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Abstract: Unmanned aerial systems (UAS) are increasingly used in precision agriculture to collect

crop health related data. UAS can capture data more often and more cost-effectively than sending

human scouts into the field. However, in large crop fields, flight time, and hence data collection,

is limited by battery life. In a conventional UAS approach, human operators are required to exchange

depleted batteries many times, which can be costly and time consuming. In this study, we developed

a novel, fully autonomous aerial scouting approach that preserves battery life by sampling sections

of a field for sensing and predicting crop health for the whole field. Our approach uses reinforcement

learning (RL) and convolutional neural networks (CNN) to accurately and autonomously sample the

field. To develop and test the approach, we ran flight simulations on an aerial image dataset collected

from an 80-acre corn field. The excess green vegetation Index was used as a proxy for crop health

condition. Compared to the conventional UAS scouting approach, the proposed scouting approach

sampled 40% of the field, predicted crop health with 89.8% accuracy, reduced labor cost by 4.8× and

increased agricultural profits by 1.36×.

Keywords: convolutional neural networks; reinforcement learning; unmanned aerial systems;

autonomous systems; precision agriculture; crop scouting

1. Introduction

It is predicted that the global population will increase to 9.7 billion in 2050 [1,2] and that

agricultural production must double to meet the needs of this growing population and shift in dietary

preference while balancing against energy and water constraints [3,4]. This goal cannot be reached

by simply doubling the agricultural inputs because of constrained resources, already developed

agricultural land limits and environmental concerns [5]. The future efficiency gains of agricultural

production systems must be improved and adaptable to be able to increase yields with respect to large

variances expected in weather locally and growing globally.

Precision agriculture (i.e., site-specific management practices) is a promising step towards improving

efficiency and reducing adverse impacts of agricultural production [6]. It focuses on assessing variation

across and within crop fields to divide a field into multiple management zones and treat each management

zone accordingly [7,8]. Thus, it is critical to have spatial and temporal maps of crop and soil health in a

timely fashion [9]. Accurate crop and soil health maps are critical to support site-specific management

practices in a cost-effective manner. Management decisions based on inaccurate crop and soil health

maps can result in unwanted crop yield loss, excessive fertilizer application and increased nutrient loads
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to waterbodies [10]. For instance, let us assume that a farmer applies fertilizers to only those crops

that fall within the unhealthy zones—based on crop health maps. If crop health maps inaccurately

label unhealthy areas as healthy, those misrepresented unhealthy sections of a field would not receive

treatment, and thus crop yield of those areas could be poor. Alternatively, if healthy zones are mislabeled

as unhealthy, they would receive unwanted fertilizer application, which means loss of farm resources as

well as increased risk of nutrient runoffs and leaching without much increase in crop yield.

Accurate representation of field conditions via maps depends on temporal and spatial resolutions

of data, which vary across sensors and platforms (e.g., satellite, weather stations and aircraft) used

for data collection, which in turn influence data collection and processing costs [11]. Unmanned

aerial systems (UAS) have emerged as a cost-effective approach for aerial scouting [12]. Compared

to satellites, UAS can fly to waypoints, hover and collect high resolution data (millimeters per pixel)

from large areas quickly. Compared to human piloted aircraft, UAS are 3× less expensive, achieve

better spatial resolution and pose fewer safety risks [11]. Traditional UAS approaches for scouting

involve a flying a grid-based flight pattern, capturing images comprising the entire crop field [12–14].

To scout a whole field, a UAS is given a set of waypoints (i.e., GPS coordinates) to follow, taking one

picture at each waypoint. Various vegetation indices, such as excess green vegetation index (ExG) [15],

are computed offline using visible images to indicate crop health conditions for each zone [16].

To provide accurate crop health information for a field, traditional exhaustive scouting approaches

involve redundant data collection (i.e., 65–80% front and side overlap between images). Batteries on

commodity UAS allow just 15–25 min of flight. UAS must land and recharge repeatedly to cover large

fields. Human operators must monitor flights and battery capacity, swap and recharge batteries and

possibly fly aircraft manually by remote control. These activities also delay missions. It can take a full

8-hours workday to exhaustively collect high definition images from every zone in an 80-acre crop

field [11,17]. Thus, for UAS with onboard IoT systems, it is crucial to collect as much information as

possible within a given UAS flight.

