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Abstract

We present an end-to-end deep learning model that can automatically detect epileptic seizures in multichannel electroen-
cephalography (EEG) recordings. Our model combines a Convolutional Neural Network (CNN) and a Bidirectional Long
Short-Term Memory (BLSTM) network to efficiently mine information from the EEG data using a small number of trainable
parameters. Specifically, the CNN learns a latent encoding for each one second window of raw multichannel EEG data. In
conjunction, the BLSTM learns the temporal evolution of seizure presentations given the CNN encodings. The combination
of these architectures allows our model to capture both the short time scale EEG features indicative of seizure activity as well
as the long term correlations in seizure presentations. Unlike most prior work in seizure detection, we mimic an in-patient
monitoring setting through a leave-one-patient-out cross validation procedure, attaining an average seizure detection sensitiv-
ity of 0.91 across all patients. This strategy verifies that our model can generalize to new patients. We demonstrate that our
CNN-BLSTM outperforms both conventional feature extraction methods and state-of-the-art deep learning approaches that
rely on larger and more complex network architectures.
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1. Introduction

Epilepsy is a heterogeneous neurological disorder
characterized by spontaneous bursts of neuronal syn-
chrony in the brain that manifest as seizures [1].
Nearly 3.4 million people in the United States, or 1.2%
of the population, are believed to have active cases of
epilepsy [2]. Worldwide estimates place the number of
cases at 50 million, making epilepsy one of the most
common neurological disorders with an associated in-
crease in mortality of up to threefold. With its wide
prevalence and effect on premature death, epilepsy rep-
resents a large and ongoing public health challenge [3].
While the disorder can often be controlled with Anti-
Epileptic Drugs (AEDs), and/or diet, roughly 20–40%
of epilepsy patients are medically refractory [4] and do
not respond to drug treatment. In these cases, resection
or neurostimulation can lead to good outcomes. How-
ever these treatments require precise knowledge of the
seizure onset zone.

Scalp electroencephalography (EEG) is the first and
foremost modality used for epilepsy diagnosis. Deter-
mination of the seizure type (focal or general), and the

likely onset zone can be made by examining the tem-
poral evolution of a seizure in this modality [5]. To
acquire EEG recordings, patients are admitted to an
epilepsy monitoring unit, where surface electrodes are
applied, typically in the 10/20 or 10/10 international
system [6], and any prescribed AEDs are withdrawn.
Multichannel EEG data is recorded continuously over
several days in order to capture roughly three to five
seizures for each patient.

Identification of the seizure in scalp EEG is key for
epilepsy diagnosis. However, epileptic activity may
occur rarely, requiring days of long term epilepsy mon-
itoring. Analyzing these continuous scalp EEG record-
ings is time consuming and requires extensive training.
In addition, up to 30% of seizures are electrographic
with no accompanying behavioral signatures to facili-
tate seizure identification. As a result of these difficul-
ties, inter-rater agreement among clinicians can be low
[7; 8] requiring labor-intensive review and discussion.
Thus accurate automatic seizure detection has the po-
tential to save clinician time and improve the diagnosis
and management of epilepsy.

In this paper we present a deep learning model for
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accurate seizure detection based on multichannel EEG
that overcomes many of the challenges of the cur-
rent clinical workflow. Our model accurately detects
seizures in out of sample patients while maintaining a
low number of false positive detections. This gener-
alization ability makes our method uniquely suited for
clinical review of prospectively acquired EEG record-
ings of new patients. Our model combines a Convo-
lutional Neural Network (CNN) encoder with a Bidi-
rectional Long Short-Term Memory (BLSTM) classi-
fier to simultaneously extract predictive features from
the EEG data and learn the evolution of seizure pre-
sentations across time. We evaluate the CNN-BLSTM
on EEG data from 34 patients recorded at the Johns
Hopkins Hospital. We evaluate our model using leave-
one-patient-out cross validation to ensure generaliza-
tion to new patients. The CNN-BLSTM outperforms
baseline methods that rely on hand-crafted features or
larger deep neural architectures.

