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Abstract

Computer vision models learn to perform a task by cap-
turing relevant statistics from training data. It has been
shown that models learn spurious age, gender, and race
correlations when trained for seemingly unrelated tasks like
activity recognition or image captioning. Various mitigation
techniques have been presented to prevent models from uti-
lizing or learning such biases. However, there has been little
systematic comparison between these techniques. We design
a simple but surprisingly effective visual recognition bench-
mark for studying bias mitigation. Using this benchmark, we
provide a thorough analysis of a wide range of techniques.
We highlight the shortcomings of popular adversarial train-
ing approaches for bias mitigation, propose a simple but
similarly effective alternative to the inference-time Reduc-
ing Bias Amplification method of Zhao et al., and design
a domain-independent training technique that outperforms
all other methods. Finally, we validate our findings on the
attribute classification task in the CelebA dataset, where
attribute presence is known to be correlated with the gender
of people in the image, and demonstrate that the proposed
technique is effective at mitigating real-world gender bias.

1. Introduction

Computer vision models learn to perform a task by cap-
turing relevant statistics from training data. These statistics
range from low-level information about color or composition
(zebras are black-and-white, chairs have legs) to contextual
or societal cues (basketball players often wear jerseys, pro-
grammers are often male). Capturing these statistical corre-
lations is helpful for the task at hand: chairs without legs are
rare and programmers who are not male are rare, so captur-
ing these dominant features will yield high accuracy on the
target task of recognizing chairs or programmers. However,
as computer vision systems are deployed at scale and in a
variety of settings, especially where the initial training data
and the final end task may be mismatched, it becomes in-
creasingly important to both identify and develop strategies

for manipulating the information learned by the model.
Societal Context. To motivate the work of this paper, con-
sider one such example of social bias propagation: Al
models that have learned to correlate activities with gen-
der [4, 7, 52, 2]. Some real-world activities are more com-
monly performed by women and others by men. This real-
world gender distribution skew becomes part of the data that
trains models to recognize or reason about these activities. '
Naturally, these models then learn discriminative cues which
include the gender of the actors. In fact, the gender corre-
lation may even become amplified in the model, as Zhao et
al. [52] demonstrates. We refer the reader to e.g., [34] for a
deeper look at these issues and their impact.
Study Objectives and Contributions. In this work,
we set out to provide an in-depth look at this prob-
lem of training visual classifiers in the presence of
spurious correlations. We are inspired by prior work
on machine learning fairness [51, 52, 41, 1] and aim
to build a unified understanding of the proposed tech-
niques. Code is available at https://github.com/
princetonvisualai/DomainBiasMitigation.
We begin by proposing a simple but surprisingly effective
benchmark for studying the effect of data bias on visual
recognition tasks. Classical literature on mitigating bias
generally operates on simpler (often linear) models [1 1, 50,
], which are easier to understand and control; only recently
have researchers begun looking at mitigating bias in end-to-
end trained deep learning models [16, 2, 40, 18, 48, 25,
, 36, 47, 17]. Our work helps bridge the gap, proposing
an avenue for exploring mitigating bias in Convolutional
Neural Network (CNN) models within a simpler and easier-
to-analyze setting than with a fully-fledged black-box system.
By utilizing dataset augmentation to introduce controlled
biases, we provide simple and precise targets for model
evaluation (Sec. 3).
Using this benchmark, we demonstrate that the presence

'Buolamwini and Gebru [6] note that collecting a more representative
training dataset should be the first step of the solution. That is true in
the cases they consider (where people with darker skin tones are dramati-
cally and unreasonably undersampled in datasets) but may not be a viable
approach to cases where the datasets accurately reflect the real-world skew.
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of spurious bias in the training data severely degrades the
accuracy of current models, even when the biased dataset
contains strictly more information than an unbiased dataset.
We then provide a thorough comparison of existing meth-
ods for bias mitigation, including domain adversarial train-
ing [46, 41, 1], Reducing Bias Amplification [52], and do-
main conditional training similar to [40]. To the best of our
knowledge, no such comparison exists currently as these
methods have been evaluated on different benchmarks un-
der varying conditions and have not been compared directly.
We conclude that a domain-independent approach inspired
by [! 1] outperforms more complex competitors (Sec. 4).

Finally, we validate our findings in more realistic settings.
We evaluate on the CelebA [32] benchmark for attribute
recognition in the presence of gender bias (Sec. 5). We
demonstrate that our domain-independent training model
successfully mitigates real-world gender bias.

2. Related Work

Mitigating Spurious Correlation. Recent work on the ef-
fects of human bias on machine learning models investi-
gates two challenging problems: identifying and quanti-
fying bias in datasets, and mitigating its harmful effects.
In relation to the former, [5, 31] study the effect of class-
imbalance on learning, while [52] reveal the surprising phe-
nomenon of bias amplification. Additionally, recent works
have shown that ML models possess bias towards legally
protected classes [29, 6, 4, 7, 33, 8]. Our work complements
these by presenting a dataset that allows us to isolate and
control bias precisely, alleviating the usual difficulties of
quantifying bias.

