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Abstract

Atomic Force Microscopy was utilized to study the morphology of Gag, WRNA, and their
binding complexes with lipids in a solution environment with 0.1A vertical and 1nm lateral
resolution. TARpolyA RNA was used as a RNA control. The lipid used was phospha-tidylino-
sitol-(4,5)-bisphosphate (P1(4,5)P2). The morphology of specific complexes Gag-W¥RNA,
Gag-TARpolyA RNA, Gag-PI(4,5)P2 and PI(4,5)P2-WRNA-Gag were studied. They were
imaged on either positively or negatively charged mica substrates depending on the net
charges carried. Gag and its complexes consist of monomers, dimers and tetramers, which
was confirmed by gel electrophoresis. The addition of specific WRNA to Gag is found to
increase Gag multimerization. Non-specific TARpolyA RNA was found not to lead to an
increase in Gag multimerization. The addition PI(4,5)P2 to Gag increases Gag multimeriza-
tion, but to a lesser extent than WRNA. When both WRNA and PI1(4,5)P2 are present Gag
undergoes comformational changes and an even higher degree of multimerization.

Introduction

Human immunodeficiency virus (HIV) is a retrovirus with a diploid genome of single-
stranded RNA [1-4]. Two types of HIV, HIV-1 and HIV-2, have been reported [5]. HIV is a
spherical membrane-bound virus with a diameter ranging from 100 nm to 150 nm. The for-
mation of infectious HIV is considered to have three stages: (1) assembly, (2) budding and
release, and (3) maturation [1, 6-8]. In the first assembly stage the components are encapsu-
lated to create the immature virion at the plasma membrane. In the second budding and
release stage, the immature virion forms its lipid envelope and buds from the plasma mem-
brane. The last maturation stage is where the immature virion undergoes conformational
changes to form the mature infectious virus. In all these three stages, the most important struc-
tural component of HIV is the genetic polyprotein precursor Gag. The HIV immature virion
has about 2500-5000 copies of the Gag polyprotein [1, 3]. The approximate mass of Gag is
55kDa [8]. Extended Gag is thought to have a cylindrical shape with a length of 20-30nm and a
diameter of 2-3nm [2]. From N-terminus to C-terminus, Gag consists of six structural
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domains: a matrix (MA) domain with amino-terminal myristylation (Myr), a capsid (CA)
domain, spacer peptides 1 (SP1), a nucleocapsid (NC) domain, spacer peptides 2 (SP2), and a
p6 domain, respectively [1, 6,7, 9]. The three primary functional domains of the Gag are MA,
CA and NC. The HIV Gag precursor in the immature virion is radially oriented [1]. The N-ter-
minal MA domain is bound to the inner leaflet of the lipid membrane. The C-terminal NC
domain binds with two copies of viral genomic RNA. The CA domain interacts with each
other forming a hexagonal lattice. In the final stages, the HIV virion becomes mature using a
viral protease that cleaves the Gag in a specific order as discussed in Ref. [10].

The MA domain of HIV-1 Gag with 104 amino acids exhibits five alpha helices and a triple-
stranded beta sheet [11-13]. MA has a myristoylated fatty acid group at its N-terminus which
is responsible for Gag assembly and targets to the phospha-tidylinositol-(4,5)-bisphosphate (PI
(4,5)P2) on the lipid membrane [14,15]. The 14-carbon myristoylated group is initially seques-
tered in a hydrophobic cleft of the MA domain, but is later exposed and facilitates Gag binding
with the lipid membrane. The exposure of the myristyl acid group is activated by PI1(4,5)P2
which is abundant in the plasma membrane. The CA domain which is responsible for Gag-
Gag interaction is separated into two parts, the N-terminal domain (CAN"") and the C-termi-
nal domain (CA®™) connected by a flexible linker. The arrowhead-like shaped CANTP con-
taining seven alpha helices is essential for the formation of a conical outer shell of the capsid
core [16, 17]. The CANT® forms hexameric rings with an approximate spacing of around 8 nm
as observed with cryo-electron microscopy (cET) [18, 19]. The CA domain plays a crucial role
in the formation of both immature and mature virions. In the mature virus, the mature capsid
core consists of 1000-1500 copies of the CA protein assembled into a hexameric lattice with a
spacing of 10 nm rather than 8nm which is the spacing of CA hexamers in the immature viri-
ons [3]. The NC domain is critical for the genomic viral RNA recognition, interaction and
dimerization. The NC domain binds Gag to the RNA genome through nonspecific interaction
as well as specific binding to the stem-loop 3 (SL3) in the packaging signal ¥ (YRNA) [20]. In
the inner core of the mature virus, the viral genomic RNA is wrapped around 1500-2000 cop-
ies of NC proteins [21]. Within the NC domain, there are two CCHC type zinc fingers, which
are crucial for specific Y RNA binding and genomic viral RNA packaging [22, 23, 24].

HIV-1 genome is a RNA sequence that has 9173 nucleotides [9, 25]. It is central to many
steps of the replication process, such as transcription, genomic dimerization, , HIV genome
packagingetc. At the 5" untranslated region (UTR) of HIV-1 genomic RNA, there are many
critical regions which are thought necessary for genome dimerization and binding with Gag:
the transactivation response stem-loop (TAR), the polyadenylation stem-loop (polyA), the
prime binding site (PBS) and the packaging signal domain ¥. Of the 104 nucleotides of HIV
viral RNA, the first 1-57 nucleotides is TAR with 58-104 nucleotides being polyA [26, 27].
The mass of the TARpolyA RNA is around 34kDa. The TARpolyA RNA sequence used in the
experiments is shown in Fig 1A [22]. It plays an essential role in HIV genome packaging and
reverse transcription [26]. In addition to the dimerization initiation site (DIS) in ¥, the TAR
may also facilitate HIV genomic RNA dimerization when the NC protein is present to form
TAR-TAR dimers [28]. The packaging signal ¥ contains about 109 nucleotides [26, 29]. The
mass of the WRNA is about 36kDa. The WYRNA sequence used in our work is shown in Fig 1B
where most of nucleotides are paired with each other [26]. It contains 3 stem loops SL1, SL2,
and SL3. SAXS studies show that WRNA adopts an unfolded conformation where all stem
loops are open for later interaction with both viral and host elements. The WYRNA binds with
the NC protein and is crucial for packaging of HIV genomic RNA. Within WRNA, SL1 con-
tains a palindromic sequence DIS that is responsible for HIV genomic RNA dimerization and
Gag binding [30-32]. SL2 includes the splice donor site (SD) that is used to produce spliced
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Fig 1. RNA sequences used. HIV-1 genomic RNA partial sequence constructs used in this work. (A) TARpolyA RNA. (B) YRNA.
https://doi.org/10.1371/journal.pone.0228036.9001
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message RNAs. SL3 is required for both viral RNA dimerization and packaging [33]. In addi-
tion to SL1, SL3 is also a high affinity Gag binding site [34].

PI(4,5)P2 belongs to the negatively charged lipid family known as phosphoinositide [35]. It
consists of a glycerol backbone with one saturated fatty acid chain at position 1’ and one unsat-
urated fatty acid chain at position 2" and a phosphoinositol headgroup at position 3’. PI(4,5)P2
serves as a raft for HIV-1 Gag targeting to the plasma membrane and thus regulates the HIV
assembly [35, 36]. In particular, PI(4,5)P2 binds with the myristylated MA domain of Gag
through a highly specific interaction. First, the phosphoinositol headgroup and the 2’ unsatu-
rated fatty acid chain of PI(4,5)P2 insert into a hydrophobic pocket in the MA domain. This
then triggers the exposure of the myristylated group for insertion into the lipid bilayer mem-
brane [37-40]. Previous research has suggested that Gag has distinct binding modes with dif-
ferent RNAs [22]. For non-specific TARpolyA RNA, both the NC and MA domains are bound
to TARpolyA RNA. While in the case of specific YRNA, only the NC domain was found to
bind with WRNA [22]. In the latter case, MA domain is left free for later interaction with lipid
PI(4,5)P2. The motivation of this work is to utilize a high-resolution technique such as Atomic
Force Microscopy (AFM) to explore HIV-1 Gag binding with different RNAs and lipids. First,
we studied the morphology of individual components of Gag, YRNA, and TARpolyA RNA
separately as controls. Next, to see the effect of the addition of specific and non-specific RNAs,
we investigated the effect on the Gag complex formation by adding either YRNA or TARpo-
lyA RNA to Gag. Then, the effect of adding lipid PI(4,5)P2 into Gag was also studied. Finally,
the influence of the addition of both WRNA and PI(4,5)P2 was examined to understand their
collective effect on Gag.

Materials and methods
Materials

HIV-1 Gag used in our experiments was obtained from Dr. Alan Rein and Dr. S.A K. Datta. It
lacks the myristylated group and p6 and thus usually is referred to as GagAP6 [22]. Both
WRNA and TARpolyA RNA were obtained from Dr. Karin Musier-Forsyth and Dr. E.D.
Olson [36]. Brain PI(4,5)P2 (L-a-phosphatidylinositol-4,5-bisphosphate) was purchased from
Avanti Polar Lipids (Alabaster, AL, US).

