. Examples of
these methods are shown in Fig. 24. A pioneering work
using combine-then-map was introduced in Cheng et al.
(2006) and Mei et al. (2008).! This method formulates
and successfully demonstrates all of the hallmark features
of methods in this category, as well as other features
that have not been explored elsewhere at the time of
writing this review, such as the primitives interpolation
strategy described in Section 8.3. To our surprise, this
contribution went unnoticed in many subsequent works;
only until recently have some works started citing it. We
hope our review aids in restoring credit to this foundational
contribution. In this method, holes are combined using
(non-smooth) R-functions.

The first use of combine-then-map with primitive-shaped
solid components using gradient-based optimization is by
Guo et al. (2014), in implementing the method of moving
morphable components (MMC). This work has many
derivatives and it discusses the merits of this approach. At
the time of writing this review, is the most cited topology
optimization approach using feature-mapping. It uses a
true maximum function to combine components into a
single implicit function. The majority of combine-then-map
implementations with implicit representations use a non-
differentiable maximum. Exceptions are the works by Zhou
etal. (2016), Sharma (2017), and Du et al. (2019), which use
a smooth Kreisselmeier-Steinhauser (K-S) approximation to
combine the signed-distance representations; the works by
Liu et al. (2018) and Du et al. (2020), which employ a K-S
function to combine the implicit functions of the individual

IThe latter work seems to be a more detailed journal version of the
former, hence from hereon we only reference the latter.
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Fig. 24 Examples of different feature-mapping methods for topology
optimization: (a) feature-based method (Mei et al. 2008), (b) smooth
boundary method (Lee and Kwak 2008), (c) circular shaped masks
method (Saxena 2011), (d) MMC method (Guo et al. 2014), (e)
geometry projection method (Norato et al. 2015) and (f) MMV method
(Zhang et al. 2017b)

components; and the works by Zhang et al. (2016b) and Xie
et al. (2018), which use smooth R-functions. The work by
Sharma (2017) smooths out the combined level-set function
with an anisotropic filter to produce smooth boundaries,
although it indicates that, for the examples presented, such
filtering is not necessary to produce good results.

The works by Lee et al. (2007) and Lee and Kwak
(2008) and Kim et al. (2008) are the first to employ an
explicit representation, namely B-splines. Holes are merged
by deleting control points, as outlined in Section 4.2.2.
Wang and Yang (2009) is perhaps the first work to design
structures made exclusively of solid components, consisting
of wide curves modeled using Bézier curves. The pseudo-
density mapping in this method is not differentiable, as
described in Section 8.4; thus, this method uses a genetic
algorithm for the optimization.

In the material mask overlay strategy (MMOS) of Saxena
(2011), holes are represented as the union of primitive-
shaped regions (the “masks”), such as circles, rectangles
and ellipses. The mapping to the analysis mesh uses a small
or unity pseudo-density depending on whether an element’s
centroid is inside or outside any of the masks, respectively.

As this mapping is not differentiable, a gradient-free hill-
climbing method is used for the optimization. Wang et al.
(2012) introduced a differentiable version of MMOS for
the design of photonic waveguides that combines a free-
form density field with circular holes. The boundary of the
holes is smoothed as described in Section 3.1.4 and holes
are combined using a product of the smooth Heavisides,
similarly to (43). In the examples provided in this work,
however, the circular holes do not overlap. Hoang and Jang
(2017) present a modification of this differentiable MMOS
approach for designs with solid components.

8.2 Map-then-combine methods

The most common method that embodies the map-then-
combine strategy is the geometry projection method of Bell
et al. (2012) and Norato et al. (2015). This method employs
a volume fraction calculation using a circular (in 2D) or
spherical (in 3D) sample window (cf. (20)) to obtain a
pseudo-density for each of the components. To combine
features, the preliminary work by Bell et al. (2012) used the
minimum signed distance to any of the components, which
is equivalent to a true maximum. The work by Norato et al.
(2015) introduced the size variable that allows the complete
removal of a component via penalization (cf. (36)). It also
uses a p-norm (cf. (30)) as a smooth approximation of
the maximum to perform the combination of the penalized
pseudo-densities.

An interesting recent contribution is the generalized
geometry projection method of Coniglio et al. (2019). This
method shows that the mappings to an ersatz material in
the geometry projection method (Norato et al. 2015), the
MMC method (specifically, the implementation of Zhang
et al. (2016c) that uses an ersatz material for the analysis,
discussed in Section 8.4), and the moving nodes approach
discussed later in this section, can be seen as special cases of
the numerical integration of the smooth Heaviside (a view
that is in line with the approach of Wein and Stingl (2018)).

A mention is due to the works of Guest and Zhu (2012)
and Ha and Guest (2014), which remove holes or produce
components of a fixed shape and size (e.g., circular),
respectively, by using projection filters with the given shape
on a grid of density variables. In these methods, the design
is described by a density field instead of a high-level
parametric description of the holes or components, hence
they do not fall under our categorization of feature-mapping
techniques. The shape of the hole or component determines
the neighborhood of elements that contribute to the filtered
density in each element.

Another mention is due to the moving nodes approach
(MNA) of Overvelde (2012). In this method, the geometry
is described by mass nodes with variable positions within
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the design region. This method employs an element-
free Galerkin (EFG) method for the analysis (which is
a meshless method). A combined density for the ersatz
material is obtained via a filter operation that uses the same
kernel function as the one used for the EFG analysis. This
filter plays both the role of combining the mass nodes and
mapping to the pseudo-density field for the ersatz analysis.
However, we do not consider this method to fall in the
category of feature-mapping techniques, since the mass
nodes do not have any geometric features in the sense
defined in this paper.

We also note that techniques that use geometric repre-
sentations such as B-splines to represent a density field
(e.g., Qian 2013) or a level-set function (e.g., Wang et al.
2019a) are also excluded from our review, as these param-
eterizations do not directly represent high-level geometric
features.

8.3 Geometric representations

Most of the combine-then-map implementations that use
upfront implicit representations use hyperellipses to repre-
sent various primitives. The original MMC implementation
and most of its derivatives employ a direct hyperellipse rep-
resentation to model 2D bars (Guo et al. 2014), and 3D
bars and plates (Zhang et al. 2017c; Sharma 2017). Zhang
et al. (2016¢) and Guo et al. (2016) modify the hyperellipse
equation to produce curved bars with linearly, quadratically
or sinusoidally varying width. Other methods, notably Mei
et al. (2008) and Zhou et al. (2016), use a hyperellipse rep-
resentation as well, but they convert it to a signed-distance
representation, which, as mentioned in Section 3.1.4, can
lead to better convergence. The geometry projection method
in Norato (2018) models 2D solid components using super-
shapes, which correspond to a generalization of the superel-
lipse formula that has variable symmetry, and thus can
approximate a wide range of primitive shapes with a single
equation. As in all geometry projection implementations, a
signed distance to each supershape is computed to obtain
the mapped pseudo-density.

Lee et al. (2007) and Lee and Kwak (2008) and Kim
et al. (2008) modeled holes with B-splines. The 2D solid
components in Wang and Yang (2009) are modeled using
wide Bézier curves, with design variables being the control
point locations. The curves connect support and loading
points and a constraint in the optimization is required to
prevent curve self-intersections. 2D (Zhang et al. 2017d;
Du et al. 2019; Du et al. 2020; Gai et al. 2020; Xie et al.
2020a) and 3D (Zhang et al. 2017b; Xie et al. 2020a; Xie
et al. 2020b) B-splines have been used to model holes in
the Moving Morphable Voids (MMV) method, which is
a variant of the MMC method. Control points inside the
intersection are made inactive, and the resulting combined
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B-spline is converted to a signed-distance function prior to
mapping to the analysis.

An implicit geometry representation common in geome-
try projection implementations is offset surfaces (cf. Bloo-
menthal and Wyvill 1990), in which the component bound-
ary is given by the set of points equidistant to a medial
axis or surface. For instance, a 2D bar is given by a rectan-
gle with semicircular ends (Norato et al. 2015; Smith and
Norato 2020), a 3D bar by a cylinder with hemispherical
ends (Watts and Tortorelli 2017; Kazemi et al. 2018, 2019;
Smith and Norato 2020), and a 3D plate as a cuboid with
semi-cylindrical edges and quarter-sphere corners (Zhang
et al. 2016a). Offset bars have also been used in conjunc-
tion with the MMC method in Deng and Chen (2016), Deng
et al. (2019), and Deng and To (2020) and the geometry
projection method (Tahhan 2019) to produce designs where
bars are connected at all times by sharing endpoints of their
medial axes; in Hoang and Jang (2017) to impose a min-
imum thickness in the structure (see Section 8.5); and in
Hoang et al. (2020a) to design coated structures. Offset
plates with a single curvature radius are modeled in Zhang
et al. (2018a). The offset surface representation is combined
with a free-form density field in Zhang et al. (2016a) to
produce designs made of plates with free-form holes.

