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ABSTRACT

We explore the concept of projections of syzygies and prove two new technical results;
we firstly give a precise characterization of syzygy schemes in terms of their projections,
secondly, we prove a converse to Aprodu’s Projection Theorem. Applying these results,
we prove a conjecture of [FK2] stating that extremal syzygies of general curves of non-
maximal gonality embedded by a linear system of sufficiently high degree arise from
scrolls. Lastly, we prove Green’s Conjecture for general covers of elliptic curves (of
arbitrary degree) as well as proving a new result for curves of even genus and maximal
gonality.

0. Introduction

Let X be a projective variety and L a line bundle, assumed to be very ample for simplicity. One
of the most fundamental objects in algebraic geometry is the section ring

Tx(L) =P HO(X, L.
neL
In order to understand the structure of I'x (L), one treats it as a Sym (H 0(X, L)) module and
takes the minimal free resolution. The syzygy spaces K; j(X, L) are then the graded pieces which
appear in the resolution. Their dimensions give important invariants b; j(X, L) of the polarized
variety (X, L), known as Betti numbers.

Our understanding of the syzygies of (X, L) is highly limited. At present, our knowledge is
most complete in the case where dim X = 1, i.e. X is an algebraic curve C. Most of the known
results are vanishing theorems, providing conditions for the vanishing of Betti numbers b; ;(C, L).
Some highlights include Voisin’s theorem on Generic Green’s Conjecture, which concerns the case
L = we, [V1], [V2], as well as the recent proofs of the Gonality Conjecture [EL] and the Generic
Secant Conjecture [FK1], which are concerned with the case of more general line bundles L.
Whilst the Gonality Conjecture is known for arbitrary curves, the full statement for Green’s
Conjecture and the Secant Conjecture are still very much open in the non-generic case.

More recently, work has been done on trying to go beyond vanishing theorems and describe
certain wvalues of b; ;(C,L) in terms of geometry. For example, the first linear Betti number
b11(C, L) describes the number of quadrics required to generate the ideal of I¢. It is not unrea-
sonable to hope that other Betti numbers likewise carry geometric information. In [FK2] and [K1]
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attention was focused on the last of the nonzero, linear Betti numbers by, 1(C,wc) for canon-
ical curves of non-maximal gonality k. It was found that this extremal Betti numbers counts a
classically studied invariant, namely the number of minimal pencils, i.e. maps f : C — P! of
degree equal to the gonality k (up to genericity hypotheses).

The number of minimal pencils on a general k-gonal curve was first showed to be finite
by Segre, [S]. More recently Arbarello-Cornalba and Coppens have obtained several important
results on the loci of curves carrying multiple minimal pencils, see [AC], [C1], [C2]. In particular,
a general curve of nonmaximal gonality has a unique minimal pencil and in this case Schreyer has
conjectured by 1(C,wc) = g — k, which both implies Green’s Conjecture bg_j41,1(C,wc) =0
and gives a more geometric interpretation for it, as we explain below.

One of the goals of this paper is to prove a result interpolating and extending both the
vanishing theorem of [EL] and the verification of Schreyer’s conjecture in [FK2].

THEOREM 0.1. Let C be a general k-gonal curve C of genus g > 2k — 1 for k > 4. Let L be an
arbitrary line bundle on C' of degree deg(L) > 2g + k. Then

br(L)—k,l(Ca L) = T(L) — k.
In the result above, r(L) = h(L) — 1. This result was conjectured in [FK2, Conjecture 0.5].

To explain the importance of Theorem 0.1 and illustrate the link to [EL], we first reinterpret
the statement geometrically. One of the only classes of varieties for which it is possible to deter-
mine the minimal free resolution are determinantal varieties described by the degeneracy locus
of a morphism of vector bundles V; — Vs, see [L]. One strategy to study syzygies of a curve C'is
to embed it into a determinantal variety Z and then restrict the determinantal syzygies to C.

This strategy was employed in Voisin’s proof of Green’s conjecture for an even genus g = 2k
curves C' lying on a K3 surface X. In this case the determinantal variety is a Grassmannian
G(k + 2,2) produced out of a rank two Lazarsfeld-Mukai bundle on X (itself resulting from a
minimal pencil on C'). Voisin then proves that the length of the linear strand of the resolution of
C is equal to that of G(k + 2,2). See also the recent paper [AFPRW], which removes the need
to study Hilbert schemes as in Voisin’s original approach.

For another example, a minimal pencil f : C' — P! of degree k induces a scroll

xp = |J (') c P,

pcP!

The scroll is a determinantal variety containing the embedded curve (C,L). In this case the
Lascoux resolution of the scroll simplifies to an explicit resolution first found by Eagon—Northcott,
see [W, (6.1.6)]. By comparing the syzygies of (C,w¢) to those of the scroll X, ., Schreyer has
classified all Betti tables of canonical curves of genus g < 9 in geometric terms, [Schl].

If deg(L) > 2g + k, then the Eagon-Northcott complex shows K, 1(Xr,O(1)) = 0 for p >
r(L) — k, whereas b,y 1(Xr,O(1)) = 7(L) — k. Thus Theorem 0.1 can be interpreted as
saying that all linear r(L) — kth syzygies of the curve arise from the scroll, i.e. restriction induces
an isomorphism K, ()_;1(Xr,O(1)) =~ K,)—1(C,L). Since there are no relations amongst
the r(L) — k™ linear syzygies of the scroll X; the isomorphism above implies the vanishing
bp1(C,L) =0 for p > r(L) — k as predicted by [EL]. In this way Theorem 0.1 provides a more
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geometric explanation for this vanishing statement, which was originally proved for line bundles
of asymptotically high degree using Serre vanishing.

Theorem 0.1 also provides the first non-trivial step towards understanding the non-zero terms
in the minimal free resolution of C, by giving the value of the last nonzero Betti number on the
linear strand. This extremal Betti number is known to be responsible for much of the variance
in the Betti tables of curves, [Sch2].

The bound of Theorem 0.1 is optimal. Suppose g = 2k — 1 and C is a general curve of genus g
and gonality k. Then, C admits both A € W} (C) as wellas B € W}, (C). Set L := wg®B. There
are two scrolls containing C, the scroll X, given by the union of Span(D) for D € |A| as well as the
scroll Y7, = UE€|B| Span(FE). Both scrolls contribute syzygies, implying b,(1)—,1(C, L) > (L) —k.

The second goal of this paper is to use geometric constructions to refine the existing results on
Green’s Conjecture for special canonical curves, [G2]. Firstly, we prove that Green’s conjecture
holds for general covers of elliptic curves of arbitrary degree, generalizing a result of Aprodu—
Farkas when d = 3 [AF2].