Autonomous systems sense and potentially alter their environment without human intervention.

They manage IoT actuators (e.g., UAS flight controls) and machine learning to sense and identify

phenomena in an effort to achieve high utility (e.g., low prediction error) outputs. Fully or partially

autonomous tractors, planters and monitoring equipment already perform complex tasks in critical

settings today. While autonomy can reduce labor costs and improve task performance, it also loses

the robust problem-solving abilities of human operators, incurs engineering costs and is difficult to

model (closed-loop systems). For example, Lin et al. relied on narrowly defined tasks to trace and

model compute needs for autonomous cars [18]. Boubin et al. broadened Lin’s compute modeling by

capturing environmental factors for UAS [17]. In-situ AI [19] and Boroujerdian et al. [13] generalized

these approaches via environmental simulation.

Recent works in this space have focused on using machine learning to gather insights from

UAS-collected images for a number of agricultural phenomena [20]. For example, Hunt and Rondon

used NDVI thresholding and object based image analysis on UAS images to predict potato beetle

damage [21]. Similarly, Alexandridis et al. used multi-spectral data and multiple image processing

techniques to identify weeds (Silybum marianum) [22]. Han et al. used similar machine learning

techniques to detect above ground biomass in corn [23]. These including other prior works in UAS

remote sensing have relied on orthomosaic images, geometrically accurate composites of many images

that depend on many UAS missions to construct as well as time consuming post-processing of

images. Real-time remote sensing has also been performed in recent works. Yang et al. (2020) used

a CNN and an adaptive, multi-height crop scouting algorithm to scout rice lodging in real time [24].

Besides, Boubin et al. (2019) [11] demonstrated early work in informed UAS sampling for crop yield

modeling. Outside of agriculture, Zhang et al. used UAS and a single-shot detector for real-time

vehicle detection [25]. Wang et al. adapted a deep reinforcement learning approach for autonomous

UAS navigation in outdoor environment [26]. However, real-time map creation using UAS sampling

in agriculture has not been deeply explored.
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2.3. Local-Field RL Algorithm

Local-Field RL is similar in many ways to whole-field RL. Both algorithms use RL to navigate the

field and generate a final crop health map. There are, however, a series of important differences between

them. Unlike whole-field RL which uses a prediction map generated from the crop health prediction

algorithm as an input to RL, local-field RL extracts image properties (i.e., ExG, RGB saturation) from

visible zones and feeds those data as an input to RL. Once the UAS has covered a certain amount

of the field, local-field RL extrapolates the crop health map of a field using a KNN-based recursive

dilation procedure instead of relying on a CNN. The dilation procedure finds every management zone

in the map that has not been predicted or observed and assigns that zone the consensus of its directly

adjacent neighbors, if it has any. If it has no neighbors, the position remains unassigned. This process

is performed recursively until the entire map is full.

2.4. Implementing Autonomous Aerial Scouting

Autonomous scouting algorithms were implemented using the SoftwarePilot simulation

environment [31], which was used in prior work to implement and simulate local-field RL [11,17].

In this study, SoftwarePilot was modified to use CNN-based model outputs for crop health map

prediction as well as for RL-based path finding algorithms. This simulator performs both the local-field

and whole-field RL algorithms until a user-specified coverage of the crop field is explored, then uses

the extrapolation algorithms to predict any areas of the final map that are still empty.

2.4.1. Dataset

CNN training and flight simulation were performed on a dataset collected from a corn field at the

Molly Caren Research farm near London, Ohio in August 2017. This dataset includes 684 aerial images

with a resolution of 4608 × 3456 pixels in RGB channels. Images were collected at 200 feet from the

ground using an eBee UAS from senseFly with a ground sample distance of 1.9 cm/px. For this study,

we used 30 aerial images as our training dataset, 6 aerial images as the test set and another 14 images

as the reference dataset. Each image is broken into a set of 1344 zones in a 42 × 32 grid. Each zone is

around 4.3 square meters.

