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ABSTRACT

Computer vision technology is being used by many but remains
representative of only a few. People have reported misbehavior of
computer vision models, including offensive prediction results and
lower performance for underrepresented groups. Current computer
vision models are typically developed using datasets consisting of
manually annotated images or videos; the data and label distribu-
tions in these datasets are critical to the models’ behavior. In this
paper, we examine ImageNet, a large-scale ontology of images that
has spurred the development of many modern computer vision
methods. We consider three key factors within the person subtree
of ImageNet that may lead to problematic behavior in downstream
computer vision technology: (1) the stagnant concept vocabulary of
WordNet, (2) the attempt at exhaustive illustration of all categories
with images, and (3) the inequality of representation in the images
within concepts. We seek to illuminate the root causes of these
concerns and take the first steps to mitigate them constructively.

1 INTRODUCTION

As computer vision technology becomes widespread in people’s
Internet experience and daily lives, it is increasingly important for
computer vision models to produce results that are appropriate
and fair. However, there are notorious and persistent issues. For
example, face recognition systems have been demonstrated to have
disproportionate error rates across race groups, in part attributed
to the underrepresentation of some skin tones in face recognition
datasets [10]. Models for recognizing human activities perpetuate
gender biases after seeing the strong correlations between gender
and activity in the data [36, 83]. The downstream effects range from
perpetuating harmful stereotypes [55] to increasing the likelihood
of being unfairly suspected of a crime (e.g., when face recognition
models are used in surveillance cameras).

Many of these concerns can be traced back to the datasets used
to train the computer vision models. Thus, questions of fairness
and representation in datasets have come to the forefront. In this
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work, we focus on one dataset, ImageNet [18], which has arguably
been the most influential dataset of the modern era of deep learn-
ing in computer vision. ImageNet is a large-scale image ontology
collected to enable the development of robust visual recognition
models. The dataset spearheaded multiple breakthroughs in ob-
ject recognition [35, 45, 70]. In addition, the feature representation
learned on ImageNet images has been used as a backbone for a
variety of computer vision tasks such as object detection [33, 61],
human activity understanding [69], image captioning [75], and re-
covering depth from a single RGB image [49], to name a few. Works
such as Huh et al. [37] have analyzed the factors that contributed
to ImageNet’s wide adoption. Despite remaining a free education
dataset released for non-commercial use only,! the dataset has had
profound impact on both academic and industrial research.

With ImageNet’s large scale and diverse use cases, we examine
the potential social concerns or biases that may be reflected or
amplified in its data. It is important to note here that references to
“ImageNet” typically imply a subset of 1,000 categories selected for
the image classification task in the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC) of 2012-2017 [64], and much of
the research has focused on this subset of the data. So far, Dulhanty
and Wong [22] studied the demographics of people in ILSVRC
data by using computer vision models to predict the gender and
age of depicted people, and demonstrated that, e.g., males aged
15 to 29 make up the largest subgroup.? Stock and Cisse [71] did
not explicitly analyze the dataset but demonstrate that models
trained on ILSVRC exhibit misclassifications consistent with racial
stereotypes. Shankar et al. [67] and DeVries et al. [19] showed that
most images come from Europe and the United States, and the
resulting models have difficulty generalizing to images from other
places. Overall, these studies identify a small handful of protected
attributes and analyze their distribution and/or impact within the
ILSVRC dataset, with the goal of illuminating the existing bias.

Goals and contributions. There are two key distinctions of our
work. First, we look beyond ILSVRC [64] to the broader ImageNet
dataset [18]. As model accuracy on the challenge benchmark is now
near-perfect, it is time to examine the larger setting of ImageNet.
The 1,000 categories selected for the challenge contain only 3 people

!Please refer to ImageNet terms and conditions at image-net.org/download-faq

2 As noted by the authors themselves, this approach poses a chicken-or-egg problem
as trained models are likely to exhibit gender or age biases, thus limiting their ability
to accurately benchmark dataset bias.
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categories (scuba diver, bridegroom, and baseball player)
while the full ImageNet contains 2,832 people categories under the
person subtree (accounting for roughly 8.3% of the total images).
Their use can be problematic and raises important questions about
fairness and representation. In this work, we focus on the person
subtree of the full ImageNet hierarchy.

Second, in contrast to prior work, our goal is to do a deeper
analysis of the root causes of bias and misrepresentation, and to
propose concrete steps towards mitigating them. We identify three
key factors that may lead to problematic behavior in downstream
technology: (1) the stagnant concept vocabulary from WordNet [53],
(2) the attempt at exhaustive illustration of all categories with im-
ages, and (3) the inequality of demographic representation in the
images. For each factor, we seek to illuminate the root causes of
the concern, take the first steps to mitigate them through carefully
designed annotation procedures, and identify future paths towards
comprehensively addressing the underlying issues.

Concretely, we thoroughly analyze the person subtree of Im-
ageNet and plan to modify it along several dimensions. First, in
Sec. 4, we examine the 2,832 people categories that are annotated
within the subtree, and determine that 1,593 of them are poten-
tially offensive labels that should not be used in the context of an
image recognition dataset. We plan to remove all of these from
ImageNet. Second, in Sec. 5, out of the remaining 1,239 categories
we find that only 158 of them are visual, with the remaining cat-
egories simply demonstrating annotators’ bias. We recommend
further filtering the person subtree down to only these 158 cate-
gories when training visual recognition models. Finally, in Sec. 6
we run a large-scale crowdsourcing study to manually annotate
the gender, skin color, and age of the people depicted in ImageNet
images corresponding to these remaining categories. While the
individual annotations may be imperfect despite our best efforts
(e.g., the annotated gender expression may not correspond to the
depicted person’s gender identity), we can nevertheless compute
the approximate demographic breakdown. We believe that releas-
ing these sensitive attribute annotations directly is not the right
step for ethical reasons, and instead plan to release a Web interface
that allows an interested user to filter the images within a category
to achieve a new target demographic distribution.

We are working on incorporating these suggestions into the
dataset. We will additionally release our annotation interfaces? to
allow for similar cleanup of other computer vision benchmarks.

2 RELATED WORK ON FAIRNESS IN
MACHINE LEARNING

We begin with a more general look at the literature that identi-
fied or attempted to mitigate bias in modern artificial intelligence
systems. In short, datasets often have biased distributions of de-
mographics (gender, race, age, etc.); machine learning models are
trained to exploit whatever correlations exist in the data, leading to
discriminatory behavior against underrepresented groups [6, 7]. A
great overview of the history of machine learning fairness can be
found in Hutchinson and Mitchell [38]. The approaches to address
fairness concerns fall loosely into two categories: (1) identifying

3image-net.org/filtering-and-balancing
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and correcting issues in datasets or (2) studying and encouraging
responsible algorithmic development and deployment.

Identifying and addressing bias in datasets. There are several
issues raised in the conversation around dataset bias. The first
common issue is the lack of transparency around dataset design and
collection procedures. Datasheets for Datasets [31] (and, relatedly,
for models [54]) have been proposed as solutions, encouraging
dataset creators to release detailed and standardized information
on the collection protocol which can be used by downstream users
to assess the suitability of the dataset. Throughout this work we dive
deep into understanding the data collection pipelines of ImageNet
and related datasets, and consider their implications.

