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ABSTRACT
Model-X knockoffs is a wrapper that transforms essentially any feature importance measure into a variable
selection algorithm, which discovers true effects while rigorously controlling the expected fraction of false
positives. A frequently discussed challenge to apply this method is to construct knockoff variables, which
are synthetic variables obeying a crucial exchangeability property with the explanatory variables under
study. This article introduces techniques for knockoffgeneration in great generality:weprovide a sequential
characterization of all possible knockoff distributions, which leads to a Metropolis–Hastings formulation of
an exact knockoff sampler. We further show how to use conditional independence structure to speed up
computations. Combining these two threads, we introduce an explicit set of sequential algorithms and
empirically demonstrate their effectiveness. Our theoretical analysis proves that our algorithms achieve
near-optimal computational complexity in certain cases. The techniques we develop are sufficiently rich
to enable knockoff sampling in challenging models including cases where the covariates are continuous
and heavy-tailed, and follow a graphical model such as the Ising model. Supplementary materials for this
article are available online.
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1. Introduction

In modern science, researchers often have access to large
datasets featuring comprehensive measurements about some
phenomenon of interest. The question is then to discovermean-
ingful relationships between an outcome and all the measured
covariates.While it is often expected that only a small fraction of
the covariatesmay be associatedwith the outcome, the relevance
of any particular variable is unknown a priori. For instance,
a researcher may be interested in understanding which of the
thousands of gene-expression profiles may help determine the
severity of a tumor. In such circumstances, the researcher often
relies on statistical algorithms to sift through large datasets
and find those promising candidates, making variable selec-
tion a topic of central importance in contemporary statistical
research.

The knockoff filter (Barber and Candès 2015; Candès et al.
2018) has recently emerged as a useful framework for per-
forming controlled variable selection, allowing the user to con-
vert any black-box feature importance measure into a variable
selection procedure while rigorously controlling the expected
fraction of false positives. This means that the statistician can
use essentially any black-box importance measure to return a
list of variables with the guarantee that, on the average, the
ratio between the number of false positives—loosely speaking, a
false positive is a variable that does not influence the response,
see Candès et al. (2018)—and the total number of reported
variables is below a user-specified threshold. The strength of
this method is that the guarantees hold in finite samples and in
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situations where nothing can be assumed about the dependence
between the response and the explanatory variables. Instead,
the statistician must have knowledge of the distribution of the
explanatory variables. When this happens to be the case, a
remaining challenge is the ability to generate the knockoffs, a set
of synthetic variables, which can essentially be used as negative
controls; these fake variables must mimic the original variables
in a particular way without having any additional predictive
power. In sum, constructing valid knockoff distributions and
sampling mechanisms across a wide range of covariate mod-
els is critical to deploying the knockoff filter in a number of
applications.

1.1. Our Contribution

This article describes a theory for sampling knockoff variables
and introduces a general and efficient sampler inspired by ideas
from Markov chain Monte Carlo (MCMC). Before moving on,
we pause to explicitly mention the two main considerations one
should keep in mind when constructing knockoffs:
Computation.How can we efficiently sample nontrivial knock-
offs?

Statistical power.How can we generate knockoffs that will ulti-
mately lead to powerful variable selection procedures? There
are many different constructions that lead to Type I error
control, but some knockoffs will have higher power than
others. On this note, it has been observed that knockoffs that
have smaller absolute correlation with the original variables

© 2020 American Statistical Association
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lead to higher power (Barber and Candès 2015; Candès et
al. 2018) and, therefore, low absolute correlation must be a
design objective.1

Having said that, our workmakes several specific contributions.

1. Characterization of all knockoff distributions. We provide a
sequential characterization of every valid knockoff distribu-
tion. Furthermore, we introduce a connection linking pair-
wise exchangeability between original and knockoff variables
to reversible Markov chains, enabling the use of powerful
sampling tools from computational statistics.

2. Complexity of knockoff sampling procedures. We introduce
a class of algorithms which use conditional independence
information to efficiently generate knockoffs. The computa-
tional complexity of such procedures is shown to be deter-
mined by the complexity of the dependence structure in a
precise way. Furthermore, we present a lower bound on com-
plexity showing that structural assumptions are necessary for
efficient computation, and that our procedure achieves the
lower bound in certain cases.

3. Practical sampling algorithms. We develop a concrete knock-
off sampler for a large number of distributions. This is
achieved by constructing a family ofMCMC tools—designed
to have good performance—which only require the numer-
ical evaluation of an unnormalized density. We identify a
default parameter setting for the sampler that performs well
across a variety of situations, producing a general and easy-
to-use tool for practitioners.

We shall see that our ideas enable knockoff sampling in chal-
lenging models including situations where the covariates are
continuous and heavy-tailed and where they follow an Ising
model.

1.2. Related Literature

This article draws most heavily on Candès et al. (2018), which
builds on Barber and Candès (2015) to introduce the model-
X knockoff framework. In particular, the former reference pro-
poses the Sequential Conditional Independent Pairs (SCIP) pro-
cedure for knockoff generation; this is the only known generic
knockoff sampler to date, which shall serve as our starting
point. The SCIP procedure, however, is only abstractly specified
and prior to this article, implementations were only available
for Gaussian distributions and discrete Markov chains. Briefly,
Sesia, Sabatti, and Candès (2019) developed a concrete SCIP
algorithm for discrete Markov chains, and then leveraged this
construction to sample knockoffs for covariates following hid-
den Markov models widely used in genome-wide association
studies. Similarly relevant is the work of Gimenez, Ghorbani,
and Zou (2018), which developed a sampling strategy for a
restricted class of Bayesian networks, most notably Gaussian
mixture models. In contrast, we address here knockoff sam-
pling for a much larger class of distributions, namely, arbi-
trary graphical models. We also describe the form of all valid
knockoff sampling strategies, thereby providing a framework

1See Appendix F.6 for a simulation study demonstrating the relationship
between power and absolute correlation.

possibly enabling the construction of future knockoff sampling
algorithms. Hence, our work may be of value to the increasing
number of researchers deploying the knockoff framework for
feature selection in a variety of applications including neural
networks (Lu et al. 2018), time-series modeling (Fan et al.
2018), Gaussian graphical model structure learning (Zheng et
al. 2018), and biology (Xiao et al. 2017; Gao et al. 2018). Lastly,
we close by emphasizing that our contribution is very different
from a new strand of research introducing approximate knock-
offs generated with techniques from deep learning (Liu and
Zheng 2018; Romano, Sesia, and Candès 2018; Jordon, Yoon,
and van der Schaar 2019). While these approaches are tantaliz-
ing and demonstrate promising empirical performance in low-
dimensional situations, they currently lack formal guarantees
about their validity.

2. Characterizing Knockoff Distributions

2.1. Knockoff Variables

Consider random covariates X = (X1,X2, . . . ,Xp). We say that
the random variables X̃ = (X̃1, X̃2, . . . , X̃p) are knockoffs for X
if for each j = 1, . . . , p,

(X, X̃)swap(j)
d= (X, X̃). (1)

Here, the notation swap(j) means permuting Xj and X̃j;
for instance, (X1,X2,X3, X̃1, X̃2, X̃3)swap(2) is the vector
(X1, X̃2,X3, X̃1,X2, X̃3).2 Property (1) is known as the pairwise
exchangeability property, and it is in general challenging to
define joint distributions (X, X̃) satisfying this condition.
Before continuing, we briefly pause to understand the meaning
of pairwise exchangeability. A consequence of (1) is that for all
sets A ⊆ {1, . . . , p},

(X, X̃)swap(A)
d= (X, X̃),

where (X, X̃)swap(A) denotes the swapping of Xj and X̃j for all
j ∈ A. Taking A = {1, . . . , p} and marginalizing, we immedi-
ately see that X̃ d= X; that is, X and X̃ are distributed in the
same way. Also changing any subset of entries of X with their
knockoff counterparts does not change the distribution either.
Another consequence of the exchangeability property (1) is that
the mixed second moments of (X, X̃) must match. Assume the
second moments of X exist and write � = cov(X). Then the
covariance of the vector (X, X̃) must take the form

cov(X, X̃) = �(s) :=
[

� � − diag(s)
� − diag(s) �

]
, (2)

where s ∈ R
p is any vector such that the right-hand side is

positive semidefinite. In other words, for each pair (i, j) with
i �= j, we have cov(Xi, X̃j) = cov(Xi,Xj).