2.4.2. Whole-Field RL Implementation

CNN-based crop health modeling is used in two parts of the experiment. First, we need to

use the crop health prediction models to build datasets for the RL algorithms. Second, during

simulation, the crop health prediction models provide near real-time predicted crop health map for

each management zone the UAS captures and for the whole field based on the final flight path. In this

subsection we mainly discuss RL dataset construction. The extrapolation procedure is discussed in the

following subsection.

To build a large RL dataset and perform thorough analysis, datasets were prepared using six

coverage rates : 10%, 20%, 30%, 40%, 50% and 60%. For each coverage rate, five whole-field RL

prediction window sizes—7 × 7, 11 × 11, 15 × 15, 19 × 19 and 23 × 23—were used. For each

combination, 1000 flight paths were randomly generated. The process begins with choosing a random

start point for the UAS on the edge of the field. Each subsequent flight step is chosen randomly

from the neighboring management zones of the current position. The simulated flight path keeps

growing until it meets the specified coverage rate. If the UAS has sampled all its directly adjacent

neighbors, but has not reached the coverage threshold, it flies to the nearest unsampled management

zone. For each zone the UAS visited, the crop health map for the prediction window is calculated

using the crop health prediction algorithm. Crop health is estimated based on ExG [16], a vegetation

index derived using pixel values from aerial photographs. These data are also used as ground truth.

Average ExG of each zone is compared with the average ExG of the entire field. If the zone ExG is less
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than 80% of the average field ExG, then it is classified as unhealthy, and, if the ExG is at least 80% of

the average ExG, the zone is labeled as healthy.

2.4.3. Simulation Environment

Our simulation environment was modified from SoftwarePilot [31], the local-field RL simulator.

For the purpose of simulation, we considered each image in the test set to represent the flight area

of the fully autonomous aerial scouting system, and for each zone to represent sensed data from the

simulated UAS. The experiment was conducted with a Lenovo ThinkPad T470 as the edge system.

This system has an i7-7500u processor, 24GB of RAM and runs Ubuntu 18.04.

2.5. Non-Autonomous Scouting Approach

Other than the traditional exhaustive scouting approach and local-field RL, we also compared our

whole-field RL algorithm with two naive approaches: random scouting and non-scouting. Random

scouting entails UAS randomly choosing flight directions until the provided coverage rate is reached.

Non-scouting refers to the naive approach of applying fertilizers uniformly without considering

internal field variability.

2.6. Comparison between Scouting Approach

We compared our whole-field RL scouting approach with the local-field RL approach and some

traditional methods (the exhaustive, random scouting and non-scouting approaches) based on metrics

such as accuracy, positive precision, positive recall, negative precision and negative recall (discussed

below) relative to the ground truth health determined using ExG. Positive and negative indicate

healthy and unhealthy crop conditions, respectively. Positive recall represents the ratio between

all correctly classified true positives and all true positives (both true positives and false negatives),

where a higher ratio represents efficient avoidance of false negatives. Negative precision similarly

represents the ratio of correctly classified true negatives to all true negatives (classified true negatives

and classified false positives), where a high negative precision represents an efficient avoidance of

false positives. While false positives refer to unhealthy management zones that are misclassified

as healthy, false negatives refer to healthy management zones that are misclassified as unhealthy.

True positives and negatives indicate management zones that are correctly classified as healthy and

unhealthy. Management decisions based on false positives can result in untreated crops, which may

result in low crop yield. Similarly, if unhealthy management zones are predicted as healthy (i.e.,

false negative), they could lead to excessive use of resources such as fertilizer thereby increasing the

likelihood of higher nutrient load to air or water.