An interesting geometric representation is employed in
Mei et al. (2008), whereby each hole is represented as
a weighted sum of prescribed geometric primitives (e.g.,
circles and triangles) that are implicitly represented using
signed-distance functions. A constraint is added to the
optimization to penalize the primitive weights so that the
holes converge to being, for example, either a pure circle or
a pure triangle. A similar constraint is used in Norato (2018)
to penalize supershapes parameters so that the optimal
design is exclusively made of, e.g., rectangles and ellipses.
Mei et al. (2008) also use shape matching techniques to
take the resulting designs and consolidate them into fewer
primitives, after which an additional optimization stage is
performed.

8.4 Analysis approaches

As mentioned in Section 4.2, combine-then-map approaches
can perform the analysis using either immersed-boundary or
pseudo-density techniques. Map-then-combine approaches,
on the other hand, have only used pseudo-density tech-
niques, although they could in principle use immersed-
boundary approaches, as discussed in Section 4.3.2.
Combine-then-map approaches that utilize an implicit
representation and pseudo-densities for the analysis (cf. Mei
et al. 2008; Zhang et al. 2016¢) compute a smoothed Heav-
iside of the combined implicit function (see Section 3.1.4).
Those that use an immersed-boundary approach, have used
the XFEM method (cf. Guo et al. 2014; Sharma 2017).
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Other approaches use pseudo-densities and isogeometric
analysis (IGA) (Hou et al. 2017; Xie et al. 2018).

Different analysis techniques are used in combine-then-
map approaches that use a direct explicit representation (i.e.,
without conversion to an implicit representation such as a
signed distance). In Lee et al. (2007) and Lee and Kwak
(2008) and Kim et al. (2008), the analysis uses a pseudo-
density that is computed by determining the intersections of
the B-spline holes with the element boundaries, replacing
the intersected boundary with a straight line, and using a
volume fraction approach, as in Garcia-Ruiz and Steven
(1999). The works by Seo et al. (2010) and the recent
MMV method of Gai et al. (2020) are similar to these
methods; however, they use IGA to decompose elements
that intersect the structural boundary into multiple cells to
perform the integration. The work by Zhang et al. (2017g)
uses the weighted B-spline finite cell method for the
analysis. The technique with wide curves of Wang and Yang
(2009) uses an element pseudo-density, which is calculated
by successively subdividing elements that intersect the
structural boundary, and computing the area ratio of the sub-
cells that lie inside the curve (or of overlapping curves). In
this approach, a non-gradient-based optimizer is used.

An interesting analysis technique is presented in the
MMV method of Zhang et al. (2017b), whereby elements
in the void regions are removed from the analysis at each
iteration to decrease the size of the analysis problem. These
elements may be reintroduced in subsequent iterations if
they become non-void.

A mention is due to the recent works of Zhang et al.
(2020b) and Zhang et al. (2020c), which combine holes
in 2D and shell structures using IGA. However, unlike
some of the previously mentioned approaches that use IGA
merely to perform he numerical integration in elements
that intersect the hole boundaries, these methods actually
partition the element boundaries into new elements to
produce a body-fitted mesh, and therefor, they do not fit our
definition of feature-mapping techniques.

8.5 Complexity and minimum size control

We start this section with a brief discussion on complexity
control. By complexity, we here mean the topological
genus of the structure, i.e., its number of holes—the
higher the genus, the more complex the structure. One of
the well-known characteristics of most density topology
optimization techniques is that, in the absence of a
control mechanism (e.g., filtering, or a perimeter or slope
constraint), the design is usually mesh-dependent. This is
a byproduct of the fact that in these methods the design
representation is tied to the analysis mesh. An alternative in

these techniques is to use a grid of design variables that is
independent of the mesh (cf. Nguyen et al. 2010).

Feature-mapping methods in general do not suffer from
this mesh dependency because the representation of the
components or holes is entirely independent of the mesh.
Moreover, if lower bounds are imposed on the dimensions
of the components, it is of course not possible for the
optimization to obtain smaller feature sizes. Therefore,
as long as the total number of components is kept to a
maximum, the designs produced by these methods exhibit
similar complexity and member size. This does not entirely
mean, however, that different mesh sizes produce the
exact same design due to several reasons. First, the mesh
resolution affects the accuracy of the geometry mapping
and the analysis solution and consequently the sensitivities,
hence different mesh resolutions can lead to different
local minima. Furthermore, in the case of pseudo-density
approaches, mesh alignment (in conjunction with the
interpolation approach) may also cause small differences, as
noted in Section 3.1.2. Second, even if a lower bound on the
component dimensions guarantees a minimum feature size,
when components intersect or “touch” they can produce
regions whose size is smaller (and possibly zero, i.e., a point
intersection) than the desired minimum size.

A minimum size for individual components can be
readily attained in various geometric representations by
directly imposing bounds on the design parameters. For
instance, when hyperellipses or supershapes are used
to represent components, the width and length of the
component can be directly controlled by bounding the
hyperellipse radii (see Zhang et al. 2016b; Norato 2018);
in the case of bars modeled using offset surfaces, the bar
width can also be bounded in this way (see Smith and
Norato 2020). When the component dimensions to be bound
do not directly correspond to design parameters, then it is
often straightforward to add constraints that are functions of
the design parameters, as in the case of length constraints
for bars represented by offset surfaces (see Tahhan 2019).

In addition to imposing bounds on the geometric
parameters to ensure a minimum component size, the work
in Sharma (2017) adds a penalty to the objective function
to prevent the onset of plates whose medial surface area
is smaller than a specified threshold. The motivation to
impose this penalty is that small components with zero
shape sensitivities may disconnect from the structure and
cause oscillations in the optimization.

Several approaches have been proposed to enforce a
minimum size for the combined structure in feature-
mapping methods for topology optimization. In Zhang
et al. (2016b), a constraint is added to impose a minimum
distance between any two members that intersect. Since
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the constraint is applied only to components that overlap,
it appears to be non-differentiable. Hoang and Jang
(2017) employ bars modeled with offset surfaces (i.e.,
rectangles with semicircular ends) and effectively control
the minimum thickness by introducing two constraints: one
that ensures a minimum volume in a mask that covers the
rectangular portion of the bar, and another that limits the
amount of intermediate material in the semicircular ends
of the bars. The work by Niu and Wadbro (2019), which
uses rectangular bars and the MMC method, adds a penalty
term to the objective function to enforce a minimum size.
This term consists of a smoothed Heaviside of the minimum
distance between the center lines of two bars for all pairs
of bars; this term is multiplied by another that consists
of the angle difference between the two bars (raised to a
power), so that the orientation between bars that are closer
to being parallel is penalized, but those that are closer to
being perpendicular are not. While the foregoing methods
are effective, they are associated with specific geometric
representations (i.e., bars), and a minimum size control
that works for combined structures with components of
any shape is currently missing. The recent work by Wang
et al. (2019b) constrains the minimum distance between the
medial axes of nearby or intersecting components to be less
than a prescribed value, together with a constraint on the
minimum thickness of the components.

A note is worth making with regard to intersections
between components, which has an effect on the minimum
size at intersections. For pseudo-density approaches, it is
possible that components that should intersect in the optimal
design are not fully connected and there is a small gap
between them. As discussed in Norato (2018), this is due to
the fact that some smooth approximations of the maximum,
such as the p-norm of (30), approximate the true maximum
from above, and thus they may render artificially high
pseudo-densities, which increases the stiffness of small gaps
between components. To circumvent this problem, several
works have proposed smooth saturation functions that cap
the combined pseudo-density to 1 (cf. Overvelde 2012;
Coniglio et al. 2019; Deng and To 2020).

The onset of gaps between components could also be
associated with linear volume-to-stiffness interpolations.
The recent work of Smith and Norato (2020) notes that
the penalization of (36) has a potential problem, namely
that it penalizes the size variable but not the projected
density; therefore, in the event that the size variable is 1,
elements along the boundary of a component that have
intermediate values of the projected density will result in a
linear volume-to-stiffness relation; this, as noted extensively
in Section 3.1.2, is incorrect as it leads to unrealistically
stiff material. To circumvent this, Smith and Norato (2020)
propose penalizing both terms, and they note this leads to
less instances of gaps between components.
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8.6 Adaptive resolution

Several feature-mapping methods for topology optimization
have advanced different mechanisms to adaptively improve
the resolution of the mapping. The work by Liu et al. (2018)
employs a coarse finite element mesh for the analysis, and
a fine mesh of sampling windows for the feature-mapping.
Therefore, several sampling windows are contained in a
finite element. This technique renders a higher resolution
of the geometry. The numerical integration to compute
the element stiffness matrix sums over the contributions
of all the pseudo-density mapping elements. A similar
scheme using the MMV method and IGA for the analysis is
presented in Du et al. (2020).