On the bias mitigation side, early works investigate tech-
niques for simpler linear models [23, 50]. Our constructed
dataset allows us to isolate bias while not simplifying our ar-
chitecture. More recently, works have begun looking at more
sophisticated models. For example, [52] propose an infer-
ence update scheme to match a target distribution, which can
remove bias. [40] introduce InclusiveFaceNet for improved
attribute detection across gender and race subgroups; our dis-
criminative architecture is inspired by this work. Conversely,
[12] propose a scheme for decoupling classifiers, which we
use to create our domain independent architecture. The last
relevant approach to bias mitigation for us is adversarial mit-
igation [1, 51, 13, 16]. Our work uses our novel dataset to
explicitly highlight the drawbacks, and offers a comparison
between these mitigation strategies that would be impossible
without access to a bias-controlled environment.

Fairness Criterion. Pinning down an exact and generally
applicable notion of fairness is an inherently difficult and
important task. Various fairness criteria have been intro-
duced and analyzed, including demographic parity [24, 51],
predictive parity [15], error-rate balance [19], equality-of-
odds and equality-of-opportunity [19], and fairness-through-

unawareness [35] to try to quantify bias. Recent work has
shown that such criteria must be selected carefully; [19]
prove minimizing error disparity across populations, even un-
der relaxed assumptions, is equivalent to randomized predic-
tions; [19] introduce and explain the limitations of an ‘obliv-
ious’ discrimination criterion through a non-identifiability
result; [35] demonstrate that ignoring protected attributes is
ineffective due to redundant encoding; [ 1] show that demo-
graphic parity does not ensure fairness. We define our tasks
such that test accuracy directly represents model bias.
Surveying Evaluations. We are inspired by previous work
which aggregate ideas, methods and findings to provide a
unify survey of a subfield of computer vision [22, 38, 43, 21].
For example, [45] surveys relative dataset biases present in
computer vision datasets, including selection bias (datasets
favoring certain types of images), capture bias (photogra-
phers take similar photos), category bias (inconsistent or
imprecise category definitions), and negative set bias (unrep-
resentative or unbalanced negative instances). We continue
this line of work for bias mitigation methods for modern
visual recognition systems, introducing a benchmark for
evaluation which isolates bias, and showing that our analysis
generalizes to other, more complex, biased datasets.

3. A Simple Setting for Studying Bias

We begin by constructing a novel benchmark for studying

bias mitigation in visual recognition models. This setting
makes it possible to demonstrate that the presence of spuri-
ous correlations in training data severely degrades the per-
formance of current models, even if learning such spurious
correlations is sub-optimal for the target task.
CIFAR-10S Setup. To do so, we design a benchmark that
erroneously correlates target classification decisions (what
object category is depicted in the image) with an auxiliary
attribute (whether the image is color or grayscale).

We introduce CIFAR-10 Skewed (CIFAR-10S), based on
CIFAR-10 [27], a dataset with 50,000 32 x 32 images evenly
distributed between 10 object classes. In CIFAR-10S, each
of the 10 original classes is subdivided into two new domain
subclasses, corresponding to color and grayscale domains
within that class. Per class, the 5,000 training images are
split 95% to 5% between the two domains; five classes are
95% color and five classes are 95% grayscale. The total
number of images allocated to each domain is thus balanced.
For testing, we create two copies of the standard CIFAR-10
test set: one in color (COLOR) and one in grayscale (GRAY).
These two datasets are considered separately, and only the
10-way classification decision boundary is relevant.
Discussion. We point out upfront that the analogy between
color/grayscale and gender domains here wears thin: (1) we
consider the two color/grayscale domains as purely binary
and disjoint whereas the concept of gender is more fluid;
(2) a color/grayscale domain classifier is significantly sim-