THEOREM 0.2. Fix any elliptic curve E and let f : C' — FE be a general, degree d primitive cover
of E for d > 3. Then Green’s Conjecture holds for C'.

Our interest in this result derives from several angles. On the one hand, the strongest known
prior result on Green’s Conjecture is Aprodu’s Theorem, [Ap2], stating that Green’s conjecture
holds for any k-gonal curve C of genus g provided one has the linear-growth condition

dim W, ,(C) < n, forall0<n<g+2— 2k

Aprodu’s Theorem was a crucial part of Aprodu—Farkas’ well-known result that Green’s conjec-
ture holds for curves on arbitrary K3 surfaces, [AF].

The linear growth condition is conjecturally equivalent to requiring
dim W} (C) =0,

provided g < 2k — 1. Hence the most interesting open case of Green’s Conjecture is for curves
where this condition fails, i.e. for curves of non-maximal gonality with infinitely many minimal
pencils. Perhaps the most natural example of such curves arises from general covers f: C' — F
of elliptic curves of degree d. Provided 2d < L%J, then such curves C' have gonality 2d and note
that we always have dim ng(C) > 1, by pulling back line bundles of degree two from E.

Covers of elliptic curves also play an important role in the computer experiments of Schreyer,
[Sch2, §6], which indicate that the Betti tables of covers of elliptic curves seem to behave very
differently from general curves of gonality 2d. In particular, the last Betti number by_241(C,wc)
in the 2-linear strand need not be a multiple of g — k, which is rather strange given the com-
putations of Hirschowitz—Ramanan [HR]. It is this phenomenon that led us to consider such
curves.

The last result we prove is an improvement to the prior results on Green’s conjecture for
curves of even genus and maximal gonality. Recall that results of Hirschowitz—Ramanan [HR],
when combined with [V2], establish Green’s Conjecture for all curves of odd genus and maximal
gonality. In the case of curves of even genus ¢ = 2n and maximal gonality &k = n + 1, the
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best known prior result is Aprodu’s Theorem, establishing the conjecture for curves C' with
dim W}, ;(C) = 0. One always has dim W}, ,(C) < 1 by [FHL], so it remains to analyse the case

dim W, (C) = 1.
We go quite a long way towards resolving this remaining case:

THEOREM 0.3. Let C be a smooth curve of genus g = 2n and gonality k = n + 1. Suppose for
z,y € C general, there is at most one A € W} ,(C) such that A(—z — y) is efective. Further
assume h°(C, A®%) = 3. Then C satisfies Green’s Conjecture.

An example of a curve satisfying the assumptions above is given by a general degree d
primitive cover f : C — FE of an elliptic curve, where n is odd, 2d = n + 1 and C' has genus
2n = 4d — 2.

0.1 Techniques

The results above are proven by associating geometric varieties and constructions to syzygy
spaces. In the process, we obtain some technical results on syzygies which we believe are of
independent interest.

To explain the techniques, first recall that syzygy spaces K;;(X, L) can be identified with
the middle cohomology of
i+1
N\ H(L) @ H((j — 1)L —>/\H0 L)® H(L) % /\H0 L)® H((j + 1)L),
where 9§ is the Koszul differential.

Suppose V' C HY(X, L) is a codimension one subspace, and let pry : P(H°(X,L)Y) --»
P(VV) be the associated projection morphism. As first observed by Green [G3, §1.b], it can be

useful to compare the syzygies of I'x (L) when considered as a Sym(V') module to its syzygies as
a Sym (H°(X, L)) module. Namely, letting K; ;(T'x (L), V) denote the middle cohomology of

i+1 i—1
/+\V®H0((j— L) /\V®H° GL) % \VeH((j+1)L),
we have the projection map
pry KZ‘,]'(X, L) — Ki,Lj(FX(L),V),
see [AN, §2.2.1]. If we suppose that ¢, : X — P(H°(X, L)) is projectively normal, that z €
X CP(HY(X, L)) is a point corresponding to a codimension one subspace V C H°(X, L), and

that further the projected variety pr,(X) C P(VV) is projectively normal, then the projection
map factors through a map

proe @ Kij(X, L) = Kio1,j(pre(X), Opr, (x)(1)),
prz (X ( )) C K- 1J(FX L) )

(

The projection map pr, : K;;(X, L) = Ki—1;(prz(X), Opr,(x)(1)) has been used by Choi,
Kang and Kwak to prove that if the projective variety X Q P(H 9(X,L)V) as above satisfies
the Green—Lazarsfeld property (N,) and if, furthermore, pry(X) ~ X, then pr (X) C P(VV)
satisfies property (Np—1), [CCK]. Specialising to the case where X is a smooth curve C, Aprodu
has used the prOJectlon map to study the Green and Green—Lazarsfeld Conjectures for curves,
[Ap1].

where we have an inclusion K;_1 ;(prz(X), O
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Our first technical contribution is to relate the projection map to Green’s notion of syzygy
scheme. For a syzygy o # 0 € K, 1(X,L), the syzygy scheme Syz(c) is defined to be the
largest variety Y C P(HY(X, L)V) containing X such that a arises via restriction from a syzygy
o € K,1(Y,0y (1)), [G1]. It is well known that one has the following containment

prz(Syz(@)) € Syz(pre(a))

for any x € X, relating the syzygy scheme of a syzygy to the syzygy scheme of its projection,
see [AN, §3]. Furthermore, it is known that if Z C X is a spanning set of P(H°(X,L)") and
a # 0, then there is some x € Z such that pr,(a) # 0, or, equivalently, Syz(pr.(«)) # P(VV),
[AN, Prop. 2.14].

We provide here a generalization of both of the above statements, showing that one can
completely recover the syzygy scheme of an element o € K, 1(X, L) from the syzygy scheme of
projections pr;(a). Let X C P(H°(X, L)V) be an integral, projective variety embedded by a very
ample line bundle L as above, and assume for simplicity that X is projectively normal. For any
r€ X CP(HX,L)V), let W, C H°(X, L) be the corresponding codimension one subspace.

THEOREM 0.4. Let X be as above and let Z C X be a subset spanning P(H(X, L)V). Assume
that for all x € Z, pr (X) C P(W)) is linearly normal and non-degenerate. Let o # 0 €
K,1(X, L). Then

Syz(a) = (] Cone, (Syz(prs(a))) .,

r€Z
where, for any Y € P(W,/), Cone,(Y) C P(V") denotes the cone with vertex x.