Preparation of samples

HIV-1 GagAP6 was originally at 30uM in the buffer containing 20 mM Tris-HCI (pH 7.5), 0.5
M NaCl, 10% (v/v) glycerol, 5 mM DTT (dithiothreitol). It was diluted to 0.5uM before AFM
imaging with HEPES buffer, which contained 20mM, HEPES (pH 7.5), ImM MgCl,, 50mM
NaCl, 10uM TCEP (tris-2-carboxy-ethyl phosphine) 5 mM BME (B-mercaptoethanol). Y RNA
and TARpolyA RNA were originally in the same HEPES bulffer at a concentration of 74.18uM
and 119uM, respectively. Both RNAs need to be refolded before use. The protocol followed for
refolding RNA was as follows. First, 22.2uL 74.18uM WRNA (or 13.8uL 119uM TARpolyA
RNA) was added to a clean vial. Next, 2.5uL 1IM(PH 7.5) HEPES was added into the vial.
Then, 20.3uL DEPC-H,O (or 28.7uL for TARpolyA RNA) was added. The temperature of the
mixture was then raised to 80°C for 2 minutes, followed by 60°C for another 2 minutes using a
water bath. Finally, 5uL 0.1M MgCl, was added into the vial. Next, the mixture was kept at
37°C for 5 minutes followed by 0°C with ice for 30 minutes. The RNA could then be used
immediately or stored at 4°C for later use up to a week. After applying the refolding protocol,
30uM RNAs were diluted to 0.5uM using the same HEPES buffer before AFM imaging. Brain
PI(4,5)P2 purchased in powder form was dissolved in distilled water to 1 mM concentration

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 4/23


https://doi.org/10.1371/journal.pone.0228036

@ PLOS|ONE

Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy

before use. For mixtures, the mixed solutions were obtained such that the final concentration
of each component was 0.5uM.

Mica substrates

Atomically smooth mica substrates were used in all AFM imaging experiments reported here.
Mica substrates with 1cm diameter were obtained from Ted Pella Inc. (Redding, CA, USA).
The scotch tape technique was used to obtain freshly cleaved surfaces used in all experiments.
The surface roughness was measured to be 0.1~0.2nm. The clean mica surface is negatively
charged with charge density o = -0.33C/m” in air and 0 = -2.5mC/m? in water [41-43]. There-
fore, freshly cleaved raw mica is a perfect substrate for AFM imaging of HIV GagAP6 because
of its positive charge. However, as both WRNA and TARpolyA RNA are negatively charged
they cannot be observed directly on the raw mica substrate. To overcome the repulsion
between mica and RNAs, the mica surface was made positive by functionalization with APTES
(3-aminopropyltriethoxy silane). The procedure of preparing APTES-treated mica was as fol-
lows. First, double-sided tape was used to stick a 10mm in diameter mica upon an AFM metal
specimen disc with a diameter of 15mm. Second, Scotch tape was used to cleave mica until the
mica surface was complete and flat. Then, 100uL APTES was added into a small plastic petri
dish and put at the bottom of a desiccator with a plastic net onto which the freshly cleaved
mica was placed. The dessicator was next evacuated with a mechanical vacuum pump. The
vacuum suction was maintained for 30 minutes to allow APTES to evaporate. APTES treated
mica was ready to use immediately or can be stored in a covered petri dish for later use.
30~50pL of the desired sample solution was next deposited on the freshly cleaved mica (or
APTES treated mica for RNAs) before AFM imaging. When imaging the various complexes
GagAP6 formed, we always mixed the components in the appropriate molar ratio and then
incubated the solution for 3 hours in order to confirm that the different distributions of the
complexes have reached equilibrium before the solution was introduced to the AFM fluid cell
containing the mica substrate. In addition, the same freshly cleaved mica substrate was used
for the investigating all the Gag complexes: GagAP6, GagAP6/RNA, GagAP6/ PI(4,5)P2 and
GagAP6/RNA/ PI(4,5)P2. Thus it is valid to make a comparison of the changes in the morphol-
ogies or population statistics of monomers, dimers and tetramers with the addition of RNA or
PI(4,5)P2 to GagAP6 in solution. During imaging on the mica substrate, no dynamical evolu-
tions of the complexes were observed.”

AFM

Calibration of the AFM probes had to be done before imaging. The size of the AFM cantilever
tip was similar to that of the proteins or protein complexes studied. The comparable tip size
will lead to feature broadening, which is a common type of widely known convolution effect
[44]. The major factors with respect to the feature broadening are the pyramidal geometry and
curvature radius of the tip. The AFM probe used (HI'RES-C19/CR-AU, MikroMasch USA,
Watsonville, CA, USA) was 125um long and 22.5um wide with a spring constant of 0.5N/m. it
had a nominal resonant frequency of 65kHz in air and a ~32.36kHz in liquid. The special tips
used had high aspect ratio and small tip radius. Nevertheless, the tip size still had to be taken
into account when analyzing the sizes of HIV GagAP6, RNAs, lipids and their mixed com-
plexes. The calibration was done as follows. 2nm gold spheres were used to calibrate AFM
probes due to the comparability of the heights of HIV GagAP6 and two RNAs. Because the
measured sample size also depends on the height of the sample, the actual tip size is given by
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Eq (1) (see Supplementary Material for more details):
J =1L —1.46D (1)

Where A is the actual diameter of the AFM cantilever tip, L is the measured size of the sam-
ple, and D is the height of the sample. The effective tip diameter ¢ for any sample is the differ-
ence between measured size of the calibration standard sample and the height of the sample, as
given by Eq (2) (see Supplementary Material for more details):

t=L—D=2+0.46D (2)

For the 2nm gold spheres, after fitting to a normal distribution, the mean measured size
L =7.56 + 0.09nm, the mean height D = 2.10 + 0.02nm which is the actual diameter of the 2nm
gold particle, as shown in Fig 2. The total number of samples was 419 and the experiment was
repeated twice. Therefore, the actual diameter is A = 4.5nm according to Eq (1). The effective
tip size for HIV GagAP6 and other GagAP6 complexes, including GagAP6-WRNA, GagAP6-PI
(4,5)P2, PI(4,5)P2-WRNA-GagAP6, is t4, = 5.4nm given that the measured height of HIV
GagAP6 is 1.9nm according to Eq (2). Similarly, the effective tip size for YRNA and TARpolyA
RNA is tgya = 5.0nm given that the measured height of both RNAs is 1.1nm.

The AFM Nanoscope I1Ia (Veeco Metrology, Santa Barbara, CA, USA) was used in tapping
mode. The procedure of the AFM operation in tapping mode in liquid environment is as fol-
lows [45]. First, a freshly cleaved mica (or APTES treated mica for RNAs) was mounted on the
AFM metal specimen holder using double-sided tape. Next, a 30~50uL drop of following sam-
ple solutions used in the experiment was deposited on the mica: (I) YRNA (0.5uM), (II) TAR-
polyA RNA (0.5uM), (IIT) GagAP6 (0.5pM), (IV) mixture of PI(4,5)P2-DPhPC-POPC (0.5uM
: 5uM : 5uM) complex, (V) mixture of GagAP6-¥RNA (0.5uM : 0.5uM) complex, (VI) mixture
of GagAP6-TARpolyA RNA (0.5uM : 0.5uM) complex, (VII) mixture of GagAP6-PI(4,5)P2
(0.5uM : 0.5puM) complex, (VIII) and mixture of PI1(4,5)P2-YRNA-GagAP6 (0.5uM : 0.5uM :
0.5uM) complex. Next the cantilever probe was mounted into the fluid cell. Care was taken to
make sure there are no bubbles. The tip is completely immersed in the solution. This is critical
for laser alignment when operating the AFM in a liquid environment. Next the laser signal was
aligned and then the piezo was oscillated through a range of frequencies till the resonance fre-
quency was found. Next the best resolution was obtained by adjusting the following scanning
parameters: the vertical range, samples/line, scan size, scan rate, integral gain, proportional
gain and amplitude setpoint etc. Additional checks were made after engaging the cantilever.
During imaging the amplitude setpoint was adjusted such that the trace and retrace lines were
matched. The force exerted on the sample should be as small as possible to prevent samples
from being damaged. All the aforementioned parameters had to be adjusted collectively to
achieve the best resolution.

Results and discussion

As RNAs have been well studied with the AFM [46-50], they were used to benchmark the
experiments reported here. The self-assembly of the CA domains in Gag and its mechanical
properties have been recently investigated on a mica substrate with the AFM [51]. The CA
domain was found to assemble in a hexagonal lattice and have self repair capacity after damage
was induced [51]. In the AFM experiments here, we started with size and morphology mea-
surements of the RNAs (YRNA and TARpolyA RNA) to benchmark and validate the mea-
surement and analysis software developed. Independent calibration of the measurement
resolution was done using 2nm Au spheres as discussed above. After confirmation of the valid-
ity of the technique we performed measurements on GagAP6 and its complexes with RNAs
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Fig 2. Calibration of AFM cantilever tip. AFM tip resolution calibration with 2nm diameter Au Sphere. (A) A typical AFM image of 2nm Au sphere on mica in
tapping mode in liquid. The scan size is 250nmx250nm. The height color bar scale is 2.5nm. (B) Histogram of 2nm diameter Au sphere for the measured size on the
plane of the substrate (top) and the measured height (bottom). Shown in red are normal distribution fits to the peaks. The mean measured size on the plane of the
substrate is 7.56 + 0.09 nm, and the mean height is 2.10 + 0.02nm. The height is consistent with the sphere diameter. The size in the plane of the substrate reflects the
role of the tip size. Please see text and supplemental materials section for more details. The total number of samples was 419 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9002

and PI(4,5)P2 lipid. The summary of the results is provided in Table 1. All the experiments
were repeated twice. Below we present the results from each individual experiment and also
discuss the effect of the RNA and PI(4,5)P2 lipid interaction with GagAPé.

WRNA size and morphology measurements

WRNA (0.5uM) being negatively charged was imaged on positively charged APTES treated
mica. Another motivation for measuring the WRNA by itself is to understand its individual
morphology for future comparison with that observed in the various GagAP6 complexes. A
typical AFM image of YRNA was shown in Fig 3A. In Fig 3A, the AFM image of YRNA
shows that most of YRNA molecules seem to have inverted “L” shape. As shown in Fig 3B and
in Table 1, the mean height is 1.10 + 0.01nm. This height is in between the values 0.5nm, 2.5,
2.6nm found from double-stranded RNA [28,48,52] and similar to 0.9~1.2nm that found by
Hansma et al. [53]. The lateral size of the image was analyzed using specially developed soft-
ware analysis (see Supplementary Material for more details). The statistics of the length (lon-
gest dimension) and width (longest perpendicular dimension to the length) and height were
plotted in Fig 3Bb. As can be observed there are two distinct peaks for the length and similarly
two distinct peaks for the width. The three dimensional smooth histogram of the same length
and width population distribution is shown in Fig 3C. Two distinct populations can be
observed. The size of the first distribution with a mean length of 17.9 + 0.2nm and width
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Table 1. Statistics of AFM measurement of GagAP6, RNAs and their complexes.