8920



pler to construct than a gender recognition model; (3) the
transformation between color and grayscale images is linear
whereas the manifestation of gender is much more complex.
Nevertheless, we adopt this simple framework to distill
down the core algorithmic exploration before diving into the
more complex setups in Sec. 5. This formulation has several
compelling properties: (1) we can control the correlation
synthetically by changing images from color to grayscale,
maintaining control over the distribution, (2) we can guaran-
tee that color images contain strictly more information than
grayscale images, maintaining control over the discrimina-
tive cues in the images, and (3) unlike other datasets, there is
no fairness/accuracy trade off since both are complementary.
Furthermore, despite its simplicity, this setup still allows us
to study the behavior of modern CNN architectures.
Key Issue. We ground the discussion by presenting one
key result that is counter-intuitive and illustrates why this
very simple setting is reflective of a much deeper problem.
We train a standard ResNet-18 [20] architecture with a soft-
max and cross-entropy loss for 10-way object classification.
Training on the skewed CIFAR-10S dataset and testing on
COLOR images yields 89.0 4 0.5% accuracy.” This may
seem like a reasonable result until we examine that a model
trained on an all-grayscale training set (so never having seen
a single color image!) yields a significantly higher 93.0%
accuracy when tested out-of-domain on COLOR images.
This disparity occurs because the model trained on
CIFAR-10S learned to correlate the presence of color and
the object classes. When faced with an all-color test set,
it infers that it is likely that these images come from one
of the five classes that were predominantly colored during
training (Fig. 1). In a real world bias setting where the two
domains correspond to gender and the classification targets
correspond to activities, this may manifest itself as the model
making overly confident predictions of activities traditionally
associated with female roles on images of women [52].

4. Benchmarking Bias Mitigation Methods

Grounded with the task at hand (training recognition mod-
els in the presence of spurious correlations) we perform a
thorough benchmark evaluation of bias mitigation methods.
Many of these techniques have been proposed in the liter-
ature for this task; notable exceptions include prior shift
inference for bias mitigation (Sec. 4.3), the distinction be-
tween discriminative and conditional training in this context
(Sec. 4.4), and the different inference methods for condi-
tional training from biased data (Sec. 4.4). Our findings are
summarized in Table 1. In Sec. 5 we demonstrate how our
findings on CIFAR10S generalize to real world settings.
Setup. To perform this analysis, we utilize the CIFAR-10S
domain correlation benchmark of Sec. 3. We assume that

2We report the mean across 5 training runs (except for CelebA in
Sec. 5.2). Error bars are 2 standard deviations (95% confidence interval).
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Figure 1. Confusion matrix of a ResNet-18 [20] classifier trained on
the skewed CIFAR-10S dataset. The model has learned to correlate
the presence of color with the five object classes (in bold) and
predominantly predicts those classes on the all-color test set.

at training time the domain labels are available (e.g., we
know which images are color and which are grayscale in
CIFAR-10S, or which images correspond to pictures of men
or women in the real-world setting). All experiments in
this section build on the ResNet-18 [20] architecture trained
on the CIFAR-10S dataset, with N = 10 object classes
and D = {color, grayscale}. The models are trained from
scratch on the target data, removing any potential effects
from pretraining. Unless otherwise noted the models are
tarined for 200 epochs, with SGD at a learning rate of 107!
with a factor of 10 drop-off every 50 epochs, a weight decay
of 5e—4, and a momentum of 0.9. During training, the image
is padded with 4 pixels on each side and then a 32 x 32 crop
is randomly sampled from the image or its horizontal flip.

Evaluation. We consider two metrics: mean per-class per-
domain accuracy (primary) and bias amplification of [52].
The test set is fully balanced across domains, so mean ac-
curacy directly correlates with the model’s ability to avoid
learning the domain correlation during training. We include
the mean bias metric for completeness with the literature, as

max(Gr,, Col.)
\C’| Z Gr. + Col,. 0-5- M

where Gr,. is the number of grayscale test set examples
predicted to be of class ¢, while Col,. is the same for color.

4.1. Strategic Sampling

The simplest approach is to strategically sample with re-
placement to make the training data ‘look’ balanced with
respect to the class-domain frequencies. That is, we sample
rare examples more often during training, or, equivalently,
utilize non-uniform misclassification cost [14, 3]. How-
ever, as detailed in [49], there are significant drawbacks to
oversampling: (1) seeing exact copies of the same example
during training makes overfitting likely, (2) oversampling in-
creases the number of training examples without increasing
the amount of information, which increases learning time.
Experimental Evaluation. The baseline model first pre-
sented in Sec. 3 is a ResNet-18 CNN with a softmax clas-
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ACCURACY (%, 1)

MODEL NAME MODEL TEST INFERENCE BiAs () COLOR GRAY MEAN
BASELINE N-way softmax arg max,, P(y|z) 0.074 89.0 88.0 88.5+£0.3
OVERSAMPLING N-way softmax, resampled arg max, P(y|z) 0.066 89.2 89.1 89.1+04
ADVERSARIAL w/ uniform confusion [1, 46] | argmax, P(y|z) 0.101 83.8 83.9 838+1.1
w/ V reversal, proj. [51] arg max, P(y|z) 0.094 84.6 83.5 84.1+1.0
argmax, > g Pir(y, d|x) 0.844 88.3 86.4 87.3£0.3
DOMAINDISCRIM joint ND-way softmax arg max, maxg Pte(y, d|z) 0.040 91.3 89.3 90.3+0.5
argmax, > g Pte(y, d|z) 0.040 91.2 89.4 90.3£0.5
| RBA[57] | y=L(X,Puly,dz)) | 0054 | 892 8.0 886+04
. . arg max,, Pe(y|d*, z) 0.069 89.2 88.7 88.9+0.4
DOMAININDEPEND | N-way classifier per domain arg max, S, sy, d, z) 0.004 92.4 917 92.0+01