2.6.1. Energy and Labor Costs Estimation

To compare the performance of all approaches from energy and cost perspectives, a simple

cost–benefit model was developed by adding up revenue based on crop yield from all the management

zones and subtracting the cost of treating misclassified zones (healthy classified as unhealthy and

vice versa) as well as UAS deployment costs. The labor costs were considered to be $10 and $20/h

for unskilled and skilled workers, respectively [32]. It was also assumed that autonomous scouting

approaches require only one unskilled worker to complete the entire survey, whereas exhaustive

scouting requires an additional skilled worker (i.e., two in total) to plan and complete UAS surveys

including setting up the system, planning the routes and swapping UAS batteries. In the non-scouting

approach, it was assumed that farmers classify every zone as unhealthy and thus treat the field equally.

2.6.2. Nutrient Runoff Risk

We estimated potential risk of nutrient runoffs under various scouting approaches with two

assumptions: (1) farmers tend to apply fertilizer uniformly throughout a field if they do not have
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site specific information from scouting (i.e., non-scouting), and thus the nutrient runoff risk of a field

is 100%; and (2) if they have site specific information (i.e., various types of scouting), they apply

treatments only to poor (i.e., unhealthy) sections of a field, which reduces the nutrient runoff risk.

Thus, the potential of autonomous scouting approaches to reduce nutrient runoff risks is dependent

directly on the false negative rates from the classification as unnecessary nutrient runoffs can occur

when healthy zones are unnecessarily fertilized. To determine how these two autonomous scouting

approaches help minimize nutrient runoff risk, we estimated the percentage of healthy zones that are

unnecessarily fertilized.

3. Results and Discussion

In this study, the accuracy, scouting cost, revenue and energy consumption of the proposed fully

autonomous scouting techniques were assessed and compared with state of the practice automated

scouting and non-scouting approaches used in both precision agriculture and general agriculture.

3.1. Comparing Fully Autonomous Aerial Scouting and Conventional Methods

Accuracy differences between whole-field and local-field RL at both 20% and 40% coverage

settings were compared in Figure 5, which showed that whole-field RL at 20% coverage provides 2.3%

better accuracy than local-field RL at 40% coverage. Local-field RL provided 74.5% and 80.3% accuracy

at 20% and 40% coverage, respectively. This is compared to 82.6% and 87.3% accuracy at 20% and 40%

coverage, respectively, for whole-field RL.

Figure 5. Accuracy of maps generated by autonomous scouting at different coverage rates.

Local-field RL outperformed whole-field RL considerably at avoiding false negatives. It experienced

8.3% and 8% higher positive recall than that of whole-field RL at 20% and 40% coverage, respectively.

However, there was a 67% increase in negative recall for whole-field RL over local-field RL at 20%

coverage, and 58% at 40% coverage.

As shown in Table 2, when comparing the two autonomous scouting methods for coverage rates

of 10–60%, whole-field RL outperformed local-field RL considerably between 20% and 50% coverage

while local-field RL outperformed whole-field RL at 10% coverage with a higher positive precision

rate and fewer false positives. At 10% coverage, local-field RL classified nearly the entire field as

healthy compared to whole-field RL. At 60% coverage, there was a small difference in overall accuracy

between whole-field and local-field RL; however, negative recall was significantly higher in whole-field

RL. While local-field RL experienced consistent accuracy gains as coverage improved, whole-field

RL experienced gains at lower coverage, with a considerable drop-off at 50%; its performance is

restricted by our CNNs, whose average accuracy is around 90%. This suggests that the marginal

benefit of increasing whole-field RL coverage past 60% is likely not worth the marginal cost of labor

and equipment. Over 60% coverage, the extra cost is more than the extra revenue compared to a 40%

coverage rate.
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Table 2. Accuracy, precision and recall for maps generated using whole-field and local-field RL at

different coverage rates.