The recent work in Zhang et al. (2020a) introduces an
adaptive refinement technique for the geometry projection
method. The refinement indicator is given by the projected
pseudo-density, so that the refined mesh is finer along
component boundaries and coarser in solid and void regions.
The refinement corresponds to h-refinement of quadrilateral
(in 2D) and hexahedral (in 3D) elements with hanging
nodes. The refinement and coarsening is done at every
iteration, and the method is demonstrated for meshes with
several million elements. The recent MMV implementation
by Xie et al. (2020a) employs hierarchical B-splines
for adaptive refinement using IGA for the analysis. The
refinement indicator corresponds to a band of values around
the zero value of the combined implicit function and
so, as in the foregoing work, it refines boundaries. This
method does not coarsen previously refined elements, and
it performs a full optimization for each level of refinement.
We note that these two methods are the exception to using
a fixed analysis grid, as the mesh is obviously modified
throughout the optimization; nevertheless, they still employ
feature-mapping to a non-body-fitted mesh.

8.7 Design space modification

As discussed in Section 4.4, feature-mapping methods for
topology optimization are more prone to falling into poor
local minima than free-form methods. Therefore, the choice
of initial design, as well as any mechanisms to adaptively
modify it, are important aspects in these methods.

One strategy employed by several of the techniques that
design holes in a solid region is to adaptively introduce
holes at locations that attain the most negative value of
the topological derivative of the compliance. This strategy,
which has been used by level-set techniques (cf. Sigmund
and Maute 2013 and references therein), was introduced
in feature-mapping methods by Mei et al. (2008) and later
used by other methods (e.g., Lee et al. 2007; Lee and
Kwak 2008; Kim et al. 2008). To our knowledge, this
strategy has not been used yet to introduce solid components
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into a void domain. In addition to adaptively introducing
holes, the work of Mei et al. (2008) also removes holes
that do not intersect any solid region to simplify the design.
The generative design method of Li et al. (2019) adaptively
adds components to generate tree-like structures for area-
to-point conduction problems. It performs a sequence of
optimizations using the MMC method; at the end of each
optimization run, it adds or removes components at the
ends of existing branches depending on whether the leaf-
side thickness of the component exceeds or falls short of
prescribed thresholds, respectively.

To prevent entrapment in poor local minima, the MMC
method of Zhang et al. (2017f) introduces a function that
smoothly approximates the number of “effective” bars in
the design. Two or more bars are considered to form
a single effective component if they overlap (near) co-
linearly . The function examines the intersection between
the bars: if the intersected area is greater than some specified
threshold, and if the angle between the bars does not nearly
equal zero or r, they are considered separate components.
A constraint is then imposed on the number of effective
components.

A “bootstrapping” strategy to produce good initial
designs for 2D problems with bars is presented in Weiss
et al. (2018), which uses density-based topology optimiza-
tion to produce an initial design. This result is first converted
to a 0-1 design by thresholding, and then, it is skeletonized
to produce the medial axis of the structure. The nodes of
this skeleton are connected with straight bars to produce an
initial design for the MMC method. A similar approach is
presented in Lian et al. (2020).

In Zhang and Norato (2018), the gradient-based tun-
neling method is used in conjunction with the geometry
projection method to go from one local minimum to a bet-
ter one. In essence, after converging to a local minimum
(the optimization phase), this technique adds a term to the
objective function that makes the current minimum a pole
of the modified objective, and uses this function to find
another design with an equal or lower objective (the tunnel-
ing phase). If successful, a new optimization phase is started
with the original function.

Finally, taking advantage of the reduced number of
design variables in feature-mapping methods, and to attempt
to prevent entrapment in poor local minima, recent works
have used statistical techniques such as: an evolutionary
strategy (Bujny et al. 2018), Bayesian optimization (Sharpe
et al. 2018), and machine learning methods such as support
vector regression and K-nearest neighbors (Lei et al.
2019) to perform the optimization. Raponi et al. (2019)
also used a Kriging-based surrogate model to improve
the convergence rate and optimal designs when using a
statistical optimization technique.

8.8 Geometric constraints

One of the most appealing aspects of feature-mapping
methods is the ability to impose geometric constraints.
These may be motivated by, for example, wanting to make
the structure out of stock material (such as bars or plates),
or facilitating its manufacturing. The simplest of these
constraints, as noted in Section 8.5, is to enforce bounds
on the component geometric parameters. For instance, it
is possible to obtain a structure that is made of bars with
the same cross section (cf. Norato et al. 2015), or to
impose upper bounds on the dimensions of rectangular
plates to account for commercial availability (Zhang et al.
2016a). Although conceptually simple, enforcing these
requirements in free-form methods is difficult.

Surprisingly, however, there have only been a few works
to date that incorporate other geometric constraints. A
common requirement, particularly for structures made of
stock material, is to ensure that the components lie entirely
within the design region, as otherwise a component that
is only partially inside may require cuts (for example,
through the thickness of a plate) that are impractical to
manufacture. For rectangular and cuboid design regions in
2D and 3D, respectively, this requirement is easily satisfied
by imposing bounds on the design variables that determine
the positions of the components. However, for other design
region shapes, particularly those that are not convex, using
bounds or simple constraints on the design parameters does
not work. The geometry projection method in Zhang et al.
(2018a) proposes a way to address this by creating a layer of
points slightly outside of the boundary of the design region,
and imposing a constraint in the optimization that the
maximum projected pseudo-density in any of these points
is zero. By imposing the constraint on the pseudo-densities,
this technique works for components of any shape. An
alternative to address this issue is to employ the no-overlap
techniques discussed in Section 5, and require that the
geometric components do not overlap the exterior of the
design region.

Another type of geometric constraint aims to control the
orientation of components. In the MMC implementation of
Guo et al. (2017), a constraint is imposed on the orientation
of bars in structures fabricated via additive manufacturing
to ensure their angle with respect to the print direction
is smaller than the overhang angle. In the same work,
holes on a solid structure are modeled using B-splines,
and a constraint is imposed on the control points positions
to ensure the boundaries of the holes do not exceed the
overhang angle. In the latter approach, however, another
constraint is also imposed to prevent holes from merging
in order to completely avoid violations of the overhang
angle requirement, thus this method does not change the
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topology of the design. The recent MMC implementation by
Xian and Rosen (2020) imposes an angle constraint between
bars to avoid overhangs in additive manufacturing. In the
work by Wein and Stingl (2018), described in Section 6.2
and shown in Fig. 22(b), a maximum overhang on the
strip boundaries is readily enforced by imposing constraints
on the relative position of boundary points (which are
themselves a function of the control points and the strip
semi-widths). Similarly, using constraints on the positions
of the control points and on the semi-widths, this method
enforces slope and curvature constraints on the overall shape
of the strip.

In the geometry projection technique of Smith and
Norato (2019b), a constraint is imposed on the minimum
angle between any two bars (modeled as offset surfaces)
to ease manufacturing. The form of the angle constraint is
somewhat similar to that of Niu and Wadbro (2019) in that
it multiplies a term that penalizes the angles between two
bars with another that measures the distance between their
medial axes. However, the angle term penalizes angles that
are smaller than a prescribed value (instead of the angle
difference), and the distance term is used to impose the
angle constraint only between bars that are closer than a
prescribed value. Moreover, the penalty term is multiplied
by the size variables of both bars, so that no angle constraint
is imposed when one or both of the bars have a zero size
variable.

Feature-mapping methods often produce designs where
components—particularly bars—intersect such that they
have a “long” overlap, i.e., they are close to each other and
they are near parallel. If the structure is fabricated with stock
material, these overlaps make fabrication difficult. The
aforementioned techniques to impose an angle constraint
between bars are very effective in preventing this situation.
Smith and Norato (2019b) define a no-overlap region in
the bar, corresponding to the bar minus its circular ends.
A constraint is then imposed that the sum of the projected
pseudo-densities for each individual bar on the overlapping
region is at most unity. In effect, these techniques ensure
that a bar intersects another only at its ends. However,
it may be intersected by other bars anywhere along its
length. Another technique to prevent long overlaps is the
one proposed by Watts and Tortorelli (2017) for design of
periodic lattices, where a constraint is imposed that ensures
the largest distance from the endpoint of a bar’s axis to
the closest endpoint of another bar is at most the bar’s half
width. This ensures a bar only intersects another at its ends
but not along the bars; thus, it is more restrictive than the
foregoing techniques.

The geometry projection technique of Kazemi et al.
(2020), which designs multi-material lattices made of
cylindrical struts, introduces a no-cut constraint to ensure
struts are not partially cut by the boundaries of the periodic
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unit cell or by the material symmetry planes. This renders
designs more amenable to manufacturing as they only
produce struts that are whole. This constraint ensures the
difference between the values of the volume of an individual
strut computed from its geometric parameters and from its
projected pseudo-density on the reference region (i.e., the
region that is reflected to enforce material symmetries) is
negligible. A smooth maximum function is used to render
a single constraint for all the components. This idea is
similar in spirit to the one used in Kang and Wang (2013) to
prevent the overlap of embedded components in a free-form
structure.