Table 1. Performance comparison of algorithms on CIFAR-10S. All architectures are based on ResNet-18 [

]. We investigate multiple bias

mitigation strategies, and demonstrate that a domain-independent classifier outperforms all baselines on this benchmark.

sication layer, which achieves 88.5 + 0.3% accuracy. The
same model with oversampling improves to 89.1 + 0.4%
accuracy. Both models drive the training loss to zero. Note
that data augmentation is critical for this result: without
data augmentation the oversampling model achieves only
79.2 4+ 0.8% accuracy, overfitting to the data.

4.2. Adversarial Training

Another approach to bias mitigation commonly suggested
in the literature is fairness through blindness. That is, if a
model does not look at, or specifically encode, information
about a protected variable, then it cannot be biased. To
this end, adversarial training is set up through the minimax
objective: maximize the classifier’s ability to predict the
class, while minimizing the adversary’s ability to predict the
protected variable based on the underlying learned features.

This intuitive approach, however, has a major drawback.
Suppose we aim to have equivalent feature representations
across domains. Even if a particular protected attribute does
not exist in the feature representation of a classifier, com-
binations of other attributes can be used as a proxy. This
phenomenon is termed redundant encoding in the literature
[19, 11]. For an illustrative example, consider a real-world
task of a bank evaluating a loan application, irrespective of
the applicant’s gender. Suppose that the applicant’s employ-
ment history lists ‘nurse’. It can thus, by proxy, be inferred
with high probability that the applicant is also a woman.
However, employment history is crucial to the evaluation of
a loan application, and thus the removal of this redundant
encoding will degrade its ability to perform the evaluation.
Experimental Evaluation. We apply adversarial learning
to de-bias the object classifier. We consider both the uniform
confusion loss —(1/|D]) Y ,1og qq of [1] (inspired by [46]),

and the loss reversal ), 1 [d = d]log qq with gradient pro-
jection of [51].> These methods achieve only 83.4% and

3We apply the adversarial classifiers on the penultimate layer for [1, 46]

84.1% accuracy, respectively. As Fig. 2 visually demon-
strates, although the adversarial classifier enforces domain
confusion it additionally creates undesirable class confusion.

We run one additional experiment to validate the findings.
We test whether models encode the domain (color/grayscale)
information even when not exposed to a biased training distri-
bution; if so, this would help explain why minimizing this ad-
versarial objective would lead to a worse underlying feature
representation and thus reduced classification accuracy. We
take the feature representation of a 10-way classifier trained
on all color images (so not exposed to color/grayscale skew)
and train a linear SVM adversary on this feature representa-
tion to predict the color/grayscale domain of a new image.
This yields an impressive 82% accuracy; since the ability
to discriminate between the two domains emerges naturally
even without biased training, it would make sense that re-
quiring that the model not be able to distinguish between the
two domains would harm its overall classification ability.

4.3. Domain Discriminative Training

The alternative to fairness through blindness is fairness
through awareness [11] where the domain information is
first explicitly encoded and then explicitly mitigated. The
simplest approach is training a N D-way discriminative clas-
sifier where NN is the number of target classes and D is
the number of domains. The correlation between domains
and classes can then be removed during inference in one of
several ways.

model, and on the final classification layer for [51] as recommended by the
authors. We experimented with other combinations of layers and losses,
including applying the projection method of [51] onto the confusion loss
of [1, 46], and achieved similar results. The models are trained for 500
epochs using Adam with learning rates 3e-4 and weight decay le-4. We
hold out 10,000 images to tune the hyperparameters before retraining the
network on the entire training set. To verify training efficacy, we train SVM
domain classifiers on the learned features: the accuracy is 99.0% before
and 78.2% after adversarial training, verifying training effectiveness.
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Figure 2. Adversarial training [51] enforces domain confusion but
also introduces unwanted class boundary confusion (t-SNE plots).

4.3.1 Prior Shift Inference

If the outputs of the N D-way classifier can be interpreted
as probabilities, a test-time domain solution to removing
class-domain correlation was introduced in [42] and applied
in [37] to visual recognition. Let the classifier output a joint
probability P(y, d|x) for target class y, domain d and image
x. We can assume that Py, (z]y, d) = Pio(z|y, d), i.e., the
distribution of image appearance within a particular class and
domain is the same between training and test time. However,
Pir(d,y) # Pie(d,y), ie., the correlation between target
classes and domains may have changed. This suggests that
the test-time probability Pt (y, d|z) should be computed as:

Pte (ya d‘l’) X Pte (£U|y7 d)Pte(ya d) (2)
= Ptr ($|y, d)Pte(y, d) (3)

Pte(y7 d)
o P (y, d‘l’)m “4)

In theory, this requires access to the test label distribution
Pio(y, d); however, assuming uncorrelated d and y at test
time (unbiased P, (d|y)) and mean per-class accuracy eval-
uvation (uniform Pic(y)), Pte(y, d) = Pie(d|y)Pte(y) o 1.