Coverage Rate 10% 20% 30% 40% 50% 60%

Local
Field RL

Accuracy 0.73 0.75 0.77 0.80 0.84 0.88
Positive Precision 0.69 0.69 0.72 0.75 0.79 0.83

Positive Recall 0.89 0.91 0.93 0.94 0.95 0.97
Negative Precision 0.49 0.57 0.64 0.72 0.78 0.85

Negative Recall 0.48 0.46 0.46 0.51 0.59 0.61

Whole
Field RL

Accuracy 0.70 0.83 0.85 0.87 0.89 0.90
Positive Precision 0.71 0.83 0.85 0.87 0.89 0.89

Positive Recall 0.71 0.84 0.87 0.89 0.93 0.94
Negative Precision 0.64 0.78 0.81 0.82 0.85 0.87

Negative Recall 0.65 0.77 0.80 0.81 0.83 0.83

The main difference between the two autonomous scouting approaches is how they consider

surrounding zones for prediction of crop health and pathfinding. Whole-field RL uses a CNN-based

prediction window for path finding, in which a few poor management zones can reinforce the scouting

of poor management zones in their surroundings. Local-field RL simply uses a KNN-based linear

approach, which predicts health condition of a management zone based on its adjacent neighbors,

and thus can achieve high positive recall. While it is important to achieve high positive recall, negative

recall can have significant cost implications when implementing site-specific management practices.

Treating an unhealthy zone as healthy (negative recall) is estimated to cost eight times higher than

treating a healthy zone as unhealthy (positive recall) as discussed in Section 2.6.

3.2. Autonomous Pathfinding and Extrapolation Comparison

Both autonomous scouting approaches appear to alternate between two natural behaviors,

exploration and scouting. Exploration involves the UAS traversing the field, covering large swaths

in search of a region that contradicts current map conditions. Scouting involves the UAS moving in

an exhaustive fashion across a region that the RL algorithm perceives as important. Whole-field RL

was found to take better advantage of these two pathfinding behaviors by quickly finding areas that

it perceives to be problematic, and more thoroughly scouting those areas. This contrasts with the

local-field RL approach where the first cluster in Figure 6a is traversed but barely explored and a large

chunk of the second cluster is ignored. These discrepancies are likely due to the quality of the inputs

provided to the RL algorithm in each approach. Whole-field RL provides its entire prediction and

ground truth windows which more accurately locate relevant prior examples in the dataset than the

local features used in local-field RL.

However, as illustrated in Figure 6b, local-field RL outperformed whole-field RL in some cases at

a low coverage rate. Distracted by traces of tractors, whole-field RL spends a considerable amount

of time scouting a questionable narrow area in the top left of the field, while local-field RL rushes to

the bottom to explore a region that is partially unhealthy. While whole-field RL eventually finds the

bounds of the large negative cluster, the quick decision by local-field RL that leads to finding the bad

cluster earlier leads to improved accuracy at this low coverage setting.

Differences between the local-field and whole-field RL extrapolation methods are also apparent

when examining the four output maps. Both local-field RL maps show significant clusters of

false negatives (pink areas). This is due to the underlying KNN-based extrapolation algorithm.

When local-field RL’s extrapolation algorithm encounters a cluster of similarly classified points,

it tends to reinforce that classification across nearby unpredicted zones. One cluster of negative zones

would be easily extrapolated such that a huge area of a field could be falsely predicted as negative,

which is shown in predicted crop health map by local-field RL in Figure 6a. This behavior is not as

apparent in whole-field RL which uses online predictions to fill zones instead of binary extrapolation.
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for predominantly unhealthy fields, but the low net accuracy must also be explained. Whole-field

RL is largely negative-biased as discussed previously. When confronted with a majority negative

image, the extrapolation procedure will reinforce negative regions, resulting in a larger number of

false negatives than we see in, for instance, the healthy image in Figure 7. While whole-field RL

experiences decreased overall accuracy on predominantly negative fields due to a high false negative

rate, the decreased cost of treating false negatives as compared to false positives discussed earlier

in this section implies only modest losses from treatment costs as compared to crop loss from such

incorrectly predicted zones.