YRNA

TARpolyA RNA

GagAP6

GagAP6-yRNA

GagAP6-TARpolyA RNA

GagAP6-PI(4,5)P2

PI(4,5)P2-yRNA-GagAP6

https://doi.org/10.1371/journal.pone.0228036.t001

Percentage Length/nm Width/nm Height/nm
Monomer 74% *+ 2% 179+ 0.2 1.01 + 0.02 1.10 £ 0.01
Dimer 26% = 2% 34.6+0.3 3.8+0.1
Monomer 100% 17.1+£0.2 1.10 £ 0.05 1.10 £ 0.01
Monomer 59% + 3% 10.3+£0.1 6.2+0.1 1.93 £ 0.01
Dimer 35% + 2% 20.0 £0.2
Tetramer 6% + 1% 29.0+0.3 12.9+£0.2
Monomer 35% + 2% 10.6 £ 0.2 6.8+£0.1 1.90 £ 0.01
Dimer 49% + 2% 224+£0.1
Tetramer 16% * 1% 31.2+0.2 13.8 +0.1
Monomer 58% + 3% 10.8 + 0.1 6.2+0.1 1.93 £ 0.01
Dimer 37% + 2% 20.7+£0.2
Tetramer 5% + 1% 29.9+0.3 13.6 £0.2
Monomer 47% + 2% 11.2+£0.1 6.7+0.1 1.93 £0.01
Dimer 41% + 2% 21.1+0.1
Tetramer 12% + 1% 30.4+0.2 14.0 £ 0.2
Monomer 17% + 1% 10.9 £ 0.3 7402 1.91 £0.01
Dimer 51% £ 3% 23.8+0.2
Tetramer 32% £ 2% 22.1+0.2

1.01 + 0.02nm and height of 1.10 + 0.01nm corresponds to the YRNA monomer. The second
peak with a mean length of 34.6 + 0.3nm and width 3.8 = 0.1nm and height of 1.10 + 0.01nm
corresponds to the YRNA dimer. Typical images of the monomer and dimers are enclosed in

red and green boxes respectively.

The expected size of the 109-nucleotide WYRNA monomer can be calculated from the litera-
ture. RNAs most commonly adopt either A-form or A’-form conformation [54, 55]. A-form
RNA has 11 nucleotide per helical pitch and A’-form has 12 nucleotide per helical pitch [55].
The rise per base pair for the A-form and A’-form are 0.38nm and 0.27nm, respectively [56].

Given that most of WRNA nucleotides are self-paired with each other as shown in Fig 1B,

WRNA should be double-stranded with 55 base pairs. This leads to a length of 20.9nm and
14.9nm for the A-form and A’-form respectively. These values are consistent with the mean
measured monomer length 17.9nm. The width of Y RNA monomer is 1.01 £ 0.02nm consis-

tent with the height of WRNA. For the monomer the width and heights will be the same as it is
cylindrical in shape. The mean measured length of WRNA dimer is 34.6 £ 0.3nm, which is
approximately twice as long as that of YRNA monomer. This means WYRNA dimer consists of
two WRNA monomers connecting head to head overlap. The width of WRNA dimer is roughly
3.8 £ 0.1nm that is much larger than two times the width of YRNA monomer. This is probably
due to some overlap of the two RNA’s on dimerization. This conclusion is reasonable based on
the results from Refs. [30-32] and the potential overlap region is the palindromic DIS base
pair region located in the SL1 loop of WRNA as shown in Fig 1B. Next the population distribu-
tion between monomers and dimers was analyzed. The length and width histograms in Fig 3B
were fit to a normal distribution. Both histograms lead to a population distribution of 74%
monomer and 26% dimer respectively.

TARpolyA RNA size and morphology measurements

TARpolyA RNA (0.5uM) being negatively charged was also imaged on positively charged
APTES treated mica. Similar to WRNA, the motivation for measuring TARpolyA RNA by itself
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Fig 3. WRNA size and morphology with AFM. 0.5uM WRNA on positively charged mica(+). (A) A typical AFM image with a scan size of 500nmx500nm. The height
color bar scale is 2.0 nm. A few characteristic WRNAs are shown in boxes: monomer (red) and dimer (green). (B) Histogram for length (left), width (middle), and height
(right). Shown in red are normal distribution fits to the peaks. (C) Three dimensional smooth histogram, where red arrows indicate monomer and dimer. The mean
height is 1.10 + 0.01nm. The first peak with a mean length of 17.9 + 0.2nm and width 1.01 + 0.02nm corresponds to the YRNA monomer. The second peak with a mean
length of 34.6 + 0.3nm and width 3.8 + 0.1nm corresponds to the WRNA dimer. The total number of samples was 551 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9003

is to benchmark the experiments and analysis protocol as well as understand its individual
morphology for comparison with that observed in the various GagAP6 complexes. The
observed typical AFM image of TARpolyA RNA in the buffer solution is shown in Fig 4. In Fig
4A, TARpolyA RNA image shows that most of TARpolyA RNA molecules seem to have
inverted “L” shape just like YPRNA. Some examples are shown enclosed in red boxes. The size
distribution of the length (longest dimension), width (longest perpendicular dimension to the
length) and the height are shown in Fig 4B. As shown in Fig 4B and in Table 1, the mean height
of TARpolyA RNA is 1.10 £ 0.01nm. This height is consistent with that of YRNA and expecta-
tions from structure. In Fig 4B and 4C we observe only one peak in the length and width distri-
butions. The mean length of the TARpolyA RNA monomer is 17.1 + 0.2nm. This value is
slightly less than that of the YRNA monomer observed earlier. Similar to WYRNA, TARpolyA
RNA should also be doubled-stranded as shown in Fig 1(A). Thus the slightly smaller length of
0.8nm is reasonable from the 5 fewer nucleotides, given that YRNA contains 109 nucleotides
while TARpolyA RNA has only 104 nucleotides. It is noteworthy that the width histogram dis-
tribution of TARpolyA RNA is 1.10 + 0.05nm which is the same as the height and consistent
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Fig 4. TARpolyA RNA size and morphology with AFM. 0.5uM TARpolyA RNA on positively charged mica(+). (A) AFM image with a scan size of 500nmx500nm.
The height color bar scale is 2.0nm. A few characteristic TARpolyA RNAs are boxed in red. (B) Histogram for length (left), width (middle), and height (right). Shown in
red are normal distribution fits to the peaks for length and height. Width is fit to a gamma distribution due to its non-negativity and skewness. (C) Three dimensional
smooth histogram, where the red arrow indicates the monomer distribution. The peak corresponding to the TARpolyA RNA monomer has a mean length of

17.1 + 0.2nm, width of 1.10 + 0.05nm and height of 1.10 + 0.01nm. The total number of samples was 504 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9004

with the cylindrical structure for TARpolyA RNA. As the length and width distribution have
only one observable peak, it is concluded that the TARpolyA exists in solution predominantly
as a monomer. This is unlike that observed with WRNA where 26% dimers were found.

GagAP6 size and morphology measurements

The morphology of GagAP6 (0.5uM), being net positive charge, was measured using the AFM
on a freshly negatively charged mica(-) substrate in solution. A typical AFM image is shown in
Fig 5A. The motivation for measuring GagAP6 is to serve as a control before addition of RNAs
and lipids. Some characteristics of common shapes observed were shown in red, green and
blue boxes. In Fig 5A, the AFM image of GagAP6 shows that most of GagAP6 molecules have
ellipsoidal shape rather than the expected rod-like shape of the extended molecule.

As shown in Fig 5B and Table 1, the mean height is 1.93 + 0.01nm which is consistent with
the expectation that the diameter of Gag is around 2~3nm when it is in the extended form as
reported in Ref. [4]. The length and width of the observed images are plotted in Fig 5B. As
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Fig 5. GagAP6 size and morphology with AFM. 0.5uM GagAP6 on negatively charged mica(-). (A) A typical AFM image with a scan size of 500nmx500nm. The height
color bar scale is 2.5nm. A few characteristic GagAP6s are boxed: monomer (red), dimer (green) and tetramer (blue). (B) Histograms for length (left), width (middle),
and height (right). Shown in red are normal distribution fits to the peaks. (C) Three dimensional smooth histogram, where red arrows indicate the monomer, dimer,
and tetramer distributions. The mean height is 1.93 + 0.01nm for all three. The first peak with a mean length of 10.3 + 0.1nm and width 6.2 + 0.1nm corresponds to the
GagAP6 monomer. The second peak with a mean length of 20.0 + 0.2nm and width 6.2 + 0.1nm corresponds to the GagAP6 dimer. The third peak with a mean length of
29.0 + 0.3nm and width 12.9 + 0.2nm corresponds to the GagAP6 tetramer. The total number of samples was 858 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9005

observed three peaks were observed in the length distribution but only two peaks in the width
distribution. Normal distributions were fit to the length histogram to find peak mean values of
10.3 + 0.1nm, 20.0 + 0.2nm and 29.0 + 0.3nm. Similarly the mean values of the two width dis-
tributions were found to be 6.2 + 0.1nm and 12.9 + 0.2nm respectively.

It might seem counterintuitive to have three distinct peaks for length while having only two
distinct peaks for the width. To have more insight, a three dimensional smooth histogram of
the same length-width data was plotted as shown in Fig 5C. The shortest length and width dis-
tribution would correspond to that of the monomer and the distribution with the next larger
length would be expected to correspond to that of the dimer. From Fig 5C the monomer and
dimer have the same width. Thus in the width distribution histogram they are represented
together and correspond to the first peak at 6.2 + 0.1nm. The statistical analysis of the popula-
tion also confirmed this assumption as the first peak of the width histogram is the sum of
monomer and dimer populations in the two peaks of the length histogram as given in Table 1.
This analysis was done by fitting each length and width peak to a normal distribution. From
the length distribution, the percentages of monomer, dimer, and tetramer are 59%, 35%, and
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Fig 6. Model of GagAP6 morphology. Rough model of the GagAP6 monomer based on the measured mean values of
the length and width. MA domain is in red, CA domain is in yellow, and NC domain is in green.

https://doi.org/10.1371/journal.pone.0228036.g006

6%, respectively. The population observed in the monomer and dimer from the length adds up
to that observed in the first peak of the width distribution.

