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Abstract

We explore the concept of projections of syzygies and prove two new technical results;
we firstly give a precise characterization of syzygy schemes in terms of their projections,
secondly, we prove a converse to Aprodu’s Projection Theorem. Applying these results,
we prove a conjecture of [FK2] stating that extremal syzygies of general curves of non-
maximal gonality embedded by a linear system of sufficiently high degree arise from
scrolls. Lastly, we prove Green’s Conjecture for general covers of elliptic curves (of
arbitrary degree) as well as proving a new result for curves of even genus and maximal
gonality.

0. Introduction

Let X be a projective variety and L a line bundle, assumed to be very ample for simplicity. One
of the most fundamental objects in algebraic geometry is the section ring

ΓX(L) :=
⊕
n∈Z

H0(X,L⊗n).

In order to understand the structure of ΓX(L), one treats it as a Sym
(
H0(X,L)

)
module and

takes the minimal free resolution. The syzygy spaces Ki,j(X,L) are then the graded pieces which
appear in the resolution. Their dimensions give important invariants bi,j(X,L) of the polarized
variety (X,L), known as Betti numbers.

Our understanding of the syzygies of (X,L) is highly limited. At present, our knowledge is
most complete in the case where dimX = 1, i.e. X is an algebraic curve C. Most of the known
results are vanishing theorems, providing conditions for the vanishing of Betti numbers bi,j(C,L).
Some highlights include Voisin’s theorem on Generic Green’s Conjecture, which concerns the case
L = ωC , [V1], [V2], as well as the recent proofs of the Gonality Conjecture [EL] and the Generic
Secant Conjecture [FK1], which are concerned with the case of more general line bundles L.
Whilst the Gonality Conjecture is known for arbitrary curves, the full statement for Green’s
Conjecture and the Secant Conjecture are still very much open in the non-generic case.

More recently, work has been done on trying to go beyond vanishing theorems and describe
certain values of bi,j(C,L) in terms of geometry. For example, the first linear Betti number
b1,1(C,L) describes the number of quadrics required to generate the ideal of IC . It is not unrea-
sonable to hope that other Betti numbers likewise carry geometric information. In [FK2] and [K1]
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attention was focused on the last of the nonzero, linear Betti numbers bg−k,1(C,ωC) for canon-
ical curves of non-maximal gonality k. It was found that this extremal Betti numbers counts a
classically studied invariant, namely the number of minimal pencils, i.e. maps f : C → P1 of
degree equal to the gonality k (up to genericity hypotheses).

The number of minimal pencils on a general k-gonal curve was first showed to be finite
by Segre, [S]. More recently Arbarello–Cornalba and Coppens have obtained several important
results on the loci of curves carrying multiple minimal pencils, see [AC], [C1], [C2]. In particular,
a general curve of nonmaximal gonality has a unique minimal pencil and in this case Schreyer has
conjectured bg−k,1(C,ωC) = g − k, which both implies Green’s Conjecture bg−k+1,1(C,ωC) = 0
and gives a more geometric interpretation for it, as we explain below.

One of the goals of this paper is to prove a result interpolating and extending both the
vanishing theorem of [EL] and the verification of Schreyer’s conjecture in [FK2].

Theorem 0.1. Let C be a general k-gonal curve C of genus g > 2k − 1 for k > 4. Let L be an
arbitrary line bundle on C of degree deg(L) > 2g + k. Then

br(L)−k,1(C,L) = r(L)− k.

In the result above, r(L) = h0(L)− 1. This result was conjectured in [FK2, Conjecture 0.5].

To explain the importance of Theorem 0.1 and illustrate the link to [EL], we first reinterpret
the statement geometrically. One of the only classes of varieties for which it is possible to deter-
mine the minimal free resolution are determinantal varieties described by the degeneracy locus
of a morphism of vector bundles V1 → V2, see [L]. One strategy to study syzygies of a curve C is
to embed it into a determinantal variety Z and then restrict the determinantal syzygies to C.

This strategy was employed in Voisin’s proof of Green’s conjecture for an even genus g = 2k
curves C lying on a K3 surface X. In this case the determinantal variety is a Grassmannian
G(k + 2, 2) produced out of a rank two Lazarsfeld–Mukai bundle on X (itself resulting from a
minimal pencil on C). Voisin then proves that the length of the linear strand of the resolution of
C is equal to that of G(k + 2, 2). See also the recent paper [AFPRW], which removes the need
to study Hilbert schemes as in Voisin’s original approach.

For another example, a minimal pencil f : C → P1 of degree k induces a scroll

XL :=
⋃
p∈P1

〈f−1(p)〉 ⊆ Pr(L).

The scroll is a determinantal variety containing the embedded curve (C,L). In this case the
Lascoux resolution of the scroll simplifies to an explicit resolution first found by Eagon–Northcott,
see [W, (6.1.6)]. By comparing the syzygies of (C,ωC) to those of the scroll XωC , Schreyer has
classified all Betti tables of canonical curves of genus g 6 9 in geometric terms, [Sch1].

If deg(L) > 2g + k, then the Eagon–Northcott complex shows Kp,1(XL,O(1)) = 0 for p >
r(L) − k, whereas br(L)−k,1(XL,O(1)) = r(L) − k. Thus Theorem 0.1 can be interpreted as

saying that all linear r(L)− kth syzygies of the curve arise from the scroll, i.e. restriction induces
an isomorphism Kr(L)−k,1(XL,O(1)) ' Kr(L)−k,1(C,L). Since there are no relations amongst

the r(L)− kth linear syzygies of the scroll XL the isomorphism above implies the vanishing
bp,1(C,L) = 0 for p > r(L) − k as predicted by [EL]. In this way Theorem 0.1 provides a more
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geometric explanation for this vanishing statement, which was originally proved for line bundles
of asymptotically high degree using Serre vanishing.

Theorem 0.1 also provides the first non-trivial step towards understanding the non-zero terms
in the minimal free resolution of C, by giving the value of the last nonzero Betti number on the
linear strand. This extremal Betti number is known to be responsible for much of the variance
in the Betti tables of curves, [Sch2].

The bound of Theorem 0.1 is optimal. Suppose g = 2k−1 and C is a general curve of genus g
and gonality k. Then, C admits both A ∈W 1

k (C) as well as B ∈W 1
k+1(C). Set L := ωC⊗B. There

are two scrolls containing C, the scrollXL given by the union of Span(D) forD ∈ |A| as well as the
scroll YL =

⋃
E∈|B| Span(E). Both scrolls contribute syzygies, implying br(L)−k,1(C,L) > r(L)−k.

The second goal of this paper is to use geometric constructions to refine the existing results on
Green’s Conjecture for special canonical curves, [G2]. Firstly, we prove that Green’s conjecture
holds for general covers of elliptic curves of arbitrary degree, generalizing a result of Aprodu–
Farkas when d = 3 [AF2].

Theorem 0.2. Fix any elliptic curve E and let f : C → E be a general, degree d primitive cover
of E for d > 3. Then Green’s Conjecture holds for C.

Our interest in this result derives from several angles. On the one hand, the strongest known
prior result on Green’s Conjecture is Aprodu’s Theorem, [Ap2], stating that Green’s conjecture
holds for any k-gonal curve C of genus g provided one has the linear-growth condition

dimW 1
k+n(C) 6 n, for all 0 6 n 6 g + 2− 2k.