Symmetry is another geometric constraint considered by
existing methods. Due to the more restrictive design rep-
resentation, feature-mapping methods may render designs
that are not exactly symmetric even if the design region
shape and the boundary conditions are such that a symmet-
ric design is expected with free-form methods. In the case
of compliance minimization with a volume constraint, this
behavior was noted in Norato et al. (2015) for components
of fixed width. This finding bears resemblance to the known
fact that optimal truss designs can also be asymmetric not
only for discrete 0-1 trusses (Stolpe 2010, 2016) but also
for trusses whose element stiffness matrices are penalized
as in density-based topology optimization schemes (Stolpe
2010). The works of Stolpe (2010), Rozvany (2011), Guo
et al. (2012), and Guo et al. (2013) examine the issue of
symmetry in layout of trusses and may provide clues to the
lack of symmetry in feature-mapping methods for topology
optimization.

To ensure a symmetric design, the geometry projection
techniques in Watts and Tortorelli (2017), Kazemi et al.
(2018), and Kazemi et al. (2020) use a simple strategy
in which the point where the pseudo-density is computed
is reflected with respect to the symmetry plane before
computing the signed distance to the components. This
strategy can be applied to any number of symmetry
planes, as demonstrated in Watts and Tortorelli (2017) and
Kazemi et al. (2020) to design periodic truss lattices whose
homogenized properties exhibit desired symmetries. It can
also be applied to any component shape. A similar strategy
to produce symmetric and periodic structures is employed
in the MMC implementation of Xie et al. (2020b). In Wein
and Stingl (2018), the control points that define the strips
are reflected with respect to symmetry planes to obtain, e.g.,
square symmetric structures.

8.9 Applications

Not surprisingly, most works in feature-mapping meth-
ods for topology optimization consider minimization of
compliance with a volume constraint. Recently, some works
have incorporated other structural responses and physical
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regimes. Some of the applications mentioned in this section
are shown in Fig. 25.

One problem feature-mapping methods have been used
for is the design of linear compliant mechanisms (Deng and
Chen 2016; Guo et al. 2016; Zhang et al. 2016b; Hoang
and Jang 2017), whereby the objective function is typically
related to maximizing displacements at certain locations.
The mechanisms to impose a minimum size in Zhang
et al. (2016b) and Hoang and Jang (2017) are effective

Fig. 25 Examples of different
feature-mapping applications in
topology optimization: (a)
compliant mechanism design
(Hoang and Jang 2017), (b)
material design (Watts and
Tortorelli 2017), (c) stress
constraints (Zhang et al. 2017a),
(d) multi-material structures
(Kazemi et al. 2018), (e)
geometric nonlinearities (Zhu
et al. 2018), and (f) thermal-fluid
problems (Yu et al. 2019)

in preventing single-node hinges often seen in compliant
mechanism design using free-form methods. Another
application in elastostatic structures is an MMV method
for design-dependent loading (Zhou et al. 2019). Stress
constraints are incorporated in the geometry projection
technique of Zhang et al. (2017a) and in the MMV method
of Zhang et al. (2018b); and stresses were minimized in
the former work and in the MMC method of Takalloozadeh
and Yoon (2017), which uses the topological derivative to

(a) (b)

© (d)

(e
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compute the design sensitivities of the stress function. The
recent work in Cui et al. (2020) employs MMC to design
plate structures subject to out-of-plane loading, with the
plate modeled using Kirchhoff plate elements.

In the area of material design, the geometry projection
methods of Watts and Tortorelli (2017) and Kazemi et al.
(2020) are applied to design periodic truss latices with
desired material symmetries, to maximize the effective bulk
modulus, or to obtain negative Poisson’s ratio.

The design of multi-material structures, where each
component is made from one material from a set of available
materials, is another recent application of these methods.
The first work to accomplish this is the aforementioned
work of Watts and Tortorelli (2017). By adapting the
density-based multi-material technique of Sigmund and
Torquato (1997) to the geometry projection framework,
their method simultaneously designs the layout of the bars
within the unit cell and selects the best material for each
component. The MMC method of Zhang et al. (2018d)
designs structures with components made of multiple
materials. However, the material for each component
is assigned a priori and does not change during the
optimization, and only the component layout is optimized.
Kazemi et al. (2018) simultaneously design the topology
and material choice of multi-material structures by adapting
the discrete material optimization (DMO) technique of
Stegmann and Lund (2005) to the geometry projection
method. This method is extended in Kazemi et al. (2020) to
the design of multi-material lattices.

Hoang et al. (2020b) present a method to design 2D
components made of a porous material. The shape and
topology of the macro component is given by combining
bars; the honeycomb corresponds to a solid matrix with
circular holes in a honeycomb tiling with designable hole
radius and wall thickness. Two pseudo-density fields are
computed—one for the macro component and one for the
honeycomb—which are combined to produce the ersatz
material.

The MMC method of Zhu et al. (2018) minimizes the
compliance of geometrically nonlinear structures. It uses a
neo-Hookean material along with the material interpolation
of Wang et al. (2014a), which models low-density elements
with a linear material and thus stabilizes the analysis.
The asymptotes in the optimizer—namely, the method
of moving asymptotes (MMA) of Svanberg (1987)—
are adaptively updated to enforce a more conservative
approximation of the optimization functions when the
nonlinear finite element analysis has difficulty converging.
The MMV approach in Xue et al. (2019) designs
minimal-compliance structures and compliant mechanisms
with finite deformations. To circumvent the convergence
issues brought upon by low-density elements, this method
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adaptively removes elements inside the holes whose
pseudo-density is lower than a prescribed threshold.

An interesting application of feature-mapping methods
is the design of particular types of structures that are
typically manufactured using stock material, such as plates
or rods. These include the layout design of reinforcing
ribs made of plates, including the geometry projection
technique of Zhang and Norato (2017) and the MMC
method of Zhang et al. (2018c). The latter work incorporates
buckling constraints. The recent method of Bai and Zuo
(2020) employs MMC to design structures made of hollow
components, such as commonly used structural shapes. A
subset of these works is devoted to the design of aircraft
wingbox design: the method of Smith and Norato (2019a),
which aims to find an optimal layout of ribs for the wingbox,
and the method of Li et al. (2018), in which the layout of
ribs is fixed, and MMV is used to find the optimal design
of holes in the ribs to minimize fuel sloshing. A geometry
projection technique is employed in Coniglio (2019) for the
design of an aircraft engine pylon. The recent work in Chu
et al. (2019) uses MMC to design periodic truss cores of
sandwich panels with minimal compliance. The method of
Hoang et al. (2020a) designs structures with one or two
uniform-thickness coatings and an infill, each made of a
homogeneous isotropic material. We note that the methods
of Bai and Zuo (2020) and Hoang et al. (2020a) use not only
Boolean unions of geometric components but also Boolean
subtractions.

Another application area with growing interest is
dynamics. For instance, several recent works have been
devoted to design of flexible multi-body systems, such as
the MMC techniques of Sun et al. (2018b, c) to design a
variable-length structure, and Sun et al. (2018a) to design
a component with large motion and large deformation.
MMC is used to design a rotating thin plate to maximize
its first eigenfrequency, or maximize the gap between
two consecutive eigenfrequencies in Sun et al. (2019),
and to remove its internal resonances in Sun (2020). In
Xie et al. (2019), MMC is used to design the layout
of damping patches on a vibrating plate to minimize its
average kinetic energy over a frequency range. Wormser
et al. (2017) design periodic lattice structures that act as
phononic band gaps—a problem that is very hard to solve
with free-form topology optimization techniques, which
render disconnected structures that cannot be manufactured.
The MMC method has also been combined with gradient-
free optimization methods to optimize structures for crash-
worthiness (Bujny et al. 2018; Raponi et al. 2019).

In the realm of heat transfer, combine-then-map methods
have been applied to the design of thermo-elastic structures.
Takalloozadeh and Yoon (2017) use the MMC method
to design minimum compliance structures subject to a
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uniform temperature change. Sharma (2017) minimizes
the mismatch between the resulting displacement and a
prescribed one for both steady-state and unsteady heat
conduction (in the latter case, the prescribed displacement
is specified at a given time). The method of Lohan et al.
(2017) designs 2D structures for heat conduction in what
amounts to an MMOS method. The structure, which has
higher conductivity than its surrounding medium, is defined
as the union of circles, and an element pseudo-density of 0
or 1 is assigned depending on whether the centroid is outside
or inside of the structure, respectively. A gradient-free space
colonization algorithm is used for the optimization. The
work in Yu et al. (2019) addresses thermal-fluid problems
with the MMC method to design the pipes in a cooling
device, with the objective function being a weighted sum
of the thermal compliance and the power dissipation of the
system.

Finally, in the area of electromagnetics, the work of Li
et al. (2019) designs a tree-like power distribution network
on an integrated circuit by minimizing the power mean
voltage subject to a volume constraint. Liu and Du (2019)
use MMC to solve an inverse problem, namely to recon-
struct the shapes of objects inside a body from electrical
impedance measurements made on the surface of the body.

9 Discussion

Feature-mapping is a powerful and promising approach in
structural optimization. As detailed in this review, there
is a wide range of choices to accomplish the two main
ingredients of these methods, namely the mapping of high-
level parameters onto a non-body-fitted mesh for analysis
and the combination of features.