The second issue is the presence of ethically questionable con-
cepts or annotations within datasets. Examples range from quanti-
fying beauty [47] to predicting sexual orientation [76] to (arguably)
annotating gender [25, 42]. In Sec. 4 (and to a lesser extent in Sec. 5),
we consider the underlying cause for such concepts to appear in
large-scale datasets and propose the first steps of a solution.

A related consideration is the ethics and privacy of the subjects
depicted in these computer vision datasets. Here we refer the reader
to, e.g., Whittaker et al. [78] for a recent detailed discussion as this
is outside the scope of our work.

The final and perhaps best-known source of dataset bias is the
imbalance of representation, e.g., the underrepresentation of de-
mographic groups within the dataset as a whole or within individ-
ual classes. In the context of computer vision, this issue has been
brought up at least in face recognition [10], activity recognition [83],
facial emotion recognition [62], face attribute detection [65] and
image captioning [11] — as well as more generally in pointing out
the imaging bias of datasets [73]. This is not surprising as many of
the images used in computer vision datasets come from Internet
image search engines, which have been shown to exhibit similar
biased behavior [14, 41, 55]. In some rare cases, a dataset has been
collected explicitly to avoid such influences, e.g., the Pilot Parlia-
ments Benchmark (PPB) by Buolamwini and Gebru [10]. In Sec. 6
we propose a strategy for balancing ImageNet across several pro-
tected attributes while considering the implications of such design
(namely the concerns with annotating pictures of individual people
according to these protected attributes).

Responsible algorithmic development. Beyond efforts around
better dataset construction, there is a large body of work focus-
ing on the development of fair and responsible algorithms that
aim to counteract the issues which may be present in the datasets.
Researchers have proposed multiple fairness metrics including sta-
tistical parity [12, 13, 24, 39], disparate impact [27, 80], equalized
odds [34] and individual fairness [23], and analyzed the relationship
between them [43, 60]. Algorithmic solutions have ranged from
removing undesired bias by preprocessing the data [39, 59], striking
a tradeoff between performance and fairness by posing additional
regularization during training or inference [34, 40, 52, 80, 81, 83],
or designing application-specific interventions (such as of Burns et
al. [11] for reducing gender bias in image captioning models).
However, statistical machine learning models have three funda-
mental limitations that need to be considered. First, the accuracy
of a machine learning model is strongly influenced by the number
of training examples: underrepresented categories in datasets will
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be inherently more challenging for the model to learn [51]. Second,
machine learning models are statistical systems that aim to make
accurate predictions on the majority of examples; this focus on
common-case reasoning encourages the models to ignore some of
the diversity of the data and make simplifying assumptions that
may amplify the bias present in the data [83]. Finally, learning
with constraints is a difficult open problem, frequently resulting
in satisfying fairness constraints at the expense of overall model
accuracy [39, 40, 80, 81]. Thus, algorithmic interventions alone are
unlikely to be the most effective path toward fair machine learn-
ing, and dataset interventions are necessary. Even more so, most
algorithmic approaches are supervised and require the protected
attributes to be explicitly annotated, again bringing us back to the
need for intervention at the dataset level.

Datasets, algorithms and intention. Finally, we note that prior
work in this space underscores a single important point: any tech-
nical fairness intervention will only be effective when done in the
context of the broader awareness, intentionality and thoughtfulness
in building applications. Poorly constructed datasets may introduce
unnoticed bias into models. Poorly designed algorithms may exploit
even well-constructed datasets. Accurate datasets and models may
be used with malicious intent. The responsibility for downstream
fair systems lies at all steps of the development pipeline.

3 BACKGROUND: THE IMAGENET DATA
COLLECTION PIPELINE

To lay the groundwork for the rest of the paper, we begin by summa-
rizing the data collection and annotation pipeline used in ImageNet
as originally described in [18, 64]. This section can be safely skipped
for readers closely familiar with ImageNet and related computer
vision datasets, but we provide it here for completeness.

The goal of ImageNet is to illustrate English nouns with a large
number of high-resolution carefully curated images as to “foster
more sophisticated and robust models and algorithms to index, re-
trieve, organize and interact with images and multimedia data” [18].
We consider the entire ImageNet dataset consisting of 14,197,122
images illustrating 21,841 concepts rather than just the 1,431,167
images illustrating 1,000 concepts within the ImageNet challenge
which are most commonly used [64]. There are three steps to the
ImageNet data collection pipeline: (1) selecting the concept vocabu-
lary to illustrate, (2) selecting the candidate images to consider for
each concept, and (3) cleaning up the candidates to ensure that the
images in fact correspond to the target concept. We describe each
step and its similarities to the steps in other vision datasets.

(1) Concept vocabulary. When building a visual recognition bench-
mark, the first decision is settling on a concept vocabulary and de-
cide which real-world concepts should be included. WordNet [53]
emerges as a natural answer. It is a language ontology in which
English nouns are grouped into sets of synonyms (synsets) that rep-
resent distinct semantic concepts.? The synsets are then organized
into a hierarchy according to the “is a” relation, such as “coffee
table is a table”. WordNet serves as the concept vocabulary for

4We use the words “concept” and “synset” interchangeably throughout the paper.
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ImageNet, which provides images for grounding the synsets visu-
ally. Similarly, subsets of the WordNet backbone have been used in
datasets like Places [84], Visual Genome [44] and ShapeNet [15].

(2) Candidate images. The natural and easiest-to-access source
of visual data is the Internet. For every concept in WordNet, the
ImageNet creators queried image search engines and aimed to
increase the variety of retrieved images through using multiple
search engines, employing query expansion, and translating the
search terms into multiple languages [18]. Similarly, the vast ma-
jority of vision datasets rely on images collected from the Inter-
net [26, 44, 46, 48, 74, 84], with many collected by first defining the
set of target concepts and then obtaining the associated images
using query expansion: e.g., PASCAL [26], COCO [48], Places [84].

(3) Manual cleanup. As noted in Torralba et al. [74], image search
engines were only about 10% accurate, and thus a manual cleanup
of the candidate images is needed. The cleanup phase of ImageNet
consists of a set of manual annotation tasks deployed on the Ama-
zon Mechanical Turk (AMT) marketplace. The workers are provided
with a single target concept (e.g., Burmese cat), its definition from
WordNet, a link to Wikipedia, and a collection of candidate im-
ages. They are instructed to click on all images that contain the
target concept, irrespective of any occlusion, scene clutter, or the
presence of other concepts. Images that reach a desired level of pos-
itive consensus among workers are added to ImageNet. Similarly,
most computer vision datasets rely on manual annotation although
the details change: e.g., PASCAL was annotated in-house rather
than using crowdsourcing [26], Places relies on both positive and
negative verification [84], COCO favors very detailed annotation
per image [48], and Open Images [46] and Places [84] both use a
computer-assisted annotation approach.

Outline. In the following sections, we consider the fairness issues
that arise as a result of this pipeline, and propose the first steps to
mitigate these concerns.