Aprodu’s Theorem was a crucial part of Aprodu–Farkas’ well-known result that Green’s conjec-
ture holds for curves on arbitrary K3 surfaces, [AF].

The linear growth condition is conjecturally equivalent to requiring

dimW 1
k (C) = 0,

provided g 6 2k − 1. Hence the most interesting open case of Green’s Conjecture is for curves
where this condition fails, i.e. for curves of non-maximal gonality with infinitely many minimal
pencils. Perhaps the most natural example of such curves arises from general covers f : C → E
of elliptic curves of degree d. Provided 2d 6 bg+3

2 c, then such curves C have gonality 2d and note
that we always have dimW 1

2d(C) > 1, by pulling back line bundles of degree two from E.

Covers of elliptic curves also play an important role in the computer experiments of Schreyer,
[Sch2, § 6], which indicate that the Betti tables of covers of elliptic curves seem to behave very
differently from general curves of gonality 2d. In particular, the last Betti number bg−2d,1(C,ωC)
in the 2-linear strand need not be a multiple of g − k, which is rather strange given the com-
putations of Hirschowitz–Ramanan [HR]. It is this phenomenon that led us to consider such
curves.

The last result we prove is an improvement to the prior results on Green’s conjecture for
curves of even genus and maximal gonality. Recall that results of Hirschowitz–Ramanan [HR],
when combined with [V2], establish Green’s Conjecture for all curves of odd genus and maximal
gonality. In the case of curves of even genus g = 2n and maximal gonality k = n + 1, the
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best known prior result is Aprodu’s Theorem, establishing the conjecture for curves C with
dimW 1

n+1(C) = 0. One always has dimW 1
n+1(C) 6 1 by [FHL], so it remains to analyse the case

dimW 1
n+1(C) = 1.

We go quite a long way towards resolving this remaining case:

Theorem 0.3. Let C be a smooth curve of genus g = 2n and gonality k = n + 1. Suppose for
x, y ∈ C general, there is at most one A ∈ W 1

n+1(C) such that A(−x − y) is effective. Further
assume h0(C,A⊗2) = 3. Then C satisfies Green’s Conjecture.

An example of a curve satisfying the assumptions above is given by a general degree d
primitive cover f : C → E of an elliptic curve, where n is odd, 2d = n + 1 and C has genus
2n = 4d− 2.

0.1 Techniques

The results above are proven by associating geometric varieties and constructions to syzygy
spaces. In the process, we obtain some technical results on syzygies which we believe are of
independent interest.

To explain the techniques, first recall that syzygy spaces Ki,j(X,L) can be identified with
the middle cohomology of

i+1∧
H0(L)⊗H0((j − 1)L)

δ−→
i∧
H0(L)⊗H0(jL)

δ−→
i−1∧

H0(L)⊗H0((j + 1)L),

where δ is the Koszul differential.

Suppose V ⊆ H0(X,L) is a codimension one subspace, and let prV : P(H0(X,L)∨) 99K
P(V ∨) be the associated projection morphism. As first observed by Green [G3, § 1.b], it can be
useful to compare the syzygies of ΓX(L) when considered as a Sym(V ) module to its syzygies as
a Sym

(
H0(X,L)

)
module. Namely, letting Ki,j(ΓX(L), V ) denote the middle cohomology of

i+1∧
V ⊗H0((j − 1)L)

δ−→
i∧
V ⊗H0(jL)

δ−→
i−1∧

V ⊗H0((j + 1)L),

we have the projection map

prV : Ki,j(X,L)→ Ki−1,j(ΓX(L), V ),

see [AN, § 2.2.1]. If we suppose that φL : X ↪→ P(H0(X,L)∨) is projectively normal, that x ∈
X ⊆ P(H0(X,L)∨) is a point corresponding to a codimension one subspace V ⊆ H0(X,L), and
that further the projected variety prx(X) ⊆ P(V ∨) is projectively normal, then the projection
map factors through a map

prx : Ki,j(X,L)→ Ki−1,j(prx(X),Oprx(X)(1)),

where we have an inclusion Ki−1,j(prx(X),Oprx(X)(1)) ⊆ Ki−1,j(ΓX(L), V ).

The projection map prx : Ki,j(X,L) → Ki−1,j(prx(X),Oprx(X)(1)) has been used by Choi,
Kang and Kwak to prove that if the projective variety X ⊆ P(H0(X,L)∨) as above satisfies
the Green–Lazarsfeld property (Np) and if, furthermore, prx(X) ' X, then prx(X) ⊆ P(V ∨)
satisfies property (Np−1), [CCK]. Specialising to the case where X is a smooth curve C, Aprodu
has used the projection map to study the Green and Green–Lazarsfeld Conjectures for curves,
[Ap1].
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Our first technical contribution is to relate the projection map to Green’s notion of syzygy
scheme. For a syzygy α 6= 0 ∈ Kp,1(X,L), the syzygy scheme Syz(α) is defined to be the
largest variety Y ⊆ P(H0(X,L)∨) containing X such that α arises via restriction from a syzygy
α′ ∈ Kp,1(Y,OY (1)), [G1]. It is well known that one has the following containment

prx(Syz(α)) ⊆ Syz(prx(α))

for any x ∈ X, relating the syzygy scheme of a syzygy to the syzygy scheme of its projection,
see [AN, § 3]. Furthermore, it is known that if Z ⊆ X is a spanning set of P(H0(X,L)∨) and
α 6= 0, then there is some x ∈ Z such that prx(α) 6= 0, or, equivalently, Syz(prx(α)) 6= P(V ∨),
[AN, Prop. 2.14].

We provide here a generalization of both of the above statements, showing that one can
completely recover the syzygy scheme of an element α ∈ Kp,1(X,L) from the syzygy scheme of
projections prx(α). Let X ⊆ P(H0(X,L)∨) be an integral, projective variety embedded by a very
ample line bundle L as above, and assume for simplicity that X is projectively normal. For any
x ∈ X ⊆ P(H0(X,L)∨), let Wx ⊆ H0(X,L) be the corresponding codimension one subspace.

Theorem 0.4. Let X be as above and let Z ⊆ X be a subset spanning P(H0(X,L)∨). Assume
that for all x ∈ Z, prx(X) ⊆ P(W∨x ) is linearly normal and non-degenerate. Let α 6= 0 ∈
Kp,1(X,L). Then

Syz(α) =
⋂
x∈Z

Conex (Syz(prx(α))) ,

where, for any Y ∈ P(W∨x ), Conex(Y ) ⊆ P(V ∨) denotes the cone with vertex x.

Our next technical result is related to the following early application of the technique of
projection of syzygies:

Theorem 0.5 Aprodu’s Projection Theorem. Let C be a smooth curve of genus g and suppose
x, y ∈ C are distinct points. Let D be the g + 1 nodal curve obtained by identifying x and y.
Suppose Kp,1(C,ωC) = 0. Then Kp+1,1(D,ωD) = 0.