Previous studies using hydrodynamic and neutron scattering measurements showed HIV
GagAP6 is supposed to adopt a compact conformation such that MA and NC domains of
GagAP6 are close to each other even though both of them are positively charged [3-5, 57]. The
hydrodynamic radius, Ry, of GagAP6 given by three different hydrodynamic tests are 3.6nm,
3.8nm, and 4.1nm, respectively. The radius of gyraton, R,, of GagAP6 is best estimated to be
3.4nm from small angle neutron scattering (SANS). The R, of GagAP6 when it is a 25nm
straight rod is supposed to be 7.2nm [57]. The average R, of GagAP6 in solution measured by
SANS is also a monotonically increasing function of the GagAP6 concentration, with maxi-
mum of R, = 5nm at extremely high concentration, which means GagAP6 molecules are in
monomer-dimer equilibrium [57].

Based on the AFM studies presented above, we can project approximate confirmations
based on the various lengths and widths of the populations observed. For the case of the mono-
mer given a length of 10.3nm and width of 6.2nm a potential “C” like shape can be conjec-
tured. A schematic of a potential monomer structure is shown in Fig 6. In neutron scattering
and hydrodynamic experiments [4] the Gag was observed to be folded over, with its N-termi-
nal MA domain near its C- terminal NC domain in three-dimensional space. The conjectured
model in Fig 6 is consistent with the measurements of the folded Gag monomer expected in
solution and the AFM size measurements. The conjectured model in Fig 6 is also consistent
with that of a fully extended Gag having a rod-like shape of 2 nm radius and 20-30 nm length
postulated in the literature [2]. For the case of the Gag dimer, based on the AFM measured
dimensions of a length of 20.0 nm and width of 6.2 nm (same as monomer) a model of the
GagAP6 dimer would have two “C” shaped monomers connected back to back through their
CA-CA domain interaction [4]. The CA-CA domain interaction leading to dimerization has
been reported in the literature [4]. The last population size distribution of GagAP6 in Fig 5(C)
has a length of 29.0nm and width is 12.9nm. This population from gel electrophoresis corre-
sponds to that of a tetramer (see Supplemental Material). From the measured size of the tetra-
mers here, they could be potentially formed by the interaction of two dimers.
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GagAP6-'VYRNA complex size, morphology and interaction

AFM measurements of the GagAP6-WYRNA (0.5uM : 0.5uM) complex were done on negatively
charged mica(-). The motivation for measuring GagAP6-WRNA complex is to investigate the
effect of addition of specific WRNA to GagAP6. According to current models the NC domain
binds with WRNA and this interaction is specific and is a critical step in the formation of HIV
[22]. Fig 7A is a typical AFM image of GagAP6-WRNA complex. As shown in Fig 7B, the
mean height of GagAP6-WYRNA complex is 1.90 + 0.01nm which is roughly the same as the
height of just GagAP6 discussed earlier. This height is consistent with expectation given that
the height of GagAP6 and WRNA are 1.93nm and 1.10nm, respectively. The length and width
histograms of the complexes observed are shown in Fig 7B. Similar to GagAP6, GagAP6-
WRNA also has three peaks for length and two peaks for width. Normal distributions were fit
to the length histogram to find peak mean values of 10.6 + 0.2nm, 22.4 + 0.1nm and 31.2 £
0.2nm. Similarly the mean values of the two width distributions were found to be 6.8 £ 0.1nm
and 13.8 £ 0.1nm respectively. The size of the length and widths are slightly larger than that
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Fig 7. GagAP6-'YRNA interaction complex size and morphology. The mixture of GagAP6-¥RNA (0.5uM : 0.5uM) complex on negatively charged mica(-). (A) A
typical AFM image with a scan size of 500 nmx500 nm. The height color bar scale is 2.5nm. A few characteristic GagAP6-WRNA complexes are boxed: monomer (red),
dimer (green) and tetramer (blue). (B) Histogram for length (left), width (middle), and height (right). Shown in red are normal distribution fits to the peaks. (C) Three
dimensional smooth histogram, where red arrows indicate monomer, dimer, and tetramer. The mean height is 1.90 + 0.01nm for all three complexes. The first peak with
amean length of 10.6 + 0.2nm and width 6.8 + 0.1nm corresponds to the GagAP6-W¥RNA monomer. The second peak with a mean length of 22.4 + 0.1nm and width

6.8 = 0.1nm corresponds to the GagAP6-PRNA dimer. The third peak with a mean length of 31.2 + 0.2nm and width 13.8 + 0.1nm corresponds to the GagAP6-YRNA
tetramer. The total number of samples was 895 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9007
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found with only GagAP6. This is consistent with attachment of WRNA of around 1nm to the
GagAP6.

To understand the role of the YRNA addition the three-dimensional population distribu-
tion of the length and width as shown in Fig 7C was analyzed. As with GagAP6, three peaks
corresponding to monomer, dimer and tetramer complexes were observed. However the pop-
ulation distributions of the monomer, dimer and tetramer are different for the GagAP6-
WRNA complex. Here we observed 35% monomer, 49% dimers and 16% tetramers. In con-
trast with only GagAP6 we observed 59% monomers 35% dimers and 6% tetramers. The
monomer decreased by 24%, the dimer increased by 14% and the tetramer increased by 10%.
Thus the addition of YRNA promotes multimerization of the GagAP6 leading to higher popu-
lations of dimers and tetramers.

The length of monomer remained roughly the same as prior to the addition of WRNA. The
lengths of dimer and tetramer were increased by about 2nm. The width increased by about
0.5nm~1nm for the monomer, dimer, and tetramer. This is consistent with the addition of
WRNA of around 1nm to this dimension. The most important conclusion of the effect of the
addition of WRNA to GagAP6 is that WRNA can bind with GagAP6 and facilitate GagAP6
multimerization given the increases in percentages of dimer and tetramer population.

GagAP6-TARpolyA RNA complex size, morphology and interaction

GagAP6-TARpolyA RNA (0.5uM : 0.5uM) complex was measured on a negatively charged
mica(-) surface. The motivation for measuring GagAP6-TARpolyA RNA complex is to verify
the effect of the addition of non-specific TARpolyA RNA to GagAP6 and compare it to the
addition of specific YRNA discussed above. Fig 8A is a typical AFM image of GagAP6-TARpo-
lyA RNA complex. As shown in Fig 8B, the mean height of GagAP6-'YRNA complex is

1.93 +0.0Inm.

To understand the role of the TARPolyA RNA interaction with GagAP6 the three dimen-
sional population distribution of the length and width as shown in Fig 8C was analyzed. As
with GagAP6, three peaks corresponding to monomer, dimer and tetramer complexes were
observed. However in contrast to the case of the GagAP6-WRNA complex in Fig 7C the popu-
lation distribution of monomer, dimer and tetramer are very similar to that of GagAP6 alone
observed in Fig 5C. The sizes of GagAP6-TARpolyA RNA complex monomer, dimer and tet-
ramer were found slightly larger than that of GagAP6 alone. Thus the addition of TARPolyA
RNA might interact with GagAP6 but does not promotes multimerization of the GagAP6 as
observed with WRNA. These experiments were repeated and the results were always reproduc-
ible. Webb et al. reported HIV Gag can bind with both YRNA and TARpolyA RNA but with
distinct binding mechanisms [22]. They proposed that HIV GagAP6 binds with TARpolyA
RNA through both MA and NC domains whereas WRNA binds only through NC domain and
leaves MA domain free to later interact with the lipid membrane. Other studies also showed
that HIV GagAP6 can bind with both WRNA and non-¥ RNAs but the selective binding with
WRNA is more energetically favorable than other non-¥ RNAs for HIV virus assembly [58-
60]. The role of the RNA in multimerization of the Gag was not addressed in these studies.
The conclusion based on our data is that it is highly likely that HIV GagAP6 interacts with
WRNA and TARpolyA RNA through different mechanisms such that WRNA facilitates
GagAP6 multimerization while TARpolyA RNA does not.

GagAP6-PI(4,5)P2 Complex Size, Morphology and Interaction

The GagAP6-PI1(4,5)P2 (0.5uM : 0.5uM) complex was measured on negatively charged mica
(-). The Gag and lipid were diluted to 1yuM before mixing. Then, equal amounts of Gag and
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Fig 8. GagAP6-TARpolyA RNA interaction complex size and morphology. Mixture of GagAP6-TARpolyA RNA (0.5uM : 0.5uM) complex on negatively charged
mica(-). (A) A typical AFM image with a scan size of 500nmx500nm. The height color bar scale is 2.5nm. A few characteristics TARpolyA RNA complexes are boxed:
monomer (red), dimer (green) and tetramer (blue). (B) Histogram for length (left), width (middle), and height (right). Shown in red are normal distribution fits to the
peaks. (C) Three dimensional smooth histogram, where monomer, dimer, and tetramer are indicated by red arrows. The mean height is 1.93 + 0.01nm for all three
complexes. The first peak with a mean length of 10.8 + 0.1nm and width 6.2 + 0.1nm corresponds to the GagAP6-TARpolyA RNA monomer. The second peak with a
mean length of 20.7 + 0.2nm and width 6.2 + 0.1nm corresponds to the GagAP6-TARpolyA RNA dimer. The third peak with a mean length of 29.9 + 0.3nm and width
13.6 + 0.2nm corresponds to the GagAP6-TARpolyA RNA tetramer. The total number of samples was 766 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9008

lipid were mixed. The AFM measurement was performed after the mixture was incubated for
3 hours. A typical AFM image is shown in Fig 9A. The motivation for measuring GagAP6-PI
(4,5)P2 complex is to explore the effect of addition of lipid PI(4,5)P2 to GagAP6. The current
understanding is that both MA and NC domains of Gag can bind to PI(4,5)P2 through electro-
static forces.