4 PROBLEM 1: STAGNANT CONCEPT
VOCABULARY

The backbone of WordNet [53] provides a list of synsets for Ima-
geNet to annotate with images. However, born in the past century,
some synsets in WordNet are no longer appropriate in the modern
context. People have reported abusive synsets in the WordNet hier-
archy, including racial and sexual slurs (e.g., synsets like n10585077
and n10138472).% This is especially problematic within the person
subtree of the concept hierarchy (i.e., synset n00007846 and its
descendants). During the construction of ImageNet in 2009, the
research team removed any synset explicitly denoted as “offensive”,
“derogatory,” “pejorative,” or “slur” in its gloss, yet this filtering was
imperfect and still resulted in inclusion of a number of synsets that
are offensive or contain offensive synonyms. Going further, some
synsets may not be inherently offensive but may be inappropriate
for inclusion in a visual recognition dataset. This filtering of the
concept vocabulary is the first problem that needs to be addressed.

SThroughout the paper, we refrain from explicitly listing the offensive concepts asso-
ciated with synsets and instead report only their synset IDs. For a conversion, please
see wordnet.princeton.edu/documentation/wndb5wn.
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4.1 Prior work on annotating offensiveness

Sociolinguistic research has explored the problem of offensiveness,
largely focusing on studying profanity. Ofcom [56] and Sapolsky
et al. [66] rate the offensiveness of words in TV programs. De-
waele [20] demonstrates offensiveness to be dependent on language
proficiency by studying the ratings from English native speakers
and non-native speakers. Beers Fagersten [8] designs two question-
naires to study the role of context in the level of offensiveness of
profanity. In one questionnaire, subjects see a word together with
a short dialogue in which the word appears. They are asked to rate
the word on a 1-10 scale from “not offensive” to “very offensive”.
In another questionnaire, the subjects see only the words without
any context. The findings highlight the importance of context, as
the perceived offensiveness depends heavily on the dialogue and
on the gender and race of the subjects.

4.2 Methodology for filtering the unsafe
synsets

We ask annotators to flag a synset as unsafe when it is either in-
herently “offensive,” e.g., containing profanity or racial or gender
slurs, or “sensitive,” i.e., not inherently offensive but may cause
offense when applied inappropriately, such as the classification of
people based on sexual orientation and religion. In contrast to prior
work, we do not attempt to quantify the “level” of offensiveness of
a concept but rather exclude all potentially inappropriate synsets.
Thus, we do not adopt a 1-5 or 1-10 scale [8, 20] for offensiveness
ratings. Instead, we instruct workers to flag any synset that may
be potentially unsafe, essentially condensing the rating 2-5 or 2-10
on the scale down to a single “unsafe” label.

4.3 Results and impact on ImageNet after
removing the unsafe synsets

We conduct the initial annotation using in-house workers, who are
12 graduate students in the department and represent 4 countries of
origin, male and female genders, and a handful of racial groups. The
instructions are available in Appendix. So far out of 2,832 synsets
within the person subtree, we have identified 1,593 unsafe synsets.
The remaining 1,239 synsets are temporarily deemed safe. Table 1
gives some examples of the annotation results (with the actual
content of offensive synsets obscured). The full list of synset IDs
can be found in Appendix. The unsafe synsets are associated with
600,040 images in ImageNet. Removing them would leave 577,244
images in the safe synsets of the person subtree of ImageNet.

4.4 Limitations of the offensiveness annotation
and future work

First, it is important to note that a “safe” synset only means that
the label itself is not deemed offensive. It does not mean that it is
possible, useful, or ethical to infer such a label from visual cues.
Second, despite the preliminary results we have, offensiveness
is subjective and also constantly evolving, as terms develop new
cultural context. Thus, we are opening up this question to the
community. We are in the process of updating the ImageNet website
to allow users to report additional synsets as unsafe. While the
dataset may be large scale, the number of remaining concepts is
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relatively small (here in the low thousands and further reduced in
the next section), making this approach feasible.

5 PROBLEM 2: NON-VISUAL CONCEPTS

ImageNet attempts to depict each WordNet synset with a set of
images. However, not all synsets can be characterized visually. For
example, is it possible to tell whether a personisaphilanthropist
from images? This issue has been partially addressed in ImageNet’s
annotation pipeline [18] (Sec. 3), where candidate images returned
by search engines were verified by human annotators. It was ob-
served that different synsets need different levels of consensus
among annotators, and a simple adaptive algorithm was devised
to determine the number of agreements required for images from
each synset. Synsets harder to characterize visually would require
more agreements, which led to fewer (or no) verified images.

Despite the adaptive algorithm, we find a considerable number of
the synsets in the person subtree of ImageNet to be non-imageable—
hard to characterize accurately using images. There are several
reasons. One reason for them sneaking into ImageNet could be the
large-scale annotation. Although non-imageable synsets require
stronger consensus and have fewer verified images, they remain in
ImageNet as long as there are some images successfully verified,
which is likely given the large number of images. Another reason
could be “positive bias”: annotators are inclined to answer “yes”
when asked the question “Is there a <concept> in the image?” As a
result, some images with weak visual evidence of the corresponding
synset may be successfully verified.

The final and perhaps most compelling reason for non-imageable
synsets to have been annotated in ImageNet is that search engines
will surface the most distinctive images for a concept, even if the
concept itself is not imageable. For example, identifying whether
someone is Bahamian from a photograph is not always be possible,
but there will be some distinctive images (e.g., pictures of a people
wearing traditional Bahamian costumes), and those will be the ones
returned by the search engine. This issue is amplified by the pres-
ence of stock photography on the web, which contributes to and
perpetuates stereotypes as discussed at length in e.g., [4, 29, 30].
Overall, this results in an undoubtedly biased visual representa-
tion of the categories, and while the issue affects all synsets, it
becomes particularly blatant for categories that are inherently non-
imageable. Thus in an effort to reduce the visual bias, we explicitly
determine the imageability of the synsets in the person subtree
and recommend that the community refrain from using those with
low imageability when training visual recognition models.

5.1 Annotating imageability

Extensive research in psycholinguistics has studied the imageability
(a.k.a. imagery) of words [5, 9, 17, 32, 57, 58], which is defined as
“the ease with which the word arouses imagery” [58]. For annotating
imageability, most prior works follow a simple procedure proposed
by Paivio et al. [58]: The workers see a list of words and rate each
word on a 1-7 scale from “low imagery (1)” to “high imagery (7)”.
For each word, the answers are averaged to establish the final score.

We adopt this definition of imageability and adapt the existing
procedure to annotate the imageability of synsets in the ImageNet
person subtree. However, unlike prior works that use in-house
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Table 1: Examples of synsets in the person subtree annotated as unsafe (offensive), unsafe (sensitive), safe but non-imageable,
and simultaneously safe and imageable. For unsafe (offensive) synsets, we only show their synset IDs. The annotation proce-
dure for distinguishing between unsafe and safe synsets is described in Sec. 4; the procedure for non-imageable vs. imageable
is in Sec. 5. We recommend removing the synsets of the first two columns from ImageNet entirely, and refrain from using
synsets from the third column when training visual recognition models.