Our next technical result is related to the following early application of the technique of
projection of syzygies:

THEOREM 0.5 Aprodu’s Projection Theorem. Let C' be a smooth curve of genus g and suppose
xz,y € C are distinct points. Let D be the g + 1 nodal curve obtained by identifying x and y.
Suppose K, 1(C,wc) = 0. Then K,11:1(D,wp) = 0.

This allows one to prove the generic Green’s conjecture for curves of a fixed gonality by
induction on the genus. Perhaps the most interesting case of Theorem 0.5 is when C' is a curve
of gonality k and Clifford index k — 2, with minimal pencil f : C — P! of degree k, and where
p=g—k+1and x,y € C are distinct points with f(z) = f(y). In this case, Theorem 0.5 implies
that if C satisfies Green’s Conjecture, then the nodal curve D obtained by identifying x and y
also has gonality k£ and Clifford index k& — 2, and furthermore D satisfies Green’s conjecture. This
provides an approach to proving Green’s conjecture for general curves of a fixed gonality using
induction and was one of Aprodu’s main motivations for formulating Theorem 0.5.

It is natural to ask for a converse of this result, i.e. to find an assumption on D as above to
guarantee that C' satisfies Green’s Conjecture. We recall from [SSW], [FK2]|, [BS], that Schreyer
has stated the following strengthening of Green’s Conjecture:

CONJECTURE 0.6 Schreyer’s Conjecture. Let C be a curve of genus g and non-maximal gonality
3<k< g;r—l. Assume W}(C) = {A} is a reduced single point and A is the unique line bundle of
degree at most g — 1 achieving the Clifford index. Then

bg—1,1(C,wc) =g — k.
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Note that the condition that W} (C) is reduced is equivalent to demanding h%(C, A®?) = 3.

Schreyer’s conjecture has been proven under the “bpf-linear growth” genericity assumption in
[FK2]. As explained earlier, Schreyer’s conjecture implies both Green’s Conjecture by—_p41,1(C, we)
0 and, further, implies that all syzygies at the end of the 2-linear strand of the canonical curve
come from the scroll X,,,. In terms of syzygy schemes, Schreyer’s conjecture is equivalent to the
statement that Syz(a) = X, for all a # 0 € Ky 1(C,we).

Our partial converse to the Aprodu Projection Theorem then reads:

THEOREM 0.7. Let D be the 1-nodal, k-gonal curve as above, with normalization the smooth
curve C of genus g and line bundle B € W}'(D) satisfying v*B ~ A. Assume

(i) h°(D,B®?%) = 3, and
(11) bg+1_k71(D,WD) =g + 1—-k.
Then Kgy1-11(C,we) = 0.

In other words, if the k-gonal nodal curve D of genus g + 1 satisfies Schreyer’s Conjecture,
then the smooth k-gonal curve C of genus g satisfies Green’s Conjecture.

We now briefly explain how these technical results imply the main results. The key ingredients
in the proof of Theorem 0.1 are Theorem 0.4 together with the following important result of
Eisenbud—Popescu [EP]:

THEOREM 0.8 Eisenbud—Popescu. Let X C P" be a rational normal scroll of degree f and
0#ae€ Ky 11(X,0x(1)). Then Syz(a) = X.

Theorem 0.2 on Green’s conjecture for elliptic curves is proving by combining the Aprodu
Projection Theorem with an analysis of the Brill-Noether theory of covers f : C'— E as above,
along the lines of [AC]. Lastly, Theorem 0.3 on Green’s conjecture for curves of even genus is an
immediate corollary of Theorem 0.7.

Acknowledgments: We thank Juliette Bruce for an interesting discussion on projecting syzy-
gies. We thank Gavril Farkas for suggesting that our results could be applied to Green’s Conjec-
ture for curves of even genus and maximal gonality.

1. Projections of Syzygy Schemes

The goal of this section is to prove a precise relationship between the syzygy scheme of a linear
syzygy and that of its projection. We first need to recall the notion of a syzygy scheme. Let
X C P" be a closed subscheme such that X is non-degenerate, i.e. the restriction map

V = H'(P", Opn(1)) = H°(X,0x (1))

is injective. We let S(X') denote the homogeneous coordinate ring and let K, ,(S(X), V) denote
the syzygies of S(X) as a Sym(V) = S(P™) module. We have an isomorphism

prl(S(X)’ V) = Kp71,2 (IXa V)v
where Ix is the ideal of X, by [AN], Prop. 1.27, and further

p—1 p—2
Ky 12(Ix, V) =Ker(\ V& (Ix)s = N\ V& (Ix)s).
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If Y C P" is any closed subscheme containing X, then the inclusion Iy C Ix induces an inclusion

I‘eSY
Kp1(S(Y), V)~ Ky 12(Iy,V) — K,_12(Ix,V) ~ Kp1(S(X), V).

DEFINITION 1.1 [AN], §3. Let a be a nonzero element of K, 1(S(X), V). Then the syzygy scheme
Syz(a) € P" is defined to be the largest closed subscheme Y C P" containing X such that
o € Im(resY)

We recall some basic facts about syzygy schemes from [AN, §3]. Let V' be a vector space of
dimension n+1 and identify P" ~ P(V") := Proj(Sym(V)). For any = € V'V, let W,, C V denote
the kernel of z : V — C and let i, : A’V — AP"' W, be the contraction mapping defined by

in(UL A AY) =D (D AL AGA L v @ a(v;).
i
The following statement is [AN], Lemma 3.7 and Prop. 3.15.
PROPOSITION 1.2. X C P(VV) be a non-degenerate, linearly-normal, projective variety.

(i) Let o € K,1(S(X),V) and let @ € Hom(VY, NP V) ~ APV ® V be a representative for a.
Then Syz(a) = {[z] € P(VV) | ip(a(z)) = 0}.

(ii) For any x € V'V let pr, : P(VY) — P(W,/) denote the projection with center x. Suppose
that both X and Y := pr,(X) are linearly normal as well as non-degenerate. Then for any
nonzero a € K,1(S(X),V), € Syz(a) if and only if there exists 8 : WY — NP~ W, such
that we have a commutative diagram

VY —S s NPV

.

WY o AW

Part (ii) of the above proposition can be rephrased. In the notation of the proposition,
assume X and Y are linearly normal and non-degenerate. Recall from [AN, §2.2.1] that there is
a “projection map”

prg - Kp71 (S(X), V) — Kp—l,l (S(X), Wm)
Then one can rephrase Proposition 1.2 (ii) as ¢ € Syz(«) if and only if pry(a) € Kp—11(S(Y), Wa).