1.1. Machine Learning and Seizure Detection

Seizure detection has been an active area of research
for nearly fifty years. While many techniques have
been applied to the problem, no standardized method-
ology has been adopted. Early work focused on rule
based systems with hand designed features and thresh-
olding [9]. As computational resources improved,
research pivoted to applying signal processing tech-
niques to characterize ictal (e.g. epileptic) EEG for
seizure detection. For example, changes in the non-
linear dynamics of ictal EEG noted in [10] inspired
many researchers to use features derived from chaos
theory to differentiate between seizure and baseline
EEG. In the past decade, machine learning methods
have started to dominate the automated seizure detec-
tion literature. In general, these approaches follow
a two-stage pipeline. First, feature extraction is per-
formed on windowed segments of EEG data. Second,
a classifier is trained to declare each segment as seizure
or baseline depending on the features extracted [11].
Below we detail common approaches in feature extrac-
tion and classification.

Time Frequency-Domain Features. Brain wave activ-
ity is typically analyzed within separate frequency
bands, which correspond with normal cognitive pro-
cesses, such as wakefulness, relaxation, or drowsiness.
Changes in activity within these bands can also in-
dicate epileptic seizures [12]. Time-frequency analy-
sis seeks to quantify these changes to detect epileptic
events. The Fast Fourier Transform (FFT) is the sim-
plest approach for time-frequency analysis. For ex-
ample, the authors of [13] and [14] use the FFT to
compute power in the 2.5–12 Hz band of each EEG
channel. Thresholding techniques developed in [14]
were applied to find periods of seizure activity within
long-term recordings. In [15; 16] components in the

theta (1–4 Hz), delta (4–8 Hz), alpha (8–13 Hz), beta
(13-30 Hz), and gamma (≥ 30 Hz) brain wave bands
were summed for each EEG channel. These features
were used within a coupled hidden Markov model
framework for tracking the evolution of seizure activ-
ity across EEG channels.

A more sophisticated approach uses filter banks
to compute the spectral power in different frequency
bands. In [17], the EEG signal in each channel was
separated into eight evenly spaced frequency bands
from 0.5–25 Hz using a filter bank. Patient specific
seizure onset detectors were trained using a Support
Vector Machine (SVM) classifier. Finally, the hierar-
chical nature of the wavelet transform has made it a
popular representation for seizure detection. In [18],
the energy in wavelet subbands from 1–30 Hz was used
to create histograms of seizure and non-seizure activ-
ity. Changepoint detection was subsequently used to
identify seizure onsets. In [19], energy and spectral
features were calculated for each wavelet subband and
used for classification in an array of classifiers. [20]
follows a similar approach, extracting amplitude fea-
tures for classification after performing a multichannel
empirical wavelet transform to the original EEG sig-
nal. Similarly, [21] extracted features from non-linear
signal processing for each subband of the wavelet
transform. An array of classifiers were then compared
for their efficacy in the seizure detection task. While
these works demonstrate that changes in the EEG fre-
quency content reflects seizure activity, FFT, wavelet,
and filter bank based methods ignore phase informa-
tion between EEG channels. Phase reversals have been
long established in the EEG literature to indicate ab-
normal synchronous firing [12] but cannot be captured
by methods that focus on just the power spectrum.

Time Domain Features. Time domain methods ana-
lyze the original EEG signals. As noted above, fea-
tures from non-linear signal processing and chaos the-
ory have received much attention, as in [22]. Non-
linear signal processing techniques quantify the pre-
dictability of the system. For example, [22] uses ap-
proximate entropy, sample entropy, and phase entropy
to measure the similarity of the EEG to its past behav-
ior. It is noted that approximate and sample entropy
are lower for non-seizure intervals, indicating a more
predictable signal than that of ictal EEG.

Finally, many studies have combined time-
frequency and time domain features to leverage
advantages from each representation for gains in
detection performance. For example, [23] extracts
kurtosis, skewness, and correlations computed in the
time domain, along with amplitudes and correlations
between frequency decompositions taken from the
spectral domain. Taking a different approach, the
authors of [24; 25] and [26] extract non-linear features
following the decomposition of the original EEG
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signal into separate wavelet bands. Both [24] and
[25] compute the correlation dimension and largest
Lyapunov exponent for each subband after application
of the wavelet transform. Similarly, [26] uses the
wavelet transform to isolate different frequencies
in the EEG signal and applies approximate entropy
to each subband to create features for classification.
These ensembles of features are borne out of necessity,
as each feature on its own generally captures only one
signal phenomenon in the original signal. And in fact,
there is little evidence that these ensembles are stable
across heterogeneous seizure presentations.

Classification. Many classification strategies have
been used for seizure detection. SVMs are perhaps the
most popular classifier, finding use in [27; 28; 17]. By
comparing each test sample to algorithmically selected
data points called support vectors, SVMs are capable
of drawing complex decision boundaries via represen-
tative samples of the positive and negative classes [29].