As shown in Fig 9B(b), the mean height of GagAP6-PI(4,5)P2 complex is 1.93 + 0.01lnm
that is roughly the same as the height of just GagAP6. This height is consistent with expectation
given the small size of PI(4,5)P2 in comparison to GagAP6. The length and width histograms
of the complexes observed are shown in Fig 9B. Similar to GagAP6, GagAP6-P1(4,5)P2 also has
three peaks for length and two peaks for width. Normal distributions were fit to the length his-
togram to find peak mean values of 11.2 £ 0.1nm, 21.1 + 0.Inm and 30.4 + 0.2nm. Similarly
the mean values of the two width distributions were found to be 6.7 + 0.1nm and 14.0 + 0.2nm
respectively. The size of the length and widths are slightly larger than that with only GagAP6.
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Fig 9. GagAP6-PI(4,5)P2 interaction complex size and morphology. Mixture of GagAP6-PI(4,5)P2 (0.5uM : 0.5uM) complex on negatively charged mica(-). (A) A
typical AFM image with a scan size of 500nmx500nm. The height the color bar scale is 2.5nm. A few characteristic GagAP6-PI(4,5)P2 complexes are boxed: monomer
(red), dimer (green) and tetramer (blue). (B) Histogram for length (left), width (middle), and height (right). Shown in red are normal distribution fits to the peaks. (C)
Three dimensional smooth histogram, where monomer, dimer, and tetramer are indicated by red arrows. The mean height is 1.93 + 0.01nm for all complexes. The first
peak with a mean length of 11.2 + 0.1nm and width 6.7 + 0.1nm corresponds to the GagAP6-PI(4,5)P2 monomer. The second peak with a mean length of 21.1 + 0.Inm
and width 6.7 + 0.1nm corresponds to the GagAP6-PI(4,5)P2 dimer. The third peak with a mean length of 30.4 + 0.2nm and width 14.0 + 0.2nm corresponds to the
GagAP6-PI(4,5)P2 tetramer. The total number of samples was 903 and the experiment was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9009

In comparison to the GagAP6-WRNA complex the GagAP6-PI(4,5)P2 complex has monomers
of slighter larger length while the dimers and tetramers are of slightly smaller length.

To understand the role of PI(4,5)P2 addition to GagAP6 the three dimensional population
distribution of the length and width as shown in Fig 9C was analyzed. As with GagAP6, three
peaks corresponding to monomer, dimer and tetramer complexes were observed. However
the population distribution of monomer, dimer and tetramer are different from that observed
with GagAP6 alone or for the GagAP6- WRNA complex. Here we observed 47% monomer,
41% dimers and 12% tetramers. In contrast with only GagAP6 we observed 59% monomers
35% dimers and 6% tetramers and for the GagAP6- WYRNA complex we observed 35% mono-
mer, 49% dimers and 16% tetramers. Thus the addition of PI(4,5)P2 promotes multimeriza-
tion of the GagAP6. The increases in percentages of dimer and tetramer indicate that PI(4,5)P2
can bind with GagAP6 as reported in other studies using confocal microscopy, nuclear mag-
netic resonance and equilibrium flotation assay [35, 40, 61-65]. But the increase in GagAP6
multimerization with the addition of PI(4,5)P2 is less than that observed with WYRNA. The
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length and width of monomer, dimer, tetramer all increased by about 1nm. This is probably
because of the size of PI(4,5)P2 attached to the ends of both MA and CA domains of HIV
GagAP6.

P1(4,5)P2-'YRNA-GagAP6 complex size, morphology and interaction

The PI1(4,5)P2-WRNA-GagAP6 (0.5uM : 0.5uM : 0.5uM) complex was measured on a nega-
tively charged mica(-). According to the prevailing model the lipid interacts with the MA
domain of GagAP6-PRNA complex leading to a conformational change [22]. In these experi-
ments to study the PI(4,5)P2-WYRNA-GagAP6 complex, PI(4,5)P2 and WRNA were first mixed
together in solution followed by the addition of GagAP6. This mixture was then used to mea-
sure the size and size distribution using the AFM.

Fig 10A is a typical AFM image of PI(4,5)P2-WRNA-GagAP6 complex. As shown in Fig
10B, the mean height of PI(4,5)P2-WYRNA-GagAP6 complex is 1.91 + 0.01nm that is roughly
the same as the height of just GagAP6. This height is consistent with expectation given that the
height of GagAP6 and WRNA-GagAP6 discussed earlier. The height of PI(4,5)P2 is much
smaller by comparison. The length and width histograms of the complexes observed are
shown in Fig 10B. In contrast to GagAP6, GagAP6-PRNA and the GagAP6- PI(4,5)P2 com-
plexes there are only two peaks for length and two peaks for width. Normal distributions were
fit to the length histogram to find peak mean values of 10.9 + 0.3nm, and 23.8 + 0.2nm. Simi-
larly the mean values of the two width distributions were found to be 7.4 + 0.2nm and
22.1 + 0.2nm respectively. In comparison to the binary complexes studied earlier the monomer
length is approximately similar, while the monomer width is slightly larger. For the dimer, the
length is almost 60% larger than that of GagAP6-'PRNA and the GagAP6- PI(4,5)P2 binary
complexes.

To understand the PI(4,5)P2-WRNA-GagAP6 complex the three dimensional population
distribution of the length and width as shown in Fig 10C was analyzed. In contrast to all others
above, here the dimer and tetramer have the same length. The width of the tetramer is much
larger than all previous cases, increasing from 13-14nm to 22nm. Thus in the PI(4,5)P2-
WRNA-GagAP6 complex the GagAP6 undergoes a dramatic conformational change. This is
consistent with the GagAP6 MA and NC domains moving further away from each other and
taking on a rod-like confirmation. From the population distribution in Fig 10C, we observed
17% monomer, 51% dimers and 32% tetramers. In contrast, with only GagAP6 were we
observed 59% monomers 35% dimers and 6% tetramers, the multimerization has increased
considerably. Comparing to the populations in the binary mixtures of YRNA-GagAP6 and PI
(4,5)P2-GagAP6 were we observed 35% and 47% monomer, 49% and 41% dimers and 16%
and 12% tetramers respectively, here in particular we observe much higher percentage of tetra-
mers. Thus the addition of PI(4,5)P2 along with WRNA promotes not only the dimerization of
the GagAP6 but in particular the multimerization to tetramers and higher order complexes. In
addition, the significant change of the size indicates that GagAP6 undergoes some conforma-
tional changes when both WYRNA and PI(4,5)P2 are present [38, 66]. Based on the sizes mea-
sured a schematic of the dimer and tetramer structure is proposed in Fig 11. From the size of
the tetramers the spacing between the GagAP6 molecules is around 7 nm close to the value of
8nm reported in studies using cET [18,19]. The substantial increases in the percentages of
dimer and tetramer indicate that both WRNA and PI(4,5)P2 can bind with GagAP6 and collec-
tively facilitate HIV GagAP6 assembly as reported in other studies [57, 63].
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Fig 10. PI(4,5)P2-'YRNA-GagAP6 interaction complex size and, morphology. Mixture of PI(4,5)P2-WRNA-GagAP6 (0.5uM : 0.5uM : 0.5uM) complex on negatively
charged mica(-). (A) A typical AFM image with a scan size of 500nmx500nm. The height color bar scale is 2.5nm. A few characteristic PI1(4,5)P2-YRNA-GagAP6
complexes are boxed: monomer (red), dimer (green) and tetramer (blue). (B) Histogram for length (left), width (middle), and height (right). Shown in red are normal
distribution fits to the peaks. (C) Three dimensional smooth histograms, where monomer, dimer, and tetramer are indicated by red arrows. The mean height is

1.91 £ 0.01nm for all three complexes. The first peak with a mean length of 10.9 + 0.3nm and width 7.4 + 0.1nm corresponds to the PI(4,5)P2-WRNA-GagAP6
monomer. The second peak with a mean length of 23.8 + 0.2nm and width 7.4 + 0.1nm corresponds to the PI(4,5)P2-'WPRNA-GagAP6 dimer. The third peak with a
mean length of 23.8 + 0.2nm and width 22.1 £ 0.2nm corresponds to the PI(4,5)P2-'YRNA-GagAP6 tetramer. The total number of samples was 616 and the experiment
was repeated twice.

https://doi.org/10.1371/journal.pone.0228036.9010

Conclusion

The AFM technique was utilized to study the morphology of GagAP6 (0.5uM), YRNA
(0.5uM), and their binding complexes with the lipid P1(4,5)P2 in HEPES buffer with 0.1 A ver-
tical and 1nm lateral resolution. For the calibration 2nm diameter Au spheres were used. TAR-
polyA RNA was used as a negative RNA control. The morphology of specific complexes
GagAP6-PRNA (0.5uM : 0.5uM), GagAP6-TARpolyA RNA (0.5uM : 0.5uM), GagAP6-PI(4,5)
P2 (0.5uM : 0.5pM) and PI(4,5)P2-'PRNA- GagAP6 (0.5uM : 0.5uM : 0.5uM) were studied.
They were imaged on either positively charged or negatively charged mica substrates depend-
ing on the net charges carried by the respective materials. The size and morphology of both
WRNA and TARpolyA RNA measured was used to validate the technique in comparison with
literature. For the WYRNA, from the measured size two distinct populations corresponding to
monomers and dimers were observed. In the case of TARpoly A RNA only the monomer pop-
ulation was found for the concentrations studied. The morphology of GagAP6, being net
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Fig 11. Model of PI1(4,5)P2-YRNA-GagAP6 interaction complex. Rough models of PI(4,5)P2-YRNA-GagAP6
complexes based on the measured mean height and width. (a) Dimer complex, (b) Tetramer complex. MA domain is
in red, CA domain is in yellow, NC domain is in green, WRNA is in cyan, and PI(4,5)P2 is in purple.

https://doi.org/10.1371/journal.pone.0228036.9011

positively charged, was measured using the AFM on a freshly cleaved negatively charged mica
(-) substrate in HEPES solution with a low salt concentration of 50mM NaCl. Three distinct
size populations were found. They were found to correspond to 59% monomer, 35% dimer
and 6% tetramer form of GagAP6. The presence of the multimers was confirmed by gel elec-
trophoresis. The addition of YRNA to 0.5uM GagAP6 was observed to promote multimeriza-
tion of the GagAP6 leading to higher populations of dimers (14% increase) and tetramers (10%
increase). The small change in size of the complexes confirmed the binding of the YRNA to
GagAP6. The addition TARPolyA RNA to GagAP6 did not modify the GagAP6 population dis-
tribution of monomers, dimers and tetramers. The interaction of P1(4,5)P2 with GagAP6 com-
plex was next measured on negatively charged mica(-). From the population distribution of
the monomers (47%), dimers (41%) and tetramers (12%), it was concluded that PI(4,5)P2 pro-
motes multimerization of GagAP6 but not to the extent observed with WYRNA.