The next result provides an improvement of [AN, Lemma 3.17(ii)].

THEOREM 1.3. Let X C P(VV) be an integral, projective variety and let Z C X be a set such

that Span(Z) = P(VV). Assume that for all x € Z, both X and pr,(X) C P(W,/) are linearly
normal and non-degenerate. Let o # 0 € K, 1(S(X), V). Then

Syz(a) = () Cone, (Syz(prz(a))),
T€Z

where, for any Y € P(W,/), Cone,(Y) C P(V") denotes the cone with vertex x.

Proof. Let x € Z C Syz(a). By Proposition 1.2 (i7), for any y € V¥ we have a commutative
diagram

VYT APV APy

lf i |-

W‘;/ B /\p—l Wx Y (y) /\p72 va
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where @ resp. 3 represent a resp. pri(a) and f := pr, is the usual projection map of vector
spaces. By Proposition 1.2 (i), y € Syz(«) if and only if iy (@(y)) = 0. Hence if y € Syz(«), then

it (B(f(y)) =0,

and hence pry(y) = f(y) € Syz(prz(a)), by Proposition 1.2 once again. Thus y € Cone (Syz(prg(a))).
Hence we have established the inclusion

Syz(a) C (] Cone, (Syz(prs(a))).

T€EZ

For the reverse inclusion, suppose y € [, Cone; (Syz(prz(c))), or, equivalently f(y) €
Syz(prz(«)) for all z € Z. Then

iz(iy(@(y))) =0, for all z € Z.

By Proposition 1.2, we need to show i,(a(y)) = 0. Since Z spans P(V"), it suffices to observe
that, for any nonzero u € A\ “ly
(i) There is some z € V' such that i,(u) # 0.
(ii) The set of z € VY such that i,(u) = 0 forms a subspace.
Indeed, (ii) is obvious, whereas for (i) we observe that i.(u) = 0 if and only if u € A" W, by

[AN], Remark 1.3. Hence (7) follows from the trivial observation that there exists a codimension
one subspace W C V with u ¢ AP~1W. O

2. Extremal Syzygies of Embedded Curves

In this section we will prove [FK2], Conjecture 0.5, which states that all extremal syzygies of
a general curve of non-maximal gonality embedded by a complete linear system of sufficiently
high degree arise from a scroll. Let C' be a smooth k-gonal curve of genus g > 2k — 1, for k > 2
and L € Pic(C) a line bundle. If C is sufficiently general, then there exists a unique line bundle
A with deg(A) = k, h°(A) > 2, [AC]. Further, for such a general k-gonal curve, h’(A42%) = 3 or,
equivalently, the Brill-Noether locus W}}(C) is smooth. Assume further h!(L — A) = 0. Consider
the embedding ¢, : C < P for r(L) := h%(L) — 1 and the scroll

X1 = U Span(D) € PV,
De|A|
[Sch1]. The scroll X, has degree (L) + 1 — k in P"") and has Betti numbers

(L)+1- k)
p+1
whereas by, (X1, Ox, (1)) = 0 for ¢ > 2. As seen in the previous section, we have an inclusion

resc : Kp,l(XLa(QXL(l)) — prl(C, L)

bp,1 (X1, Ox, (1)) =p<r

Conjecture 0.6 from [FK2| states that if deg(L) > 2g + k then resc is surjective in the extremal
case p = r(L) — k, which is the largest value of p such that b, 1 (X, Ox, (1)) # 0. Note that the
surjectivity of resc : Kp(r)—x,1(X1, Ox; (1)) = Kpy—k,1(C, L) is equivalent to the statement

X1, C Syz(a) for all a € Ky(1)—,1(C, L). (1)

We will prove equation (1) using Proposition 1.3, together with the following important result
of Eisenbud—Popescu.
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THEOREM 2.1 [EP]. Let X C P" be a rational normal scroll of degree f and 0 # o €
K¢ 11(X,0x(1)). Then Syz(a) = X.

The next proposition will be the key step in our proof.

PRrROPOSITION 2.2. Let C' be a general k-gonal curve of genus g > 2k — 1 and k > 2. Suppose
by(1)—k,1(C, L) = r(L)—k for some line bundle L of with h'(L—A) = 0. Then b,(1,y+1_51(C, L(z)) =
r(L)+1—k for any z € C.

Proof. Set M = L(z) and let a € K, (pr)—,1(C, M) be nonzero. By assumption b,.(ns(—z))—,1(C, M (—2))
takes the minimal possible value r(M (—xz)) — k. Hence, by semicontinuity of Koszul cohomology,

there exists a dense open U C C such that b,.y(—y))—,1(C, M(~y)) = r(M(~y)) — k for all

y € C, and, further pry(a) # 0, by [AN, Prop. 2.14]. By Proposition 1.3,

Syz(a) = () Coney (Syz(pry(a)))
yelU

where pry(a) € Ky (ar(—y))—k,1(C, M(~y)). By assumption the map
resc : Kon(—y) k1 (Xns(—9), Onr(—y) (1) = Koua(—y)) -1 (C M (=)
is an isomorphism, so Theorem 2.1 gives
Syz(pry(a)) = X,y € PO

Observe that Xj;(_y) = pry(Xar). Hence Xy C Coney(pry(XM(_y))). Hence X); C Syz(a), as
required. O

We will prove equation (1) by induction. The initial step is provided in the following propo-
sition.

THEOREM 2.3. Let g = 2i+ 1 and let C' be a smooth curve of genus g and gonality i+ 1. Assume
there is a unique A € W}, |(C) and, further, for such a line bundle A we have h°(A?) = 3. Let
L be a line bundle of degree 2g which is i-very ample, or, equivalently, L. — K¢ is not in the
difference variety Ciy1 — C;—1. Then b; 1(C, L) = i.