This allows one to prove the generic Green’s conjecture for curves of a fixed gonality by
induction on the genus. Perhaps the most interesting case of Theorem 0.5 is when C is a curve
of gonality k and Clifford index k − 2, with minimal pencil f : C → P1 of degree k, and where
p = g−k+1 and x, y ∈ C are distinct points with f(x) = f(y). In this case, Theorem 0.5 implies
that if C satisfies Green’s Conjecture, then the nodal curve D obtained by identifying x and y
also has gonality k and Clifford index k−2, and furthermore D satisfies Green’s conjecture. This
provides an approach to proving Green’s conjecture for general curves of a fixed gonality using
induction and was one of Aprodu’s main motivations for formulating Theorem 0.5.

It is natural to ask for a converse of this result, i.e. to find an assumption on D as above to
guarantee that C satisfies Green’s Conjecture. We recall from [SSW], [FK2], [BS], that Schreyer
has stated the following strengthening of Green’s Conjecture:

Conjecture 0.6 Schreyer’s Conjecture. Let C be a curve of genus g and non-maximal gonality
3 6 k 6 g+1

2 . Assume W 1
k (C) = {A} is a reduced single point and A is the unique line bundle of

degree at most g − 1 achieving the Clifford index. Then

bg−k,1(C,ωC) = g − k.
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Note that the condition that W 1
k (C) is reduced is equivalent to demanding h0(C,A⊗2) = 3.

Schreyer’s conjecture has been proven under the “bpf-linear growth” genericity assumption in
[FK2]. As explained earlier, Schreyer’s conjecture implies both Green’s Conjecture bg−k+1,1(C,ωC) =
0 and, further, implies that all syzygies at the end of the 2-linear strand of the canonical curve
come from the scroll XωC . In terms of syzygy schemes, Schreyer’s conjecture is equivalent to the
statement that Syz(α) = XωC for all α 6= 0 ∈ Kg−k,1(C,ωC).

Our partial converse to the Aprodu Projection Theorem then reads:

Theorem 0.7. Let D be the 1-nodal, k-gonal curve as above, with normalization the smooth
curve C of genus g and line bundle B ∈W 1

k (D) satisfying ν∗B ' A. Assume

(i) h0(D,B⊗2) = 3, and

(ii) bg+1−k,1(D,ωD) = g + 1− k.

Then Kg+1−k,1(C,ωC) = 0.

In other words, if the k-gonal nodal curve D of genus g + 1 satisfies Schreyer’s Conjecture,
then the smooth k-gonal curve C of genus g satisfies Green’s Conjecture.

We now briefly explain how these technical results imply the main results. The key ingredients
in the proof of Theorem 0.1 are Theorem 0.4 together with the following important result of
Eisenbud–Popescu [EP]:

Theorem 0.8 Eisenbud–Popescu. Let X ⊆ Pr be a rational normal scroll of degree f and
0 6= α ∈ Kf−1,1(X,OX(1)). Then Syz(α) = X.

Theorem 0.2 on Green’s conjecture for elliptic curves is proving by combining the Aprodu
Projection Theorem with an analysis of the Brill–Noether theory of covers f : C → E as above,
along the lines of [AC]. Lastly, Theorem 0.3 on Green’s conjecture for curves of even genus is an
immediate corollary of Theorem 0.7.

Acknowledgments: We thank Juliette Bruce for an interesting discussion on projecting syzy-
gies. We thank Gavril Farkas for suggesting that our results could be applied to Green’s Conjec-
ture for curves of even genus and maximal gonality.

1. Projections of Syzygy Schemes

The goal of this section is to prove a precise relationship between the syzygy scheme of a linear
syzygy and that of its projection. We first need to recall the notion of a syzygy scheme. Let
X ⊆ Pn be a closed subscheme such that X is non-degenerate, i.e. the restriction map

V := H0(Pn,OPn(1))→ H0(X,OX(1))

is injective. We let S(X) denote the homogeneous coordinate ring and let Kp,q(S(X), V ) denote
the syzygies of S(X) as a Sym(V ) = S(Pn) module. We have an isomorphism

Kp,1(S(X), V ) ' Kp−1,2(IX , V ),

where IX is the ideal of X, by [AN], Prop. 1.27, and further

Kp−1,2(IX , V ) = Ker(

p−1∧
V ⊗ (IX)2 →

p−2∧
V ⊗ (IX)3).
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If Y ⊆ Pn is any closed subscheme containing X, then the inclusion IY ⊆ IX induces an inclusion

Kp,1(S(Y ), V ) ' Kp−1,2(IY , V )
resYX−−−→ Kp−1,2(IX , V ) ' Kp,1(S(X), V ).

Definition 1.1 [AN], § 3. Let α be a nonzero element of Kp,1(S(X), V ). Then the syzygy scheme
Syz(α) ⊆ Pn is defined to be the largest closed subscheme Y ⊆ Pn containing X such that
α ∈ Im(resYX).

We recall some basic facts about syzygy schemes from [AN, § 3]. Let V be a vector space of
dimension n+1 and identify Pn ' P(V ∨) := Proj(Sym(V )). For any x ∈ V ∨, let Wx ⊆ V denote
the kernel of x : V → C and let ix :

∧p V →
∧p−1Wx be the contraction mapping defined by

ix(v1 ∧ . . . ∧ vp) =
∑
i

(−1)iv1 ∧ . . . ∧ v̂i ∧ . . . vp ⊗ x(vi).

The following statement is [AN], Lemma 3.7 and Prop. 3.15.

Proposition 1.2. X ⊆ P(V ∨) be a non-degenerate, linearly-normal, projective variety.

(i) Let α ∈ Kp,1(S(X), V ) and let ᾱ ∈ Hom(V ∨,
∧p V ) '

∧p V ⊗ V be a representative for α.
Then Syz(α) = {[x] ∈ P(V ∨) | ix(ᾱ(x)) = 0}.

(ii) For any x ∈ V ∨ let prx : P(V ∨) → P(W∨x ) denote the projection with center x. Suppose
that both X and Y := prx(X) are linearly normal as well as non-degenerate. Then for any
nonzero α ∈ Kp,1(S(X), V ), x ∈ Syz(α) if and only if there exists β : W∨x →

∧p−1Wx such
that we have a commutative diagram

V ∨
∧p V

W∨x
∧p−1Wx

ᾱ

ix

β

.

Part (ii) of the above proposition can be rephrased. In the notation of the proposition,
assume X and Y are linearly normal and non-degenerate. Recall from [AN, § 2.2.1] that there is
a “projection map”

prx : Kp,1(S(X), V )→ Kp−1,1(S(X),Wx).

Then one can rephrase Proposition 1.2 (ii) as x ∈ Syz(α) if and only if prx(α) ∈ Kp−1,1(S(Y ),Wx).

The next result provides an improvement of [AN, Lemma 3.17(ii)].

Theorem 1.3. Let X ⊆ P(V ∨) be an integral, projective variety and let Z ⊆ X be a set such
that Span(Z) = P(V ∨). Assume that for all x ∈ Z, both X and prx(X) ⊆ P(W∨x ) are linearly
normal and non-degenerate. Let α 6= 0 ∈ Kp,1(S(X), V ). Then

Syz(α) =
⋂
x∈Z

Conex (Syz(prx(α))) ,

where, for any Y ∈ P(W∨x ), Conex(Y ) ⊆ P(V ∨) denotes the cone with vertex x.