We believe there is still ample room for further
exploring the aspects of feature-mapping and to advance
novel techniques, which will likely happen based on
applications of feature-mapping to solve problems not (or
not as efficiently) solvable by established methods, notably
density-based and level-set topology optimization.

One area that we identified for potential further work
is to consider more problems where high-level geometric
constraints are essential for the application. For example,
this could include manufacturing constraints and problems
where connectivity between two or more points is essential.

An often discussed benefit of feature-mapping approaches
is the potentially straightforward transfer of optimized
designs to the CAD environment (due to use of a high-
level geometric parameterization). However, there is little
evidence to demonstrate this benefit in the literature.

Topology optimization using solid components allows the
possibility of having components with different functionali-
ties and/or different physical models that are simultaneously

considered (Guo et al. 2014). However, to our knowledge,
this ability has not yet been demonstrated or exploited—
e.g., to solve problems driven by complex multi-disciplinary
interactions.

The issue of local minima and initial design-dependent
solutions is currently one of the key challenges of feature-
mapping methods, particularly for hybrid methods and
topology optimization. Some remedies to this problem are
suggested in Section 8.7. However, we consider there is
scope for new methods and ideas to solve (or at least
mitigate) this issue.

Feature-mapping methods for topology optimization
have mostly considered Boolean unions of components or
holes. While the use of the Boolean union in conjunction
with other operations (e.g., intersection and subtraction)
was already conceived in the pioneering work of Mei et al.
(2008), this has not been fully exploited in methods for
topology optimization (with the exceptions of the meth-
ods that employ hollow components and coatings noted
in Section 8.9). Hybrid methods, on the other hand, have
demonstrated this possibility. This is an important capa-
bility because it allows to obtain more complex shapes
(albeit still with high-level parameters), and because it mir-
rors the way in which CAD systems construct complex
geometries. We thus believe there is room for topology
optimization methods to further incorporate and demon-
strate this capability.

Finally, in preparing this review we have noticed that
there is a level of reinvention of methods and techniques. We
hope this review helps researchers understand the different
aspects of feature-mapping and the various techniques
proposed to date in order to avoid duplication and to duly
credit existing work.

Acknowledgments We thank Dr. Lukas Pflug from the Department
of Mathematics at the Friedrich-Alexander-Universitit Erlangen-
Niirnberg (FAU), Germany, for fruitful discussion and support.

The initiative for this review goes back to critical yet constructive
comments by Prof. Kurt Maute, from the University of Colorado
Boulder, USA.

We also thank Prof. Horea Ilies from the University of Connecticut,
USA, for guidance and insight into some of the geometric aspects of
this work.

The first author acknowledges support by Deutsche Forschungs-
gemeinschaft (DFG) in the framework of the collaborative research
center CRC 814 (subproject C2). The third author thanks the support
of the US National Science Foundation, award CMMI-1634563.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

Replication of results This review paper does not introduce any new
methodology, and to replicate results of the different feature-mapping
techniques discussed here, we refer the reader to the original works.
The code to solve the simple test problems of Sections 3 and 4.4 is
available by request from the authors.

@ Springer



F. Wein et al.

References

Adalsteinsson D, Sethian JA (1999) The fast construction of extension
velocities in ss methods. J Comput Phys 148(1):2-22

BaiJ, Zuo W (2020) Hollow structural design in topology optimization
via moving morphable component method. Struct Multidiscip
Optim 61(1):187-205

Bakhtiarinejad M, Lee S, Joo J (2017) Component allocation and sup-
porting frame topology optimization using global search algorithm
and morphing mesh. Struct Multidiscip Optim 55(1):297-315

Bell B, Norato J, Tortorelli D (2012) A geometry projection method
for continuum-based topology optimization of structures. In: 12th
AIAA Aviation Technology, Integration, and Operations (ATIO)
conference and 14th AIAA/ISSMO multidisciplinary analysis and
optimization conference. https://doi.org/10.2514/6.2012-5485

Belytschko T, Black T (1999) Elastic crack growth in finite elements
with minimal remeshing. International Journal for Numerical
Methods in Engineering 45(5):601-620

Belytschko T, Gracie R, Ventura G (2009) A review of
extended/generalized finite element methods for material mod-
eling. Modelling and Simulation in Materials Science and
Engineering 17(4):043,001

Bendsge MP (1989) Optimal shape design as a material distribution
problem. Struct Multidiscip Optim 1:193-202

Bendsge MP, Kikuchi N (1988) Generating optimal topologies
in structural design using a homogenization method. Comput
Methods Appl Mech Eng 71(2):197-224

Bendsge MP, Sigmund O (1999) Material interpolation schemes in topol-
ogy optimization. Archive of Applievd Mechanics 69(9):635-654

Bendsge MP, Sigmund O (2003) Topology optimization: theory,
method and applications, 2nd edn. Springer

Bloomenthal J, Wyvill B (1990) Interactive techniques for implicit
modeling. In: ACM SIGGRAPH Computer graphics, vol 24.
ACM, pp 109-116

Braibant V, Fleury C (1984) Shape optimal design using B-splines.
Comput Methods Appl Mech Eng 44(3):247-267

Bujny M, Aulig N, Olhofer M, Duddeck F (2018) Identification of
optimal topologies for crashworthiness with the evolutionary level
set method. International Journal of Crashworthiness 23(4):395—
416

Cai S, Zhang W (2015) Stress constrained topology optimization
with free-form design domains. Comput Methods Appl Mech Eng
289:267-290

Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization
with topological changes and parametric control. Int J Numer
Methods Eng 71(3):313-346

Cheng G, Mei Y, Wang X (2006) A feature-based structural topology
optimization method. In: IUTAM Symposium on Topological
Design Optimization of Structures, Machines and Materials.
Springer, pp 505-514

Cheng L, Liu J, Liang X, To AC (2018) Coupling lattice structure
topology optimization with design-dependent feature evolution for
additive manufactured heat conduction design. Comput Methods
Appl Mech Eng 332:408-439

Chu S, Gao L, Xiao M, Li H (2019) Design of sandwich panels with
truss cores using explicit topology optimization. Compos Struct
210:892-905

Coniglio S (2019) Optimisation topologique a formalisme Eulérien et
Lagrangien appliquée a la conception d’un ensemble propulsif.
PhD thesis, Université de Toulouse

Coniglio S, Morlier J, Gogu C, Amargier R (2019) Generalized
geometry projection: a unified approach for geometric feature
based topology optimization. Archives of Computational Methods
in Engineering. https://doi.org/10.1007/s11831-019-09362-8

@ Springer

Cui T, SunZ, Liu C, Li L, Cui R, Guo X (2020) Topology optimization
of plate structures using plate element-based moving morphable
component (MMC) approach. Acta Mechanica Sinica 36(2):412—
421

Deng H, To AC (2020) Linear and nonlinear topology optimization
design with projection-based ground structure method (P-GSM).
Int J Numer Methods Eng 121(11):2437-2461

Deng J, Chen W (2016) Design for structural flexibility using
connected morphable components based topology optimization.
Sci China Technol Sci 59(6):839-851

Deng J, Pedersen CB, Chen W (2019) Connected morphable
components-based multiscale topology optimization. Front Mech
Eng 14(2):129-140

van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-
set methods for structural topology optimization: a review. Struct
Multidiscip Optim 48(3):437-472

Du B, Yao W, Zhao Y, Chen X (2019) A moving morphable voids
approach for topology optimization with closed B-splines. ] Mech
Design 141(8):081,401

Du B, Zhao Y, Yao W, Wang X, Huo S (2020) Multiresolution
isogeometric topology optimisation using moving morphable
voids. Comput Model Eng Sci 122(3):1119-1140

Dunning PD (2018) Minimum length-scale constraints for parameter-
ized implicit function based topology optimization. Structural and
Multidisciplinary Optimization 58(1):155-169. https://doi.org/10.
1007/s00158-017-1883-1

Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method
for topology and shape optimization of structures. Struct Optim
8(1):42-51

Gai Y, Zhu X, Zhang YJ, Hou W, Hu P (2020) Explicit isogeometric
topology optimization based on moving morphable voids with
closed b-spline boundary curves. Struct Multidiscip Optim
61(3):963-982

Gao HH, Zhu JH, Zhang WH, Zhou Y (2015) An improved
adaptive constraint aggregation for integrated layout and topology
optimization. Comput Methods Appl Mech Eng 289:387-
408

Garcia MJ, Gonzalez CA (2004) Shape optimisation of continuum
structures via evolution strategies and fixed grid finite element
analysis. Struct Multidiscip Optim 26(1-2):92-98

Garcia-Ruiz M, Steven G (1999) Fixed grid finite elements in elasticity
problems. Eng Comput 16(2):145-164. https://doi.org/10.1108/
02644409910257430

Guest JK, Zhu M (2012) Casting and milling restrictions in topology
optimization via projection-based algorithms. In: ASME 2012
International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. American
Society of Mechanical Engineers, pp 913-920

Guo X, Ni C, Cheng G, Du Z (2012) Some symmetry results for
optimal solutions in structural optimization. Struct Multidiscip
Optim 46(5):631-645