The PI(4,5)P2-YRNA-GagAP6 ternary complex was next studied using a negatively
charged mica(-) surface. Both the population and size distribution of the GagAP6 was
completely different from that of the GagAP6-WYRNA and the GagAP6- PI(4,5)P2 binary com-
plexes. The population distribution of the monomers (17%), dimers (51%) and tetramers
(32%) was significantly different. Given the large fraction of dimers and tetramers it was con-
cluded that the presence of both PI(4,5)P2 and WYRNA promotes extensive multimerization of
GagAPé6. In addition, the significant change of size indicates that GagAP6 undergoes a confor-
mational change to a 23.8nm rod like shape when both WRNA and PI(4,5)P2 are present.
From the size of the tetramers the spacing between the GagAP6 molecules is around 7 nm
which is consistent with studies using cET in Ref [18, 19]. The substantial increases in the per-
centages of dimer and tetramer indicate that both WRNA and PI(4,5)P2 can bind with
GagAP6 and collectively facilitate HIV GagAP6 assembly as reported using other techniques.

The gel electrophoresis data presented in the supplementary section for the GagAP6,
WRNA and PI(4,5)P2 lipid combinations provide complementary confirmation for the differ-
ent complexes that are present in the same solution mixtures analyzed with the AFM. The size
and population distribution measured for the various complexes are distinct and show changes
for the complexes on the addition the WRNA and PI(4,5)P2 to the GagAP6 solution.

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 19/23


https://doi.org/10.1371/journal.pone.0228036.g011
https://doi.org/10.1371/journal.pone.0228036

@ PLOS|ONE

Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy

Supporting information

S1 File. Supporting information.
(DOCX)

Acknowledgments

We would like to acknowledge discussions with Karin Musier-Forsyth, Erick D. Olson and
Ioulia Rouzina. We would like to thank Erick Olson and Karin Musier-Forsyth for providing
the in vitro transcribed RNAs. We also acknowledge discussions with Alan Rein and thank
him and S.A.K. Datta for providing the GagAP6 molecules.

Author Contributions

Conceptualization: Shaolong Chen, Jun Xu, Roya Zandi, Sarjeet S. Gill, Umar Mohideen.
Data curation: Shaolong Chen.

Formal analysis: Shaolong Chen, Jun Xu.

Funding acquisition: Umar Mohideen.

Investigation: Shaolong Chen, Jun Xu, Roya Zandi, Umar Mohideen.

Methodology: Shaolong Chen, Jun Xu, A. L. N. Rao, Sarjeet S. Gill, Umar Mohideen.
Project administration: Shaolong Chen, Umar Mohideen.

Resources: A. L. N. Rao, Sarjeet S. Gill, Umar Mohideen.

Software: Shaolong Chen, Mingyue Liu.

Supervision: Umar Mohideen.

Validation: Shaolong Chen, A. L. N. Rao, Umar Mohideen.

Visualization: Shaolong Chen, Mingyue Liu.

Writing - original draft: Shaolong Chen, Umar Mohideen.

Writing - review & editing: A. L. N. Rao, Roya Zandi, Umar Mohideen.

References

1. Ganser-Pornillos B.K., Yeager M., Pornillos O.: Assembly and architecture of HIV. Adv. Exp. Med. Biol.,
726, 441-465 (2012) https://doi.org/10.1007/978-1-4614-0980-9_20 PMID: 22297526

2. Rein A, Datta S.A.K., Jones C.P., Musier-Forsyth K.: Diverse interactions of retroviral Gag proteins
with RNAs. Trends. Biochem. Sci., 36, 373-380 (2011) https://doi.org/10.1016/j.tibs.2011.04.001
PMID: 21550256

3. Briggs J.A.G., Simon M.N., Gross |., Krausslich H.G., Fuller S.D., Vogt V.M., et al. : The stoichiometry
of Gag protein in HIV-1. Nat. Struct. Mol. Biol., 11, 672—675 (2004) https://doi.org/10.1038/nsmb785
PMID: 15208690

4. Datta S.A.K,, Curtis J.E., Ratcliff W., Clark P.K., Crist R.M., Lebowitz J., et al.: Conformation of the HIV-
1 Gag protein in solution. J. Mol. Biol., 365, 812—824 (2007) https://doi.org/10.1016/j.jmb.2006.10.073
PMID: 17097677

5. Paul M. S. and Beatrice H. H.: Origins of HIV and the AIDS Pandemic. Cold Spring Harb Perspect Med.
1,1, 2006841 (2011) https://doi.org/10.1101/cshperspect.a006841 PMID: 22229120

6. Sundquist W.1. Krausslich H.G.: HIV-1 Assembly, budding, and maturation. CSH Perspect. Med., 2,7,
a006924 (2012)

7. Freed E.O.: HIV-1 assembly, release and maturation. Nat. Rev. Microbiol., 13, 484—496 (2015) https://
doi.org/10.1038/nrmicro3490 PMID: 26119571

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 20/23


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0228036.s001
https://doi.org/10.1007/978-1-4614-0980-9_20
http://www.ncbi.nlm.nih.gov/pubmed/22297526
https://doi.org/10.1016/j.tibs.2011.04.001
http://www.ncbi.nlm.nih.gov/pubmed/21550256
https://doi.org/10.1038/nsmb785
http://www.ncbi.nlm.nih.gov/pubmed/15208690
https://doi.org/10.1016/j.jmb.2006.10.073
http://www.ncbi.nlm.nih.gov/pubmed/17097677
https://doi.org/10.1101/cshperspect.a006841
http://www.ncbi.nlm.nih.gov/pubmed/22229120
https://doi.org/10.1038/nrmicro3490
https://doi.org/10.1038/nrmicro3490
http://www.ncbi.nlm.nih.gov/pubmed/26119571
https://doi.org/10.1371/journal.pone.0228036

@ PLOS|ONE

Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

24,

25.

26.

27.

28.

Bell N.M., Lever A.M.L.: HIV Gag polyprotein: processing and early viral particle assembly. Trends
Microbiol., 21, 136—144 (2013) https://doi.org/10.1016/j.tim.2012.11.006 PMID: 23266279

Briggs J.A.G., Krausslich H.G.: The Molecular Architecture of HIV. J. Mol. Biol., 410, 491-500 (2011)
https://doi.org/10.1016/j.jmb.2011.04.021 PMID: 21762795

Pettit S.C., Sheng N., Tritch R., Erickson-Viitanen S., Swanstrom R.: The regulation of sequential pro-
cessing of HIV-1 Gag by the viral protease. Adv. Exp. Med. Biol., 436, 15-25 (1998) https://doi.org/10.
1007/978-1-4615-5373-1_2 PMID: 9561194

Massiah M.A., Starich M.R., Paschall C., Summers M.F., Christensen A.M., Sundquist W.1.: Three-
dimensional structure of the human immunodeficiency virus type 1 matrix protein, J. Mol. Biol., 244,
198-223 (1994) https://doi.org/10.1006/jmbi.1994.1719 PMID: 7966331

Chukkapalli V., Ono A.: Molecular determinants that regulate plasma membrane association of HIV-1
Gag. J. Mol. Biol., 410, 512-524 (2011) https://doi.org/10.1016/j.jmb.2011.04.015 PMID: 21762797

Hill C.P., Worthylake D., Bancroft D.P., Christensen A.M., Sundquist W.I.: Crystal structures of the tri-
meric human immunodeficiency virus type 1 matrix protein: implications for membrane association and
assembly. PNAS, 93, 7, 3099-3104 (1996) https://doi.org/10.1073/pnas.93.7.3099 PMID: 8610175

Géttlinger H.G., Sodroski J.G., Haseltine W.A.: Role of capsid precursor processing and myristoylation
in morphogenesis and infectivity of human immunodeficiency virus type 1. PNAS, 86, 15, 5781-5785
(1989)

Spearman P., Wang J.J., Heyden N.V., Ratner L.: Identification of human immunodeficiency virus type
1 Gag protein domains essential to membrane binding and particle assembly. J. Virol., 68, 5, 3232—
3242 (1994) PMID: 8151785

Bharat T.A.M., Davey N.E., Ulbrich P., Riches J.D., de Marco A., Rumlova M., et al. (2012). Structure of
the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature, 487, 385-389.
https://doi.org/10.1038/nature11169 PMID: 22722831

Kelly B.N., Howard B.R., Wang H., Robinson H., Sundquist W.1., Hill C.P.: Implications for viral capsid
assembly from crystal structures of HIV-1 Gag(1-278) and CA(N)(133-278). Biochemistry, 45, 38,
11257-11266 (2006) https://doi.org/10.1021/bi060927x PMID: 16981686

Wright E.R., Schooler J.B., Ding H.J., Kieffer C., Fillmore C., Sundquist W.I., et al.: Electron cryotomo-
graphy of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J., 26,
2218-2226 (2007) https://doi.org/10.1038/sj.emboj.7601664 PMID: 17396149

Briggs J.A., Riches J.D., Glass B., Bartonova V., Zanetti G., Krausslich H.G.: Structure and assembly of
immature HIV. PNAS, 106, 27, 11090-11095 (2009) https://doi.org/10.1073/pnas.0903535106 PMID:
19549863