3.4. Effects of Prediction Window Size

While comparing different combinations of prediction window sizes and coverage rates on

accuracy, it was found that increasing prediction window size is not always beneficial. As shown

in Figure 8a, for 20–40% coverage rate, accuracy is highest for the 15 × 15 window size, with lower

accuracy proportional to both increases and decreases of the window size. Ten percent coverage rate

had the highest accuracy at a window size of 19. Accuracy decreases at smaller window sizes can be

attributed to a lack of iteratively updated prediction information with which to generate a final map.

As the UAS moves around the field, it iteratively updates unseen but nearby areas to the flight path.

If this window does not extend out far enough from the flight path, the only update that some areas

will receive is the final extrapolation. At smaller window sizes, it is clear that some areas could have

benefited from iterative updates, which would in turn increase accuracy. The opposite can be said

for accuracy decreases with increased window size. If the prediction window is too large, the CNN

approach may not be able to accurately predict their health due to their distance from ground truth.

This result is critical to performance. Given the quadratic increase in latency as the prediction window

increases, it is imperative that a whole-field RL system balances accuracy against increased costs due

to latency. Given that we have found accuracy’s inflection point as a function of window size, a simple

solution could be to use the most accurate window size, which we have done for these experiments.

Figure 8. (a) The effects of prediction window size on final crop health map accuracy at different

coverage rates for whole-field RL; and (b) the execution times of software components for local-field

RL and whole-field RL with a window size of 15. [Note: Crop health map was generated offline.]

It is worth noting that, as prediction window size increases, so does the size of the RL dataset

required for pathfinding. Both the increased number of predictions and larger pathfinding overhead

increase system latency, so larger windows should be avoided to increase throughput unless accuracy

returns justify them. From Figure 8b we can see that the process to compute the final crop health map

at the edge system offline by extrapolation after a mission is complete took on average 320X longer

for whole-field RL than for local-field RL. Whole-field RL’s CNN models required considerably more

time due to computational complexities than local-field RL’s KNN-based approach. This process is,

however, performed offline. Latencies simply determine how long the farmer must wait after mission

execution to receive a crop health map. While whole-field RL experiences much higher latency in crop

health map generation, both approaches return a map to the farmer in reasonable time.
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3.5. Energy, Labor Costs and Nutrient Runoff Risk

As shown in Figure 9a, the amount of charges required to map a hectare of crops differs between

three scouting approaches due to the percent of field area covered in each approach. Since it was

assumed that the same number of charges would be required to cover the same size of a field across

all scouting approaches, local-field and whole-field RL experienced the same charges at the same

coverage setting, requiring 6 charges at 20% coverage and 12 charges at 40% coverage. This compares

to 29 charges to map one hectare of land using the traditional exhaustive scouting method which was

found to require considerably more labor and charges to complete the scouting mission.

Figure 9. (a) Energy implementations and labor costs of autonomous scouting vs. exhaustive

scouting; and (b) the impacts that autonomous scouting have on revenue compared to state of the

practice methods.

There were significant differences in labor costs for different scouting approaches compared in

Figure 9a. Considering the economic data from the 2018 growing season [32], at hourly rates of $10

and $20 for unskilled and skilled workers, respectively, autonomous scouting methods were roughly

estimated to cost $29 and $44 for 20% and 40% coverage of an 80-acre crop field, which compares to

the $212 mapping cost for exhaustive mapping using two laborers.

According to recently published agricultural cost data [32], the revenue per acre for corn is $763.8

USD ($3.8/bushel × 200 bushels/acre). Revenue per management zone is calculated to be $0.8 for

the size of 4.3 square meters per zone. The cost of fertilizer per acre is $130, which makes it $0.1

per management zone. Thus, one false negative management zone would cost a farmer $0.8 due to

crop loss, while one false positive management zone would cost $0.1 in treatment cost. Based on this,

when the field is not scouted, it is estimated to provide 36% less revenue than whole-field RL, and 27%

less revenue than local-field RL as shown in Figure 9b. Exhaustive scouting outperformed no scouting

by 20% but loses out to local-field and whole-field RL by 5% and 17%, respectively. While exhaustive

scouting will provide 100% accuracy, allowing farmers to properly treat their entire field, the labor

costs of exhaustively mapping large fields is outweighed by lower coverage autonomous mapping

with extrapolation. We also explored the effects of a random sampling approach at 40% coverage

using local-field RL. This automated approach without RL pathfinding underperforms compared to

exhaustive scouting by 1.2%, demonstrating that not all automated and naïve autonomous approaches

are superior.