Proof. Let x ∈ Z ⊆ Syz(α). By Proposition 1.2 (ii), for any y ∈ V ∨ we have a commutative
diagram

V ∨
∧p V

∧p−1 V

W∨x
∧p−1Wx

∧p−2Wx,

α

f ix

iy

−ix

β if(y)
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where α resp. β represent α resp. prx(α) and f := prx is the usual projection map of vector
spaces. By Proposition 1.2 (i), y ∈ Syz(α) if and only if iy(α(y)) = 0. Hence if y ∈ Syz(α), then

if(y)

(
β(f(y))

)
= 0,

and hence prx(y) = f(y) ∈ Syz(prx(α)), by Proposition 1.2 once again. Thus y ∈ Cone (Syz(prx(α))).
Hence we have established the inclusion

Syz(α) ⊆
⋂
x∈Z

Conex (Syz(prx(α))) .

For the reverse inclusion, suppose y ∈
⋂
x∈Z Conex (Syz(prx(α))), or, equivalently f(y) ∈

Syz(prx(α)) for all x ∈ Z. Then

ix(iy(α(y))) = 0, for all x ∈ Z.

By Proposition 1.2, we need to show iy(α(y)) = 0. Since Z spans P(V ∨), it suffices to observe
that, for any nonzero u ∈

∧p−1 V

(i) There is some z ∈ V ∨ such that iz(u) 6= 0.

(ii) The set of z ∈ V ∨ such that iz(u) = 0 forms a subspace.

Indeed, (ii) is obvious, whereas for (i) we observe that iz(u) = 0 if and only if u ∈
∧p−1Wz by

[AN], Remark 1.3. Hence (i) follows from the trivial observation that there exists a codimension
one subspace W ⊆ V with u /∈

∧p−1W .

2. Extremal Syzygies of Embedded Curves

In this section we will prove [FK2], Conjecture 0.5, which states that all extremal syzygies of
a general curve of non-maximal gonality embedded by a complete linear system of sufficiently
high degree arise from a scroll. Let C be a smooth k-gonal curve of genus g > 2k − 1, for k > 2
and L ∈ Pic(C) a line bundle. If C is sufficiently general, then there exists a unique line bundle
A with deg(A) = k, h0(A) > 2, [AC]. Further, for such a general k-gonal curve, h0(A2) = 3 or,
equivalently, the Brill–Noether locus W 1

k (C) is smooth. Assume further h1(L−A) = 0. Consider

the embedding φL : C ↪→ Pr(L) for r(L) := h0(L)− 1 and the scroll

XL :=
⋃

D∈|A|

Span(D) ⊆ Pr(L),

[Sch1]. The scroll XL has degree r(L) + 1− k in Pr(L) and has Betti numbers

bp,1(XL,OXL
(1)) = p

(
r(L) + 1− k

p+ 1

)
whereas bp,q(XL,OXL

(1)) = 0 for q > 2. As seen in the previous section, we have an inclusion

resC : Kp,1(XL,OXL
(1)) ↪→ Kp,1(C,L).

Conjecture 0.6 from [FK2] states that if deg(L) > 2g+ k then resC is surjective in the extremal
case p = r(L)− k, which is the largest value of p such that bp,1(XL,OXL

(1)) 6= 0. Note that the
surjectivity of resC : Kr(L)−k,1(XL,OXL

(1)) ↪→ Kr(L)−k,1(C,L) is equivalent to the statement

XL ⊆ Syz(α) for all α ∈ Kr(L)−k,1(C,L). (1)

We will prove equation (1) using Proposition 1.3, together with the following important result
of Eisenbud–Popescu.
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Theorem 2.1 [EP]. Let X ⊆ Pr be a rational normal scroll of degree f and 0 6= α ∈
Kf−1,1(X,OX(1)). Then Syz(α) = X.

The next proposition will be the key step in our proof.

Proposition 2.2. Let C be a general k-gonal curve of genus g > 2k − 1 and k > 2. Suppose
br(L)−k,1(C,L) = r(L)−k for some line bundle L of with h1(L−A) = 0. Then br(L)+1−k,1(C,L(x)) =
r(L) + 1− k for any x ∈ C.

Proof. SetM = L(x) and let α ∈ Kr(M)−k,1(C,M) be nonzero. By assumption br(M(−x))−k,1(C,M(−x))
takes the minimal possible value r(M(−x))−k. Hence, by semicontinuity of Koszul cohomology,
there exists a dense open U ⊆ C such that br(M(−y))−k,1(C,M(−y)) = r(M(−y)) − k for all
y ∈ C, and, further pry(α) 6= 0, by [AN, Prop. 2.14]. By Proposition 1.3,

Syz(α) =
⋂
y∈U

Coney (Syz(pry(α))) ,

where pry(α) ∈ Kr(M(−y))−k,1(C,M(−y)). By assumption the map

resC : Kr(M(−y))−k,1(XM(−y),OM(−y)(1))→ Kr(M(−y))−k,1(C,M(−y))

is an isomorphism, so Theorem 2.1 gives

Syz(pry(α)) = XM(−y) ⊆ Pr(M)−1.

Observe that XM(−y) = pry(XM ). Hence XM ⊆ Coney(pry(XM(−y))). Hence XM ⊆ Syz(α), as
required.

We will prove equation (1) by induction. The initial step is provided in the following propo-
sition.

Theorem 2.3. Let g = 2i+1 and let C be a smooth curve of genus g and gonality i+1. Assume
there is a unique A ∈ W 1

i+1(C) and, further, for such a line bundle A we have h0(A2) = 3. Let
L be a line bundle of degree 2g which is i-very ample, or, equivalently, L − KC is not in the
difference variety Ci+1 − Ci−1. Then bi,1(C,L) = i.

Proof. This follows from the results in [FK1], in particular the equality of cycles

Syz = Sec + ihur

on Mg,2g. Namely, if D =
∑2g

i=1 xi ∈ |L| is a reduced divisor, then the marked curve (C,D) ∈
Mg,2g is not in the divisor Sec by definition. Hence, on an appropriate étale cover φ : S →Mg,2g

about p = [C,D] the order of vanishing of the function defining the divisor Syz(φ) at p is given
by i multiplied by the order of vanishing of hur(φ). But the assumption that there is a unique
A ∈ W 1

i+1(C) and h0(A2) = 3 shows that hur(φ) vanishes to first-order at p and thus Syz(φ)
vanishes to order i so that bi,1(C,L) 6 i by construction of the syzygy divisor Syz, cf. [FK2,
Thm. 3.1]. The condition L −KC /∈ Ci+1 − Ci−1 implies h1(L − A) = 0 and that the scroll XL

has degree i+ 1. As we already have seen that bi,1(C,L) > bi,1(XL,OXL
(1)) = i, this completes

the proof.

As an immediately corollary, we can prove [FK2], Conjecture 0.6 for any smooth curve C of
odd genus g > 5 and submaximal gonality k = g+1

2 , assuming there is a unique A ∈ W 1
i+1(C)

and, further, h0(A2) = 3.

9
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Corollary 2.4. Let C be a smooth curve of odd genus g = 2i + 1 for i > 3 and submax-
imal gonality i + 1. Assume there is a unique A ∈ W 1

i+1(C) and, further, h0(A2) = 3. Then
br(L)−i−1,1(C,L) = r(L)− i− 1 for all line bundles of degree deg(L) > 2g + i+ 1.