Eqn. 4 then simplifies to Py, (y, d|x) /P (y, d), removing
the test distribution requirement. With this assumption, the
target class predictions can be computed directly as

7 = arg maxmstXPte(y,d\x) (5)
y

or, using the Law of Total Probability,

§ = arg max Py (y|z) = arg maXZPte(y,d|x). (6)
y y 7

Experimental Evaluation. We train a N D-way classifier
(20-way softmax in our setting) to discriminate between
(class, domain) pairs. This discriminative model with infer-
ence prior shift towards a uniform test distribution (Eqn. 4)
followed by sum of outputs (Eqn. 6) achieves 90.3% accu-
racy, significantly outperforming the 88.5 + 0.3% accuracy
of the N-way softmax baseline. To quantify the effects of the
two steps of inference: taking the highest output predictor
rather than summing across domains (Eqn. 5) has no effect
on accuracy because the two domains are easily distinguish-
able in this case; however, summing the outputs without first
applying prior shift drops accuracy from 90.3% to 87.3%.

Finally, we verify that the increase in accuracy is not just
the result of the increased number of parameters in the classi-
fier layer. We train an ensemble of baseline models, averag-
ing their softmax predictions: one baseline achieves 88.5%
accuracy, two models achieve 89.6%, and only an ensemble
of five baseline models (with 55.9M trainable parameters)
achieve 90.0% accuracy on par with 90.3% accuracy of the
discriminative model (with 11.2M parameters).

4.3.2 Reducing Bias Amplification

An alternative inference approach is Reducing Bias Amplifi-
cation (“RBA”) of Zhao et al. [52]. RBA uses corpus-level
constraints to ensure inference predictions follow a partic-
ular distribution. They propose a Lagrangian relaxation it-
erative solver since the combinatorial optimization problem
is challenging to solve exactly at large scale. This method
effectively matches the desired inference distribution and
reduces bias; however, the expensive optimization must be
run on all test samples before a single inference is possible.
Experimental Evaluation. In the original setting of [52],
training and test time biases are equal. However, RBA is
flexible enough to optimize for any target distribution. On
CIFAR-10S, we thus set the optimization target bias to 0 and
the constraint epsilon to 5%. To make the optimization as
effective as possible, we substitute in the known test-time
domain (because it can be perfectly predicted) so that the
optimization only updates the class predictions.

Applying RBA on the ), Pi.(y, d|x) scores results in
88.6% accuracy, a 1.3% improvement over the simpler
argmax, >, P (y, d|z) inference but an insignificant im-
provement over 88.5% of the BASELINE model. Interest-
ingly, we also observe that the benefits of RBA optimiza-
tion are significantly lessened when prior shift is applied
beforehand. For example, when using the » _ , P (y, d|x)
post-prior shift scores, accuracy only improves negligibly
from 90.3% using arg max inference to 90.4% using RBA.
Therefore, we conclude that applying RBA after prior shift
is extraneous. However, the converse is not true as the best
accuracy achieved by RBA without prior shift is significantly
lower than the accuracy achieved with prior shift inference.

4.4. Domain Independent Training

One concern with the discriminative model is that it learns
to distinguish between the N D class-domain case; in partic-
ular, it explicitly learns the boundary between the same class
across different domains (e.g., cat in grayscale versus cat
in color, or a woman programming versus a man program-
ming). This may be wasteful, as the N-way class decision
boundaries may in fact be similar across domains and the
additional distinction between the same class in different
domains may not be necessary. Furthermore, the model is
necessarily penalized in cases where the domain prediction
is challenging but the target class prediction is unambiguous.
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This suggests training separate classifiers per domain.
Doing this naively, however, as an ensemble, will yield poor
performance as each model will only see a fraction of the
data. We thus consider a shared feature representation with
an ensemble of classifiers. This alleviates the data reduction
problem for the representation though not for the classifiers.