Guo X, Du Z, Cheng G, Ni C (2013) Symmetry properties
in structural optimization: some extensions. Struct Multidiscip
Optim 47(6):783-794

Guo X, Zhang W, Zhong W (2014) Doing topology optimization
explicitly and geometrically - a new moving morphable compo-
nents based framework. J Appl Mech 81(8):081,009

Guo X, Zhang W, Zhang J, Yuan J (2016) Explicit structural
topology optimization based on moving morphable components
(MMC) with curved skeletons. Comput Methods Appl Mech Eng
310:711-748

Guo X, Zhou J, Zhang W, Du Z, Liu C, Liu Y (2017) Self-
supporting structure design in additive manufacturing through
explicit topology optimization. Comput Methods Appl Mech Eng
323:27-63


https://doi.org/10.2514/6.2012-5485
https://doi.org/10.1007/s11831-019-09362-8
https://doi.org/10.1007/s00158-017-1883-1
https://doi.org/10.1007/s00158-017-1883-1
https://doi.org/10.1108/02644409910257430
https://doi.org/10.1108/02644409910257430

A review on feature-mapping methods for structural optimization

Ha SH, Guest JK (2014) Optimizing inclusion shapes and patterns
in periodic materials using discrete object projection. Struct
Multidiscip Optim 50(1):65-80

Haftka RT, Grandhi RV (1986) Structural shape optimization: a
survey. Comput Methods Appl Mech Eng 57(1):91-106

Hansbo A, Hansbo P (2004) A finite element method for the simulation
of strong and weak discontinuities in solid mechanics. Comput
Methods Appl Mech Eng 193(33-35):3523-3540

Haslinger J, Mikinen R (2003) Introduction to shape optimization:
theory, vol 7. SIAM

Hoang VN, Jang GW (2017) Topology optimization using moving
morphable bars for versatile thickness control. Comput Methods
Appl Mech Eng 317:153-173

Hoang VN, Nguyen NL, Nguyen-Xuan H (2020a) Topology optimiza-
tion of coated structure using moving morphable sandwich bars.
Struct Multidiscip Optim 61(2):491-506

Hoang VN, Nguyen NL, Tran P, Qian M, Nguyen-Xuan H (2020b)
Adaptive concurrent topology optimization of cellular composites
for additive manufacturing. JOM 72(6):2378-2390

Hou W, Gai Y, Zhu X, Wang X, Zhao C, Xu L, Jiang K,
Hu P (2017) Explicit isogeometric topology optimization using
moving morphable components. Comput Methods Appl Mech Eng
326:694-712

Imam MH (1982) Three-dimensional shape optimization. Int J Numer
Methods Eng 18(5):661-673

Kang Z, Wang Y (2013) Integrated topology optimization with
embedded movable holes based on combined description by
material density and level sets. Comput Methods Appl Mech Eng
255:1-13

Kasolis F, Wadbro E, Berggren M (2012) Fixed-mesh curvature-
parameterized shape optimization of an acoustic horn. Struct
Multidiscip Optim 46(5):727-738

Kazemi H, Vaziri A, Norato JA (2018) Topology optimization of
structures made of discrete geometric components with different
materials. ] Mech Design 140(11):111,401

Kazemi H, Vaziri A, Norato J (2019) Topology optimization of multi-
material lattices for maximal bulk modulus. In: International
Design Engineering Technical Conferences and Computers and
Information in Engineering Conference, vol 59186. American
Society of Mechanical Engineers, pp VO2AT03A052

Kazemi H, Vaziri A, Norato JA (2020) Multi-material topology
optimization of lattice structures using geometry projection.
Comput Methods Appl Mech Eng 363:112,895

Kim DH, Lee SB, Kwank BM, Kim HG, Lowther DA (2008)
Smooth boundary topology optimization for electrostatic prob-
lems through the combination of shape and topological design
sensitivities. IEEE Trans Magn 44(6):1002-1005

Lang C, Makhija D, Doostan A, Maute K (2014) A simple and efficient
preconditioning scheme for Heaviside enriched XFEM. Comput
Mech 54(5):1357-1374

Le C, Bruns T, Tortorelli D (2011) A gradient-based, parameter-free
approach to shape optimization. Comput Methods Appl Mech Eng
200(9):985-996

Lee S, Kwak BM (2008) Smooth boundary topology optimization
for eigenvalue performance and its application to the design of a
flexural stage. Eng Optim 40(3):271-285

Lee SB, Kwak BM, Kim IY (2007) Smooth boundary topology
optimization using B-spline and hole generation. International
Journal of CAD/CAM 7(1):11-20

Lei X, Liu C, Du Z, Zhang W, Guo X (2019) Machine learning-
driven real-time topology optimization under moving morphable
component-based framework. J Appl Mech 86(1):011,004

Li B, Liu H, Zheng S (2018) Multidisciplinary topology optimization
for reduction of sloshing in aircraft fuel tanks based on SPH
simulation. Struct Multidiscip Optim 58(4):1719-1736

Li B, Xuan C, Liu G, Hong J (2019) Generating constructal networks
for area-to-point conduction problems via moving morphable
components approach. J Mech Design 141(5):051,401

Li L, Wang MY, Wei P (2012) XFEM Schemes for level set based
structural optimization. Frontiers of Mechanical Engineering
7(4):335-356

Li Y, Wei P, Ma H (2017) Integrated optimization of heat-transfer
systems consisting of discrete thermal conductors and solid
material. Int J Heat Mass Transfer 113:1059-1069

Lian R, Jing S, He Z, Shi Z (2020) Geometric boundary feature
extraction method based on moving morphable components
(MMC) for topology optomization results. In: 2020 IEEE 4th
Information Technology, Networking, Electronic and Automation
Control Conference (ITNEC), IEEE, vol 1, pp 2299-2303

Lin HY, Rayasam M, Subbarayan G (2015) ISOCOMP: Unified
geometric and material composition for optimal topology design.
Struct Multidiscip Optim 51(3):687-703

Liu C, Zhu Y, Sun Z, Li D, Du Z, Zhang W, Guo X (2018) An
efficient moving morphable component (MMC)-based approach
for multi-resolution topology optimization. Struct Multidiscip
Optim 58(6):2455-2479

Liu D, Du J (2019) A moving morphable components based shape
reconstruction framework for electrical impedance tomography.
IEEE Trans Med Imag 38(12):2937-2948

Liu J, Ma Y (2016) A survey of manufacturing oriented topology
optimization methods. Adv Eng Softw 100:161-175

Liu J, Ma YS (2015) 3d level-set topology optimization: a machining
feature-based approach. Structural and Multidisciplinary Opti-
mization 52(3):563-582

Liu J, Gaynor AT, Chen S, Kang Z, Suresh K, Takezawa A, Li
L, Kato J, Tang J, Wang CC et al (2018b) Current and future
trends in topology optimization for additive manufacturing. Struct
Multidiscip Optim 57(6):2457-2483

Liu P, Kang Z (2018) Integrated topology optimization of multi-
component structures considering connecting interface behavior.
Comput Methods Appl Mech Eng 341:851-887

Liu T, Wang S, Li B, Gao L (2014) A level-set-based topology
and shape optimization method for continuum structure under
geometric constraints. Struct Multidiscip Optim 50(2):253-273

Lohan DJ, Dede EM, Allison JT (2017) Topology optimization for heat
conduction using generative design algorithms. Struct Multidiscip
Optim 55(3):1063-1077

Makhija D, Maute K (2014) Numerical instabilities in level set
topology optimization with the extended finite element method.
Struct Multidiscip Optim 49(2):185-197

Mei Y, Wang X, Cheng G (2008) A feature-based topological
optimization for structure design. Adv Eng Softw 39(2):71-87

Moés N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. International Journal for
Numerical Methods in Engineering 46(1):131-150

Moés N, Cloirec M, Cartraud P, Remacle JF (2003) A computational
approach to handle complex microstructure geometries. Comput
Methods Appl Mech Eng 192(28-30):3163-3177

Najafi AR, Safdari M, Tortorelli DA, Geubelle PH (2015) A gradient-
based shape optimization scheme using an interface-enriched
generalized fem. Comput Methods Appl Mech Eng 296:1-17

Nguyen TH, Paulino GH, Song J, Le CH (2010) A computational
paradigm for multiresolution topology optimization (MTOP).
Struct Multidiscip Optim 41(4):525-539

Niu B, Wadbro E (2019) On equal-width length-scale control in
topology optimization. Struct Multidiscip Optim 59(4):1321-—
1334

Noél L, Duysinx P (2017) Shape optimization of microstructural
designs subject to local stress constraints within an XFEM-level
set framework. Struct Multidiscip Optim 55(6):2323-2338

@ Springer



F. Wein et al.

Noél L, Miegroet LV, Duysinx P (2016) Analytical sensitivity analysis
using the extended finite element method in shape optimization
of bimaterial structures. Int J Numer Methods Eng 107(8):669—
695

Norato J, Haber R, Tortorelli D, Bendsge MP (2004) A geometry
projection method for shape optimization. International Journal
for Numerical Methods in Engineering 60(14):2289-2312