We are interested in constructing knockoff variables and
below we call a knockoff sampler a procedure that takes as
inputs a distribution P and a sample X ∼ P and returns

2In the presence of a response Y , we also require X̃ ⊥⊥ Y | X , which is easily
satisfied by procedures that generate X̃ from X without looking at Y .
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X̃ such that (1) holds. Nontrivial samplers have been demon-
strated in a few cases, for instance, when X ∼ N (0,�)

is multivariate Gaussian. In this case, Candès et al. (2018)
show that if (X, X̃) is jointly Gaussian with mean zero and
covariance �(s), then the entries of X̃ are knockoffs for
X. One can say that appropriately matching the first two
moments is sufficient to generate knockoffs in the special case
of the multivariate normal distribution. However, this does
not extend and matching the first two moments is in general
not sufficient; to be sure, (1) requires that all moments match
appropriately.

As a motivating example, consider the Ising model, a fre-
quently discussed family of Gibbs measures first introduced in
the statistical physics literature (Ising 1925). In this model, the
random vector X ∈ {−1, 1}d1×d2 defined over a d1 ×d2 grid has
a probability mass function (PMF) of the form

P(X) = 1
Z(β ,α)

exp

⎛
⎜⎜⎝ ∑

s,t∈I‖s−t‖1=1

βstXsXt +
∑
s∈I

αsXs

⎞
⎟⎟⎠ ; (3)

here, I = {(i1, i2) : 1 ≤ i1 ≤ d1, 1 ≤ i2 ≤ d2} is the grid
and α and β are parameters. As we have seen, knockoffs X̃ for X
must marginally follow the Ising distribution (3). Furthermore,
X̃ must be dependent on X in such a way that any vector of
the form {(Z1, . . . ,Zp) : Zj = Xj or Zj = X̃j, 1 ≤ j ≤ p} has
PMF given by (3). It is tempting to naïvely define a joint PMF
for (X, X̃) as

P(X, X̃) ∝ exp

⎛
⎜⎜⎝ ∑

s,t∈I‖s−t‖1=1

βst(XsXt + X̃sX̃t + XsX̃t + X̃sXt)

+
∑
s∈I

αs(Xs + X̃s)

⎞
⎟⎟⎠ .

Although the joint distribution is symmetric in Xs and X̃s, the
marginal distribution of X is not an Ising model! Hence, this is
not a valid joint distribution. Other than the trivial construction
X̃ = X, it is a priori unclear how onewould construct knockoffs.
Any distribution continuous or discrete factoring over a grid
poses a similar challenge.

2.2. SCIP and Its Limitations

The only generic knockoff sampler one can find in the literature
is SCIP from Candès et al. (2018), given in Procedure 1. While
this procedure provably generates valid knockoffs for any input
distribution, there are two substantial limitations. The first is
that SCIP is only given abstractly; it is challenging to specify
L(Xj | X−j, X̃1:(j−1)),3 let alone to sample from it. As a result, it
is only known how to implement SCIP for very special models

3We useL(W1 | W2) to denote the conditional distribution ofW1 givenW2.
We use subscript−k to mean the vector with the kth coordinate removed,
and 1:k to mean the first k coordinates of the vector. We use the subscript
1:0 to mean an empty vector.

such as discrete Markov chains and Gaussian distributions. The
second limitation is that SCIP is not able to generate all valid
knockoff distributions. Recall that we want knockoffs to have
low absolute correlations with the original variables so that a
feature importance statistic will correctly detect true effects. To
achieve this goal, we might need a wider range of sampling
mechanisms.

Procedure 1: Sequential Conditional Independent Pairs
(SCIP)
for j = 1 to p do

Sample X̃j from L(Xj | X−j, X̃1:(j−1)), conditionally
independently from Xj

end

2.3. Sequential Formulation of KnockoffDistributions

We begin by introducing a sequential characterization of all
valid knockoff distributions, which will later lead to a new class
of knockoff samplers.

Theorem 1 (Sequential characterization of knockoff distribu-
tions). Let (X, X̃) ∈ R

2p be a random vector. Then pairwise
exchangeability (1) holds if and only if both of the following
conditions hold:

Conditional exchangeability. For each j ∈ {1, . . . , p},

(Xj, X̃j) | X−j, X̃1:(j−1)
d= (X̃j,Xj) | X−j, X̃1:(j−1). (4)

Knockoff symmetry. For each j ∈ {1, . . . , p},
P((Xj, X̃j) ∈ A | X−j, X̃1:(j−1)) (5)

is σ(X(j+1):p, {X1, X̃1}, . . . , {Xj−1, X̃j−1})-measurable for any
Borel set A, where {·, ·} denotes the unordered pair. That
is, the conditional distribution does not change if we swap
previously sampled knockoffs with the original features.

Theorem 1 implies that a sequential knockoff sampling algo-
rithm faithful to these two conditions is as general as it gets. The
challenge nowbecomes creating exchangeable randomvariables
at each step (with a little caution on the dependence on the
previous pairs of variables). In turn, this task happens to be
equivalent to designing a time-reversible Markov chain, as for-
malized below.

Proposition 1. Apair of randomvariables (Z, Z̃) is exchangeable,
that is, (Z, Z̃)

d= (Z̃,Z), with marginal distribution π for
Z—and, therefore, for Z̃ as well—if and only if there exists a
time-reversible Markov chain {Zn}∞n=1 such that Z1 ∼ π is a
stationary distribution of the chain, and (Z1,Z2)

d= (Z, Z̃).

Combining these two results gives SCEP (Procedure 2),
which is a completely general strategy for generating knock-
offs: at each step j, we design a time-reversible Markov chain
with stationary distribution L(Xj | X−j, X̃1:(j−1)), and draw
a sample by taking one step of this chain starting from Xj.
Proposition 1 implies that the conditional exchangeability (4)
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holds. Furthermore, the symmetry requirement on the transi-
tion kernel implies that SCEPdoes not break the exchangeability
from previous steps; that is, the knockoff symmetry (5) also
holds. Theorem 1 then implies that such a procedure produces
valid knockoffs.

Procedure 2: Sequential Conditional Exchangeable Pairs
(SCEP)
for j = 1 to p do

Sample X̃j by taking one step of a time-reversible
Markov chain starting from Xj.

The transition kernel must be such that it depends only
on X(j+1):p and the unordered pairs

{X1, X̃1}, . . . , {Xj−1, X̃j−1}, and admits
L(Xj | X−j, X̃1:(j−1)) as a stationary distribution.

end

To rehearse the universality of SCEP, consider an arbitrary
knockoff sampler producing X̃1, . . . , X̃p. Then from Theorem 1
we know that X1 and X̃1 must be exchangeable conditional on
X−1. Therefore, X̃1 may be sampled by taking one step of a
reversible Markov chain starting at X1. Moving on to X2, Theo-
rem 1 informs us that X2 and X̃2 are exchangeable conditional
on {X1, X̃1},X3, . . . ,Xp, so X̃2 can again be viewed as taking one
step of a reversible Markov chain starting at X2. Continuing in
this fashion for j = 3, . . . , p establishes our claim.

SCEP as stated remains too abstract to be considered an
implementable algorithm, so we will next develop a concrete
version of this procedure. Although this may not yet be clear,
we would like to stress that formulating a knockoff sampler in
terms of reversible Markov chains is an important step forward
because it will ultimately enable the use of flexibleMCMC tools.

3. TheMetropolized Knockoff Sampler

We now demonstrate how one can generate knockoffs in
a sequential manner by making proposals which are either
accepted or rejected in a Metropolis–Hastings-like fashion as to
ensure pairwise exchangeability.