Proof. This follows from the results in [FK1], in particular the equality of cycles
Gy; = Gec + ihur

on Mg 4. Namely, if D = Z?il x; € |L| is a reduced divisor, then the marked curve (C, D) €
M 24 is not in the divisor Gec by definition. Hence, on an appropriate étale cover ¢ : S — My 24
about p = [C, D] the order of vanishing of the function defining the divisor Syz(¢) at p is given
by i multiplied by the order of vanishing of hur(¢). But the assumption that there is a unique
A € WL ,(C) and h%(A?) = 3 shows that hur(¢) vanishes to first-order at p and thus Sns(¢)
vanishes to order i so that b;1(C, L) < i by construction of the syzygy divisor &y3, cf. [FK2,
Thm. 3.1]. The condition L — K¢ ¢ C;41 — C;_1 implies h'(L — A) = 0 and that the scroll X7,
has degree i 4+ 1. As we already have seen that b;1(C, L) > b;1(Xr,Ox, (1)) = i, this completes
the proof. O

As an immediately corollary, we can prove [FK2], Conjecture 0.6 for any smooth curve C of
odd genus g > 5 and submaximal gonality k = %, assuming there is a unique A € Wil_H(C)
and, further, h?(A2%) = 3.
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COROLLARY 2.4. Let C' be a smooth curve of odd genus g = 2i + 1 for ¢ > 3 and submax-
imal gonality i + 1. Assume there is a unique A € W} (C) and, further, h%(A%) = 3. Then
br(r)—i—1,1(C, L) = r(L) —i — 1 for all line bundles of degree deg(L) > 2g +i + 1.

Proof. By Proposition 2.2, it suffices to assume deg(L) = 2g + i + 1 = 5¢ 4+ 3. By Theorem 2.3,
together with Proposition 2.2, it suffices to show that there is an effective divisor D € C;41 such
that L — Ko — D ¢ Ciy1 — Ci—1. By [FK2], proof of Theorem 0.2, it suffices to show that the
secant variety Véf; (L) has dimension at most 7, and for this it is sufficient to show Wi2+3(0) = 0.
In the range i > 3, any B € W72 5(C) would contribute to the Clifford index, so it suffices to show
that Cliff(C') = ¢ — 1 and, further, A is the unique line bundle of degree at most g — 1 achieving
the Clifford index. But this follows from the well-known result of Hirschowitz—Ramanan that our
assumptions imply that Schreyer’s Conjecture holds for C, see [HR] and [FK2, Theorem 3.1],

together with the easy direction of Schreyer’s conjecture, [SSW, Prop. 4.10]. O

We now arrive at the main result of this section.

THEOREM 2.5. Let C' be a general k-gonal curve C' of genus g > 2k — 1 for k > 4. Let L be an
arbitrary line bundle on C of degree deg(L) > 2g + k. Then b1y 1(C, L) = r(L) — k.

Proof. We mirror the proof of [FK2, Thm. 0.1]. Namely, fix & > 4. We prove the result by
induction on the genus g of C. If ¢ = 2k — 1, then the claim is Corollary 2.4. So, assume the
claim holds for a general k-gonal curve C. By Proposition 2.2, it suffices to show that, for a
general k-gonal curve X’ of genus g + 1 and any line bundle L' on X’ of degree 2g + 2 + k, we
have bg41,1(X’, L") = g+ 1. Using Proposition 2.2 once more, it is further sufficient to show that
there exists a point p € X’ such that by 1(X’, L'(—p)) takes the lowest possible value g. Now let
X be the nodal curve C' Uy E where C'is a general k-gonal curve as above, ¢ is a branch point of
some pencil f: C — P! of degree k and F is an elliptic curve. Then X is a stable, genus g + 1
curve of compact type, which is a limit of smooth k-gonal curves. By semicontinuity of Koszul
cohomology, and since X is of compact type, it suffices to show that for any line bundle L on X
with
deg(LE) =1, deg(LC) =29+ 1+ k

there exists a point p’ € F \ {¢} with

(i) bg1 (X, L(=p")) =g

(i) h'(X, L(-p")) = h (X, L¥?(-2p)) = 0,

see [FK2], proof of Theorem 0.1. Choose a general point p’ € E \ {¢}. Statement (ii) follows
immediately from the Mayer—Vietoris sequence

0— Lo(—q) = L(=p') = Lg(-p') — 0.
For statement (i), consider the commutative diagram

AT HO(C, L(—q)) —2= N? HO(C, L(—q)) ® HO(C, L(—q)) —2= A?~" HO(C, L(—q)) ® H(C, L®*(~2q)) ,

| | F
AKX, L(—p') <5 AT HOX, L(—p) ® HO(X, L(~p)) -+ A HO(X, L(—p/) @ HO(X, L9*(~2))

where «, 8 are isomorphisms, and ~y is induced from the natural composition

H(C, L®*(=2q)) = H"(C, L**(~q)) = H"(X, L**(~2p")).

10
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Since + is injective, we have a natural isomorphism
Kg,l(ca L(_Q)) l> Kg,l(Xa L(_p,))

induced on the cohomology of the rows in the above diagram. By the induction hypothesis,
bg.1(C, L(—q)) = g, which completes the proof. O

3. A converse to Aprodu’s Projection Theorem
Recall the following theorem of Aprodu, [Apl].

THEOREM 3.1 Aprodu’s Projection Theorem. Let C' be a smooth curve of genus g and suppose
x,y € C are distinct points. Let D be the g + 1 nodal curve obtained by identifying x and y.
Suppose K, 1(C,wc) = 0. Then K,111(D,wp) = 0.

One important application of this result is that it provides an approach to proving Green’s
conjecture for curves of a fixed gonality by induction on the genus. In this sense the most inter-
esting case of the Aprodu Projection Theorem is where p = g — k + 1, where k is the gonality of
C. The goal of this section is to prove a partial converse of Aprodu’s Theorem, allowing one to
deduce Green’s Conjecture K, j41,1(C,wc) = 0 by assuming that D satisfies Schreyer’s Conjec-
ture on syzygies arising from scrolls, which is a stronger assumption than Green’s Conjecture,
see [SSW], [FK2].

Let C be a smooth curve of genus g and gonality k > 3, let A € W!(C) and let T € |A| be
a general divisor. Choose distinct points z,y € T and let D be the nodal curve of genus g + 1
obtained by identifying x and y. Then there is a base point free line bundle B on D with two
sections such that v*B ~ A, where v : C — D is the normalization morphism.

Embed D in PY via the canonical linear system and let m, : P9 --» P9~! be the projection
from the node p € D. Then the canonical curve C' C P91 is the projection mp(D). Further, let
Z C PY denote the cone over m,(D) with vertex at p. Then D C Z. We denote by v : Z — 7Z the
desingularization of Z. The strict transform D’ of D is isomorphic to C' and §|D, ~ .

By [Ha, V.2], Z ~ P(O¢ ®we) and Pic(Z) ~ Z[H] @ *Pic(C), where H denotes the pull-back
of the hyperplane section of P9 and

t:P(Oc ®we) — C
is the projection map.
LEMMA 3.2. We have Oz(D') ~ Oz(H) ® t*Oc(z + y).