Norato J, Bell B, Tortorelli D (2015) A geometry projection method for
continuum-based topology optimization with discrete elements.
Comput Methods Appl Mech Eng 293:306-327

Norato JA (2018) Topology optimization with supershapes. Struct
Multidiscip Optim 58(2):415-434

Overvelde JT (2012) The moving node approach in topology
optimization. Master’s thesis, Delft University of Technology

Pollini N, Amir O (2020) Mixed projection-and density-based
topology optimization with applications to structural assemblies.
Struct Multidiscip Optim 61(2):687-710

Qian X (2013) Topology optimization in B-spline space. Comput
Methods Appl Mech Eng 265:15-35

Qian Z, Ananthasuresh G (2004) Optimal embedding of rigid objects
in the topology design of structures. Mech Based Design Struct
Mach 32(2):165-193

Raponi E, Bujny M, Olhofer M, Aulig N, Boria S, Duddeck F
(2019) Kriging-assisted topology optimization of crash structures.
Comput Methods Appl Mech Eng 348:730-752

Rozvany GI (2011) On symmetry and non-uniqueness in exact
topology optimization. Struct Multidiscip Optim 43(3):297-317

Rozvany GI, Zhou M, Birker T (1992) Generalized shape optimization
without homogenization. Struct Optim 4(3-4):250-252

Saxena A (2011) Are circular shaped masks adequate in adaptive
mask overlay topology synthesis method? J Mech Design
133(1):011,001

Seo YD, Kim HJ, Youn SK (2010) Isogeometric topology optimization
using trimmed spline surfaces. Comput Methods Appl Mech Eng
199(49-52):3270-3296

Shan P (2008) Optimal embedding objects in the topology design
of structure. Master thesis, Dalian University of Technology, (in
Chinese)

Shapiro V (2002) Solid modeling. Handbook of computer aided
geometric design 20:473-518

Shapiro V (2007) Semi-analytic geometry with R-functions. ACTA
numerica 16:239-303

Sharma A (2017) Advances in design and optimization using
immersed boundary methods. Phd Thesis, University of Colorado
Boulder

Sharma A, Villanueva H, Maute K (2017) On shape sensitivities with
Heaviside-enriched XFEM. Struct Multidiscip Optim 55(2):385—
408

Sharpe C, Seepersad CC, Watts S, Tortorelli D (2018) Design of
mechanical metamaterials via constrained Bayesian optimization.
In: ASME 2018 International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference. American Society of Mechanical Engineers, pp
V02AT03A029-V02AT03A029

Sigmund O, Maute K (2013) Topology optimization approaches.
Struct Multidiscip Optim 48(6):1031-1055

Sigmund O, Torquato S (1997) Design of materials with extreme
thermal expansion using a three-phase topology optimization
method. J Mech Phys Solids 45(6):1037-1067

Smith H, Norato JA (2020) A MATLAB code for topology optimization
using the geometry projection method. Structural and Multidisci-
plinary Optimization. https://doi.org/10.1007/s00158-020-02552-0

Smith HA, Norato J (2019a) A geometry projection method for the
design exploration of wing-box structures. In: AIAA Scitech 2019
forum, p 2353

@ Springer

Smith HA, Norato JA (2019b) Geometric
the topology optimization of structures
itives. In: SAMPE Conference proceedings.
https://doi.org/10.33599/nasampe/s.19.1518

Sokolowski J, Zolesio JP (1992) Introduction to shape optimization.
In: Introduction to shape optimization. Springer, pp 5-12

Stegmann J, Lund E (2005) Discrete material optimization of
general composite shell structures. Int J Numer Methods Eng
62(14):2009-2027

Stolpe M (2010) On some fundamental properties of structural topol-
ogy optimization problems. Struct Multidiscip Optim 41(5):661—
670

Stolpe M (2016) Truss optimization with discrete design variables: a
critical review. Struct Multidiscip Optim 53(2):349-374

Stolpe M, Svanberg K (2001) An alternative interpolation scheme for
minimum compliance topology optimization. Struct Multidiscip
Optim 22(2):116-124

Sun J (2020) Topology optimization for removing internal res-
onances of a rotating thin plate. J Sound Vibr 480:115420.
https://doi.org/10.1016/j.jsv.2020.115420

Sun J, Tian Q, Hu H (2018a) Topology optimization of a three-
dimensional flexible multibody system via moving morphable
components. Journal of Computational and Nonlinear Dynamics
13(2):021,010

Sun J, Tian Q, Hu H, Pedersen NL (2018b) Simultaneous topology and
size optimization of a 3d variable-length structure described by the
ale—ancf. Mech Mach Theory 129:80-105

Sun J, Tian Q, Hu H, Pedersen NL (2018c) Topology optimization of
a flexible multibody system with variable-length bodies described
by ALE-ANCF. Nonlinear Dynamics 93(2):413-441

Sun J, Tian Q, Hu H, Pedersen NL (2019) Topology optimization for
eigenfrequencies of a rotating thin plate via moving morphable
components. J Sound Vib 448:83-107

Svanberg K (1987) The method of moving asymptotes-a new method
for structural optimization. Int J Numer Methods Eng 24(2):359-373

Tahhan M (2019) Topology optimization of space frames via geometry
projection. Master’s thesis, University of Connecticut

Takalloozadeh M, Yoon GH (2017) Implementation of topological
derivative in the moving morphable components approach. Finite
Elem Anal Des 134:16-26

Terada K, Asai M, Yamagishi M (2003) Finite cover method for linear
and non-linear analyses of heterogeneous solids. International
Journal for Numerical Methods in Engineering 58(9):1321-
1346

Troltzsch F (2010) Optimal control of partial differential equations:
theory, methods, and applications, vol 112. American Mathemati-
cal Soc

Van Miegroet L, Duysinx P (2007) Stress concentration minimization
of 2d filets using x-FEM and level set description. Struct
Multidiscip Optim 33(4-5):425-438

Villanueva CH, Maute K (2014) Density and level set-XFEM schemes
for topology optimization of 3-d structures. Comput Mech
54(1):133-150

Wall WA, Frenzel MA, Cyron C (2008) Isogeometric structural shape
optimization. Comput Methods Appl Mech Eng 197(33):2976—
2988

Wang F, Jensen JS, Sigmund O (2012) High-performance slow light
photonic crystal waveguides with topology optimized or circular-
hole based material layouts. Photonics and Nanostructures-
Fundamentals and Applications 10(4):378-388

Wang F, Lazarov BS, Sigmund O, Jensen JS (2014a) Interpolation
scheme for fictitious domain techniques and topology optimiza-
tion of finite strain elastic problems. Comput Methods Appl Mech
Eng 276:453-472

constraints  for
made of prim-
Charlotte.


https://doi.org/10.1007/s00158-020-02552-0
https://doi.org/10.33599/nasampe/s.19.1518
https://doi.org/10.1016/j.jsv.2020.115420

A review on feature-mapping methods for structural optimization

Wang MY, Zong H, Ma Q, Tian Y, Zhou M (2019a) Cellular level
set in B-splines (CLIBS): a method for modeling and topology
optimization of cellular structures. Comput Methods Appl Mech
Eng 349:378-404

Wang N, Yang Y (2009) Structural design optimization subjected to
uncertainty using fat Bézier curve. Comput Methods Appl Mech
Eng 199(1-4):210-219

Wang R, Zhang X, Zhu B (2019b) Imposing minimum length
scale in moving morphable component MMC-based topology
optimization using an effective connection status (ECS) control
method. Comput Methods Appl Mech Eng 351:667-693

Wang Y, Luo Z, Zhang X, Kang Z (2014b) Topological design of
compliant smart structures with embedded movable actuators.
Smart Materials and Structures 23(4):045,024

Watts S, Tortorelli DA (2017) A geometric projection method
for designing three-dimensional open lattices with inverse
homogenization. Int J Numer Methods Eng 112(11):1564—-1588

Wei P, Wang MY, Xing X (2010) A study on x-FEM in continuum
structural optimization using a level set model. Comput Aided Des
42(8):708-719

Wein F, Stingl M (2018) A combined parametric shape optimiza-
tion and ersatz material approach. Struct Multidiscip Optim
57(3):1297-1315

Weiss BM, Hamel JM, Ganter MA, Storti DW (2018) Data-driven
additive manufacturing constraints for topology optimization.
In: ASME 2018 International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference, vol 2A. American Society of Mechanical Engineers,
p VO2AT03A031

Wormser M, Wein F, Stingl M, Korner C (2017) Design and additive
manufacturing of 3d phononic band gap structures based on
gradient based optimization. Materials 10(10):1125

Xia L, Zhu J, Zhang W (2012a) Sensitivity analysis with the
modified Heaviside function for the optimal layout design of
multi-component systems. Comput Methods Appl Mech Eng
241:142-154

Xia L, Zhu J, Zhang W (2012b) A superelement formulation for the
efficient layout design of complex multi-component system. Struct
Multidiscip Optim 45(5):643-655