3.1. AlgorithmDescription

The celebrated Metropolis–Hastings (MH) algorithm
(Metropolis et al. 1953; Hastings 1970) provides a general
time-reversible Markov transition kernel whose stationary
distribution is an arbitrary density function π . To construct
a transition from x to y, MH operates as follows: generate
a proposal x∗ from a distribution q(· | x) (any distribution
depending on x) and set4

y =
{
x∗ with prob. α,
x with prob. 1 − α,

α = min
(
1,

π(x∗)q(x | x∗)
π(x)q(x∗ | x)

)
.

This can be implemented even when the density π is unnormal-
ized, as the normalizing constants cancel. In our setting, we shall

4More generally, we take as acceptance probability γ αwith γ ∈ (0, 1]. In this
work, γ is set to 1 as default, except in Section 3.3 and Appendix F.2, which
are cases where tuning γ is recommended.

make sure that the choice of the proposal distribution depends
on the previously sampled pairs in a symmetric fashion, thereby
remaining faithful to the knockoff symmetry condition (5) in
Theorem 1. As such, we call such proposals faithful.

Consider now running SCEP (Procedure 2)with theMHker-
nel, where at the jth step, the target distribution π is taken to be
L(Xj | X−j, X̃1:j−1). The issue with such a naïve implementation
is that the target π cannot be readily evaluated. To understand
why this is the case, set j = 2 and consider L(X2 | X−2, X̃1).
This distribution has density proportional to P(X = x)P(X̃1 =
x̃1 | X = x), which is equal to

P(X = x)
[
q(x̃1 | x1)min

(
1,

q(x1 | x̃1)P(X1 = x̃1,X−1 = x−1)

q(x̃1 | x1)P(X1 = x1,X−1 = x−1)

)

+ δ(x̃1 − x1)
∫

q(x∗ | x1)
(
1 − min(

1,
q(x1 | x∗)P(X1 = x∗,X−1 = x−1)

q(x∗ | x1)P(X1 = x1,X−1 = x−1)

))
dx∗

]
. (6)

The first term in the summation within the brackets corre-
sponds to the acceptance case while the second corresponds to
the rejection case. This latter term cannot be evaluated because
of the integral over x∗. Hence, the target density cannot be
evaluated either.

We propose an effective solution to this problem: condition
on the proposals and at step j, let the target distribution be
L(Xj | X−j, X̃1:j−1,X∗

1:j−1) rather than L(Xj | X−j, X̃1:j−1). This
has the effect of removing the integral andmakes computing the
rejection probability tractable. This is best seen by returning to
our example where j = 2. Here, L(Xj | X−j, X̃1:j−1,X∗

1:j−1) has
density now proportional to

P(X = x)q(x∗
1 | x1)

[
δ(x̃1 − x∗

1)min
(
1,

q(x1 | x̃1)P(X1 = x̃1,X−1 = x−1)
q(x̃1 |x1)P(X1 = x1,X−1 = x−1)

)

+ δ(x̃1 − x1)
(
1 − min

(
1,

q(x1 | x∗
1)P(X1 = x∗

1 ,X−1 = x−1)

q(x∗
1 | x1)P(X1 = x1,X−1 = x−1)

)) ]
. (7)

Wewill show in Section 4 how such terms can be efficiently com-
puted. Leaving aside implementation details for the moment,
this strategy leads toAlgorithm1.Here and elsewhere,Pdenotes
the density of the variables under study, or formally, the Radon–
Nikodym derivative with respect to a common dominating
measure.

Algorithm 1:Metropolized knockoff sampling (Metro).
for j = 1 to p do

Sample X∗
j = x∗

j from a faithful proposal distribution
qj.

Accept the proposal with probability

min

(
1,

qj(xj|x∗
j )P

(
X−j=x−j ,Xj=x∗

j ,X̃1:(j−1)=x̃1:(j−1) ,X∗
1:(j−1)=x∗

1:(j−1)

)
qj(x∗

j |xj)P
(
X−j=x−j ,Xj=xj ,X̃1:(j−1)=x̃1:(j−1) ,X∗

1:(j−1)=x∗
1:(j−1)

)
)
.

Upon acceptance, set x̃j = x∗
j ; otherwise, set x̃j = xj.

end
Return X̃ = (x̃1, x̃2, . . . , x̃p)

Note that even with the additional conditioning on X∗
1:(j−1)

this is a SCEP procedure, because if Xj and X̃j are exchangeable
conditional on (X−j, X̃1:(j−1),X∗

1:(j−1)), then by marginalizing
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out X∗
1:(j−1), we see that they are also exchangeable given only

X−j, X̃1:(j−1). As a result, Algorithm 1 produces valid knockoffs,
which we record formally below.

Corollary 1. Metropolized knockoff sampling (Metro) produces
valid knockoffs.

Proof. For the sake of the proof, let Uj be the indicator of
acceptance at step j, andZj = (1−Uj)X∗

j .Wewill prove pairwise
exchangeability jointly with the Uj’s and Zj’s; marginalizing out
these variables will establish the claim. For 1 ≤ j ≤ p, let
fj(xj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1)) be the joint density function
of (Xj,X−j, X̃1:(j−1),U1:(j−1),Z1:(j−1)), in this order. We will use
induction to show that the density of (X, X̃1:j,U1:j,Z1:j) is sym-
metric in Xk and X̃k for 1 ≤ k ≤ j. For 1 ≤ j ≤ p, the inductive
hypothesis is that fj is symmetric in xk and x̃k for 1 ≤ k ≤ j − 1
(since fj is just the density of (X, X̃1:(j−1),U1:(j−1),Z1:(j−1)) after
reordering the variables). For 1 ≤ j ≤ p,

the density of (X, X̃1:j,U1:j,Z1:j) at (x, x̃1:j, u1:j, z1:j)
= fj(xj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))×[

1uj=1δ(zj − 0)qj(x̃j | xj)

min
(
1,
fj(x̃j, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | x̃j)
fj(xj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(x̃j | xj)

)

+ 1uj=0δ(x̃j − xj)qj(zj | xj)
(
1−

min
(
1,

fj(zj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | zj)
fj(xj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(zj | xj)

) )]
,

which is symmetric in the first j − 1 pairs by the inductive
hypothesis. For the symmetry in the jth pair, when uj = 1, the
density simplifies to

δ(zj − 0) × min
(
fj(xj, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(x̃j | xj),
fj(x̃j, x−j, x̃1:(j−1), u1:(j−1), z1:(j−1))qj(xj | x̃j)

)
,

which is invariant to swapping xj and x̃j; when uj = 0, the
delta function δ(x̃j − xj) ensures xj = x̃j, and thus swapping
them has no effect. Hence, when the algorithm terminates, all
pairs are exchangeable and therefore remain exchangeable after
marginalizing out the Uj’s and Zj’s.

Anticipating possible future applications, we wish to remark
that Metro can be easily adapted to sampling group knockoffs
(Dai and Barber 2016); see Appendix E.

3.2. Covariance-Guided Proposals

Now that we have available a broad class of knockoff samplers,
we turn to the question of finding faithful proposal distributions
that will generate statistically powerful knockoffs. The overall
challenge is to propose samples that are far away from X to
make good knockoffs, but not as far that they are systematically
rejected. A rejection at the jth step gives X̃j = Xj, leading to
a knockoff with poor contrast. Below, we shall borrow ideas

from existing knockoff samplers for Gaussian models to make
sensible proposals.