De Guzman R.N., Wu Z.R., Stalling C.C., Pappalardo L., Borer P.N., Summers, M.F.: Structure of the
HIV-1 nucleocapsid protein bound to the SL3 psi-RNA recognition element. Science, 16, 279,5349,
384-388 (1998)

Godet J., Boudier C., Humbert N., lvanyi-Nagy R., Darlix J.L., Mély Y.: Comparative nucleic acid chap-
erone properties of the nucleocapsid protein NCp7 and Tat protein of HIV-1. Virus Res., 169, 2, 349—
360 (2012) https://doi.org/10.1016/j.virusres.2012.06.021 PMID: 22743066

Webb J.A., Jones C.P., Parent L.J., Rouzina |., Musier-Forsyth K.: Distinct binding interactions of HIV-1
Gag to Psi and non-Psi RNAs: implications for viral genomic RNA packaging. RNA, 19, 8, 1078-1088
(2013) https://doi.org/10.1261/rna.038869.113 PMID: 23798665

Kafaie J., Song R., Abrahamyan L., Mouland A.J., Laughrea M.: Mapping of nucleocapsid residues
important for HIV-1 genomic RNA dimerization and packaging. Virology, 375, 2, 592-610 (2008)
https://doi.org/10.1016/j.virol.2008.02.001 PMID: 18343475

Thomas J.A., Gorelick R.J.: Nucleocapsid protein function in early infection processes. Virus Res.,
134, 1-2, 39-63 (2008) https://doi.org/10.1016/j.virusres.2007.12.006 PMID: 18279991

Watts J.M., Dang K.K., Gorelick R.J., Leonard C.W., Bess J.W Jr., Swanstrom R., et al.: Architecture
and secondary structure of an entire HIV-1 RNA genome. Nature, 460, 711-716 (2009) https://doi.org/
10.1038/nature08237 PMID: 19661910

Jones C.P., Cantara W.A., Olson E.D., Musier-Forsyth K.: Small-angle X-ray scattering-derived struc-
ture of the HIV-1 5" UTR reveals 3D tRNA mimicry. PNAS, 111, 9, 3395-3400 (2014) https://doi.org/10.
1073/pnas.1319658111 PMID: 24550473

Wilkinson K.A., Gorelick R.J., Vasa S.M., Guex N., Rein A., Mathews D.H., et al.: High-throughput
SHAPE analysis reveals structures in HIV-1 genomic RNA strongly conserved across distinct biological
states. PLoS Biol. 6, 4, €96 (2008) https://doi.org/10.1371/journal.pbio.0060096 PMID: 18447581

Andersen E.S., Contera S.A., Knudsen B., Damgaard C.K., Besenbacher F., Kjems J.: Role of the
trans-activation response element in dimerization of HIV-1 RNA. J. Biol. Chem., 279, 21, 22243-22249
(2004) https://doi.org/10.1074/jbc.M314326200 PMID: 15014074

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 21/23


https://doi.org/10.1016/j.tim.2012.11.006
http://www.ncbi.nlm.nih.gov/pubmed/23266279
https://doi.org/10.1016/j.jmb.2011.04.021
http://www.ncbi.nlm.nih.gov/pubmed/21762795
https://doi.org/10.1007/978-1-4615-5373-1_2
https://doi.org/10.1007/978-1-4615-5373-1_2
http://www.ncbi.nlm.nih.gov/pubmed/9561194
https://doi.org/10.1006/jmbi.1994.1719
http://www.ncbi.nlm.nih.gov/pubmed/7966331
https://doi.org/10.1016/j.jmb.2011.04.015
http://www.ncbi.nlm.nih.gov/pubmed/21762797
https://doi.org/10.1073/pnas.93.7.3099
http://www.ncbi.nlm.nih.gov/pubmed/8610175
http://www.ncbi.nlm.nih.gov/pubmed/8151785
https://doi.org/10.1038/nature11169
http://www.ncbi.nlm.nih.gov/pubmed/22722831
https://doi.org/10.1021/bi060927x
http://www.ncbi.nlm.nih.gov/pubmed/16981686
https://doi.org/10.1038/sj.emboj.7601664
http://www.ncbi.nlm.nih.gov/pubmed/17396149
https://doi.org/10.1073/pnas.0903535106
http://www.ncbi.nlm.nih.gov/pubmed/19549863
https://doi.org/10.1016/j.virusres.2012.06.021
http://www.ncbi.nlm.nih.gov/pubmed/22743066
https://doi.org/10.1261/rna.038869.113
http://www.ncbi.nlm.nih.gov/pubmed/23798665
https://doi.org/10.1016/j.virol.2008.02.001
http://www.ncbi.nlm.nih.gov/pubmed/18343475
https://doi.org/10.1016/j.virusres.2007.12.006
http://www.ncbi.nlm.nih.gov/pubmed/18279991
https://doi.org/10.1038/nature08237
https://doi.org/10.1038/nature08237
http://www.ncbi.nlm.nih.gov/pubmed/19661910
https://doi.org/10.1073/pnas.1319658111
https://doi.org/10.1073/pnas.1319658111
http://www.ncbi.nlm.nih.gov/pubmed/24550473
https://doi.org/10.1371/journal.pbio.0060096
http://www.ncbi.nlm.nih.gov/pubmed/18447581
https://doi.org/10.1074/jbc.M314326200
http://www.ncbi.nlm.nih.gov/pubmed/15014074
https://doi.org/10.1371/journal.pone.0228036

@ PLOS|ONE

Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.

46.

47.

48.

49.

50.

Frankel A.D., Young J.A.: HIV-1: fifteen proteins and an RNA. Annu. Rev. Biochem., 67, 1-25 (1998)
https://doi.org/10.1146/annurev.biochem.67.1.1 PMID: 9759480

Moore M.D., Hu W.S.: HIV-1 RNA dimerization: It takes two to tango. AIDS Rev., 11,2, 91-102 (2009)
PMID: 19529749

Skripkin E., Paillart J.C., Marquet R., Ehresmann B., Ehresmann C.: Identification of the primary site of
the human immunodeficiency virus type 1 RNA dimerization in vitro. PNAS, 91, 11, 4945-4949 (1994)
https://doi.org/10.1073/pnas.91.11.4945 PMID: 8197162

Lu K., Heng X., Summers M.F.: Structural determinants and mechanism of HIV-1 genome packaging.
J. Mol. Biol., 410, 2, 609-633 (2011)

Russell R.S., Hu J., Bériault V., Mouland A.J., Laughrea M., Kleiman L., et al.: Sequences downstream
of the 5’ splice donor site are required for both packaging and dimerization of human immunodeficiency
virus type 1 RNA. J. Virol., 77, 1, 84-96 (2003) https://doi.org/10.1128/JV1.77.1.84-96.2003 PMID:
12477813

Clever J.L., Parslow T.G.: Mutant human immunodeficiency virus type 1 genomes with defects in RNA
dimerization or encapsidation. J. Virol., 71, 5, 3407-3414 (1997) PMID: 9094610

Ono A., Ablan S.D., Lockett S.J., Nagashima K., Freed E.O.: Phosphatidylinositol (4,5) bisphosphate
regulates HIV-1 Gag targeting to the plasma membrane. PNAS, 101, 41, 14889-14894 (2004) https://
doi.org/10.1073/pnas.0405596101 PMID: 15465916

Zhou W., Parent L.J., Wills J.W., Resh M.D.: Identification of a membrane-binding domain within the
amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic
phospholipids. J. Virol., 68, 4 25562569 (1994) PMID: 8139035

Zhou W., Resh M.D.: Differential membrane binding of the human immunodeficiency virus type 1 matrix
protein. J. Virol., 70, 12, 8540-8548 (1996) PMID: 8970978

Spearman P., Horton R., Ratner L., Kuli-Zade |.: Membrane binding of human immunodeficiency virus
type 1 matrix protein in vivo supports a conformational myristyl switch mechanism. J. Virol., 71,9,
6582-6592 (1997) PMID: 9261380

Ono A, Freed E.O.: Binding of Human Immunodeficiency Virus Type 1 Gag to Membrane: Role of the
Matrix Amino Terminus. J. Virol., 73, 5, 4136—-4144 (1999) PMID: 10196310

Saad J.S., Miller J., Tai J., Kim A., Ghanam R.H., Summers M.F.: Structural basis for targeting HIV-1
Gag proteins to the plasma membrane for virus assembly. PNAS, 103, 30, 11364—11369 (2006)
https://doi.org/10.1073/pnas.0602818103 PMID: 16840558

Rojas O.J.: Adsorption of polyelectrolytes on mica. Ency. Surf. Coll. Sci., 517-535 (2002)

Miller D.J., Amrein M., Engel A.: Adsorption of biological molecules to a solid support for scanning
probe microscopy. J. Struct. Biol., 119, 2, 172—-188 (1997) https://doi.org/10.1006/jsbi.1997.3875
PMID: 9245758

Millerab D.J., Engela A., Amreinc M.: Preparation techniques for the observation of native biological
systems with the atomic force microscope. Biosens. Bioelectron., 12, 8, 867—-877 (1997)

Raposo M., Ferreira Q., Ribeiro P. A.: A guide for Atomic Force Microscopy Analysis of Soft-Condensed
Matter. Mod. Res. Educ. Top. Microsc., 758-769. (2007)

Pfreundschuh M., Martinez-Martin D., Mulvihill E., Wegmann S., Muller D.J.: Multiparametric high-reso-
lution imaging of native proteins by force-distance curve—based AFM. Nat. Protoc., 9, 1113-1130
(2014) https://doi.org/10.1038/nprot.2014.070 PMID: 24743419

Lyubchenko Y.L., Shlyakhtenko L.S., Ando T.: Imaging of nucleic acids with atomic force microscopy.
Methods, 54, 2, 274—283 (2011) https:/doi.org/10.1016/j.ymeth.2011.02.001 PMID: 21310240