The random forest classifier is another popular
choice [23; 30]. Random forests construct an ensem-
ble of decision trees, such that each tree is trained with
a random subset of the input examples, and each node
is optimized using a random subset of the input fea-
tures. This dual randomization provides robustness to
overfitting, particularly when training data is limited
[31]. Other classifiers for seizure detection include
adaptive thresholding [13], which updates a thresh-
olding parameter based on previous intervals, and k-
nearest neighbors [30], which computes similarity be-
tween an unknown sample and known representatives
of the positive and negative classes. While power-
ful, these classifiers are limited by the discriminative
power of their input features. As seizure and baseline
EEG morphologies vary widely between patients, tra-
ditional approaches often lead to poor generalization.

1.2. Deep Learning for Seizure Detection

Driven by successes in domains such as computer
vision and natural language processing, deep neural
networks have come to dominate the machine learning
field [32]. This interest in deep learning has extended
into EEG analysis, finding applications in brain com-
puter interfaces, sleep state analysis, and seizure de-
tection [33]. Inspired by the organization of the brain,
deep learning methods use a cascade of primitive func-
tional units to learn arbitrarily complex functions. The
network is trained by repeatedly showing it labeled
data and updating the parameters according to some
desired objective function. Given enough training data
and an appropriately designed network architecture,
deep methods will often surpass the performance of
more traditional machine learning techniques. How-
ever, the architecture design of a deep network is a
non-trivial problem.

The simplest deep learning architecture is the Multi-
Layer Perceptron (MLP), which relies on fully con-
nected neural network layers. While MLPs can learn
more complex classification functions than both SVMs
and RFs, their performance is limited by the input fea-
tures. This behavior is evident in [30], where MLPs,
random forests, and SVMs are shown to achieve com-
parable results when using features extracted from the
EEG data. To over come this challenge [34] uses a
separate autoencoder to extract features from the raw
EEG; the autoencoder output is then fed into the MLP.
However this technique ignores the inherently tempo-
ral nature of the EEG signal, as each sample of the
EEG is analyzed as a separate feature and not an ele-
ment of an evolving sequence.

Convolutional Neural Networks (CNNs) are a more
sophisticated architecture that captures interdependen-
cies between neighboring data points across multiple
scales. As such, they have found applications in im-
age and sequence processing, where local similarities
are important. Broadly, CNNs apply a set of convolu-
tional kernels with a restricted field of view to form lo-
cal representations of the signal. By aggregating these
local representations and applying subsequent convo-
lutional layers, information at larger and larger scales
can be extracted. In this way, CNNs can replace hand
designed feature extraction methods with representa-
tions learned directly from the data.

CNNs for EEG feature extraction can be divided
into two classes, those that use time-frequency rep-
resentations as input images and those that use the
EEG signal as an input time series. Methods that use
time-frequency inputs rely on two dimensional convo-
lutions, similar to other computer vision applications.
For example, [35] constructed a CNN to operate on
Short-Time Fourier Transform (STFT) spectrograms
for seizure detection. Similarly, in [36] the authors
construct a 2D image of spectrograms taken from each
EEG channel and classify these images using several
popular CNN architectures from computer vision.
Other time-frequency representations have also been
considered, such as [37] where a wavelet decomposi-
tion was used to build a spectrogram for the CNN in-
put. [38] used a tensor decomposition to find common
components in the STFT of each EEG channel before
input into a CNN. While CNNs are undoubtedly pow-
erful, applying 2D convolutions to the EEG spectro-
gram imposes arbitrary structure between neighboring
FFT frequency bins that is not present in the original
signal space. In addition, as noted above, decomposi-
tion of the EEG signal using the FFT disregards im-
portant cross-channel phase information that may be
indicative of seizure activity.

An alternative to the 2D CNN is to apply one-
dimensional convolutions directly on the EEG signals,
thus eliminating the need for time-frequency prepro-
cessing. This approach is exemplified by [39; 40; 41],
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Figure 1. Distribution of EEG recording statistics by patient.

Table 1. Patient demographics and clinical attributes for our JHH evaluation dataset (N=34).