Proof. By Proposition 2.2, it suffices to assume deg(L) = 2g + i+ 1 = 5i+ 3. By Theorem 2.3,
together with Proposition 2.2, it suffices to show that there is an effective divisor D ∈ Ci+1 such
that L −KC − D /∈ Ci+1 − Ci−1. By [FK2], proof of Theorem 0.2, it suffices to show that the
secant variety V 2i+1

2i+2 (L) has dimension at most i, and for this it is sufficient to show W 2
i+3(C) = ∅.

In the range i > 3, any B ∈W 2
i+3(C) would contribute to the Clifford index, so it suffices to show

that Cliff(C) = i− 1 and, further, A is the unique line bundle of degree at most g − 1 achieving
the Clifford index. But this follows from the well-known result of Hirschowitz–Ramanan that our
assumptions imply that Schreyer’s Conjecture holds for C, see [HR] and [FK2, Theorem 3.1],
together with the easy direction of Schreyer’s conjecture, [SSW, Prop. 4.10].

We now arrive at the main result of this section.

Theorem 2.5. Let C be a general k-gonal curve C of genus g > 2k − 1 for k > 4. Let L be an
arbitrary line bundle on C of degree deg(L) > 2g + k. Then br(L)−k,1(C,L) = r(L)− k.

Proof. We mirror the proof of [FK2, Thm. 0.1]. Namely, fix k > 4. We prove the result by
induction on the genus g of C. If g = 2k − 1, then the claim is Corollary 2.4. So, assume the
claim holds for a general k-gonal curve C. By Proposition 2.2, it suffices to show that, for a
general k-gonal curve X ′ of genus g + 1 and any line bundle L′ on X ′ of degree 2g + 2 + k, we
have bg+1,1(X ′, L′) = g+ 1. Using Proposition 2.2 once more, it is further sufficient to show that
there exists a point p ∈ X ′ such that bg,1(X ′, L′(−p)) takes the lowest possible value g. Now let
X be the nodal curve C ∪q E where C is a general k-gonal curve as above, q is a branch point of
some pencil f : C → P1 of degree k and E is an elliptic curve. Then X is a stable, genus g + 1
curve of compact type, which is a limit of smooth k-gonal curves. By semicontinuity of Koszul
cohomology, and since X is of compact type, it suffices to show that for any line bundle L on X
with

deg(LE) = 1, deg(LC) = 2g + 1 + k

there exists a point p′ ∈ E \ {q} with

(i) bg,1(X,L(−p′)) = g

(ii) h1(X,L(−p′)) = h1(X,L⊗2(−2p′)) = 0,

see [FK2], proof of Theorem 0.1. Choose a general point p′ ∈ E \ {q}. Statement (ii) follows
immediately from the Mayer–Vietoris sequence

0→ LC(−q)→ L(−p′)→ LE(−p′)→ 0.

For statement (i), consider the commutative diagram∧g+1
H0(C,L(−q)) d //

α

��

∧g
H0(C,L(−q))⊗H0(C,L(−q)) d //

β

��

∧g−1
H0(C,L(−q))⊗H0(C,L⊗2(−2q))

γ

��∧g+1
H0(X,L(−p′)) d // ∧gH0(X,L(−p′))⊗H0(X,L(−p′)) d // ∧g−1H0(X,L(−p′))⊗H0(X,L⊗2(−2p′))

,

where α, β are isomorphisms, and γ is induced from the natural composition

H0(C,L⊗2(−2q)) ↪→ H0(C,L⊗2(−q)) ∼= H0(X,L⊗2(−2p′)).

10
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Since γ is injective, we have a natural isomorphism

Kg,1(C,L(−q)) ∼−→ Kg,1(X,L(−p′))

induced on the cohomology of the rows in the above diagram. By the induction hypothesis,
bg,1(C,L(−q)) = g, which completes the proof.

3. A converse to Aprodu’s Projection Theorem

Recall the following theorem of Aprodu, [Ap1].

Theorem 3.1 Aprodu’s Projection Theorem. Let C be a smooth curve of genus g and suppose
x, y ∈ C are distinct points. Let D be the g + 1 nodal curve obtained by identifying x and y.
Suppose Kp,1(C,ωC) = 0. Then Kp+1,1(D,ωD) = 0.

One important application of this result is that it provides an approach to proving Green’s
conjecture for curves of a fixed gonality by induction on the genus. In this sense the most inter-
esting case of the Aprodu Projection Theorem is where p = g− k+ 1, where k is the gonality of
C. The goal of this section is to prove a partial converse of Aprodu’s Theorem, allowing one to
deduce Green’s Conjecture Kg−k+1,1(C,ωC) = 0 by assuming that D satisfies Schreyer’s Conjec-
ture on syzygies arising from scrolls, which is a stronger assumption than Green’s Conjecture,
see [SSW], [FK2].

Let C be a smooth curve of genus g and gonality k > 3, let A ∈ W 1
k (C) and let T ∈ |A| be

a general divisor. Choose distinct points x, y ∈ T and let D be the nodal curve of genus g + 1
obtained by identifying x and y. Then there is a base point free line bundle B on D with two
sections such that ν∗B ' A, where ν : C → D is the normalization morphism.

Embed D in Pg via the canonical linear system and let πp : Pg 99K Pg−1 be the projection
from the node p ∈ D. Then the canonical curve C ⊆ Pg−1 is the projection πp(D). Further, let

Z ⊆ Pg denote the cone over πp(D) with vertex at p. Then D ⊆ Z. We denote by ν̃ : Z̃ → Z the
desingularization of Z. The strict transform D′ of D is isomorphic to C and ν̃|D′ ' ν.

By [Ha, V.2], Z̃ ' P(OC⊕ωC) and Pic(Z̃) ' Z[H]⊕ ι∗Pic(C), where H denotes the pull-back
of the hyperplane section of Pg and

ι : P(OC ⊕ ωC)→ C

is the projection map.

Lemma 3.2. We have O
Z̃

(D′) ' O
Z̃

(H)⊗ ι∗OC(x+ y).

Proof. The strict transform D′ corresponds to a section s : C → P(OC ⊕ ωC). We have s∗H '
ν∗ωD ' ωC(x+ y). By Prop. 2.6, [Ha, V.2], we have a short exact sequence

0→ N → OC ⊕ ωC → s∗H → 0,

with ι∗N ' H(−D′). By taking determinants of the short exact sequence above

N ' ωC(−s∗H) ' OC(−x− y).

Applying ι∗ gives O
Z̃

(D′) ' O
Z̃

(H)⊗ ι∗OC(x+ y), as claimed.

By the previous lemma, we have a short exact sequence

0→ H∨ (−ι∗(x+ y))→ O
Z̃
→ OD′ → 0

11
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which induces an exact sequence of S := Sym
(
H0(Z̃,H)

)
modules

0→
⊕
q∈Z

H0
(
H⊗(q−1)(−ι∗(x+ y))

)
→
⊕
q∈Z

H0
(
H⊗q

) α−→
⊕
q∈Z

H0
(
C,ω⊗qC (qx+ qy)

)
where we used the identification C ' D′. We let

M := Im(α)

be the image of α. Hence we have a short exact sequence

0→
⊕
q∈Z

H0
(
H⊗(q−1)(−ι∗(x+ y))

)
→
⊕
q∈Z

H0
(
H⊗q

)
→M→ 0 (2)

of S modules.