Unsafe (offensive)

Unsafe (sensitive)

Safe non-imageable

Safe imageable

than 7-point) scale from “very hard (1)” to “very easy (5)”. The final

n10095420: <sexual slur> n@9702134: Anglo-Saxon n10002257: demographer n10499631: Queen of England
n10114550: <profanity> n10693334: taxi dancer n10061882: epidemiologist n@9842047: basketball player
n10262343: <sexual slur> n10384392: orphan n10431122: piano maker n10147935: bridegroom
n10758337: <gendered slur> n@9890192: camp follower n10098862: folk dancer n@9846755: beekeeper
n10507380: <criminative> n10580030: separatist n10335931: mover n10153594: gymnast
n10744078: <criminative> n@9980805: crossover voter n10449664: policyholder n10539015: ropewalker
n10113869: <obscene> n@9848110: theist n10146104: great-niece n10530150: rider
n10344121: <pejorative> n@9683924: Zen Buddhist n10747119: vegetarian n10732010: trumpeter
workers to annotate imageability, we rely on crowdsourcing. This 5- — M O =
allows us to scale the annotation and obtain ratings from a diverse
pool of workers [21, 63], but also poses challenges in simplifying 4 | | D D |
the instructions and in implementing robust quality control. >
In our crowdsourcing interface (in Appendix), we present the % N
human subject with a list of concepts and ask them to identify how 83 T
easy it is to form a mental image of each. To reduce the cognitive _g
load on the workers, we provide a few examples to better explain 2- . ] !
the task, include the synonyms and the definition of each concept
from WordNet, and change the rating to be a simpler 5-point (rather 8 UL
‘ oé‘

imageability score of a synset is an average of the ratings. . \oﬁ‘g \@\é\ 0@6 f Qg%'&é!?\é\ é\"é\ 5“6 %@(Z?*Q \éi;c?é Q\§ o@@ éé\ 00°Q;z§é,$®§
For quality control, we manually select 20 synsets as gold stan- & Qtz? @%(’ S ,i}\o < Q'}\é\ §® \og e DN @‘& e

dard questions (in Appendix); half of them are obviously imageable € < A P = b @§ -

(should be rated 5), and the other half are obviously non-imageable synset

(should be rated 1). They are used to evaluate the quality of workers.
If a worker has a high error on the gold standard questions, we
remove all the ratings from this worker. We also devise a heuristic
algorithm to determine the number of ratings to collect for each
synset. Please refer to Appendix for details.

Figure 1: The distribution of raw imageability ratings for
selected synsets. irreligionist and nurse have more well-
accepted imageability than host and waltzer.

1
5.2 Results and impact on ImageNet after 100 E
removing the non-imageable synsets 75- !
We annotate the imageability of 1,239 synsets in the person subtree <
which have been marked as safe synsets in the previous task. Fig. 1 g 50-
shows the imageability ratings for a selected set of synsets. Synsets L)
suchas irreligionist and nurse have well-accepted imageability 25-
(irreligionist is deemed to be decidedly non-imageable, nurse
is deemed to be clearly imageable). In contrast, it is much harder to 0-

reach a consensus on the imageability of host and waltzer. Fig. 2
shows the distribution of the final imageability scores for all of the
1,239 safe synsets. The median is 2.60; only 158 synsets have im-
ageability greater than or equal to 4. Table 1 shows some examples
of non-imageable synsets. The complete list is in Appendix.

After manually examining the results, we suggest that all synsets
in the person subtree with imageability less than 4 be considered
“non-imageable” and not be used for training models. There would
be 443,547 images and 1,081 synsets flagged, including hobbyist
(1.20), job candidate (2.64), and bookworm (3.77); there would be

25 30 35 40 45 50
Imageability

1.0 15 20

Figure 2: The distribution of the final imageability scores for
all of the 1,239 safe synsets. The median is 2.60.

133,697 images and 158 synsets remaining, including rock star
(4.86), skier (4.50), and cashier (4.20). More examples are in Ta-
ble 1. Future researchers are free to adjust this threshold as needed.
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5.3 Limitations of the imageability annotation

By manually examining a subset of the synsets, we find the im-
ageability results to be reasonable overall, but we also observe a
few interesting exceptions. Some synsets with high imageability
are actually hard to characterize visually, e.g., daughter (5.0) and
sister (4.6); they should not have any additional visual cues be-
sides being female. Their high imageability scores could be a result
of the mismatch between “the ease to arouse imagery” and “the
ease to characterize using images”. Daughter and sister are hard
to characterize visually, but they easily arouse imagery if the an-
notator has a daughter or a sister. The definition based on ease
of characterization with visual cues is more relevant to computer
vision datasets, but we adopt the former definition as a surrogate
since it is well-accepted in the literature, and there are mature
procedures for annotating it using human subjects.

Another interesting observation is that workers tend to assign
low imageability to unfamiliar words. For example, cotter (a peas-
ant in the Scottish Highlands) is scored 1.70 while the generic
peasant is scored 3.36. Prior works have demonstrated a strong
correlation between familiarity and imageability [9, 32, 79], which
explains the low imageability of the less frequent cotter. However,
low familiarity with a concept is anyway an important factor to
consider in crowdsourcing dataset annotation, as unfamiliar terms
are more likely to be misclassified by workers. This suggests that
removing synsets identified as less imageable by our metric may
also have the additional benefit of yielding a more accurate dataset.®

When analyzing Table 1, we further wonder whether even the
synsets that are both safe and imageable should remain in ImageNet.
For example, is the Queen of England an acceptable category for
visual recognition? Would basketball player be better replaced
with person interacting with a basketball and captured
as a human-object-interaction annotation? Would bridegroom be
rife with cultural assumptions and biases? As always, we urge
downstream users to exercise caution when training on the dataset.

And finally, we observe that even the remaining imageable
synsets may contain biased depictions as a result of search engine
artifacts. For example, the synset mother (imageability score 4.3)
primarily contains women holding children; similarly, the synset
beekeeper (imageability score 4.6) predominantly contains pic-
tures of people with bees. Even though one remains a mother when
not around children, or a beekeeper when not around bees, those
images would rarely be surfaced by a search engine (and, to be fair,
would be difficult for workers to classify even if they had been).

Despite these concerns about the imageability annotations and
about the lingering search engine bias, one thing that is clear is that
at least the non-imageable synsets are problematic. Our annotation
of imageability is not perfect and not the final solution, but an
important step toward a more reasonable distribution of synsets in
the ImageNet person subtree.

SFurther, unfamiliar terms are also likely to be less common and thus less relevant to
the downstream computer vision task, making their inclusion in the dataset arguably
less important.

Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, and Olga Russakovsky

5.4 Relationship between imageability and
visual recognition models

To conclude the discussion of imageability, we ask one final ques-
tion: What is the relationship between the imageability of synset
and the accuracy of a corresponding visual recognition model?
Concretely, are the imageable synsets actually easier to recognize
because they correspond to visual concepts? Or, on the flip side,
is it perhaps always the case that non-imageable synsets contain
an overly-simplified stereotyped representation of the concept and
thus are easy for models to classify? If so, this would present ad-
ditional evidence about the dangers of including such categories
in a dataset since their depicted stereotypes are easily learned and
perpetuated by the models.