JHH Dataset

Seizure Type Focal Epilepsy
Number of patients 34
Average Age 35 ± 16 years
Minimum/Maximum Age 6/77 years
Number of Males/Females 16/18
Seizures per Patient 5.9 ± 5.8
Minimum/Maximum Seizures per Patient 1/24
Average EEG Analyzed per Patient 1.8 ± 1.8 hours
Average Seizure Duration 112 seconds
Minimum/Maximum Seizure Duration 13/979 seconds

where short windows are fed directly into a five one-
dimensional CNN followed by fully connected layers
for seizure detection. In [39], single channels of in-
tercranial EEG are classified using a one dimensional
CNN. In [42] one dimensional convolutions are ap-
plied to each EEG channel individually while sharing
the same parameters across channels to exploit infor-
mation from all channels when learning hidden repre-
sentations of the data. A similar approach was taken
in [43], where a one dimensional CNN was applied
to each channel individually while fusing information
across channels using max pooling in the final classi-
fication stage. However, as information across EEG
channels is not mixed until the final fully connected
layers of the network, phase synchrony between chan-
nels may again be lost.

Recurrent Neural Networks (RNNs) are popular ar-
chitectures for sequence analysis which maintain a
hidden representation of the signal at each point in
time. This hidden representation is continually up-

dated based on its past value, thus fusing information
from neighboring time points. In [44], one second
windows of EEG are fed directly into an RNN anal-
ogous to the CNNs noted above. The output from the
RNN layers is classified using an MLP layer. In [45]
a BLSTM network was applied to continuous EEG
recordings. The original EEG signal was decomposed
using the local mean decomposition applied to each
channel. Features were then extracted from each de-
composition component. The resulting sequence of
features was then classified using a BLSTM network.

In addition RNNs can be combined with convolu-
tional networks as in [46] and [47]. In [47], a CNN and
LSTM layer were combined to perform seizure detec-
tion. Specifically, long windows (101 seconds) of EEG
signal were passed through a 1D CNN. The resulting
sequence of hidden representations was fed into a uni-
directional LSTM. The output of the LSTM at the final
time step was used to detect seizure activity for the en-
tire 101 second sequence.
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In contrast the authors of [46] create STFT images
that span 30 seconds and analyzes them using a 2D
CNN. This 2D CNN outputs a sequence of hidden
states representing small periods of the original STFT
which are subsequently fed into a RNN to classify the
entire 30 second segment. [48] takes a different ap-
proach, using interpolation between EEG channels to
create a 2D image of EEG features. A hidden repre-
sentation for these images is computed using a CNN
and 5 second long sequences of hidden states are clas-
sified using an LSTM network. While these methods
allow for accurate classification of segments of EEG
signal, they label sequences of EEG signal and thus
thus have limited temporal resolution. As information
from the time of onset is critical to localizing possible
seizure foci, rapid and continuous seizure detection is
necessary for clinical translation.

1.3. Our Contribution

In this work we present a novel neural network
architecture for continuous seizure detection that ad-
dresses the critical need for high accuracy with low
onset latency. Our model combines a CNN encoding
stage and a Bidirectional Long Short-Term Memory
(BLSTM) classification stage. The combined archi-
tecture contains a relatively small number of trainable
parameters, ensuring that our model is computation-
ally efficient. Furthermore, we evaluate our method in
a leave-one-patient-out setting in order to evaluate its
performance on previously unseen patients.

The CNN feature extraction uses one-dimensional
convolutions simultaneously applied across all chan-
nels of the EEG recording to automatically learn dis-
criminative representations from one-second windows
of the EEG signal. The use of 1D convolutions on
the multichannel data ensures that relevant phase infor-
mation between channels is preserved. The BLSTM
aggregates these fine grained CNN representations to
learn the longer temporal dependencies of an evolving
seizure. The bidirectional nature of our architecture
leverages information from both the past and future
to perform a window level classification. This learn-
ing process mirrors clinical practice, as clinicians gen-
erally take into account the temporal evolution of the
EEG signal when annotating the beginning and end of
a seizure.

While previous approaches have employed both
CNNs and BLSTMs, our combined architecture im-
proves upon these approaches in several important
ways. First, prior studies have focused on one-
dimensional CNNs applied individually to each EEG
channel [39; 40; 41; 42; 43]. This approach ignores
clinically relevant cross-channel phase information, as
seizures are often characterized by atypical synchro-
nization between channels [12; 49]. Accordingly, our
CNN operates on the multichannel EEG recording,
preserving this phase information. Prior work using

RNNs for seizure detection operates on long sequences
of the EEG data, typically on the order of 5–100 sec-
onds [46; 47; 48]. The RNN then provides a sin-
gle classification for the entire sequence. Due to the
large sequence duration, this approach can only gen-
erate a coarse label for the seizure onset and offset.
In contrast, our approach uses the CNN encoding to
extract a compact representation for short (one sec-
ond) windows of the EEG data. We can leverage the
bi-directionality of the BLSTM to extract information
from the entire recording and make predictions at a
fine-grained level.