Given the predictions P(y|d, z), multiple inference meth-
ods are possible. If the domain d* is known at test time,
§ = arg max, P(y|d*, z) is reasonable yet entirely ignores
the learned class boundaries in the other domains d # d*,
and may suffer if some classes y were poorly represented
within d* during training. If a probabilistic interpretation is
possible, then two inference methods are reasonable:

7 = arg max mgxP(y\d, x), or @)
y

g= argmauxE:P(ybl7 z)P(d|x) (8)
Y d

However, Eqn. 7 again ignores the learned class bound-
aries across domains, and Eqn. 8 requires inferring P (d|x)
(which may either be trivial, as in CIFAR-10S, reducing to
a single-domain model, or complicated to learn and implic-
itly encoding the correlations between y and d that we are
trying to avoid). Further, in practice, while the probabilistic
interpretation of a single model may be a reasonable approxi-
mation, the probabilistic outputs of the multiple independent
models are frequently miscalibrated with respect to each
other.

A natural option is to instead reason directly on class
boundaries of the D domains, and perform inference as?

j=argmax » s(y,d, ), ©)
v d

where s(y, d, z) are the network activations at the classi-
fier layer. For linear classifiers with a shared feature repre-
sentation this corresponds to averaging the class decision
boundaries. We demonstrate that this technique works well
in practice across both single and multi-label target classifi-
cation tasks at removing class-domain correlations.

Experimental Evaluation. We train a model for perform-
ing object classification on the two domains independently.
This is implemented as two 10-way independent softmax
classifiers sharing the same underlying network. At train-
ing time we use knowledge of the image domain to only
update one of the classifiers. At test time we apply prior
shift to adjust the output probabilities of both classifiers to-
wards a uniform distribution, and consider two inference
methods. First, we use only the classifier corresponding to
the test domain, yielding a low 88.9% accuracy as expected
because it is not able to integrate information across the two

“Interestingly, under a softmax probabilistic model this inference cor-
responds to the geometric mean between {P(y|d, )} 4, which is a stable
method for combining independent models with different output ranges.

domains (despite requiring specialized knowledge of the im-
age domain). Instead, we combine the decision boundaries
following Eqn. 9 and achieve 92.0% accuracy, significantly
outperforming the baseline of 88.5 + 0.3%.

4.5. Summary of Findings

So far we illustrated that the CIFAR-10S setup is an effec-
tive benchmark for studying bias mitigation, and provided
a thorough evaluation of multiple techniques. We demon-
strated the shortcomings of strategic resampling and of ad-
versarial approaches for bias mitigation. We showed that
the prior shift inference adjustment of output probabilities
is a simpler, more efficient, and more effective alternative
to the RBA technique [52]. Finally, we concluded that the
domain-conditional model with explicit combination of per-
domain class predictions significantly outperforms all other
techniques. Table | lays out the findings.

Recall our original goal of Sec. 3 to train a model that
mitigates the domain correlation bias in CIFAR-10S enough
to classify color images of objects as well as a model trained
on only grayscale images would. We have partially achieved
that goal. The DOMAININDEPENDENT model trained on
CIFAR-10S achieves 92.4% accuracy on color images, sig-
nificantly better than 89.0 + 0.5% of BASELINE and ap-
proaching 93.0 4+ 0.2% of the model trained entirely on
grayscale images. However, much still remains to be done.
We would expect that a model trained on CIFAR-10S would
take advantage of the available color cues and perform even
better than 93.0%, ideally approaching 95.1% accuracy of a
model trained on all color images. The correlation bias is a
much deeper problem for visual classifiers and much more
difficult to mitigate than it appears at first glance.

5. Real World Experiments

While CIFAR-10S proves to be a useful landscape for
bias isolation studies, there remains the implicit assumption
throughout that such findings will generalize to other settings.
Indeed, it is possible that they may not due to the synthetic
nature of the proposed bias generation. We thus investigate
our findings in three alternative scenarios. First, in Sec. 5.1
we consider two modifications to CIFAR-10S: varying the
level of skew beyond the 95%-5% studied in Sec. 4, and
replacing the color/grayscale domains with more realistic
non-linear transformations. After verifying all our findings
still hold, in Sec. 5.2 we consider face attribute recognition
on the CelebA dataset [32] where the presence of attributes,
e.g., “smiling” is correlated with gender.

5.1. CIFAR Extensions

There are two key distinctions between the CIFAR-10S
dataset studied in Sec. 4 and the real world scenarios where
gender or race are correlated with the target outputs.
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Figure 3. (Left) The DOMAININDEP model outperforms the BASE-
LINE on CIFAR-10S for varying levels of skew. (Right) To investi-
gate more real-world domains instead of color-grayscale, we con-
sider the subtle shift between CIFAR and 32x32 ImageNet [10, 39].