Computer vision experiment setup. To evaluate this, we run a
simple experiment to study the relationship between the image-
ability of a synset and the ability of a modern deep learning-based
image classifier to recognize it. We pick a subset of 143 synsets
from the 1,239 safe synsets so that each synset has at least 1,000
images. The selected synsets are leaf nodes in the WordNet hier-
archy, meaning that they cannot be ancestors of each other and
they represent disjoint concepts. We randomly sample 1,000 images
from each synset, 700 for training, 100 for validation, and 200 for
testing. We use a standard ResNet34 network [35] to classify the
images as belonging to one of the 143 synsets. During training, the
images are randomly cropped and resized to 224 X 224; we also ap-
ply random horizontal flips. During validation and testing, we take
224 X 224 crops at the center. The network is trained from scratch
for 90 epochs, which takes two days using a single GeForce GTX
1080 GPU. We minimize the cross-entropy loss using stochastic
gradient descent; the learning rate starts at 0.05 and decreases by
a factor of 10 every 30 epochs. We also use a batch size of 256, a
momentum of 0.9, and a weight decay of 0.001.

Computer vision experiment results. The network has an over-
all testing accuracy of 55.9%. We are more interested in the break-
down accuracies for each synset and how they correlate with the
imageability. The network’s testing accuracy on the easily image-
able synsets (score > 4) is 63.8%, which is higher than the accuracy
of 53.0% on the synsets deemed non-imageable (score < 4). Overall
there is a positive correlation between imageability and accuracy
(Pearson correlation coefficient r = 0.23 with a p-value of 0.0048)
as depicted in Fig. 3 (left). To better understand this, we analyze
four representative examples, also depicted in Fig. 3 (right), which

highlight the different aspects at play here:

o Imageable, easy to classify: A category such as black belt is
both deemed imageable (score of 4.4) and is easy to classify
(accuracy of 92%). The retrieved images contain visually
similar results that are easy to learn by the model and easy
to distinguish from other people categories.

o Non-imageable, hard to classify: On the other end of the spec-
trum, conversational partner is deemed non-imageable
(score of only 1.8) as it doesn’t evoke a prototypical visual
example. The images retrieved from search engines contain
groups of people engaged in conversations, so the annotators
verifying these images in the ImageNet pipeline correctly la-
beled these images as containing a conversation partner.
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However, the resulting set of images is too diverse, and the
visual cues are too weak to be learned by the model (accuracy
only 20.5%) .

o Imageable, hard to classify:Bridegroom (synset ID n10147935)
is an example of a category with a mismatch between image-
ability and accuracy. It is annotated as imageable (perfect
score of 5.0), because it easily arouses imagery (albeit highly
culturally-biased imagery). The retrieved search result im-
ages are as expected culturally biased, but correctly verified
for inclusion in ImageNet. However, the accuracy of the clas-
sifier in this case is low (only 40%) partially because of the
visual diversity of the composition of images but primarily
because of confusion with a closely related synset n10148035,
which also corresponds to the term bridegroom but with
a slightly different definition (n10147935: a man who has
recently been married, versus n10148035: a man participant
in his own marriage ceremony). This highlights the fact that
classification accuracy is not a perfect proxy for visual dis-
tinctiveness, as it depends not only on the intra-synset visual
cues but also on the inter-synset variability.

o Non-imageable, easy to classify: Finally, Ancient (person who
lived in ancient times) is deemed non-imageable (score of
2.5), because the imageability annotators have never seen
such a person, so it is difficult to properly imagine what
they might look like. However, the image search results are
highly biased to ancient artifacts, including images that are
not even people. The annotators agreed that these images
correspond to the word ancient, at times making mistakes
in failing to read the definition of the synset and annotating
ancient artifacts as well. In the resulting set of images, visual
classifiers would have no difficulty distinguishing this set of
images with distinctive color patterns and unusual objects
from the other people categories (accuracy 89%).

The findings highlight the intricacies of image search engine
results, of the ImageNet annotation pipeline, of the imageability
annotations, and of evaluating visual distinctiveness using visual
classifiers. A deeper analysis is needed to understand the level of
impact of each factor, and we leave that to future research. Until
then, we suggest that the community refrain from using synsets
deemed non-imageable when training visual recognition models,
and we will update ImageNet to highlight that.

6 PROBLEM 3: LACK OF IMAGE DIVERSITY

So far we have considered two problems: the inclusion of potentially
offensive concepts (which we will remove) and the illustration of
non-imageable concepts with images (which we will clearly identify
in the dataset). The last problem we consider is insufficient repre-
sentation among ImageNet images. ImageNet consists of Internet
images collected by querying image search engines [18], which
have been demonstrated to retrieve biased results in terms of race
and gender [14, 41, 55]. Taking gender as an example, Kay et al. [41]
find that when using occupations (e.g., banker) as keywords, the
image search results exhibit exaggerated gender ratios compared to
the real-world ratios. In addition, bias can also be introduced during
the manual cleanup phase when constructing ImageNet, as people
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are inclined to give positive responses when the given example is
consistent with stereotypes [41].

ImageNet has taken measures to diversify the images, such as
keywords expansion, searching in multiple languages, and combin-
ing multiple search engines. Filtering out non-imageable synsets
also mitigates the issue: with stronger visual evidence, the workers
may be less prone to stereotypes. Despite these efforts, the bias in
protected attributes remains in many synsets in the person subtree.
It is necessary to study how this type of bias affects models trained
for downstream vision tasks, which would not be possible without
high-quality annotation of image-level demographics.

6.1 Prior work on annotating demographics

Image-level annotation of demographics is valuable for research in
machine learning fairness. However, it is difficult to come up with
a categorization of demographics, especially for gender and race.
Buolamwini and Gebru [10] adopt a binary gender classification and
the Fitzpatrick skin type classification system [28]. Zhao et al. [83]
and Kay et al. [41] also adopt a binary gender classification. Besides
Male and Female, Burns et al. [11] add another category Neutral to
include people falling out of the binary gender classification. Ryu
et al. [65] do not explicitly name the gender and race categories,
but they have discrete categories nevertheless: five race categories
(S1, S2, S3, S4, Other) and three gender categories (G1, G2, Other).

6.2 Methodology for annotating demographics

Annotated attributes. To evaluate the demographics within Im-
ageNet and propose a more representative subset of images, we
annotate a set of protected attributes on images in the person
subtree. We consider U.S. anti-discrimination laws, which name
race, color, national origin, religion, sex, gender, sexual orientation,
disability, age, military history, and family status as protected at-
tributes [1-3]. Of these, the only imageable attributes are color,
gender, and age, so we proceed to annotate these.

(1) Gender. We annotate perceived gender rather than gender
identity, as someone’s gender identity may differ from their
gender expression and thus not be visually prominent. It
is debatable what a proper categorization of gender is and
whether gender can be categorized at all. Rather than ad-
dressing the full complexity of this question, we follow prior
work [10, 11, 41, 65, 83] and use a set of discrete categories:
Male, Female, and Unsure, in which Unsure is used to both
handle ambiguous visual cues as well as to include people
with diverse gender expression.
Skin color. We annotate skin color according to an established
dermatological metric—individual typology angle (ITA) [16].
It divides the spectrum of skin color into 6 groups, which is
too fine-grained for our purpose. Instead, we combine the
groups into Light, Medium, and Dark. Melanin index [72] is
another metric for skin color, which is used by the Fitzpatrick
skin type classification system. However, we opt to use the
more modern ITA system. Similar to prior work [10], skin
color is used as a surrogate for race membership because it
is more visually salient.
(3) Age. We annotate perceived age groups according to discrim-
ination laws, which led to the categories of Child or Minor
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Figure 3: (Left) The computer vision model’s classification accuracy vs. synset imageability for 143 safe synsets which contain
at least 1000 images. More imageable synsets are not necessarily easier for models to recognize, with Pearson correlation
coefficient r = 0.23. (Right) Example images from synsets that are non-imageable and hard to classify (conversational partner);
non-imageable but easy to classify (ancient); imageable but hard to classify (groom); imageable and easy to classify (black belt).
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Figure 4: The distribution of demographic categories across the 139 safe and imageable synsets which contain at least 100
images. The size of the different color areas reveal the underrepresentation of certain groups.