Suppose that X has mean μ and covariance �, and consider
s ∈ R

p with nonnegative entries such that �(s) from (2) is pos-
itive semidefinite. Such a vector s can be found with techniques
from Barber and Candès (2015) and from Candès et al. (2018).
We have seen that if X were Gaussian, this covariance matrix
would induce a multivariate Gaussian joint distribution over X
and X̃ with the correct symmetry. In non-Gaussian settings, our
observation is that we can still make proposals as if the variables
were Gaussian, but use the MH correction to guarantee exact
conditional exchangeability. This can be viewed as aMetropolis-
adjustment to the second-order knockoff construction of Can-
dès et al. (2018). Concretely, the distribution qj for a covariance-
guided proposal—used to generate a proposal X∗

j —is normal
with mean

μj +
(
�

(j)
12

)� (
�

(j)
11

)† (
X − μ,X∗

1:(j−1) − μ1:(j−1)
)�

and variance

�
(j)
22 −

(
�

(j)
12

)� (
�

(j)
11

)†
�

(j)
12 ;

here, X∗
1:(j−1) is the sequence of already generated propos-

als, �
(j)
11 = �1:(p+j−1),1:(p+j−1), �

(j)
22 = �p+j,p+j, �

(j)
12 =

�1:(p+j−1),p+j,μ is themean ofX, and † stands for the pseudoin-
verse. The parameters of qj can be efficiently computed using the
special structure of �; see Appendix D. The faithfulness of the
proposal is shown in Appendix B.

The covariance-guided proposals are valid even when � is
replaced by any other positive semidefinite matrix—any faithful
proposal distribution will give valid knockoffs. This allows us to
use an empirical estimate of cov(X) based on simulated samples
from L(X), or even to apply the covariance-guided proposals
to discrete distributions by rounding each proposal X∗

j to the
nearest point in the support of Xj. These proposals will be most
successful when X is well-approximated by a Gaussian density,
indeed when X is exactly Gaussian and the true covariance is
used, the covariance-guided proposals will never be rejected.
Numerical simulations in a variety of settings can be found in
Section 5.

3.3. Multiple-TryMetropolis

A possibility for sampling X̃j “far away” from Xj is to run
multiple MH steps instead of a single one. The issue with this is
that this would make the conditional distributions from Metro
prohibitively complex at later steps. Longer chains also require
conditioning later proposals on a longer sequence of proposals
and acceptances or rejections, which will constrain those pro-
posals to be closer to their corresponding true variables and
thus reduce power. Instead, we use the multiple-try Metropolis
(MTM) technique introduced in Liu, Liang, and Wong (2000).

The key idea of MTM is to propose a set of several candidate
moves to increase the probability of acceptance. As in Qin and
Liu (2001), we take the candidate set to be Cm,t

x = {x ± kt : 1 ≤
k ≤ m}, wherem is a positive integer and t is a positive number;
see Figure 1 for an illustration. MTM proceeds by choosing one
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Figure 1. Multiple-try Metropolis (adapted from Figure 2 in Qin and Liu (2001)).

element x∗ from the set Cm,t
x , with probability proportional to

the target density, that is,

P(select x∗ from Cm,t
x ) = π(x∗)∑

u∈Cm,t
x

π(u)
. (8)

This proposal is then accepted with probability

γ min

(
1,

∑
u∈Cm,t

x
π(u)∑

v∈Cm,t
x∗

π(v)

)
, γ ∈ (0, 1), (9)

where γ is an additional tuning parameter explained in
Appendix F.2. This parameter should be taken to be near 1 in
most settings. If no element ofCm,t

x has positive probability, then
one automatically rejects. MTM is a special case of MHwith the
proposal q(x∗ | x) distribution defined implicitly by the above
rules, and furthermore, the proposals are faithful.5 Thus, MTM
can be used in Metro.

While there is no universally optimal combination of m
and t, we provide guidance about default values based on our
experimental results from Section 5. To understand the choice
of parameters, first observe that with a fixed t, large values of
m intuitively induce high acceptance rate, but require more
density evaluations. Turning our attention to t, smaller values
cause higher acceptance rates, and at the same time, encourage
X̃j to be close to Xj. Clearly, there is a trade-off. Based on
our experiments, a sensible default setting is m = 4 and
tj = 1.5

√
1/(�−1)jj where � = cov(X). In the Gaussian

case, var(Xj | X−j) = 1/(�−1)jj for any observed value of
X−j (Anderson 2003), hence this choice of scaling is intuitive.
In the non-Gaussian case 1/(�−1)jj should be viewed as an
approximation to the conditional variance. We have found that
this parameter setting achieves nearly the best performance in
most of our experiments, so unless the distribution is thought
to be nearly Gaussian, our recommendation is to useMTMwith
the above parameter settings to sample knockoffs.

4. Graphical Models and Conditional Independence

One outstanding issue is whether the Metropolized knockoff
sampler can be run in reasonable time for cases of interest.
We begin by showing why sequential knockoff sampling is
prohibitively expensive without additional structure, and then
turn our attention to a common type of structure that enables
efficient sampling: graphical models. The central contribution
of this section will be a complexity bound on Metro showing

5The proposal distribution at step j only depends on the conditional density
ofL(Xj | X−j , X∗

1:(j−1), X̃1:(j−1))which can be easily shown to be symmetric
in the first j − 1 pairs.

how the graphical structure affects the difficulty of sampling. To
complete this line of investigation, we give a complexity lower
bound for all knockoff samplers which shows that Metro is
optimal in some cases.

4.1. Why DoWeNeed Structure?

Consider running Metro for some input distribution P and
sample X = x. In view of (7), at step j we need to evaluate
P(X−j,Xj = zj, X̃1:(j−1),X∗

1:(j−1)) for zj ∈ {xj, x∗
j } up to a con-

stant.6 Metro defines a joint distribution on (X, X̃1:(j−1),X∗
1:(j−1))

implicitly, so the only way to evaluate this density is to compute
it step by step, from 1 to j − 1, that is, through the sequential
decomposition

P(X−j,Xj = zj, X̃1:(j−1),X∗
1:(j−1)) = P(X−j,Xj = zj)

×
j−1∏
k=1

[
P(X̃k | X−j,Xj = zj, X̃1:(k−1),X∗

1:k)

P(X∗
k | X−j,Xj = zj, X̃1:(k−1),X∗

1:(k−1))
]
. (10)

Consider the term P(X̃k | X−j,Xj = zj, X̃1:(k−1),X∗
1:k). By the

definition of Metro, computing this term will require evaluating
an acceptance probability of the form

min

(
1,

qk(xk | x∗
k)P(X−(j,k),Xk = x∗

k ,Xj = zj, X̃1:(k−1),X∗
1:(k−1))

qk(x∗
k | xk)P(X−(j,k),Xk = xk,Xj = zj, X̃1:(k−1),X∗

1:(k−1))

)
.

(11)

Now, to compute the terms in the acceptance probability, we
must use the same sequential decomposition (10) for the terms
P(X−(j,k),Xk = zk,Xj = zj, X̃1:k−1,X∗

1:k−1) for zk ∈ {xk, x∗
k}.

Considering k = j − 1, we see that step j is making two calls to
the probability at step j − 1, each of which is in turn making
two calls to the probability function at step j − 2 and so on.
Thus, each evaluation of (10) will require 	(2j) function calls.
This behavior is not due to a shortcoming ofMetro; any genuine
knockoff sampler with access only to an unnormalized density
will require time exponential in p. We will present the formal
statement of this lower bound later in Theorem 3.