ImageNet

Varying Degrees of Domain Distribution. The first dis-
tinction is in the /level of skew, where domain balance may
be more subtle than the 95%-5% breakdown studied above.
To simulate this setting, we validated on CIFAR with differ-
ent levels of color/grayscale skew, using the setup of Sec. 4
in Fig. 3 (Left). The DOMAININDEP model consistently out-
performs the BASELINE, although the effect is significantly
more pronounced at higher skew levels. For reference, the
average gender skew on the CelebA dataset [32] for face
attribute recognition described in Sec. 5.2 is 80.0%".
Other Non-Linear Transformations. The second distinc-
tion is that real-world protected attributes differ from each
other in more than just a linear color-grayscale transfor-
mation (e.g., men and women performing the same task
look significantly more different than the same image in
color or grayscale). To approximate this in a simple set-
ting, we followed the CIFAR protocol of Sec. 4, but instead
of converting images to grayscale, we consider alternative
domain options in Table 2. Arguably the most interesting
shift corresponds to taking images of similar classes from
ImageNet [39, 10], and we focus our discussion on that one.
The domain shift here is subtle (shown in Fig. 3 Right) but
the conclusions hold: mean per-class per-domain accuracy is
BASELINE 79.4+0.4%, ADVERSARIAL 74.1+£0.6% [ 1, 46]
and 73.1 4= 3.0% [51] (not shown in Table 2), DOMAINDIS-
CRIMINATIVE 81.5 + 0.7%, and our DOMAININDEPEN-
DENT model 83.5 £+ 0.3%. One interesting change is that
OVERSAMPLING yields 78.6 + 0.4%, significantly lower
than the baseline of 79.4%, so we investigate further. The
drop can be explained by the five classes which were heavily
skewed towards CIFAR images at training time: the model
overfit to the small handful of ImageNet images which got
oversampled, highlighting the concerns with oversampling
particularly in situations where the two domains are differ-
ent from each other and the level of imbalance is high. We
observe similar results in the high-to-low-resolution domain
shift (third and fourth columns of Table 2), where the two
domains are again very different from each other. To coun-

5In this multi-label setting the gender skew is computed on the dev set
min(|attr=1,woman/|,|attr=1,man|)
lattr=1] .

as the mean across 39 attributes of

MODEL ‘ 28x28crop  1/2res. 1/4res. ImageNet
BASELINE 89.2 85.6 73.7 79.4
OVERSAMP 90.1 85.4 72.7 78.6
DOMDISCR 91.6 88.5 71.3 81.5
DOMINDEP 93.0 90.2 79.9 83.5

Table 2. On CIFAR-10S, we consider other transformations instead
of the grayscale domain: (1) cropping the center of the image, (2,3)
reducing the image resolution [44], followed by upsampling or
(4) replacing with 32x32 ImageNet images of the same class [10].
We use the inference of Eqn. 6 for DOMDISCR and Eqn. 9 for
DOMINDEP, and report mean per-class per-domain accuracy (in
%). Our conclusions from Sec. 4 hold across all domain shifts.

teract this effect we instead applied the class-balanced loss
method Cui et al. [9], cross-validating the hyperparameter on
a validation set to 5 = 0.9, and achieved a more reasonable
result of 79.2%, on par with 79.4 & 0.4% of BASELINE but
still behind 83.5 4= 0.3% of DOMAININDEPENDENT.

5.2. CelebA Attribute Recognition

Finally, we verified our findings on the real-world CelebA
dataset [32], used in [4 1] to study face attribute recognition
when the presence of attributes, e.g., “smiling,” is correlated
with gender. We trained models to recognize the 39 attributes
(all except the “Male” attribute). Out of the 39 attributes, 21
occur more frequently with women and 18 with men, with an
average gender skew of 80.0% when an attribute is present.
During evaluation we consider the 34 attributes that have
sufficient validation and test images.®
Task and Metric. The target task is multi-label classifica-
tion, evaluated using mean average precision (mAP) across
attributes. We remove the gender bias in the test set by using
a weighted mAP metric: for an attribute that appears with
N,,, men and N,, women images, we weight every posi-
tive man image by (N,,, + N,,)/(2N,,) and every positive
woman image by (N,,, + N,)/(2N,,) when computing the
true positive predictions. This simulates the setting where
the total weight of positive examples within the class remains
constant but is now equally distributed between the genders.

We also evaluate the bias amplification (BA) of each at-
tribute [52]. For an attribute that appears more frequently
with women, this is Py, / (P, +Py)— Ny /(Np+ Ny, ) where
P,, P, are the number of women and men images respec-
tively classified as positive for this attribute. For attributes
that appear more frequently with men, the numerators are
P,, and N,,,. To determine the binary classifier decision we
compute a score threshold for each attribute which maxi-
mizes the classifier’s F-score on the validation set. Since
our methods aim to de-correlate gender with the attribute
we expect that bias amplification will be negative as the

5The removed attributes did not contain at least 1 positive male, positive
female, negative male, and negative female image. They are: 5 o’clock
shadow, goatee, mustache, sideburns and wearing necktie.
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MODEL MODEL MAP BA
BASE N sigmoids 74.7 0.010
ADVER w/uniform conf. [1, 46] 71.9 0.019
DomDIS 2N sigm, >, Pe:(y, d|z) 73.8 0.007
2N sigmoids, P (y|d*, z) 73.8 0.009
DOMIND 2N sigm, maxg P, (y|d,z) 754  -0.039