Pan., Sun Z., Maiti A., Kanai T., Matsuo H., Li M., et al.: Nanoscale Characterization of Interaction of
APOBECS3G with RNA. Biochemistry, 56 (10), 1473-1481 (2017) https://doi.org/10.1021/acs.biochem.
6b01189 PMID: 28029777

Ares P., Fuentes-Perez M.E., Herrero-Galan E., Valpuesta J.M., Gil A., Gomez-Herrero, et al.: High res-
olution atomic force microscopy of double-stranded RNA. Nanoscale, 8,23, 11818—11826 (2016)
https://doi.org/10.1039/c5nr07445b PMID: 26876486

Pastré D., Piétrement O., Fusil S., Landousy F., Jeusset J., David M.O., et al.: Adsorption of DNA to
mica mediated by divalent counterions: a theoretical and experimental study. Biophys. J., 85, 4, 2507—
2518 (2003) https:/doi.org/10.1016/S0006-3495(03)74673-6 PMID: 14507713

Kienberger F., Costa L.T., Zhu R., Kada G., Reithmayer M., Chtcheglova, et al.: Dynamic force micros-
copy imaging of plasmid DNA and viral RNA. Biomaterials, 28, 15, 2403—-2411 (2007) https://doi.org/
10.1016/j.biomaterials.2007.01.025 PMID: 17291581

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 22/23


https://doi.org/10.1146/annurev.biochem.67.1.1
http://www.ncbi.nlm.nih.gov/pubmed/9759480
http://www.ncbi.nlm.nih.gov/pubmed/19529749
https://doi.org/10.1073/pnas.91.11.4945
http://www.ncbi.nlm.nih.gov/pubmed/8197162
https://doi.org/10.1128/JVI.77.1.84-96.2003
http://www.ncbi.nlm.nih.gov/pubmed/12477813
http://www.ncbi.nlm.nih.gov/pubmed/9094610
https://doi.org/10.1073/pnas.0405596101
https://doi.org/10.1073/pnas.0405596101
http://www.ncbi.nlm.nih.gov/pubmed/15465916
http://www.ncbi.nlm.nih.gov/pubmed/8139035
http://www.ncbi.nlm.nih.gov/pubmed/8970978
http://www.ncbi.nlm.nih.gov/pubmed/9261380
http://www.ncbi.nlm.nih.gov/pubmed/10196310
https://doi.org/10.1073/pnas.0602818103
http://www.ncbi.nlm.nih.gov/pubmed/16840558
https://doi.org/10.1006/jsbi.1997.3875
http://www.ncbi.nlm.nih.gov/pubmed/9245758
https://doi.org/10.1038/nprot.2014.070
http://www.ncbi.nlm.nih.gov/pubmed/24743419
https://doi.org/10.1016/j.ymeth.2011.02.001
http://www.ncbi.nlm.nih.gov/pubmed/21310240
https://doi.org/10.1021/acs.biochem.6b01189
https://doi.org/10.1021/acs.biochem.6b01189
http://www.ncbi.nlm.nih.gov/pubmed/28029777
https://doi.org/10.1039/c5nr07445b
http://www.ncbi.nlm.nih.gov/pubmed/26876486
https://doi.org/10.1016/S0006-3495(03)74673-6
http://www.ncbi.nlm.nih.gov/pubmed/14507713
https://doi.org/10.1016/j.biomaterials.2007.01.025
https://doi.org/10.1016/j.biomaterials.2007.01.025
http://www.ncbi.nlm.nih.gov/pubmed/17291581
https://doi.org/10.1371/journal.pone.0228036

@ PLOS|ONE

Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Valbuenaa A., Mateu M.G.: Quantification and modification of the equilibrium dynamics and mechanics
of a viral capsid lattice self-assembled as a protein nanocoating. Nanoscale. 7(36), 14953-14964
(2015) https://doi.org/10.1039/c5nr04023j PMID: 26302823

Bussiek M., Schone A. Nellen W.: Atomic force microscopy imaging and force spectroscopy of RNA.
Handbook of RNA Biochemistry: Second, Completely Revised and Enlarged Edition, 527-546 (2014)

Hansma H.G., Oroudjev E., Baudrey S., Jaeger L.: TectoRNA and ’kissing-loop’ RNA: atomic force
microscopy of self-assembling RNA structures. J. Microsc., 212, 3, 273-279 (2003)

Watson J.D. Crick F.H.C.: Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid.
Nature, 171, 737-738 (1953) https://doi.org/10.1038/171737a0 PMID: 13054692

Tanaka Y., Fuijii S., Hiroaki H., Sakata T., Tanaka T., Uesugi S., et al.: A’-form RNA double helix in the
single crystal structure of (UGAGCUUCGGCUC). Nucleic Acids Res, 27, 4, 949-955 (1999) https:/
doi.org/10.1093/nar/27.4.949 PMID: 9927725

Arnott S., Hukins D.W., Dover S.D.: Optimised parameters for RNA double-helices. Biochem Biophys
Res Commun. 48, 6,1392-1399 (1972) https://doi.org/10.1016/0006-291x(72)90867-4 PMID:
5077825

Datta S.A., Heinrich F., Raghunandan S., Krueger S., Curtis J.E., Rein A, et al.: HIV-1 Gag extension:
conformational changes require simultaneous interaction with membrane and nucleic acid. J. Mol. Biol.,
406, 2, 205—214 (2011) https://doi.org/10.1016/j.jmb.2010.11.051 PMID: 21134384

Comas-Garcia M, Davis S.R., Rein A.: On the selective packaging of genomic RNA by HIV-1. Viruses,
8,9, 246 (2016)

Didierlaurent L., Racine P.J., Houzet L., Chamontin C., Berkhout B., Mougel M.: Role of HIV-1 RNA and
protein determinants for the selective packaging of spliced and unspliced viral RNA and host U6 and
7SL RNA in virus particles. Nucleic Acids Res., 39, 20, 8915-8927 (2011) hitps://doi.org/10.1093/nar/
gkr577 PMID: 21791531

Houzet L., Paillart J.C., Smagulova F., Maurel S., Morichaud Z., Marquet R., et al.: HIV controls the
selective packaging of genomic, spliced viral and cellular RNAs into virions through different mecha-
nisms. Nucleic Acids Res., 35, 8, 2695-2704 (2007) https://doi.org/10.1093/nar/gkm153 PMID:
17426127

Carlson L.A. Hurley J.H.: In vitro reconstitution of the ordered assembly of the endosomal sorting com-
plex required for transport at membrane-bound HIV-1 Gag clusters. PNAS, 109, 42, 16928—-16933
(2012) https://doi.org/10.1073/pnas. 1211759109 PMID: 23027949

Chukkapalli V., Hogue I.B., Boyko V., Hu W.S., Ono A.: Interaction between the human immunodefi-
ciency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for effi-
cient gag membrane binding. J. Virol., 82, 5, 2405-2417 (2008) https://doi.org/10.1128/JVI1.01614-07
PMID: 18094158

Shkriabai N., Datta S.A., Zhao Z., Hess S., Rein A., Kvaratskhelia M.: Interactions of HIV-1 Gag with
assembly cofactors. Biochemistry, 45, 13, 4077—-4083 (2006) https://doi.org/10.1021/bi052308e PMID:
16566581

Alfadhli A., Barklis R.L., Barklis E.: HIV-1 matrix organizes as a hexamer of trimers on membranes con-
taining phosphatidylinositol-(4,5)-bisphosphate. Virology, 387, 2, 466—472 (2009) https://doi.org/10.
1016/j.virol.2009.02.048 PMID: 19327811

Freed E.O.: HIV-1 Gag: Flipped out for P1(4,5)P2. PNAS, 103, 30, 11101-11102 (2006) https://doi.org/
10.1073/pnas.0604715103 PMID: 16847255

Ono A., Demirov D., Freed E.O.: Relationship between human immunodeficiency virus type 1 Gag mul-
timerization and membrane binding. J. Virol., 74, 11, 5142-5150 (2000) https://doi.org/10.1128/jvi.74.
11.5142-5150.2000 PMID: 10799589

PLOS ONE | https://doi.org/10.1371/journal.pone.0228036  February 3, 2020 23/23


https://doi.org/10.1039/c5nr04023j
http://www.ncbi.nlm.nih.gov/pubmed/26302823
https://doi.org/10.1038/171737a0
http://www.ncbi.nlm.nih.gov/pubmed/13054692
https://doi.org/10.1093/nar/27.4.949
https://doi.org/10.1093/nar/27.4.949
http://www.ncbi.nlm.nih.gov/pubmed/9927725
https://doi.org/10.1016/0006-291x(72)90867-4
http://www.ncbi.nlm.nih.gov/pubmed/5077825
https://doi.org/10.1016/j.jmb.2010.11.051
http://www.ncbi.nlm.nih.gov/pubmed/21134384
https://doi.org/10.1093/nar/gkr577
https://doi.org/10.1093/nar/gkr577
http://www.ncbi.nlm.nih.gov/pubmed/21791531
https://doi.org/10.1093/nar/gkm153
http://www.ncbi.nlm.nih.gov/pubmed/17426127
https://doi.org/10.1073/pnas.1211759109
http://www.ncbi.nlm.nih.gov/pubmed/23027949
https://doi.org/10.1128/JVI.01614-07
http://www.ncbi.nlm.nih.gov/pubmed/18094158
https://doi.org/10.1021/bi052308e
http://www.ncbi.nlm.nih.gov/pubmed/16566581
https://doi.org/10.1016/j.virol.2009.02.048
https://doi.org/10.1016/j.virol.2009.02.048
http://www.ncbi.nlm.nih.gov/pubmed/19327811
https://doi.org/10.1073/pnas.0604715103
https://doi.org/10.1073/pnas.0604715103
http://www.ncbi.nlm.nih.gov/pubmed/16847255
https://doi.org/10.1128/jvi.74.11.5142-5150.2000
https://doi.org/10.1128/jvi.74.11.5142-5150.2000
http://www.ncbi.nlm.nih.gov/pubmed/10799589
https://doi.org/10.1371/journal.pone.0228036