Proposition 3.3. The following statements hold:

(i) The inclusion M ⊆
⊕

q∈ZH
0
(
C,ω⊗qC (qx+ qy))

)
induces an isomorphism Kp,1(M,S) '

Kp,1(C,ωC(x+ y)) of syzygy spaces, for all integers p.

(ii) Restricting to the hyperplane section induces an isomorphism Kp,q(Z̃,H) ' Kp,q(C,ωC),
for all p, q.

(iii) We have a natural exact sequence

0→ Kp,1(C,ωC)→ Kp,1(C,ωC(x+ y))
δ−→ Kp−1,1(Z̃,−ι∗(x+ y);H)→ Kp−1,2(C,ωC)

for all p ∈ Z.

Proof. We have the isomorphism H0(Z̃,H) ' H0(OZ(1)) � H0(HD′) ' H0(OD(1)), and thus
the degree one piece M1 is isomorphic to H0 (C,ωC(x+ y))). The first claim now follows [FK3],
proof of Lemma 1.3.

Since C ⊆ Pg−1 is projectively normal, we have surjections H0(Z̃,H⊗q) ' H0(Z,H⊗q) �
H0(C,ω⊗qC ) for all q > 0. The second claim then follows from the proof of the Green–Lefschetz
Theorem, [G2, Thm. 3.b.7].

For the final claim, we have Kp,0(Z̃,−ι∗(x + y);H) = 0. Taking Koszul cohomology of the
short exact sequence (2) yields the exact sequence

0→ Kp,1(Z̃,H)→ Kp,1(M,S)
δ−→ Kp−1,1(Z̃,−ι∗(x+ y);H)→ Kp−1,2(Z̃,H).

The claim then follows from the previous statements.

We have a short exact sequence

0→ OD → ν∗OC → Op → 0,

inducing injective maps

H0(D,ω⊗qD ) ↪→ H0(C,ω⊗qC (qx+ qy)), q > 0,

which are isomorphisms for q = 0, 1. Since we may write

Kp,1(D,ωD) ' Ker
(
∧pH0(ωD)⊗H0(ωD)

/
∧p+1H0(ωD)→ ∧p−1H0(ωD)⊗H0(ω⊗2

D )
)
,

and likewise for Kp,1(C,ωC(x+ y)), we have a canonical isomorphism

Kp,1(C,ωC(x+ y)) ' Kp,1(D,ωD), (3)

12
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for any p.

Our goal is to show that the map δ : Kp,1(C,ωC(x+y))→ Kp−1,1(Z̃,−ι∗(x+y);H) is injective
for p = g−k+ 1 under certain hypotheses, which then implies Kg−k+1,1(C,ωC) = 0. To proceed,
we need to use the Eagon–Nothcott resolution of a scroll, [Sch1, § 1]. Let

E = OP1(e1)⊕ . . .⊕OP1(ed), ei > 0 for all i

be a globally generated vector bundle of rank d on P1 and let

X := j(P(E)) ⊆ Pr,

r = h0(OP(E)(1))−1 be the associated ruled variety of dimension d and minimal degree r−d+1,
where j : P(E) ↪→ P

(
H0(OP(E)(1))

)
is the natural morphism.

Let p ∈ X be a smooth point and consider the projection

πp : Pr 99K Pr−1.

Let Y ⊆ Pr denote the cone over the image πp(X), with vertex at p. Then X ⊆ Y and the
cone Y is a variety of minimal degree of dimension one higher than X. We may resolve Y by a
smooth rational normal scroll Ỹ , see [EH]. We have a birational morphism Blp(Y ) → Ỹ from

the blow-up of Y at p to Ỹ . Let µ : Ỹ → Y denote the resolution of singularities, and let X ′ ⊆ Ỹ
be the strict transform of X. Let H, R denote the class of the hyperplane and ruling of Ỹ . These
classes span Pic(Ỹ ).

Lemma 3.4. We have O
Ỹ

(X ′) ' O
Ỹ

(H+R).

Proof. Let a, b be such that O
Ỹ

(X ′) ' O
Ỹ

(aH + bR). Firstly, the image of the ruling on the
scroll P(E) gives the ruling on πp(X) under the map πp ◦ j, and this pulls back to the ruling

R on Ỹ under πp ◦ µ. We see from this that X ′ meets a general ruling R of Ỹ in a linear

space of codimension one, and so a = 1. We have deg(Ỹ ) = deg(πp(X)) = deg(X) − 1. Thus,

if d = deg(Ỹ ), d + 1 = Hdim(X) · (aH + bR) = ad + b, and so b = (1 − a)d + 1 which gives
a = 1, b = 1.

By the above lemma, we have a short exact sequence

0→ O
Ỹ

(−H−R)→ O
Ỹ
→ OX′ → 0.

Notice that, by the Leray spectral sequence applied to Ỹ → P1, we have H1(Ỹ ,H⊗q−1(−R)) = 0
for q > 0. Thus we have a short exact sequence

0→
⊕
q∈Z

H0(Ỹ ,H⊗q−1(−R))→
⊕
q∈Z

H0(Ỹ ,H⊗q)→
⊕
q∈Z

H0(X ′,H⊗q)→ 0

of Sym
(
H0(Ỹ ,H)

)
modules. This induces a long exact sequence

0 = Kp,0

(
Ỹ ,−R;H

)
→ Kp,1(Ỹ ,H)→ Kp,1(X ′,H)

∆−→ Kp−1,1

(
Ỹ ,−R;H

)
→ Kp−1,2(Ỹ ,H)→ . . .

Lemma 3.5. Set f = r − d+ 1 = deg(X). Then

∆ : Kf−1,1(X ′,H)
∼−→ Kf−2,1(Ỹ ,−R;H)

is an isomorphism for p = f − 1.

13
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Proof. The Eagon–Northcott complex provides minimal resolutions for the scrolls X ′ and Ỹ , see
[EN] and [Sch1]. These resolutions have length one less than the degree of the variety, and all
matrices between terms in the resolution have linear forms as entries, with the exception of the
first map, which has quadratic entries. Thus Kf−1,1(Ỹ ,H) = Kf−2,2(Ỹ ,H) = 0.

We now arrive at the main result of this section.

Theorem 3.6. Let D be the 1-nodal, k-gonal curve as above, with normalization the smooth
curve C of genus g and line bundle B ∈W 1

k (D) satisfying ν∗B ' A, for k > 3. Assume

(i) h0(D,B⊗2) = 3, and

(ii) bg+1−k,1(D,ωD) = g + 1− k.

Then Kg+1−k,1(C,ωC) = 0.

Proof. By Proposition 3.3, it is equivalent to show that the boundary map

δ : Kg+1−k,1(C,ωC(x+ y))→ Kg−k,1(Z̃,−ι∗(x+ y);H)

is injective. Consider the scroll

X =
⋃
s∈|B|

〈s〉 ⊆ Pg

induced by the given g1
k on D, [Sch1, § 2]. Then X has degree f = g + 2 − k and, further, is

smooth since h0(D,B⊗2) = 3, [FK2, § 4]. As above, let Y denote the cone over πp(X) with vertex
at p, where p ∈ D is the node and

πp : Pg 99K Pg−1

is the projection away from p. Further, let µ : Ỹ → Y denote the resolution of singularities, and
let X ′ ⊆ Ỹ denote the strict transform of X.