(under 18 years old), Adult (18-40), Over 40 Adult (40-65), and
Over 65 Adult (65+).

Annotation instructions. We use crowdsourcing to annotate the
attributes on Amazon Mechanical Turk. We downloaded all Ima-
geNet images from safe synsets in the person subtree whose im-
ageability score is 4.0 or higher. An image and the corresponding
synset form a task for the workers, and consists of two parts. First,
the worker sees the image, the synset (including all words in it), and
its definition in WordNet [53] and is asked to identify all persons in
the image who look like members of the synset. If at least one per-
son is identified, the worker proceeds to annotate their gender, skin
color, and age. The labels are image-level, rather than specific to
individual persons. There can be multiple labels for each attribute.
For example, if the worker identified two persons in the first phase,
they may check up to two labels when annotating the gender. The
user interface is in Appendix.

The task is less well-defined when multiple persons are in the
image. It can be difficult to tell which person the synset refers to,
or whether the person exists in the image at all. We have tried to
use automatic methods (e.g., face detectors) to detect people be-
fore manually annotating their demographics. However, the face
detector is a trained computer vision model and thus also subject
to dataset bias. If the face detector is only good at detecting people

from a particular group, the annotation we get will not be repre-
sentative of the demographic distribution in ImageNet. Therefore,
we opt to let workers specify the persons they annotate explicitly.

Quality control. For quality control, we have pre-annotated a set
of gold-standard questions (in Appendix) for measuring the quality
of workers. The worker’s accuracy on a gold standard question i is
measured by intersection-over-union (IOU):

|[A; NGl
I0U; = —— 1
" A VG| M

where A; is the set of categories annotated by the worker, and G;
is the set of ground truth categories. For example, for an image
containing a black female adult and a white female child, G; =
{Dark, Light, Female, Adult, Child}. If a worker mistakenly take

the child to be an adult and annotates A; = {Dark, Light, Female, Adult},

the annotation quality is computed as IOU; = 4/5 = 0.8. We ex-
clude all responses from workers whose average IOU is less than
0.5. After removing high-error workers, we aggregate the annotated
categories of the same image from independent workers. Each im-
age is annotated by at least two workers. For any specific category
(e.g. Adult), we require consensus from max{2, [n;/2]} workers,
where n; is the number of workers for this image. For any image,
we keep collecting annotations from independent workers until
the consensus is reached. In the annotation results, the consensus
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is reached with only two workers for 70.8% of the images; and 4
workers are enough for 97.3% images.

6.3 Results of the demographic analysis

We annotated demographics on the 139 synsets that are consid-
ered both safe (Sec. 4) and imageable (Sec. 5) and that contain at
least 100 images. We annotated 100 randomly sampled images from
each synset, summing up to 13,900 images. Due to the presence
of multiple people in an image, each image may have more than
one category for each attribute. We ended up with 43,897 attribute
categories annotated (14,471 annotations for gender; 14,828 annota-
tions for skin; and 14,598 annotations for age). This was the result
of obtaining and consolidating 109,545 worker judgments.

Fig. 4 shows the distribution of categories for different synsets,
which mirrors real-world biases. For gender, there are both male-
dominated synsets and female-dominated synsets; but the overall
pattern across all synsets reveals underrepresentation of female, as
the blue area in Fig. 4 (Left) is significantly larger than the green
area. Relatively few images are annotated with the Unsure category
except a few interesting outliers: birth (58.2% images labeled Un-
sure) and scuba diver (16.5%). The gender cues in these synsets
obscured because birth contain images of newborn babies, and
scuba diver contains people wearing diving suits and helmets.

The figure for skin color (Fig. 4 Middle) also presents a biased
distribution, highlighting the underrepresentation of people with
dark skin. The average percentage of the Dark category across all
synsets is only 6.2%, and the synsets with significant portion of Dark
align with stereotypes: rapper (66.4% images labeled Dark) and
basketball player (34.5%). An exception is first lady (51.9%),
as most images in this synset are photos of Michelle Obama, the First
Lady of the United States when ImageNet was being constructed.

6.4 Limitations of demographic annotation

Given the demographic analysis, it is desired to have a constructive
solution to improve the diversity in ImageNet images. Publicly
releasing the collected attribute annotations would be a natural
next step. This would allow the research community to train and
benchmark machine learning algorithms on different demographic
subsets of ImageNet, furthering the work on machine fairness.
However, we have to consider that the potential mistakes in
demographics annotations are harmful not just for the downstream
visual recognition models (as all annotation mistakes are) but to
the people depicted in the photos. Mis-annotating gender, skin
color, or age can all cause significant distress to the photographed
subject. Gender identity and gender expression may not be aligned
(similarly for skin color or age), and thus some annotations may be
incorrect despite our best quality control efforts. So releasing the
image-level annotations may not be appropriate in this context.

6.5 Methodology for increasing image diversity

We aim for an alternative constructive solution, one that strikes a
balance between advancing the community’s efforts and prevent-
ing additional harm to the people in the photos. One option we
considered is internally using the demographics for targeted data
collection, where we would find and annotate additional images
to re-balance each synset. However, with the known issues of bias
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in search engine results [55] and the care already taken by the
ImageNet team to diversify the images for each synset (Sec. 3), this
may not be the most fruitful route.

Instead, we propose to release a Web interface that automatically
re-balances the image distribution within each synset, aiming for a
target distribution of a single attribute (e.g., gender) by removing the
images of the overrepresented categories. There are two questions
to consider: first, what is an appropriate target distribution, and
second, what are the privacy implications of such balancing.

First, identifying the appropriate target distribution is challeng-
ing and we leave that to the end users of the database. For example,
for some applications it might make sense to produce a uniform
gender distribution, for example, if the goal is to train an activ-
ity recognition model with approximately equal error rates across
genders. In other cases, the goal might be to re-balance the data
to better mimic the real-world distribution of gender, race or age
in the category (as recorded by census data for example) instead
of using the distribution exaggerated by search engines. Note that
any type of balancing is only feasible on synsets with sufficient
representation within each attribute category. For example, the
synset baby naturally does not contain a balanced age distribution.
Thus, we allow the user to request a subset of the categories to be
balanced; for example, the user can impose equal representation of
the three adult categories while eliminating the Child category.