Although knockoff sampling with no restriction on the dis-
tribution is prohibitively slow, we will show how to avoid the
exponential complexity when there is additional known struc-
ture. Consider a Markov chain, that is, a density that factors as
P(x) = ∏p−1

j=1 φj(xj, xj+1). In this case, the joint density (10)
can be evaluated efficiently providedwe proceed along the chain
in the natural order. Assume for simplicity that the proposal
distribution is fixed in advance so that the second term within
the square brackets in (10) does not depend on any variables
and can be ignored. Due to the Markovian structure, only the
k = j − 1 term in the product depends on zj, so it suffices to
compute the acceptance probability (11) for k = j − 1. Again
using the Markovian structure, this simplifies to

6In this section, when not explicitly specified, a variable is set to its observed
value, for example, P(X1 | X2 = z2, X3, X̃1, X∗

1 ) is shorthand for P(X1 = x1 |
X2 = z2, X3 = x3, X̃1 = x̃1, X∗

1 = x∗1).
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Figure 2. A junction tree of treewidth 2 for the 2 × 3 grid, which happens to be a chain.

min

(
1, aj−1

qj−1(xj−1 | x∗
j−1)P(X−(j,j−1),Xj−1 = x∗

j−1,Xj = zj)
qj−1(x∗

j−1 | xj−1)P(X−(j,j−1),Xj−1 = xj−1,Xj = zj)

)

= min

(
1, aj−1

qj−1(xj−1 | x∗
j−1)φj−2(xj−2, x∗

j−1)φj−1(x∗
j−1, zj)

qj−1(x∗
j−1 | xj−1)φj−2(xj−2, xj−1)φj−1(xj−1, zj)

)
,

where aj−1 is the ratio

aj−1 =
P(X∗

1:(j−2), X̃1:(j−2) | X−(j,j−1),Xj−1 = x∗
j−1,Xj = zj)

P(X∗
1:(j−2), X̃1:(j−2) | X−(j,j−1),Xj−1 = xj−1,Xj = zj)

,

which does not depend on zj by the Markov structure. The
key here is that aj−1 was previously computed with zj = xj
when sampling X̃j−1. Thus, the acceptance probability can be
computed in constant time. Putting this all together, for a
Markov chain, each of the necessary joint probabilities (10)
can be computed in constant time, and the time to sample the
entire vector X̃ is linear in the dimension p. Markov chains are
not the only case where computing the acceptance probability
can be done quickly; for other distributions with conditional
independence structure, we next develop a systematic way of
computing (10), using the graphical structure to control the
depth of the recursion and hence control the running time.

4.2. Time Complexity ofMetro for Graphical Models

We have seen that we must restrict our attention to a subset of
distributions to efficiently sample knockoffs, so in this section
we show how to implementMetropolized knockoff sampling for
a very broad class of distributions: graphicalmodels. LetX ∈ R

p

be a random vector whose density factors over a graph G:

P(x) ∝ �(x) =
∏
c∈C

φc(xc); (12)

here, C is the set of maximal cliques of the graph G and �

is an unnormalized version of P. The variables in X can be
either discrete or continuous. All graphical models with positive
density or mass take this form (Hammersley and Clifford 1971),
and such distributions are known to have particular conditional
independence properties. We refer the reader to Koller and
Friedman (2009) for a general treatment.

To take advantage of the conditional independence structure
of X, we use a graph-theoretical object known as a junction tree
(Bertele and Brioschi 1972) which encodes properties of the
graph G.

Definition 1 (Junction tree). Let T be a tree with vertices that are
subsets of the nodes {1, . . . , p} of a graph G. T is a junction tree
for G if the following hold:

1. Each j ∈ {1, . . . , p} appears in some vertex V of T.
2. For every edge (j, k) inG, j ∈ V and k ∈ V for some vertexV .

3. (Running intersection property) If the verticesV andV ′ both
contain a node of G, then every vertex in the unique path
from V to V ′ also contains this node.

Figure 2 gives an example of a junction tree over a 2×3 grid.
The size of the largest vertex of T minus one is known as the
width of the junction treeT, and the smallest width of a junction
tree over G is called the treewidth of G, a measure of graph
complexity. Finding the junction tree of lowest width for a graph
G is known to beNP-hard (Arnborg, Corneil, and Proskurowski
1987), but there exist efficient heuristic algorithms for finding
a junction tree with small width (Kjærulff 1990; Koller and
Friedman 2009).

Given a junction tree T for the graph G, we will soon prove
that Metro can be run withO(p2w) queries of the unnormalized
density �, where w is the width of T. In view of (7), at step j of
Metro we need to evaluate P(X−j,Xj = zj, X̃1:(j−1),X∗

1:(j−1)) for
zj ∈ {xj, x∗

j } up to a constant as well as sample from and evaluate
the proposal distribution qj(· | xj). We can use the graphical
model structure to make these operations tractable by both (1)
sampling the variables in a specific order, and (2) choosing
proposal distributions that are not unnecessarily complex. We
formalize these two requirements below.

We first consider the order in which we sample the vari-
ables. Recalling (10), the complexity of the computations of
P(X−j,Xj = zj, X̃1:(j−1),X∗

1:(j−1)) depends on the number of
function calls implied by the recursion (10). For simplicity,
assume that the proposal terms in the product, P(X∗

k | X−j,
Xj = zj, X̃1:(k−1), X∗

1:(k−1)), never depends on zj; this will be
relaxed soon. In that case, we need only consider the terms
in (10) of the form P(X̃k | X−j,Xj = zj, X̃1:(k−1),X∗

1:k)
for k < j. When there is graphical structure, not all such
terms will depend on zj, and the number of terms that do
depend on zj determines the recursion depth. In particular, if
at step j only rj terms depend on zj, then there will be O(2rj)
function calls in the recursion. A desirable ordering of the
variables is then one that minimizes the largest rj, and such
an ordering can be extracted from a junction tree T using
Algorithm 2.

Algorithm 2 is valid in that when a node is removed, no j ∈ J
remains in any node inTactive.7 Fromnowonwe assume that the
variables are numbered according to this ordering. Our second
consideration is to create proposals that do not add unnecessary
complexity. No matter which proposal distribution we choose,
P(Xj = zj | X−j, X̃1:(j−1),X∗

1:(j−1)) will still depend on some
X� for � > j due to dependencies among coordinates of X; we
however restrict ourselves to proposal distributions that do not
add any additional dependencies.

7This simple fact follows from the running intersection property; we refer the
reader to Lemma 1 in Appendix A.
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Algorithm 2: Junction tree variable ordering for Metro
Initialize tree Tactive = T and list J = {}.
while Tactive �= ∅ do

Select a leaf node V of Tactive. V is connected to at most
one other node V ′ of Tactive because it is a tree.

In any order, append each j ∈ V \ V ′ to the end of the
list J. If no V ′ exists, append all j ∈ V to J in any
order.

Remove V from the active tree Tactive.
end
Return J

Definition 2 (Compatible proposal distributions). Let Vj be the
node of the junction tree when j is appended to J from Algo-
rithm 2. Set V̄j = {1, . . . , j − 1} ∪ Vj. We say that proposal
distributions qj are compatible with a junction tree T if they
depend only on XV̄j , X̃1:(j−1), and X∗

1:(j−1).

This definition is motivated by the property

X1:j ⊥⊥ XV̄c
j
| XV̄j\{1,...,j},

since V̄j \ {1, . . . , j} separates {1, . . . , j} from V̄c
j in the graph G.

Thus, a proposal distribution at step j that violates the compati-
bility property and relies on X� for some � /∈ V̄j will result in
additional non-one terms in the product in (10) at step �, so
V̄j is the largest set that the proposal can be allowed to depend
on without increasing the number of function calls/runtime.
Although not all proposals are compatible, it is a rich enough
class to handle a broad range of knockoff distributions, includ-
ing the distribution induced by SCIP.

With these two conditions in place, we now state our main
result about the efficiency of knockoff sampling, giving an upper
bound on the number of evaluations of the unnormalized den-
sity function � that is required by Metro when the graphi-
cal structure is known. Assuming the variable ordering from
Algorithm 2 and faithful proposal distributions compatible for
T such that sampling from and evaluating the proposal distri-
butions does not require evaluating �, we reach the following
result:

Theorem 2 (Computational efficiency of Metro). Let X be a
random vector with a density which factors over a graphG as in
(12). Let T be a junction tree of width w for the graph G. Under
the conditions above, Metro uses O(p2w) queries of �.

This result means that we can efficiently implement
Metropolized knockoff sampling for many interesting
distributions, and it shows precisely how the complexity
of the conditional independence structure of X affects the
complexity of the sampling algorithm. Furthermore, in the next
section we will prove that this is the optimal complexity in some
cases.

4.3. Time Complexity of General Knockoff Sampling

In the previous section, we analyzed the runtime of Metro and
showed that it will be tractable for graphs of sufficiently low

treewidth. Now, we investigate the computational complexity of
knockoff sampling in general. To formalize our investigation, we
discuss a model of computation in which we have no informa-
tion about the distribution of X beyond its graphical structure
and the ability to query its (possibly unnormalized) density at
any given point.