We demonstrate the generalizability the CNN-
BLSTM by performing leave one patient out cross val-
idation on a dataset of clinical EEG recordings. This
cross validation method ensures that our network gen-
eralizes to new patients with different clinical mani-
festations. Finally, our CNN-BLSTM is simple with
only four convolutional blocks and two recurrent lay-
ers. Hence, our model requires less training data than
larger deep learning architectures for seizure detection
such as [39], and it can easily be integrated into the
existing clinical infrastructure.

2. Materials and Methods

2.1. EEG Data and Preprocessing

We validate our model on a dataset of 34 patients,
all of whom have focal epilepsy, acquired at the Johns
Hopkins Hospital (JHH). The JHH dataset contains a
total of 201 multichannel EEG recordings across 34
patients. This dataset has been previously used in [15;
40; 16; 41]. The raw EEG is acquired at 200 Hz using
the 10-20 common reference [6] and is converted to the
longitudinal bipolar montage [12] for this work.

Patient characteristics and seizure presentations are
summarized in Table 1. The JHH dataset was collected
during clinical workup and contains a high degree of
variability in number of seizures collected and dura-
tion of recording. Number of seizures collected, total
recording duration included, and total seizure duration
for each patient is shown in Figure 1. On average, 5.9
seizures are included for each patient with a minimum
of one and a maximum of 24. For each seizure, we
include a maximum of 10 minutes of pre-seizure and
post-seizure baseline. An average of 1.8 hours of to-
tal recording time was included for each patient with a
minimum of 4.7 minutes (patient 5, one seizure) and
a maximum of roughly 480 minutes (patient 11, 24
seizures). While this variety in patient representation
complicates model training, validating the model on a
diverse dataset ensures that our models generalize to
the diversity present in the clinical population.

Each recording is high-pass and low-pass filtered at
1.6 Hz and 30 Hz, respectively. High-pass filtering
removes DC trends while low-pass filtering removes
physiological artifacts that confound seizure detection.
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Figure 2. Our CNN-BLSTM architecture for inter-patient seizure detection. A convolutional encoder converts EEG signal Xt to hidden

representations ht . These representations are classified by a two layer BLSTM to predict seizure labels yt .

In order to ensure all recordings contain EEG signal

of a similar amplitude, we apply a normalization pro-

cedure to each recording separately. Each recording

was clipped to remove amplitudes larger than two stan-

dard deviations from the mean intensity to remove high

intensity artifacts such as muscle artifact and electrode

popping. The recordings were then normalized to have

mean 0 and standard deviation 1 for each channel.

One second non-overlapping windows were ex-

tracted from each recording for input into our model

(and baselines). Seizure activity in each recording is

demarcated by a clinical annotation indicating seizure

onset and offset. Any one second window that over-

laps this period is considered a positive instance of

the seizure class. Conversely, windows containing no

seizure activity are labeled as baseline.

2.2. An End-to-End Detection Framework
2.2.1. CNN-BLSTM Architecture

Our model can be conceptualized as a multichannel

feature extractor (CNN) followed by a temporal detec-

tor (BLSTM). A schematic of the network is shown

in Figure 2. In the feature extractor stage, individual

windows Xt ∈ RC×L, where C is the number of EEG

channels and L is the number of time samples in the

window, are fed directly into the CNN. This process

generates a sequence of hidden representations {ht}Tt=1,

where T is the length of a given recording, which en-

code the relevant information for determining whether

each window Xt lies within a seizure interval. The rep-

resentations ht are learned directly from the data Xt,

increasing their discriminative power.

The CNN is composed of four successive blocks

containing two layers each as shown in Figure 2. Each

layer includes a one dimensional convolution with a

length three kernel, with a stride and pooling of one.