Second, with regard to privacy, there is a concern that the user
may be able to use this interface to infer the demographics of the
removed images. For example, it would be possible to visually an-
alyze a synset, note that the majority of people within the synset
appear to be female, and thus infer that any image removed during
the gender-balancing process are annotated as female. To mitigate
this concern, we always only include 90% of images from the mi-
nority category in the balanced images and discard the other 10%.
Further, we only return a balanced distribution of images if at least
2 attribute categories are requested (e.g., the user cannot request a
female-only gender distribution) and if there are at least 10 images
within each requested category.

While we only balance the distribution of a single attribute (e.g.,
gender), it is desirable to balance across multiple attributes. How-
ever, it will result in too few images per synset after re-balancing.
For example, if we attempt to balance both skin color and gender,
we will end up with very few images. This creates potential pri-
vacy concerns with regard to being able to infer the demographic
information of the people in the individual photos.

6.6 Results and estimated impact of the
demographic balancing on ImageNet

Fig. 5 provides one example of the effect of our proposed demo-
graphic balancing procedure on the synset programmer. Based on
our analysis and statistics so far, and under the restrictions de-
scribed in Sec. 6.5, we could offer such a balancing on 131 synsets
for gender (ignoring the highly skewed Unsure category and pos-
ing uniform distribution among Male and Female), 117 synsets for
skin color (uniform distribution for the three categories), and 81
synsets for age (removing the Child category and posing a uniform
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Figure 5: The distribution of images in the ImageNet synset programmer before and after balancing to a uniform distribution.

distribution for the other three age categories). Users can create cus-
tomized balancing results for each synset by choosing the attribute
categories to balance on.

6.7 Limitations of the balancing solution

The downside of this solution is that balancing the dataset instead
of releasing the image-level attribute annotations makes it impos-
sible to evaluate the error rates of machine learning algorithms
on demographic subsets of the data, as is common in the litera-
ture [10, 36, 82, 83]. Nevertheless, this strategy is a better alterna-
tive than using the existing ImageNet person subtree (strong bias),
releasing the image-level annotations (ethically problematic), or
collecting additional images (technically impractical).

7 DISCUSSION

We took the first steps towards filtering and balancing the distribu-
tion of the person subtree in the ImageNet hierarchy. The task was
daunting, as with each further step of annotation and exploration,
we discovered deeper issues that remain unaddressed. However,
we feel that this is a significant leap forward from the current state
of ImageNet. We demonstrate that at most 158 out of the 2,832
existing synsets should remain in the person subtree, as others are
inappropriate categories for visual recognition and should be fil-
tered out. Of the remaining synsets, 139 have sufficient data (at least
100 images) to warrant further exploration. On those, we provide a
detailed analysis of the gender, skin color and age distribution of
the corresponding images, and recommend procedures for better
balancing this distribution.

While 139 categories may seem small in comparison to the cur-
rent set, it is nevertheless sufficiently large-scale to remain interest-
ing to the computer vision community: e.g., the PASCAL dataset
has only 20 classes [26], CelebA has 40 attributes [50], COCO has

80 object categories [48], the fine-grained CUB-200 dataset has
200 bird species [77]. Further, note that the most commonly used
subset of ImageNet is the set of 1,000 categories in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) [64], which
remains unaffected by our filtering: the three ILSVRC synsets of the
person subtree are bridegroom (n10148035; safe, imageability 5.0),
ballplayer (n09835506; safe, imageability 4.6) and scuba diver
(n09835506; safe, imageability 5.0).

There is still much remaining to be done outside the person sub-
tree, as incidental people occur in photographs in other ImageNet
synsets as well, e.g., in synsets of pets, household objects, or sports.
It is likely that the density and scope of the problem is smaller in
other subtrees than within this one, so the filtering process should
be simpler and more efficient. We are releasing our annotation
interfaces to allow the community to continue this work.
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A APPENDIX

We include the annotation interfaces and additional results as
promised in the main paper. We organize the the appendix ac-
cording to the sections of the main paper for ease of reference.

A.1 PROBLEM 1: STAGNANT CONCEPT
VOCABULARY

The instructions used in-house to annotate the offensiveness of
synsets are shown in Fig. A. We attach the synset IDs of the “unsafe”
and “safe” synsets we have annotated. As before, we avoid explicitly
naming the synsets, but the conversion from synset IDs to names
can be found at wordnet.princeton.edu/documentation/wndb5wn.

Offensive synsets (1,593 in total).
image-net.org/filtering-and-balancing/unsafe_synsets.txt

Safe synsets (1,239 in total).
image-net.org/filtering-and-balancing/safe_synsets.txt

A.2 PROBLEM 2: NON-VISUAL CONCEPTS

Instructions. Fig. C shows the user interface for crowdsourcing
imageability scores.

Quality control. Table A lists the gold standard questions for
quality control; half of them are obviously imageable (should be
rated 5), and the other half are obviously non-imageable (should
be rated 1). For a worker who answered a set of gold standard
questions Q, we calculate the root mean square error of the worker
as:

Error =

@

where ¥; is the rating from the worker and x; is the ground truth im-
ageability for question i (x; € {1,2,3,4,5},x; € {1,5}). If Error >
2.0, we exclude all ratings of the worker.

Even after removing the answers from high-error workers, the
raw ratings can still be noisy, which is partially attributed to the
intrinsic subjectiveness in the imageability of synsets. We average
multiple workers’ ratings for each synset to compute a stable es-
timate of the imageability. However, it is tricky to determine the
number of ratings to collect for a synset [68]; more ratings lead to
a more stable estimate but cost more. Further, the optimal num-
ber of ratings may be synset-dependent; more ambiguous synsets
need a larger number of ratings. We devise a heuristic algorithm to
determine the number of ratings dynamically for each synset.

Intuitively, the algorithm estimates a Gaussian distribution us-
ing the existing ratings, and terminates when three consecutive
new ratings fall into a high-probability region of the Gaussian. It
automatically adapts to ambiguous synsets by collecting more rat-
ings. Concretely, abusing notation from above (for simplicity of
exposition), let X = [x7, X2, X3, . . . , X ] Now be the sequence of rat-
ings for a single synset from workers 1,2, 3, ... m. After collecting
m > 4 ratings, we partition the sequence into the last 3 ratings
inew = [fm_z,fm_l,fm] and the rest iold = [fl,fz, . ,fm_g].
We compute the mean and standard deviation of X,;4 as 44 and
0014, and we check whether the following holds:

VX € Xnew: Hold = Oold < X < Hold + Told ®3)
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Table A: Gold standard questions for quality control in im-
ageability annotation.

Synset ID Synset Ground truth imageability
n10101634 football player, footballer 5
n10605253 skier 5
n@9834885 ballet master 5
n10366966 nurse 5
n10701644 tennis pro, professional tennis player 5
n@9874725 bride 5
n10772092 weatherman, weather forecaster 5
n10536416 rock star 5
n09624168 male, male person 5
n10087434 fighter pilot 5
n10217208 irreligionist 1
n10743356 Utopian 1
n@9848110 theist 1
n@9755788 abecedarian 1
n09794668 animist 1
n@9778927 agnostic 1
n10355142 neutral 1
n10344774 namer 1
n09789898 analogist 1
n10000787 delegate 1

If it holds, the imageability annotations are approximately converg-
ing and we compute the final imageability score as the average of
all ratings. Otherwise we collect more ratings and check again.