Formally, we consider the oracle model, where we are given
as inputs (a) a p-dimensional vector X drawn from a density
λ�, where λ is a (possibly unknown) positive scalar so that
we can think of � as an unnormalized density, (b) the sup-
port of �, (c) a black box capable of evaluating � at arbi-
trary query points, and (d) a graph G for which the density is
known to have the form (12). No other information about � is
available.

We show that in the oracle model with the complete graph,
that is, when there is no graphical structure, knockoff sampling
requires exponential time in the number of covariates, p. Please
note that any complexity bound must take into account the
quality of the generated knockoffs since X̃ = X is a trivial
knockoff that can be sampled in no time.

Theorem 3 (Complexity lower bound for knockoff sampling).
Consider a procedure operating in the oracle model which
makes a finite number of calls to the black box� and returns X̃,
thereby inducing a joint distribution (X, X̃)obeying the pairwise
exchangeability (1) for all �. If G is the complete graph so that
the procedure generates valid knockoffs for any input density,
then the total number N of queries of � must obey N ≥
2#{j:Xj �=X̃j} − 1 a.s.

This result means that for any knockoff sampler, we cannot
have both full generality and time efficiency. Put differently, to
efficiently generate nontrivial knockoffs, we will need to restrict
our attention to a subset of distributions for which we have
structure. This fact justifies our decision to focus on distribu-
tions with graphical structure. We also derive a lower bound
for the complexity of knockoff sampling for graphical models,
stated next.

Corollary 2 (Complexity lower bound for graphical models).
Consider the setting of Theorem 3. Fix a graph G with
maximal cliques C. Suppose that for all � of the form
�(x) = ∏

c∈C φc(xc), the procedure induces a joint distribu-
tion (X, X̃) obeying pairwise exchangeability (1). Then N ≥
maxc∈C 2#{j∈c:Xj �=X̃j} − 1 a.s..

This proposition shows that even after making some useful
structural assumptions, there is still a trade-off between knock-
off quality and computation.We next derive a byproduct, which
proves that Metro is achieving a good runtime.

Proposition 2 (Optimality ofMetro for chordal Gaussian graphical
models). Consider continuous distributions of the form�(x) =∏

c∈C φc(xc) over a chordal graph G.8 On the one hand, for
any input, Metro can be run with O(p2 + p2w) queries of �.
Furthermore, in the case where the distribution is Gaussian

8A chordal graph is a graph such that any cycle of length 4 or larger has a
chord.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

with zero mean and positive definite covariance (i.e., �(x) ∝
exp

(−x�−1x�/2
)
), Metro can produce knockoffs with Xj �=

X̃j for all j with probability 1. On the other hand, any general
procedure that samples knockoffs such that Xj �= X̃j for all j
with probability ε > 0 will require at least 2w − 1 queries of �

with probability at least ε.

Proposition 2 means that for chordal graphs, any general
knockoff sampling algorithm such that P(Xj �= X̃j for all j)
is bounded away from zero needs, in expectation, the same
exponential order of queries as Metro (with the proviso that p
is negligible compared to 2w).

4.4. Divide-and-Conquer to Reduce Treewidth

Theorem 2 shows that Metro enables efficient computations for
random vectors whose densities factor over a graph G of low
treewidth. Not all graphs corresponding to random vectors of
interest have low treewidth, however. A d1×d2 grid, for example,
has treewidth min(d1, d2) (Diestel 2018). This section develops
amechanism for simplifying the graphical structure of a random
vector X, allowing for faster computation of exact knockoffs at
the cost of reduced knockoff quality.

To simplify graphical structure, we fix a set of variablesC that
separates the graph G into two subgraphs A and B. After fixing
the variables inC, knockoffs can be constructed for the variables
in A and B independently.

Proposition 3 (Validity of divide-and-conquer knockoffs). Sup-
pose the sets A,B,C form a partition of {1, . . . , p} such that C
separates A and B in the graph G, that is, there is no path from
some j ∈ A to some k ∈ B in G that does not contain some
� ∈ C. Suppose X̃ is a random vector such that XC = X̃C a.s.
and for all jA ∈ A and jB ∈ B,

(XD, X̃D)
d= (XD, X̃D)swap(jD) | XC for D = A,B.

Furthermore, assume we construct the knockoffs for A and B
separately, that is (XA, X̃A) ⊥⊥ (XB, X̃B) | XC. Then X̃ is a valid
knockoff.

The divide-and-conquer technique can be applied recur-
sively to split the graph into components of low treewidth until
the junction-tree algorithm for constructing knockoffs can be
used on each component. For example, for an arbitrary planar
graph with p nodes, the planar separator theorem gives the
existence of a subset of nodes C of size O(

√p) that separates
the graph into components A and B with max(|A|, |B|) ≤
2p/3 (Lipton and Tarjan 1979), suggesting that this technique
will apply to many cases of interest. Figure 3 illustrates this
technique for a d1 × d1 grid. We split the grid into rectangular
ribbons of size d1 × d2 for small d2; each resulting ribbon has
treewidth d2.

The drawback of this approach is that for j ∈ C, we shall
have Xj = X̃j. When we think of deploying the knockoff
framework in statistical applications, one should remember that
we will work withmultiple copies ofX corresponding to distinct
observations. We can then choose different separator sets for
each observation so that in the end, Xj �= X̃j for most of the

Figure 3. Two examples of conditioning to reduce the treewidth of a 6 × 6 grid
from 6 to 3.

observations. For example, in the setting of Figure 3, one would
randomly choose between the two choices of C for each obser-
vation. This technique is explored numerically in Section 5.3.3.

4.5. Discrete Distributions

For discrete distributions with a small number of states for each
coordinate Xj, the junction tree techniques from Section 4.2
can be directly applied without using Metropolized knockoff
sampling. When each variable Xj can take on at most K values,
the probability mass function P(Xj | X−j, X̃1:(j−1)) can be repre-
sented as a vector in R

K , so at step j of the algorithm we simply
need to evaluate P(Xj = zj,X−j, X̃1:(j−1)) for zj in the support
of Xj. This is the same quantity we computed in Section 4.2; see,
for example, (10). Once these probabilities have been computed,
sampling from the resulting multinomial probability gives the
SCIP procedure. In principle, this can be viewed as a special
case of Metro, but for a practical implementation it is simpler
to work directly with the probability vectors. A similar analy-
sis to the proof of Theorem 2 then shows that the procedure
requires O(pKw) queries of the density �; see Appendix C.5
for details. For discrete distributions with infinite or large K,
this is not tractable. However, Metro still applies and is much
faster.

4.6. Knockoffs for the IsingModel

The tools from this section have the power to generate knockoffs
for the Ising model on a grid (3). To construct an efficient
knockoff sampler for this distribution, we need to find a junction
tree of minimal width for the d1 × d2 grid so that we can
apply the technique from Section 4.5. A junction tree for the
2 × 3 grid of width 2 is shown in Figure 2, and the con-
struction immediately generalizes to a junction tree of width
min(d1, d2) for the d1 × d2 grid, which is the optimal width.
When d1 ≥ d2, this leads to a knockoff sampler that pro-
ceeds from left to right, top to bottom; when variable Xi,j is
sampled, the other variables in the active node of the junction
tree are Xi,j+1:p and Xi+1,1:j; see Figure 4. Per our upper bound,
this knockoff sampler will have runtime O(d1d22min(d1,d2)). If
min(d1, d2) is large, this runtime may still be prohibitively
long, but the divide-and-conquer technique from Section 4.4
greatly increases speed at the cost of slightly worse knockoffs
than the impractical full procedure. We conduct a simulation
experiment of both the small-grid and large-grid setting in
Section 5.3.3.
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Figure 4. An illustration of sampling knockoffs for an Ising model on a grid from
Section 4.6. The blue dashed nodes represent the active variables of the junction
tree when variable X3,3 (shown in green) is being sampled. Gray nodes indicate
variables that have already been sampled, and white nodes indicate variables that
have not been sampled yet and are not in the active node of the junction tree.