Let Z ⊆ Pg denote the cone over C ' πp(D) with vertex at p, and let ν̃ : Z̃ → Z be the
desingularization. We have a natural diagram

X ′ Ỹ

C ' D′ Z̃

relating the strict transforms D′, X ′ and the desingularizations Ỹ , Z̃ of the cones over the
projections. Pulling back the class of the ruling R on Ỹ to Z̃ yields ι∗A, where

ι : Z̃ ' P(OC ⊕ ωC)→ C

is the projection, as above. Let T is the unique element of |A| passing through x and y. We have
a commutative diagram of short exact sequences

0
⊕

q∈ZH
0(Ỹ ,H⊗q−1(−R))

⊕
q∈ZH

0(Ỹ ,H⊗q)
⊕

q∈ZH
0(X ′,H⊗q) 0

0
⊕

q∈ZH
0
(
Z̃,H⊗(q−1)(−ι∗(x+ y))

) ⊕
q∈ZH

0
(
Z̃,H⊗q

)
M 0

α◦r
Z̃

r
Z̃

where the maps r
Z̃

are induced by pull-back, where α is induced by multiplication by ι∗T (−x−y),
where the lower row is the short exact sequence (2) defined earlier and where the dashed arrow

14



Projecting Syzygies of Curves

is the induced map. Note that, by Lemmas 3.2 and 3.4, the pull-back of the divisor X ′ to Z̃ is
D′ ∪ ι−1(T (−x− y)).

Upon taking Koszul cohomology, we get the commutative diagram

Kg+1−k,1(X ′,H) Kg−k,1(Ỹ ,−R;H)

Kg+1−k,1(C,ωC(x+ y)) Kg−k,1(Z̃,−ι∗A;H)

Kg−k,1(Z̃,−ι∗(x+ y);H)

∆

rD′ r
Z̃

δ

α

where ∆ is an isomorphism by Proposition 3.5. It thus suffices to show that rD′ is an isomorphism,
whereas α and r

Z̃
are injective.

To see that rD′ is an isomorphism, first note that, since we have birational morphisms BlpX →
X ′ → X, we have isomorphisms H0(BlpX, qH) ' H0(X ′, qH) ' H0(X, qH) for all q and so

Kp,1(X ′,H) ' Kp,1(X,H).

Next, rD′ is injective by the same proof as [FK2], Lemma 4.4 (note D′ ⊆ BlpX). From the
Eagon–Northcott resolution, we see bg+1−k,1(X,H) = f − 1 = g+ 1− k. Hence the claim follows
from the assumption bg+1−k,1(D,ωD) = g + 1 − k, since Kp,1(D,ωD) ' Kp,1(C,ωC(x + y)) for
all p.

The injectivity of α follows from the commutative diagram

∧g−kH0(H)⊗H0(H− ι∗A) ∧g−k−1H0(H)⊗H0(2H− ι∗A)

∧g−kH0(H)⊗H0(H− ι∗(x+ y)) ∧g−k−1H0(H)⊗H0(2H− ι∗(x+ y)),

γ1

γ2

since α is the induced map Ker(γ1) ↪→ Ker(γ2).

It remains to show r
Z̃

is injective. To begin, the commutative diagram

H0(Ỹ ,H−R) H0(Ỹ ,H)

H0(Z̃,H− ι∗A) H0(Z̃,H)

⊗s

r
Z̃ '

⊗s
Z̃

for general s ∈ |R| shows that the pull-back map r
Z̃

: H0(Ỹ ,H − R) ↪→ H0(Z̃,H − ι∗A) is
injective. Next, the Eagon–Northcott resolution of

Γ
Ỹ

(H;−R) :=
⊕
q∈Z

H0(Ỹ , qH−R),

as described in [Sch1, Pg. 111], is 1-linear, i.e. Kp,q(Ỹ ,−R;H) = 0 unless q = 1 for all p > 0. In

particular, Kp,2(Ỹ ,−R;H) = 0 for all p > 0. Letting MH be the kernel bundle

0→MH → H0(H)⊗O
Ỹ
→ H

Ỹ
→ 0,

15
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then this implies H1(Ỹ ,∧pMH(H − R)) = 0 for all p > 0, by the kernel bundle description of
Koszul cohomology, [AN] (note that we have already observed H1(Ỹ ,H−R) = 0). For all p > 0
we have the short exact sequence

0→
p∧
MH ⊗ (H−R)→

p∧
H0(Ỹ ,H)⊗ (H−R)→

p−1∧
MH ⊗ (2H−R)→ 0

and canonical isomorphisms

Kp,1(Ỹ ,−R;H) ' H0(Ỹ ,

p∧
MH ⊗ (H−R))

Kp,1(Z̃,−ι∗A;H) ' H0(Z̃,

p∧
MH ⊗ (H− ι∗A)).

There is a commutative diagram

0 H0(Ỹ ,∧pMH(H−R)) ∧pH0(H)⊗H0(Ỹ ,H−R) H0(Ỹ ,∧p−1MH(2H−R)) 0

0 H0(Z̃,∧pMH(H− ι∗A)) ∧pH0(H)⊗H0(Z̃,H− ι∗A) H0(Z̃,∧p−1MH(2H− ι∗A))

r
Z̃

with exact rows. The claim now follows from the snake lemma.

We end this section by proving a result on Green’s Conjecture for curves of even genus and
maximal gonality.

Theorem 3.7. Let C be a smooth curve of genus g = 2n and gonality k = n + 1. Suppose for
x, y ∈ C general, there is at most one A ∈ W 1

n+1(C) such that A(−x − y) is effective. Further
assume h0(C,A⊗2) = 3. Then C satisfies Green’s Conjecture.

Proof. If, for x, y ∈ C general, there is no A ∈ W 1
n+1(C) with A(−x − y) effective, then

dimW 1
n+1(C) = 0 and the result follows from [Ap2]. So we may assume that there is precisely

one A ∈ W 1
n+1(C) such that A(−x− y) is effective. Let D be the 1-nodal curve of genus 2n+ 1

obtained by identifying x and y and let ν : C → D be the normalization. There is a line bundle B
on D of degree n+1 and with h0(D,B) = 2 such that ν∗B ' A. Further, h0(C,A⊗2) = 3 implies
that h0(D,B⊗2) = 3 (we have h0(D,B⊗2) > 3 by the base-point free pencil trick). Note further
that if T ∈ Jac(D) is a rank one, torsion free sheaf of degree n + 1 with h0(D,T ) > 2, then
we must have T ' B. Indeed, such a T must be locally free, or else T ' ν∗T

′ for T ′ ∈ W 1
n(C),

contradicting that C has gonality n, and then T must be B from the assumption that there is at
most one A ∈W 1

n+1(C) such that A(−x−y) is effective. By [FK2, Remark 3.2], bn,1(D,ωD) = n.
From Theorem 3.6 we deduce that C satisfies Green’s Conjecture.