Fig. B shows the number of ratings collected for the synsets. The
average number is 8.8, and 72% synsets need no more than 10 ratings.
The file image-net.org/filtering-and-balancing/imageability_scores.
txt includes the complete list of imageability scores for the 1,239
safe synsets in the person subtree.

A.3 PROBLEM 3: LACK OF IMAGE DIVERSITY

The user interface used to annotate the protected attributes is shown
in Fig. D.

REFERENCES

[1] U.S.House. 101st Congress, 2nd Session. 101 H.R. 2273. 1990. Americans with
Disabilities Act of 1990. Washington: Government Printing Office.

[2] U.S. House. 88th Congress, 1st Session. 88 H.R. 6060. 1963. Equal Pay Act of 1963.
Washington: Government Printing Office.

[3] U.S. House. 98th Congress, 2nd Session. 98 H.R. 5490. 1984. Civil Rights Act of
1984. Washington: Government Printing Office.

[4] Giorgia Aiello and Anna Woodhouse. 2016. When corporations come to define the
visual politics of gender. Journal of Language and Politics 15, 3 (2016), 351-366.

[5] Jeanette Altarriba, Lisa M Bauer, and Claudia Benvenuto. 1999. Concreteness,

context availability, and imageability ratings and word associations for abstract,

concrete, and emotion words. Behavior Research Methods, Instruments, & Com-

puters 31, 4 (1999), 578-602.

Solon Barocas, Elizabeth Bradley, Vasant Honavar, and Foster Provost. 2017. Big

data, data science, and civil rights. arXiv preprint arXiv:1706.03102 (2017).

[7] Solon Barocas and Andrew D Selbst. 2016. Big data’s disparate impact. Calif. L.
Rev. 104 (2016), 671.

[8] Kristy Beers Fagersten. 2007. A sociolinguistic analysis of swear word offensiveness.
Universitét des Saarlands.

[9] Helen Bird, Sue Franklin, and David Howard. 2001. Age of acquisition and
imageability ratings for a large set of words, including verbs and function words.
Behavior Research Methods, Instruments, & Computers 33, 1 (2001), 73-79.

[10] Joy Buolamwini and Timnit Gebru. 2018. Gender shades: Intersectional accu-
racy disparities in commercial gender classification. In Conference on fairness,
accountability and transparency. 77-91.

[11] Kaylee Burns, Lisa Anne Hendricks, Kate Saenko, Trevor Darrell, and Anna
Rohrbach. 2018. Women also snowboard: Overcoming bias in captioning models.
In European Conference on Computer Vision.

—_
&


wordnet.princeton.edu/documentation/wndb5wn
image-net.org/filtering-and-balancing/unsafe_synsets.txt
image-net.org/filtering-and-balancing/safe_synsets.txt
image-net.org/filtering-and-balancing/imageability_scores.txt
image-net.org/filtering-and-balancing/imageability_scores.txt

FAT™ 20, January 27-30, 2020, Barcelona, Spain

Instructions:

We are aiming to label the synsets in the person subtree of ImageNet as “safe” (label of 2) or
“sensitive” (label of 1), “offensive” (label of 0). Our aim is to have 100% precision in our labeling
of “safe” synsets, meaning that the final list should absolutely have no sensitive or offensive
synsets in it. So if you are on the fence about a synset, err on the side of caution and label
it sensitive or offensive.

Sensitive synsets (label of 1) are not inherently offensive, but can cause offense if
applied inappropriately.

Examples of a sensitive synset:

e classification of people based on culture, race, ethnicity, nationality, E.g. “Russian”,
“Asian”

e classification based on politics or religion: “Republican”, “Christian”

e classification based on sex, gender, or sexual orientation: “Woman”

e synsets with negative connotations (“thief’, “underling”, “plutocrat”),
it if the label is applied to you.

“Transgender”
.e. you wouldn't like

Offensive synsets (label of 0) are inherently offensive.

Examples of an offensive synset:

e racial slurs of any sort
e profanity

In general, if you can think of any reason why it would be bad to include a synset, mark it as
sensitive or offensive.

Imageability: here you do NOT need to worry about whether a label is “imageable”, i.e. whether
it is possible to predict the label from just pixels. Just assume all labels are imageable.

Please make sure to read the definition of a synset, because the meaning may not be the
one you assume. E.g. “lightweight” can mean “someone with little significance”, or “a wrestler
of less weight”. The former is unsafe but the latter is safe.

For your given sheet, you should see three columns corresponding to a synset id, the word, and
the glossary and definition of the word, respectively. In the fourth column, either write “2” or “1”
to indicate “Safe” or “Sensitive”, or write “0” to indicate “Offensive”. The labels column is
initialized to all 0’s.

Example of safe synset:

Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, and Olga Russakovsky

someone who
lectures
professionally

n10252547 lecturer

n10369317 oboist a musician who plays the oboe

Example of sensitive synset:

a native or inhabitant of the

n09727440 Filipino Philippines
leader of a religious
n10519494 religious leader order

Example of offensive synset:

n10401204 parricide someone who kills his or her parent

n10722965 traitor, treasonist someone who betrays his country by committing treason

Figure A: The instructions for annotating the offensiveness of synsets. The annotation was done in-house rather than using

crowdsourcing, thus the user interface is kept simple.
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Figure B: The distribution of the number of raw imageabil-
ity ratings collected for each synset. On average, the final
imageability score of a synset is an average of 8.8 ratings.
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Given a word. How easy is it to form an image (in your mind) of the word?

Examples of "very easy" (select 5):

e police woman
o ballet dancer
e swimmer

Examples of "very hard" (select 1):
o liar

o perfectionist
o atheist

Some words do not fall into these two categories. For these words, select a score between 2 and 4 using your best judgement.

Examples:

« professor (Some features may be shared among many professors, but different professors can also look very different.)

In the rare case that you cannot understand a given word, please Google it.

sorcerer, magician, wizard, necromancer, thaumaturge, thaumaturgist: one who practices magic or sorcery

O 1-veryhard O 2-somewhat hard
nonparticipant: a person who does not participate

QO 1-veryhard O 2-somewhat hard

O 3 - medium

O 3-medium

O 4 - somewhat easy

QO 4 - somewhat easy

O 5-very easy

O 5-very easy

Figure C: User interface for crowdsourcing the imageability annotation.
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More Information about the Targets

Target: ex-president

Definition: a former president

Instructions

1. Click on the faces of all targets in the image. Include only the people who
look like the targets. Do not click on people without any visual evidence.
Ignore the people that are too small or in the background

2. Click "CONFIRM" to enter the gender, skin, and age information of the
targets. When there is no target in the image, click "CONFIRM NO TARGET".

8. There are 10 questions per HIT.
Keyboard Shortcuts

. « and — for navigating between questions
. ENTER or SPACE for confirm
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CONFIRM NO TARGET
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Instructions

« For the targets you pick, enter their gender, skin, and age information
* For multiple targets, check all answers that apply
* For each answer, we provide examples for your reference

* When annotating skin, try not to be affected by the lighting condition
Keyboard Shortcuts

¢ « and — for "PREVIOUS" and "NEXT"

* Number 12, 3, 4 for checking the answers
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Figure D: User interface for crowdsourcing the demographics annotation.
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