5. Numerical Experiments

We now empirically examine the Metropolized knockoff sam-
pler, beginning with the few models where previously known
samplers are available as a baseline, and then continuing on
to cases with no previously known samplers. Condensed plots
are presented in the main text, while more comprehensive
versions can be found in Appendix F. We provide approxi-
mate runtimes with a single-core9 implementation in either
R or Python. All source code is available from https://github.
com/wenshuow/metro with interactive computing notebooks at
http://web.stanford.edu/group/candes/metro demonstrating the
usage of the code and presenting further experimental results.

5.1. Measuring KnockoffQuality

The mean absolute correlation (MAC) is a useful measure of
knockoff quality for a joint distribution of (X, X̃):

MAC(L(X, X̃)) := 1
p

p∑
j=1

|cor(Xj, X̃j)|. (13)

We will use this as our measure of knockoff quality in our
simulation experiments. Lower values ofMACare preferred. Let
� be the correlation matrix of (X, X̃); pairwise exchangeability
implies � is of the form (2). The MAC is then 1

p
∑p

j=1 |1 − sj|.
Since � = �(s) has to be positive semidefinite, a lower bound
on the MAC achievable by any knockoff-generation algorithm
for a given distribution is the optimal value of the program

min
s

1
p

p∑
j=1

|1 − sj|, subject to �(s) � 0. (14)

This minimization problem can be solved efficiently with
semidefinite programming (Barber and Candès 2015); we call
the solution the SDP lower bound for the MAC. This lower
bound can be achieved for Gaussian distributions (Candès et al.
2018). Valid knockoffs, however, must match all moments, not
just the secondmoments, so this lower bound is not expected to
be achievable in general; still it provides a useful goalpost in our
simulations.

9The hardware varies across simulations, but each CPU is between 2.5 GHz
and 3.3 GHz.

5.2. ModelsWith Previously Known Knockoff Samplers

5.2.1. GaussianMarkov Chains
We first apply our algorithm to Gaussian Markov chains
and compare with the SDP Gaussian knockoffs, whose MAC
achieves the SDP lower bound exactly, and SCIP knockoffs, both
from Candès et al. (2018). We take p = 500 features such that
X1 ∼ N (0, 1) andXj+1 | X1:j ∼ N (ρjXj, 1−ρ2

j ). First, since the
model is multivariate Gaussian, the covariance-guided proposal
with s computed by the SDP method (14) will be identical to
the SDP Gaussian knockoffs, so already a clever implementa-
tion of Metro is as good as a method specifically designed for
Gaussian distributions, and since both achieve the SDP lower
bound, one cannot do better in terms of MAC. Thus, we only
investigate the MTM-proposals for implementing Metro. Note
that the Gaussian knockoffs from Candès et al. (2018) do not
use theMarkovian structure of this problem, but instead rely on
operations on 2p × 2p matrices, whereas the MTM knockoffs
from this work utilize the Markovian structure to achieve time
complexity linear in p.

The results are presented in Figure 5. Following Section 3.3,
we vary the number of proposals and the step size. We find that
choosing the step size for Xj to be proportional to

√
1/(�−1)jj

gives consistent results across different sets of ρj’s. The MTM
consistently outperforms the SCIP procedure, and is reasonably
close to the SDP procedure. It is observed that the defaults from
Section 3.3 of eight proposals (m = 4) and tj = 1.5

√
1/(�−1)jj

performs nearly the best in all settings. Confirming our rea-
soning in Section 3.3, we find that the performance stabilizes
as m grows and the step size should not be too large or too
small, although for sufficiently large m the MAC is fairly stable
to the choice of t. In this setting, it takes around 1 sec for
MTM to sample one knockoff vector with m = 4 and tj =
1.5

√
1/(�−1)jj. The optimal Gaussian knockoffs and the SCIP

knockoffs require a one-time computation of 20 sec and 90 sec,
respectively. After that, each knockoff generation requires less
than 0.01 sec.

5.2.2. DiscreteMarkov Chains
For discrete Markov Chains there is one previously-known
knockoff sampler, which is an implementation of the SCIP
procedure (Sesia, Sabatti, and Candès 2019). We consider here
Metro with MTM proposals. (The covariance-guided proposals
would require ad-hoc rounding sowe do not consider this here.)
We take a simple Markov Chain with K ∈ {5, 10} states with
uniform initial distribution and transition probabilities Q(j, j′)
defined as

Q(j, j′) = (1 − α)|j−j′|∑K
�=1(1 − α)|j−�| . (15)

We examine α from 0 (independent coordinates) to 0.5 (strong
dependence between adjacent coordinates), with p = 500
features.

We examine the MTM methods across a range of values of
the tuning parameters, and the results are presented in Figure 6.
Full simulation results are given in Appendix F. Note that the
cases with K = 5 and α ≤ 0.15 are tuned with the additional

https://github.com/wenshuow/metro
https://github.com/wenshuow/metro
http://web.stanford.edu/group/candes/metro
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Figure 5. Simulation results for GaussianMarkov chains. The unit of step sizes is
√
1/(�−1)jj . All standard errors are below 0.001. In this case, the lower bound is achieved

by the SDP Gaussian knockoffs, or equivalently, the covariance-guided proposal with an s given by the SDP (14).

Figure 6. A comparison of the MTM procedure for discrete Markov chains with SCIP and the SDP lower bound. All standard errors are below 0.002.

parameter γ from (9), as detailed in Appendix F.2. We find that
the best-tuned MTM method outperforms the SCIP method
and achieves MAC near the lower bound for all dependence
levels α. It takes around 0.5 sec and 0.7 sec, respectively, to run
MTM (m = 4 and t = 1) forK = 5 andK = 10. It takes around
0.02 sec and 0.05 sec, respectively, to run SCIP for K = 5 and
K = 10.

5.3. ModelsWith No Previously Known Knockoff Sampler

5.3.1. Heavy-TailedMarkov Chains
As an example of a heavy-tailed distribution, we consider a
Markov chain with t-distributed tails. The results are presented
in Figure 7.

X1 =
√

ν − 2
ν

Z1,

Xj+1 = ρjXj +
√
1 − ρ2

j

√
ν − 2

ν
Zj+1, (16)

Zj
iid∼ tν ,

for j = 1, . . . , p = 500 where tν represents the Student’s
t-distribution with ν > 2 degrees of freedom (note this is
not a multivariate t-distribution). We try both the covariance-
guided proposal with s provided by the SDP method (14) and
the MTM proposals. We set ν = 5 and use the same ρj’s
as in the Gaussian setting. As in Section 5.2.1, a step size

of 1.5
√
1/(�−1)jj again performs well. The covariance-guided

proposals also perform well, although unlike the Gaussian case,
there is now a gap between the lower bound and the perfor-
mance of the covariance-guided proposals. In this setting, it
takes around 1.6 sec for MTM to sample one knockoff vector
with m = 4 (eight proposals) and tj = 1.5

√
1/(�−1)jj. For

the covariance-guided proposals, it takes around 12.5 sec for the
one-time computation of the parameters (excluding time used
for computing s, which varies depending on the method; the
most expensive one is the SDP, which takes 20 sec) and then 0.3
sec to sample each knockoff vector.

5.3.2. Asymmetric Markov Chains
As an example of asymmetric, continuous distributions, we
take a standardized equal mixture of Gaussian and exponential
random variables and then form aMarkov chain. The results are
presented in Figure 8. Explicitly,

Zj
iid∼ I· | YG | −(1 − I) · YE − μ

σ
for j = 1, . . . , p = 500,

where YG ∼ N (0, 1), YE ∼ Expo(1), and I ∼ Bern(1/2) are
independent. The parameters μ and σ are chosen so that Zj has
mean 0 and variance 1. We then take

X1 = Z1, Xj+1 = ρjXj +
√
1 − ρ2

j Zj+1 for j = 2, . . . , p.
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Figure 7. Simulation results for the t-distributed Markov chains. The unit of step sizes is
√
1/(�−1)jj . All standard errors are below 0.001.