INsigm, 3, Pu(yld,z) 760  -0.037
2N sigmoids, Y, s(y,d,z) 763  -0.035

Table 3. Attribute classification accuracy evaluated using mAP
(in %, 1) weighted to ensure an equal distribution of men and
women appearing with each attribute, and Bias Amplification ({).
Evaluation is on the CelebA test set, across 34 attributes that have
sufficient validation data; details in Sec. 5.2.

predictions approach a uniform distribution across genders.
Training Setup. The images are the Aligned&Cropped sub-
set of CelebA [32]. We use a ResNet-50 [20] base archi-
tecture pre-trained on ImageNet [39]. The FC layer of the
ResNet model is replaced with two consecutive fully con-
nected layers. Dropout and relu is applied to the output
between the two fully connected layers, which has size 2048.
It is trained with a binary cross entropy loss with logits
using a batch size of 32, for 50 epochs with the Adam op-
timizer [26] (learning rate 1e-4). The best model over all
epochs is selected per inference method on the validation
set. For adversarial training, we run an extensive hyperpa-
rameter search over the relative weights of the losses and
the number of epochs of the adversary. We select the model
with the highest weighted mAP on the validation set among
all models that successfully train a de-biased representation
(accuracy of the gender classifier drops by at least 1%; oth-
erwise it’s essentially the BASELINE model with the same
mAP). The models are evaluated on the test set.

Results. Table 3 summarizes the results. The overall conclu-
sions from Sec. 4 hold despite the transition to the multi-label
setting and to real-world gender bias. ADVERSARIAL train-
ing as before de-biases the representation but also harms the
mAP (71.9% compared to 74.7% for BASELINE). In this
multi-label setting we do not consider a probabilistic inter-
pretation of the output as the classifier models are trained
independently instead of jointly in a softmax. Without this
interpretation and prior shift the DOMAINDISCRMINATIVE
model achieves less competitive results than the baseline at
73.8%. RBA inference of [52] towards a uniform distribution
performs similarly at 73.6%. The DOMAININDEPENDENT
model successfully mitigates gender bias and outperforms
the domain-unaware BASELINE on this task, increasing the
weighted mAP from 74.7% to 76.3%. Alternative inference
methods, such as selecting the known domain, computing
the max output over the domains, or summing the outputs of
the probabilities directly achieve similar bias amplification
results but perform between 0.3 — 2.5% mAP worse.
Analysis. We take a deeper look at the per-class results on
the validation set to understand the factors that contribute

12 BaldA

Double_Chin‘ A A AA

A APointy_Nose A A
A, A N A
VBlack_Hair ¥ & ANAY A A AGray_Hair
Y )
21 vStraight_Hair y  VPaleSkin

improvement over baseline (% AP)

0.5 0.6 0.7 0.8 0.9 1.0
level of skew

Figure 4. Per-attribute improvement of the DOMAININDEPENDENT
model over the BASELINE model on the CelebA validation set, as a
function of the level of gender imbalance in the attribute. Attributes
with high skew (such as “bald”) benefit most significantly.

to the improvement. Overall the DOMAININDEPENDENT
model improves over BASELINE on 24 of the 34 attributes.
Fig. 4 demonstrates that the level of gender skew in the at-
tribute is highly correlated with the amount of improvement
(p = 0.709). Attributes that have skew greater than 80%
(out of the positive training images for this attribute at least
80% belong to one of the genders) always benefit from the
DOMAININDEPENDENT model. This is consistent with the
findings from CIFAR-10S in Fig. 3(Left). When the level
of skew is insufficiently high the harm from using fewer
examples when training the DOMAININDEPENDENT model
outweighs the benefit of decomposing the representation.
Oversampling. Finally, we note that the OVERSAMPLING
model in this case achieves high mAP of 77.6% and bias
amplification of -0.061, outperforming the other techniques.
This is expected as we know from prior experiments in Sec. 4
and 5.1 that oversampling performs better in settings where
the two domains are more similar (color/grayscale, 28x28
vs 32x32 crop) and where the skew is low while the dataset
size is large so it wouldn’t suffer from overfitting.

6. Conclusions

We provide a benchmark and a thorough analysis of bias

mitigation techniques in visual recognition models. We
draw several important algorithmic conclusions, while also
acknowledging that this work does not attempt to tackle
many of the underlying ethical fairness questions. What
happens if the domain (gender in this case) is non-discrete?
What happens if the imbalanced domain distribution is not
known at training time — for example, if the researchers failed
to identify the undesired correlation with gender? What
happens in downstream tasks where these models may be
used to make prediction decisions? We leave these and many
other questions to future work.
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