Between autonomous approaches at 40% coverage, we found that whole-field RL garnered

13% more revenue than local-field RL. Despite similar labor costs, the accuracy improvements over

local-field RL, particularly among the negative recall, provides a considerable increase in revenue for

whole-field RL over local-field RL. By limiting false negatives, whole-field RL was found to reduce

higher runoff risk by 12% compared to local-field RL. However, all the revenue data were generated

from our simulation environment, which means that they represent the best case scenarios without

considering other important factors such as climate, weather, market and insects.
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4. Limitations and Future Work

Autonomous scouting methods inherently avoid surveying 100% of a field to save time, energy

and money. This, however, runs the risk of missing critical field health problems. This problem can be

minimized if a field is regularly monitored for potential crop health problems during growing seasons.

A problematic section of a field that might not have been picked up by autonomous scouting at one

time is likely to be picked up if the field is regularly mapped.

The cost–benefit model used in this study considers fertilizer application as the only treatment for

unhealthy zones. Zones may have stresses such as pest and water other than nutrients only, and thus

need to be treated accordingly, which could in turn influence the treatment costs. In addition, costs and

benefits were estimated based on corn only. Some of these estimates can differ by crop and treatment

types. Future studies should be focused on evaluating some of these factors.

In the study, we used ExG as an indicator of crop health for simplicity. There are however other

vegetation indices (e.g., NDVI and green index) and biophysical variables (e.g., soil organic carbon,

pH and elevation) that are also reported to be good indicators of crop health [33]. Future studies could

exploit a combination of these variables as indicators of crop health while developing models for

autonomous scouting approaches.

For crop health prediction, we used an ensemble of spatial CNN models. Other deep learning

methods, such as semantic segmentation, should also be considered. Semantic segmentation classifies

individual pixels in an image, providing a more detailed view of crop health. Yang et al. (2020) used

semantic segmentation in the detection of rice lodging [24]. Long et al. designed fully convolutional

networks for semantic segmentation which could be adapted in our CNN model for crop health

prediction [34]. Besides, considering the improper proportion of healthy and unhealthy zones, Yu and

Fan designed a deep semantic labeling framework with special consideration of rare classes that could

be used for detecting sparse unhealthy zones [35].

Future work should also focus on training, reinforcement learning and testing of the models

based on data collected from with variety of crops under different field conditions. The RL approaches

used in this study, which are similar to q-learning, can also be compared with other related sampling

algorithms such as rapidly-exploring random trees. Similarly, future work should address how

prediction window size and its effect on architectural latency affects accuracy and overall cost of

the system.

5. Conclusions

In this paper, we design and discuss a new fully autonomous aerial scouting approach, whole-field

RL, which we compare to local-field RL and the current naive UAS approach of exhaustive scouting.

The performance of these two RL approaches along with other popular scouting methods was assessed

in terms of accuracy, precision, recall, execution time of crop health map generation and cost-saving

potential across different field coverage rates. Compared to local-field RL, whole-field RL can boost

accuracy of crop health maps by 9%. This approach produces accurate crop health maps after flying

over only 40% of the field. Whole-field RL reduced labor cost by 4.8 times compared to naive methods,

increased agricultural profits by 36% and reduced runoff potential by 87%. We found that coverage rate

offers diminishing improvements in accuracy after 40%. The considerable improvement in performance

of whole-field scouting over local-field scouting can largely be attributed to its added CNN models,

which use surrounding ground truth data to predict the health conditions of management zones in

flight. In-flight predictions allow the final crop health map to be iteratively updated and the flight

path to be refined online, producing a more accurate final product. Our evaluation shows that fully

autonomous aerial scouting can guide crop field management techniques using less money and less

agricultural product while garnering greater monetary returns than the state of the practice.
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