Proof. The strict transform D’ corresponds to a section s : C' — P(O¢ @ we). We have s*H ~
v*wp ~ we(z +y). By Prop. 2.6, [Ha, V.2], we have a short exact sequence

0N —0Oc®wec — s*H — 0,
with (*N ~ H(—D'"). By taking determinants of the short exact sequence above
N ~we(—s"H) ~ Oc(—z — y).
Applying * gives O3(D’) ~ Oz(H) ® t*Oc(z + y), as claimed. O
By the previous lemma, we have a short exact sequence

0—=H" (=" (z+y) = Oz = Op =0

11
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which induces an exact sequence of S := Sym (H 0(2 , 7—[)) modules

0= @ H° (HECD (@ +y)) » @ H (157) S P H (Cwi ez +ay))

q€Z q€Z q€Z

where we used the identification C' ~ D’. We let

M := Im(«)
be the image of a. Hence we have a short exact sequence
0—PH° ('H®(q_1)(—b*(l‘ + y))) — P H" (H®) > M -0 (2)
q€Z qEZ

of § modules.
PropoOSITION 3.3. The following statements hold:
(i) The inclusion M C @qGZ H° (C, w?q(qx+ qy))) induces an isomorphism Kp1(M,S) ~
K, 1(C,we(x +y)) of syzygy spaces, for all integers p.

(ii) Restricting to the hyperplane section induces an isomorphism Kp7q(2,’H) ~ K, 4(C,we),
for all p, q.

(iii) We have a natural exact sequence
g > *
0= Kp1(Cwe) = Kpa(Cowe(z +y) = Kp-11(Z, = (2 +y)i H) = Kp1,2(C,wc)
for all p € Z.

Proof. We have the isomorphism H(Z,H) ~ H*(Oz(1)) — H(Hp/) ~ H°(Op(1)), and thus
the degree one piece M is isomorphic to H? (C,wc(x + ))). The first claim now follows [FK3],
proof of Lemma, 1.3.

Since C' C P97 ! is projectively normal, we have surjections HO( JH®Y) ~ HO(Z, H®T) —
HO(C, w?q) for all ¢ > 0. The second claim then follows from the proof of the Green—Lefschetz
Theorem, [G2, Thm. 3.b.7].

For the final claim, we have Kp,o(z —*(z 4+ y); H) = 0. Taking Koszul cohomology of the
short exact sequence (2) yields the exact sequence

0 Kp1(Z,H) = Kpr(M,S) D Kp11(Z, —1*(x + y): H) = Kp_12(Z, H).
The claim then follows from the previous statements. O
We have a short exact sequence
0—=0p—v.0c— 0O, —0,

inducing injective maps

HO(D,w§?) — H(C,wg(gz + qv)), ¢ >0,
which are isomorphisms for ¢ = 0, 1. Since we may write

Kp1(D,wp) ~ Ker (ApHO(wD) ® HO(wD)/Ap+1H0(wD) — AP H (wp) ® Ho(w%2)) ,

and likewise for K, 1(C,wc(x + v)), we have a canonical isomorphism

KILI(O? wc(x + y)) = KPJ(Dv CUD), (3)

12
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for any p.

Our goal is to show that the map ¢ : K, 1(C,we(x+y)) = Kp—11(Z, —*(z+y); H) is injective
for p = g — k+1 under certain hypotheses, which then implies K11 1(C,wc) = 0. To proceed,
we need to use the Eagon—Nothcott resolution of a scroll, [Schl, §1]. Let

E=0pi(e1)®... 0 Opi(eq), €; > 0for all i
be a globally generated vector bundle of rank d on P! and let
X =j(P(€)) c P,

r = h(Op(g)(1)) — 1 be the associated ruled variety of dimension d and minimal degree r —d+1,
where j : P(£) — P (H"(Op(g)(1))) is the natural morphism.

Let p € X be a smooth point and consider the projection
¢ P --s Pt

Let Y C P" denote the cone over the image m,(X), with vertex at p. Then X C Y and the
cone Y is a variety of minimal degree of dimension one higher than X. We may resolve Y by a
smooth rational normal scroll Y, see [EH]. We have a birational morphism Bl,(Y) — Y from
the blow-up of Y at p to Y. Let I Y — Y denote the resolution of singularities, and let X’ C Y
be the strict transform of X. Let H, R denote the class of the hyperplane and ruling of Y. These

classes span Pic(Y).
LEMMA 3.4. We have Oy (X') ~ Op(H +R).

Proof. Let a,b be such that Op(X') ~ Oz (aM + bR). Firstly, the image of the ruling on the

scroll P(&) gives the ruling on 7,(X) under the map 7, o j, and this pulls back to the ruling

R on Y under mp o . We see from this that X’ meets a general ruling R of Y in a linear

space of codimension one, and so a = 1. We have deg(Y) = deg(m,(X)) = deg(X) — 1. Thus,

if d =deg(Y), d+1=HI™X) . (¢} +bR) = ad + b, and so b = (1 — a)d + 1 which gives

a=1,b=1. O
By the above lemma, we have a short exact sequence

0= Op(-H—-R) = Oy = Ox — 0.

Notice that, by the Leray spectral sequence applied to Y — P!, we have Hl(?, HEIH(-R)) =0
for ¢ > 0. Thus we have a short exact sequence

0= @PHY H(-R) - P H (Y, 1) —» P H (X', 1) — 0

q€Z q€Z qEZ
of Sym (H 0 (17, 7—[)) modules. This induces a long exact sequence
0= K,y (f/, _R, H) S K (Y, H) — Kt (X H) 2 K1y (17, _R; H) Ky 1oV H) ..

LeEMMA 3.5. Set f =r —d+ 1 = deg(X). Then
JANK Kf_l,l(X/, H) 1> Kf_gyl(f/, —R; H)

is an isomorphism for p = f — 1.

13
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Proof. The Eagon—Northcott complex provides minimal resolutions for the scrolls X’ and 17, see
[EN] and [Schl]. These resolutions have length one less than the degree of the variety, and all
matrices between terms in the resolution have linear forms as entries, with the exception of the
first map, which has quadratic entries. Thus Ky_11(Y,H) = K;_22(Y,H) = 0. O

We now arrive at the main result of this section.
THEOREM 3.6. Let D be the 1-nodal, k-gonal curve as above, with normalization the smooth
curve C of genus g and line bundle B € W} (D) satisfying v*B ~ A, for k > 3. Assume
(i) h°(D,B®?%) = 3, and
(ii) bgt1-k1(D,wp) =g+1—k.
Then Ky 1_41(C,wc) = 0.