4. Green’s Conjecture for Elliptic Covers

In this section we prove Green’s conjecture for general elliptic covers. We first fix notation. Let
E denote a smooth elliptic curve, with polarization L = OE(p), for p ∈ E a fixed point. We
denote byMg(E, d1) the moduli space of stable maps f : C → E, with C smooth of genus g > 2
and deg(f∗L) = d1 > 1, and likewise let Mg(P

1, d2) denote the moduli space of degree d2 > 1,
genus g stable maps to P1. We lastly write

Mg(E ×P1, d1, d2)
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for the Deligne–Mumford stack of stable maps f : C → E×P1 with deg(f∗L) = d1,deg f∗OP1(1) =
d2.

Lemma 4.1. Fix g > 2. The stacksMg(E, d1) respectivelyMg(P
1, d2) are smooth of dimensions

2g − 2 resp. 2g − 2 + 2d2.

Proof. For any smooth, projective variety X and non-constant stable map f : C → X from a
smooth curve C, the deformation theory of f is determined by the normal sheaf Nf , [BHT, § 4]
which fits into the short exact sequence

0→ TC
df−→ f∗TX → Nf → 0.

In particular, when dimX = 1,Nf is supported on the ramification locus of f , and so h1(C,Nf ) =
0. Thus Mg(E, d1) and Mg(P

1, d2) are smooth, with dimension at a point f : C → X given by
h0(C,Nf ), where X ∈ {E,P1}. For X = E, we have

h0(C,Nf ) = χ(OC)− χ(ω∗C) = 2g − 2,

whereas for X = P1,

h0(C,Nf ) = χ(f∗OP1(2))− χ(ω∗C) = 2g − 2 + 2d2.

Proposition 4.2. With notation as above, let [f : C → E×P1] ∈Mg(E×P1, d1, d2), for d1, d2 >
1 be a point such that f is birational to its image. Then each component of Mg(E ×P1, d1, d2)
containing [f ] is generically reduced and has dimension g − 1 + 2d2.

Proof. We follow [AC]. First of all, observe that each component I of Mg(E × P1, d1, d2) con-
taining [f ] has dimension at least

dimMg(E, d1) +Mg(P
1, d2)− dimMg = g − 1 + 2d2.

Let [h : C ′ → E ×P1] ∈ I be a general point. The normal sheaf Nh of the morphism h fits into
an exact sequence

0→ Kh → Nh → N ′h → 0,

of sheaves on C ′, where Kh is (non-canonically) isomorphic to OZ , where Z is the ramification
locus of h, and where N ′h is a line bundle. By [AC, Lemma 1.4],

h0(N ′h) > g − 1 + 2d2 > g + 1.

For any line bundle L on C ′, if h1(L) 6= 0 then |L| is a sublinear system of |ωC′ | and hence
h0(L) 6 g. Thus h1(N ′h) = 0 and hence h1(Nh) = 0, so that I is smooth at [h]. Applying [AC,
Lemma 1.4] again, we may now conclude that Kh = 0, h is unramified and Nh is locally free of
degree

deg(h∗TE×P1) + 2g − 2 = 2g − 2 + 2d2.

Thus dim I = h0(Nh) = χ(Nh) = g − 1 + 2d2 as required.

We denote by HEg (d1) ⊆Mg(E, d1) the open locus of primitive covers with simple ramifica-

tion. The space HEg (d1) is then nonempty and irreducible for g > 2, by a result of Gabai–Kazez,
[GK] (see also [B]).

For a smooth curve C, let W 1
k (C) be the Brill–Noether variety of line bundles L of degree

k with at least two sections, and let G1
d(C) be the variety of g1

d’s, i.e. pairs of a line bundle
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A ∈ W 1
k (C) together with a base-point free linear system V ⊆ H0(A) of dimension two, up to

the natural PGL(2) action, [ACGH]. If C has gonality k, then elements of W 1
k (C) = G1

k(C) are
called minimal pencils.

Corollary 4.3. Let [f : C → E] ∈ HEg (d1) be a general point, let (A, V ) ∈ G1
d2

(C) and suppose
A is not isomorphic to f∗B for some B ∈ Pic(E) with deg(B) > 2. Then

dim[A]G
1
d2(C) = 2d2 − g − 2.

In particular, if 2d1 6 bg+3
2 c, then C has gonality 2d1 and if 2d1 > bg+3

2 c then C has gonality

bg+3
2 c. Moreover, if 2d1 < bg+3

2 c, all minimal pencils of C are of the form f∗B, B ∈ Pic2(E).

Proof. Let (A, V ) ∈ G1
d2

(C) be base-point free and suppose A is not the pull-back of a line

bundle from E of degree at least two. Then V induces a map C → P1 of degree d2 and we let
[h : C → E × P1] ∈ Mg(E × P1, d1, d2) be the product of this map with f . We claim that h
is birational to its image. Indeed, otherwise let D = h(C) be the image of h. Since f is simply
ramified and primitive projection to the first factor must induce an isomorphism pr1 : D

∼−→ E.
But we must then have that A is the pull-back of a line bundle B from E with deg(B) > 2, which
is a contradiction. So h is birational. Since we are assuming [f ] is general, each component of
Mg(E ×P1, d1, d2) containing [h] dominates HEg (d1) under the natural forgetful morphism and
all fibres have dimension

g − 1 + 2d2 − (2g − 2),

by Proposition 4.2. After subtracting 3 = dim PGL(2), we see that each component of G1
d2

(C)

containing [A] has dimension 2d2 − g − 2, as required. In particular, we must have d2 >
g+2

2 . In

fact, since d2 is an integer we have d2 > bg+3
2 c (which is the gonality of a general curve of genus

g). The remaining statements follow immediately.

We can now prove the main result of this section.

Theorem 4.4. Let [f : C → E] ∈ HEg (d1) be a general point. Then Green’s Conjecture holds
for C.

Proof. We may assume d1 > 2 as Green’s conjecture holds for all elliptic curves. If 2d1 >
g+3

2 ,

then by Corollary 4.3, C has maximal gonality k := bg+3
2 c and, further, dimG1

k+n(C) 6 n for
n 6 g + 2 − 2k. Thus the statement follows from a theorem of Hirschowitz–Ramanan [HR]
combined with Voisin’s Theorem, [V1], [V2] (in the odd genus case) and Aprodu, [Ap2, Theorem
2] (in even genus).

So it suffices to prove that, for fixed d1 > 2 and all g > 4d1−3, the general point [f : C → E] ∈
HEg (d1) satisfies bg−2d1+1,1(C,ωC) = 0, which further forces gon(C) = 2d1 = Cliff(C)+2. We will
prove this vanishing by induction, with the base case g = 4d1−3 holding by the above. So suppose
[f : C → E] ∈ HEg (d1) is a general point, with g > 4d1 − 3, and suppose bg−2d1+1,1(C,ωC) = 0.
Let x, y ∈ C be distinct points such that f(x) = f(y) and let D be the curve of genus g + 1
obtained by identifying x and y. Let g : D → E be the unique morphism factoring through
f : C → E. By the Aprodu Projection Theorem 3.1, bg+2−2d1,1(D,ωD) = 0, which implies
bg+2−2d1,1(D′, ω′D) = 0 for a general point [f ′ : D′ → E] ∈ HEg+1(d1) by semicontinuity of Koszul
cohomology.
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