Figure 8. Simulation results for the asymmetric Markov chains. The unit of step sizes is
√
1/(�−1)jj . All standard errors are below 0.001.

We examine both the covariance-guided proposal with s pro-
vided by the SDP (14) and the multiple-try proposals. We use
the same ρj’s as in the Gaussian setting. As in the previous case,

m = 4 (eight proposals) and tj = 1.5
√
1/(�−1)jj performs

essentially as well as any other MTM parameter choices, and
significantly outperforms the covariance-guided proposals. The
timing results are the same as in the heavy-tailedMarkov chains.

5.3.3. IsingModel
In this section, we consider an Ising model over a square
grid (3). We generate knockoffs with the method for dis-
crete random variables from Section 4.5 combined with the
divide-and-conquer technique, the combination of which was
described for Ising models in Section 4.6; no other exact
knockoff samplers are known for the Ising model. Although
our sampling procedures for the Ising model do not explicitly
use the Metropolis–Hastings step, as explained in Section 4.5,
we will refer to the sampler as “Metro” in this section for
simplicity.

First, we take a 10 × 10 grid and set all βi,j,i′,j′ = β0 and all
αi,j = 0. The results are presented in Figure 9. The left panel
shows how the MAC increases—or, the quality decreases—as
the dependence between adjacent variables—β0—increases.We
see that the procedure is close to the lower bound for large
β0. In the middle panel, we plot cor(Xj,k, X̃j,k) across different
coordinates (j, k). We see that on the edges of the grid, especially

on the corners, knockoffs have lower absolute correlation with
their original counterparts. These variables are less determined
by the values of the rest of the grid, so this is expected. In this
setting, it takes about 12 sec to sample a knockoff.

Next, we demonstrate the divide-and-conquer technique
from Section 4.4. Here we consider the Ising model from above
on a 100 × 100 grid, for a total dimension of 10,000. The
100 × 100 grid has treewidth 100, so Metro would not be
tractable without the divide-and-conquer technique. We divide
the graph into subgraphs of width w, by fixing entire columns
as in Figure 3. To measure the effect of the slicing, we compute
the MAC on the interior points and compare this to the MAC
of the interior points of a smaller grid for a procedure without
slicing, see Appendix F.3 for details. We find that the quality
of the knockoffs increases as we take larger slices, as expected.
Furthermore, even modest values of w such as w = 5 result in
a procedure that achieves a MAC close to that of the baseline.
Recall that the complexity of Metro scales as 2w, so fixingw = 5
dramatically reduces the computation time compared to w =
100.Withw = 5, it takes about 2.5min to generate one knockoff
for the 100 × 100 grid.

5.3.4. GibbsMeasure on a Grid
Lastly, we demonstrate theMTMproposals simultaneously with
the junction tree techniques for complex dependence structure.
Consider a Gibbs measure on {1, . . . ,K}d×d, with a probability
mass function
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Figure 9. Results of the Ising model experiments. All standard errors in the line plots are less than 0.005.

Figure 10. Results of the Gibbs measure experiments. All standard errors are below 0.002. In the left panel, β0 is shown in logarithmic scale.

P(X) = 1
Z(β0)

exp

⎛
⎜⎜⎝−β0

∑
s,t∈I‖s−t‖1=1

(xs − xt)2

⎞
⎟⎟⎠ ,

I = {(i1, i2) : 1 ≤ i1, i2 ≤ d},
and note that like the Ising model, this density factors over the
grid. For our experiment, we take a 10 × 10 grid and examine
different dependence levels β0 with K = 20 possible states
for each variable. We apply Metro with the MTM proposals
and the divide-and-conquer technique on the grid, tuning the
procedure across a range of parameters as detailed in Appendix
F. The condensed results are given in Figure 10.We do not know
of another knockoff sampler in this setting. Having said this, we
observe that our procedure has MAC close to the lower bound.
We also observe that in the case where w = 3, with as few
as two proposals, our procedure performs well and takes about
half a second to generate a knockoff copy; when we increase the
number of proposals to ten, the compute time is around 2 min.
Whenw is set to 5, the slowest setting ism = t = 1, which takes
less than 4 min.

5.3.5. Potts Model in Protein Contact Prediction
To demonstrate Metro in a case with an even more complex
graphical structure, we apply it to a Potts model over a graph
arising in protein residual contact prediction (see, e.g., Weigt
et al. 2009; Marks et al. 2011; Ekeberg et al. 2013). In this line

of work, researchers model the distribution of an amino acid
sequence with length p, X = (X1,X2, . . . ,Xp) ∈ {0, 1, . . . , 20}p,
as

Ph,J(X) = 1
Z(h, J)

exp

⎛
⎝ p∑

j=1
hi(Xi) +

∑
1≤i<j≤p

Jij(Xi,Xj)

⎞
⎠ ,

where the 21 states represent 20 possible amino acids and one
gap, each hi is a 21-dimensional vector, each Jij is a 21 × 21
matrix, and Z(h, J) is a normalizing constant. The studies above
fit thismodel to identify sites far away that are dependent, which
suggests that they are nearby in three-dimensional space, but
in our case we are interested in this model only as an example
of a complex graphical model arising in a scientific application.
Using the method and data in Ekeberg et al. (2013), we estimate
such a model for protein family PF00006 which has p = 213
features. The graphical model we estimate admits a junction
tree of width 9, which indicates that the graph is moderately
complex, and unlike in previous examples it does not have a sim-
ple description; see Figure 11 for a visualization. Nonetheless,
we can construct knockoffs with the Metro algorithm. Using
a proposal distribution that is uniform across the 21 possible
states, sampling one knockoff takes about 10 sec, and using
5000 independent samples we find that the resulting MAC is
0.26, which is reasonably close to the lower bound of 0.14
for this distribution. Note that in this example, the variables
are categorical, so the MAC depends on the encoding of the
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Figure 11. Results of the protein residual contact example. (a) The fitted graph. (b) Themutual information between Xj and X̃j , a measure of knockoff quality. As a point of
reference, the mutual information between Xj and Xj (i.e., the entropy) is also plotted.

variables. Because of this, in Figure 11 we instead plot the
empirical mutual information between Xj and X̃j, which is an
alternative measure of knockoff quality that does not depend
on the choice of encoding. Here, we find that the mutual infor-
mation is very small relative to the mutual information of the
baseline of X̃ = X. As with ourMACmetric, this again indicates
that the knockoffs we have constructed have high contrast with
the original variables, which was our aim. Lastly, we emphasize
that this experiment was carried out with our general-purpose
software that samples knockoffs while only requiring the user to
specify (i) a function evaluating the unnormalized density, (ii)
a graph encoding the conditional independence structure, and
(iii) a symmetric proposal distribution. As such, this method is
straightforward to use and is ready for deployment in scientific
settings. We again refer the reader to our notebook tutorials at
http://web.stanford.edu/group/candes/metro.

6. Discussion

This article introduced a sequential characterization of all valid
knockoff-generating procedures and used it along with ideas
from MCMC and graphical models to create Metropolized
knockoff sampling, an algorithm which generates valid knock-
offs in complete generality with access only to X’s unnormal-
ized density. Although we proved in Theorem 3 that no algo-
rithm (including Metro) can sample exact knockoffs efficiently
for arbitrary X distributions, we characterized one way out
of this impossibility result: conditional independence struc-
ture in X. An interesting future direction would be to estab-
lish other sufficient conditions on a model family that would
allow one to sample knockoffs efficiently. Another way out
of the lower bound in Theorem 3 is to forgo exact knock-
offs and settle for approximations. Although this arguably is
a tall order, it would be interesting to establish theoretical
guarantees on the approximation quality of these or other
approximate knockoff constructions, and better understand
the tradeoff between knockoff approximation quality and time
complexity.

Supplementary Materials

Appendix: Appendix of the article. (.pdf file)
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