Proof. By Proposition 3.3, it is equivalent to show that the boundary map

o : Kg+1_k71(0, welx+y)) — Kg_k71(Z, -z +y);H)
is injective. Consider the scroll

X=|]J(s)cPY

s€|B|

induced by the given g} on D, [Schl, §2]. Then X has degree f = g+ 2 — k and, further, is
smooth since h?(D, B®?) = 3, [FK2, §4]. As above, let Y denote the cone over m,(X) with vertex
at p, where p € D is the node and

T+ P9 s P91

is the projection away from p. Further, let p : Y — Y denote the resolution of singularities, and
let X’ C Y denote the strict transform of X.

Let Z C PY denote the cone over C ~ 7,(D) with vertex at p, and let v : Z — Z be the
desingularization. We have a natural diagram

X Y
C:D'(—>Z

relating the strict transforms D', X’ and the desingularizations EN/, Z of the cones over the
projections. Pulling back the class of the ruling R on Y to Z yields t* A, where
L Z ~P(Oc ®we) — C

is the projection, as above. Let T' is the unique element of |A| passing through x and y. We have
a commutative diagram of short exact sequences

0 —— @y H'V HYH(-R)) —— Dyer HO(Y H) — Dz HOX' 1) — 0

JVOLOT‘Z lTZ
N

0 — @yep H (Z,H®<qfl>(—b*(:c + y))) — By H (Z,H@“Y) s M 0

where the maps 7 are induced by pull-back, where a is induced by multiplication by t*T'(—z—y),
where the lower row is the short exact sequence (2) defined earlier and where the dashed arrow

14
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is the induced map. Note that, by Lemmas 3.2 and 3.4, the pull-back of the divisor X’ to 7 is
DU (T(—x —vy)).

Upon taking Koszul cohomology, we get the commutative diagram

Ky (X H) —2—— Ky (Y, R H)
JT’D/ J/Tg
Kg1-51(Ciwe(z + y)) Ky k1 (Z,—1* A;H)
5 Ky k1(Z,—1*(x +y); H)

where A is an isomorphism by Proposition 3.5. It thus suffices to show that rp/ is an isomorphism,
whereas «a and r are injective.

To see that rps is an isomorphism, first note that, since we have birational morphisms Bl, X —
X" — X, we have isomorphisms H%(Bl, X, qH) ~ H°(X', qH) ~ H°(X,qH) for all ¢ and so

Kp,l(Xla H) =~ prl(X, H)

Next, rps is injective by the same proof as [FK2], Lemma 4.4 (note D’ C Bl,X). From the
Eagon-Northcott resolution, we see bgy1-41(X,H) = f —1 =g+ 1 — k. Hence the claim follows
from the assumption byi1_x1(D,wp) = g+ 1 — k, since K, 1(D,wp) ~ K, 1(C,wc(x +y)) for
all p.

The injectivity of « follows from the commutative diagram
NFHO(H) @ HO(H — 1 A) —L— AIFTHO(H) @ HO(2H — 1+ A)
NIEEO(H) @ HOH — " ( + ) 53 A9—ELHO(H) @ HO2H — (z + y),
since « is the induced map Ker(vy;) < Ker(v2).

It remains to show 7 is injective. To begin, the commutative diagram

HY (Y, H—R) <25 HOY,H)
Iz 5
~ R85 ~
HYZ,H — *A) —Zy HYZ,H)
for general s € |R| shows that the pull-back map 75 : HY Y, H —R) < HY(Z,H — 1*A) is
injective. Next, the Eagon—Northcott resolution of

I'y(H;—R) = P H(Y,qH - R),
qEZ

as described in [Schl, Pg. 111], is 1-linear, i.e. prq(?, —R;H)=0unless ¢ =1 for all p > 0. In
particular, K, 2(Y,—R;H) =0 for all p > 0. Letting My be the kernel bundle

0— My — H(H) ® Oy — Hg — 0,

15
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then this implies HY(Y , AP My (H — R)) = 0 for all p > 0, by the kernel bundle description of
Koszul cohomology, [AN] (note that we have already observed H!(Y,H —R) =0). For all p > 0
we have the short exact sequence

p p—1

0—>;\MH®(H—R)—>/\H%?,H)®(7—[—R)—> N\ My ®(2H -R) =0

and canonical isomorphisms

Kp1(Y,~R;H) ~ H(Y, /’\ My @ (H—-R))

P
Kp1(Z,—1"A;H) ~ H(Z, [\ My, ® (H — 1* A)).
There is a commutative diagram

0 — HYY,APMy(H —R)) — APHY(H) @ HO(Y,H —R) — HO(Y, NP LMy (2H —R)) — 0

| [ |
0 — HO(Z, \PMy(H — 1*A)) — NPHO(H) @ HY(Z,H — 1*A) — H(Z, AP~ My (2H — 17 A))

with exact rows. The claim now follows from the snake lemma.
O

We end this section by proving a result on Green’s Conjecture for curves of even genus and
maximal gonality.

THEOREM 3.7. Let C' be a smooth curve of genus g = 2n and gonality k = n + 1. Suppose for
z,y € C general, there is at most one A € W, ;(C) such that A(—z — y) is efective. Further
assume h?(C, A®?) = 3. Then C satisfies Green’s Conjecture.

Proof. 1f, for z,y € C general, there is no A € W}, (C) with A(—z — y) effective, then
dim W} +1(C) = 0 and the result follows from [Ap2]. So we may assume that there is precisely
one A € W, ,(C) such that A(—z — y) is effective. Let D be the 1-nodal curve of genus 2n + 1
obtained by identifying  and y and let v : C' — D be the normalization. There is a line bundle B
on D of degree n+ 1 and with h°(D, B) = 2 such that v*B ~ A. Further, h°(C, A®2?) = 3 implies
that h®(D, B®?) = 3 (we have h°(D, B®?) > 3 by the base-point free pencil trick). Note further
that if T € Jac(D) is a rank one, torsion free sheaf of degree n + 1 with h%(D,T) > 2, then
we must have T' ~ B. Indeed, such a T' must be locally free, or else T ~ v, T’ for T' € W}(C),
contradicting that C' has gonality n, and then T' must be B from the assumption that there is at
most one A € Wl | (C) such that A(—z —y) is effective. By [FK2, Remark 3.2], b, 1(D,wp) = n.
From Theorem 3.6 we deduce that C' satisfies Green’s Conjecture. O

4. Green’s Conjecture for Elliptic Covers

In this section we prove Green’s conjecture for general elliptic covers. We first fix notation. Let
E denote a smooth elliptic curve, with polarization L = Og(p), for p € E a fixed point. We
denote by M (E,d;) the moduli space of stable maps f : C' — E, with C smooth of genus g > 2
and deg(f*L) = di > 1, and likewise let M (P!, ds) denote the moduli space of degree dy > 1,
genus ¢ stable maps to P!. We lastly write

Mg(E X Pl,dl, dg)
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for the Deligne-Mumford stack of stable maps f : C — ExP! with deg(f*L) = d1,deg f*Op1(1) =
da.