Xia L, Zhu J, Zhang W, Breitkopf P (2013) An implicit model for
the integrated optimization of component layout and structure
topology. Comput Methods Appl Mech Eng 257:87-102

Xian Y, Rosen DW (2020) Morphable components topology
optimization for additive manufacturing. Struct Multidiscip Optim
62(1):19-39. https://doi.org/10.1007/s00158-019-02466-6

Xie X, Wang S, Xu M, Wang Y (2018) A new isogeometric topology
optimization using moving morphable components based on R-
functions and collocation schemes. Comput Methods Appl Mech
Eng 339:61-90

Xie X, Zheng H, Jonckheere S, Desmet W (2019) Explicit and efficient
topology optimization of frequency-dependent damping patches
using moving morphable components and reduced-order models.
Comput Methods Appl Mech Eng 355:591-613

Xie X, Wang S, Xu M, Jiang N, Wang Y (2020a) A hierarchical
spline based isogeometric topology optimization using moving
morphable components. Comput Methods Appl Mech Eng
360:112,696

Xie X, Wang S, Ye M, Xia Z, Zhao W, Jiang N, Xu M (2020b)
Isogeometric topology optimization based on energy penalization
for symmetric structure. Front Mech Engi 15(1):100-122

Xue R, Liu C, Zhang W, Zhu Y, Tang S, Du Z, Guo X (2019)
Explicit structural topology optimization under finite deformation
via moving morphable void (MMV) approach. Comput Methods
Appl Mech Eng 344:798-818

Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree
structures for heat conduction. Int J Heat Mass Transfer 122:660—
680

Yazid A, Abdelkader N, Abdelmadjid H (2009) A state-of-the-art
review of the x-FEM for computational fracture mechanics. Appl
Math Model 33(12):4269-4282

Yu M, Ruan S, Wang X, Li Z, Shen C (2019) Topology optimization
of thermal—fluid problem using the MMC-based approach. Struct
Multidiscip Optim 60(1):151-165

Zhang J, Zhang W, Zhu J, Xia L (2012) Integrated layout design of
multi-component systems using XFEM and analytical sensitivity
analysis. Comput Methods Appl Mech Eng 245:75-89

Zhang S, Norato JA (2017) Optimal design of panel reinforcements
with ribs made of plates. J Mech Design 139(8):081,403

Zhang S, Norato JA (2018) Finding better local optima in topology
optimization via tunneling. In: ASME 2018 International Design
Engineering Technical Conferences and Computers and Informa-
tion in Engineering Conference. American Society of Mechanical
Engineers, pp VO2BT03A014-V02BT03A014

Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection
method for the topology optimization of plate structures. Struct
Multidiscip Optim 54(5):1173-1190

Zhang S, Gain AL, Norato JA (2017a) Stress-based topology optimiza-
tion with discrete geometric components. Comput Methods Appl
Mech Eng 325:1-21

Zhang S, Gain AL, Norato JA (2018a) A geometry projection method
for the topology optimization of curved plate structures with
placement bounds. Int J] Numer Methods Eng 114(2):128-146

Zhang S, Gain AL, Norato JA (2020a) Adaptive mesh refinement
for topology optimization with discrete geometric components.
Comput Methods Appl Mech Eng 364:112,930

Zhang W, Zhu J (2006) A new finite-circle family method for optimal
multi-component packing design. WCCM VII, Los Angeles

Zhang W, Xia L, Zhu J, Zhang Q (2011) Some recent advances in
the integrated layout design of multicomponent systems. J Mech
Design 133(10):104,503

Zhang W, Zhong W, Guo X (2015) Explicit layout control in
optimal design of structural systems with multiple embedding
components. Comput Methods Appl Mech Eng 290:290-313

Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale
control in structural topology optimization based on the moving
morphable components (MMC) approach. Comput Methods Appl
Mech Eng 311:327-355

Zhang W, Yuan J, Zhang J, Guo X (2016c) A new topology
optimization approach based on moving morphable components
(MMC) and the ersatz material model. Struct Multidiscip Optim
53(6):1243-1260

Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017b)
Explicit three dimensional topology optimization via moving
morphable void (MMYV) approach. Comput Methods Appl Mech
Eng 322:590-614

Zhang W, Li D, Yuan J, Song J, Guo X (2017c) A new three-
dimensional topology optimization method based on moving
morphable components (MMCs). Comput Mech 59(4):647—
665

Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology
optimization through explicit boundary evolution. J Appl Mech
84(1):011,011

Zhang W, Zhao L, Gao T, Cai S (2017e) Topology optimization with
closed B-splines and Boolean operations. Comput Methods Appl
Mech Eng 315:652-670

Zhang W, Zhou J, Zhu Y, Guo X (2017f) Structural complexity control
in topology optimization via moving morphable component
(MMC) approach. Struct Multidiscip Optim 56(3):535-552

@ Springer


https://doi.org/10.1007/s00158-019-02466-6

F. Wein et al.

Zhang W, Zhou Y, Zhu J (2017g) A comprehensive study of feature
definitions with solids and voids for topology optimization.
Comput Methods Appl Mech Eng 325:289-313

Zhang W, Li D, Zhou J, Du Z, Li B, Guo X (2018b) A moving
morphable void (MMV)-based explicit approach for topology
optimization considering stress constraints. Comput Methods
Appl Mech Eng 334:381-413

Zhang W, Liu Y, Du Z, Zhu Y, Guo X (2018c) A moving
morphable component based topology optimization approach for
rib-stiffened structures considering buckling constraints. J] Mech
Design 140(11):111,404

Zhang W, Song J, Zhou J, Du Z, Zhu Y, Sun Z, Guo X (2018d)
Topology optimization with multiple materials via moving
morphable component (MMC) method. Int J Numer Methods Eng
113(11):1653-1675

Zhang W, Jiang S, Liu C, Li D, Kang P, Youn SK, Guo X
(2020b) Stress-related topology optimization of shell structures
using IGA/TSA-based moving morphable void (MMV) approach.
Comput Methods Appl Mech Eng 366:113,036

Zhang W, Li D, Kang P, Guo X, Youn SK (2020c) Explicit topology
optimization using IGA-based moving morphable void (MMYV)
approach. Comput Methods Appl Mech Eng 360:112,685

Zhou M, Wang MY (2013) Engineering feature design for level set
based structural optimization. Comput Aided Des 45(12):1524—
1537

@ Springer

Zhou Y, Zhang W, Zhu J, Xu Z (2016) Feature-driven topology
optimization method with signed distance function. Comput
Methods Appl Mech Eng 310:1-32

Zhou Y, Zhang W, Zhu J (2019) Concurrent shape and topology
optimization involving design-dependent pressure loads using
implicit B-spline curves. Int J] Numer Methods Eng 118(9):495—
518

Zhu B, Chen Q, Wang R, Zhang X (2018) Structural topology
optimization using a moving morphable component-based method
considering geometrical nonlinearity. J Mech Des 140(8):081,403

Zhu J, Zhang W, Beckers P, Chen Y, Guo Z (2008) Simultaneous
design of components layout and supporting structures using
coupled shape and topology optimization technique. Struct
Multidiscip Optim 36(1):29-41

Zhu JH, Gao HH, Zhang WH, Zhou Y (2015) A multi-point constraints
based integrated layout and topology optimization design of multi-
component systems. Struct Multidiscip Optim 51(2):397-407

Zhu JH, Guo WJ, Zhang WH, Liu T (2017) Integrated layout and
topology optimization design of multi-frame and multi-component
fuselage structure systems. Struct Multidiscip Optim 56(1):21—
45

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.



	A review on feature-mapping methods for structural optimization
	Abstract
	Introduction
	Definitions and key components
	High-level geometric features
	Design region, body-fitted mesh, and fixed-grid
	Explicit and implicit geometric representations
	Feature-mapping

	Geometry mapping to fixed-grid
	Element-constant pseudo-density
	Material interpretation of pseudo-density
	Test problem to investigate the effect of intermediate material
	Principal boundary modeling approaches
	Further smooth boundary modeling approaches
	Sensitivity analysis
	Numerical integration of the boundary mapping function
	Computing the signed distance

	XFEM approaches
	The simple scheme
	Numerical aspects
	Sensitivity analysis


	Combination of features
	Smooth combination functions
	Combine-then-map approaches
	Implicit geometric representations
	Explicit geometric representations

	Map-then-combine approaches
	Property interpolation for hybrid approaches
	Combining Heaviside functions
	Combining pseudo-density values

	Local minima

	Separation constraints
	Feature-mapping methods for shape optimization
	Classical shape optimization
	Using pseudo-density feature-mapping
	Using immersed-boundary feature-mapping

	Hybrid feature-mapping/free-form methods for topology optimization
	Combining free-form with features
	Feature design variables
	Optimization strategy
	Applications

	Feature-mapping methods for topology optimization
	Combine-then-map methods
	Map-then-combine methods
	Geometric representations
	Analysis approaches
	Complexity and minimum size control
	Adaptive resolution
	Design space modification
	Geometric constraints
	Applications

	Discussion
	References