LEMMA 4.1. Fix g > 2. The stacks My(E, dy) respectively M (P",dy) are smooth of dimensions
2g — 2 resp. 2g — 2 + 2ds.

Proof. For any smooth, projective variety X and non-constant stable map f : C' — X from a
smooth curve C, the deformation theory of f is determined by the normal sheaf Ny, [BHT, §4]
which fits into the short exact sequence

OHTCEJC—)f*TxﬁNfHO.
In particular, when dim X = 1, Ny is supported on the ramification locus of f, and so b (C, Ny) =
0. Thus My(E,d;) and Mg(Pl,dg) are smooth, with dimension at a point f : C — X given by
hO(C, Ny), where X € {E,P'}. For X = E, we have
h0(C, Ny) = x(Oc) — x(w&) = 29 — 2,
whereas for X = P!,
R (C, Ny) = x(J*Op1(2)) — x(w&) =29 — 2+ 2dy.
O

PROPOSITION 4.2. With notation as above, let [f : C — ExP!] € ./\/lg(ExPl, dy,dy), for dy,dy >
1 be a point such that f is birational to its image. Then each component of My(E x P, dy,ds)
containing [f] is generically reduced and has dimension g — 1 + 2ds.

Proof. We follow [AC]. First of all, observe that each component I of My(E x P!, dy,ds) con-
taining [f] has dimension at least
dim My(E,dy) + My(Pt,da) — dim M, = g — 1 + 2ds.
Let [h: C" — E x P! € I be a general point. The normal sheaf N, of the morphism A fits into
an exact sequence
0— Kj — N — N;, — 0,

of sheaves on C’, where K}, is (non-canonically) isomorphic to Oz, where Z is the ramification
locus of h, and where Nj is a line bundle. By [AC, Lemma 1.4],

RONI) > g—1+2dy>g+1.
For any line bundle L on C’, if h'(L) # 0 then |L| is a sublinear system of |wc/| and hence
hO(L) < g. Thus h'(N}) = 0 and hence h'(Np,) = 0, so that I is smooth at [h]. Applying [AC,
Lemma 1.4] again, we may now conclude that Kj = 0, h is unramified and N}, is locally free of
degree

deg(h* Ty pr) +2g —2 =29 — 2+ 2ds.
Thus dim I = h°(Np,) = x(Ny) = g — 1 + 2ds as required. O

We denote by H[(d1) € My(E,dy) the open locus of primitive covers with simple ramifica-

tion. The space ’HgE (dy) is then nonempty and irreducible for g > 2, by a result of Gabai-Kazez,
[GK] (see also [B]).

For a smooth curve C, let W}!(C) be the Brill-Noether variety of line bundles L of degree
k with at least two sections, and let G}I(C) be the variety of g)’s, i.e. pairs of a line bundle
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A € WH(CO) together with a base-point free linear system V C H°(A) of dimension two, up to
the natural PGL(2) action, [ACGH]. If C has gonality k, then elements of W} (C) = G}(C) are
called minimal pencils.

COROLLARY 4.3. Let [f : C' — E] € ”Hf(dl) be a general point, let (A, V) € GéZ(C’) and suppose
A is not isomorphic to f*B for some B € Pic(E) with deg(B) > 2. Then

dimpq) Gy, (C) = 2dy — g — 2.

In particular, if 2d; < L%J, then C has gonality 2d, and if 2d; > L*‘%SJ then C' has gonality

L%j Moreover, if 2d; < L%j, all minimal pencils of C are of the form f*B, B € Pic*(E).

Proof. Let (A,V) € Gcllg(C’) be base-point free and suppose A is not the pull-back of a line
bundle from E of degree at least two. Then V induces a map C — P! of degree dy and we let
[h:C = ExPl e My(E x P!, dy,dy) be the product of this map with f. We claim that h
is birational to its image. Indeed, otherwise let D = h(C') be the image of h. Since f is simply
ramified and primitive projection to the first factor must induce an isomorphism pr; : D = E.
But we must then have that A is the pull-back of a line bundle B from E with deg(B) > 2, which
is a contradiction. So h is birational. Since we are assuming [f] is general, each component of
My (E x Pt dy, dy) containing [h] dominates ’Hf (d1) under the natural forgetful morphism and
all fibres have dimension

g—1+2dy — (29— 2),
by Proposition 4.2. After subtracting 3 = dim PGL(2), we see that each component of G} (C)
containing [A] has dimension 2ds — g — 2, as required. In particular, we must have ds > gTJ“Q. In

fact, since ds is an integer we have do > L%J (which is the gonality of a general curve of genus
g). The remaining statements follow immediately. O

We can now prove the main result of this section.

THEOREM 4.4. Let [f : C — E] € ’Hf(dl) be a general point. Then Green’s Conjecture holds
for C.

Proof. We may assume d; > 2 as Green’s conjecture holds for all elliptic curves. If 2d; > gT+3’

then by Corollary 4.3, C has maximal gonality k := L%J and, further, dim G}, n(C) < n for
n < g+ 2 — 2k. Thus the statement follows from a theorem of Hirschowitz—Ramanan [HR]
combined with Voisin’s Theorem, [V1], [V2] (in the odd genus case) and Aprodu, [Ap2, Theorem
2] (in even genus).

So it suffices to prove that, for fixed d; > 2 and all g > 4d; —3, the general point [f : C' — E] €
HgE(dl) satisfies by—24,+1,1(C,wec) = 0, which further forces gon(C) = 2d; = Cliff(C') 2. We will
prove this vanishing by induction, with the base case ¢ = 4d; —3 holding by the above. So suppose
[f:C— E]e ’Hf(dl) is a general point, with g > 4d; — 3, and suppose bg_24,+1,1(C,wc) = 0.
Let z,y € C be distinct points such that f(x) = f(y) and let D be the curve of genus g + 1
obtained by identifying x and y. Let ¢ : D — E be the unique morphism factoring through
f :+ C — E. By the Aprodu Projection Theorem 3.1, by42-24,,1(D,wp) = 0, which implies
bgt2—2d,1(D’,wh) = 0 for a general point [f': D' — E] € ’HgEH(dl) by semicontinuity of Koszul
cohomology. O
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