After two repetitions of the convolution, LeakyReLu,

and batch normalization, a max pooling operation is

applied with a kernel size of two, effectively halving

the length of the representation after each block. This

succession of convolutional layers distills information

from the EEG signal into higher order features. As

in the VGGNet [50], we double the number of chan-

nels in each block after each max pooling. This pro-

cess prevents an overall loss of information and en-

sures that each convolutional block requires roughly

the same amount of computation. The convolution and

max pooling procedures are illustrated in Figure 3. As

illustrated in the figure, the number of kernels doubles

while the length of the representation is halved after

each convolution block

Global average pooling is applied to the represen-

tation generated after the final convolution block. Ef-

fectively the output of each CNN kernel is averaged

across the EEG window, resulting in a single feature

for each kernel. This procedure has a regularizing

effect on the network; broadly, it reduces overfitting,

as the subsequent recurrent layers receive information

pooled across the entire one second window, thus miti-

gating overfitting to isolated data irregularities. As the

final CNN layer contains 40 kernels, the output of the

CNN feature extraction stage is reduced to a length 40

feature vector.

Following the CNN feature extraction stage, the se-

quence of hidden vectors {ht}Tt=1 is classified into a se-

quence of binary predictions {yt}Tt=1. The BLSTM ar-

chitecture concatenates the output of two LSTMs, one

operating on the sequence in the forward direction, and

6



Figure 3. The first two convolutional blocks of the CNN encoder. One second of preprocessed EEG signal is fed directly into the first layer

of the CNN. An example input for each convolution is shown in gray while the corresponding output of the convolution is shown in the next

layer as a square. Each block contains two convolutional layers. Between blocks, the number of convolutional kernels is doubled, while the

length of the sequences is halved. LeakyReLU activations and batch norms not pictured.

the other operating backward. Thus the BLSTM hid-

den state at any given time point includes information

from both the past and the future of that time point.

The bidirectional architecture allows the network to

learn the temporal evolution of a seizure. By using the

entire recording in the network at one second intervals,

we learn the full progression from baseline to seizure

and back, ensuring high temporal resolution and low

latency. Two BLSTM hidden layers are used before

outputting a final prediction yt.

2.2.2. Postprocessing
To combat the noisy seizure versus baseline classi-

fication, we apply temporal smoothing to the sequence

of predictions. Specifically, we average the network

outputs yt over a 20 sample window to enforce tem-

poral contiguity in seizure detections. Near the begin-

ning and end of the recording, any indices outside the

data window are ignored when computing this aver-

age. As the output of our models is a continuous
value between 0 and 1, it is important to establish a
threshold at which to declare a positive (seizure ver-
sus baseline) detection. The setting of this threshold
effectively controls the trade off between false pos-
itives and the sensitivity of our model. In this work,
we opt to calibrate the CNN-BLSTM to a seizure de-
tection threshold based on a user-specified duration
of false seizure detection. For the experiments pre-
sented here, the seizure detection threshold was set
such that each model is allowed only 2 minutes of
false positives per hour. This threshold is computed
from the training set after training. The computed
threshold is subsequently applied to the test set.

2.2.3. Training and Implementation
The flexibility and expressiveness of our CNN-

BLSTM network makes it prone to overfitting. When

trained in an end-to-end fashion, we observe the net-

work to be able to exactly learn the presentation of

specific seizures in the training set while failing to gen-

eralize to new data. In addition, RNNs can be noto-

riously difficult to train due to the vanishing and ex-

ploding gradient problem [32]. Furthermore, while our

dataset contains hours of EEG recordings, we have in

total only 201 seizure presentations. As the BLSTM

operates on full recordings, this limits the number of

examples in our dataset to a relatively small number

for deep learning.

To address these concerns, we adopt a two stage

training strategy to combat both overfitting and the dif-

ficulties in RNN training. In the first stage, the CNN

is pre-trained by appending a simple fully connected

MLP (two layers of 20 hidden units). To classify indi-

vidual one second windows, we train the CNN for 10

epochs using a batch size of 32 windows, a learning

rate of 0.01, and the ADAM optimizer [51]. In the pre-

training stage, we train using the cross entropy loss. As

the dataset contains a high imbalance between seizure

and non-seizure classes, each class is weighted accord-

ing to the inverse proportion of its prevalence in the

dataset. In this fashion we leverage the large record-

ing time of EEG signal in our dataset while sidestep-

ping the limited number of total seizures. Thus, this

pre-training ensures that the CNN learns discrimina-

tive feature representations from the raw EEG signal

prior to the training of the BLSTM network for tempo-

ral classification.

In the second stage of training, the MLP is removed

and the BLSTM layers are appended to the network.

The full CNN-BLSTM is then trained in an end-to-

end fashion. As the CNN has already learned to ex-

tract discriminative features, this stage of training fo-

cuses on learning the temporal evolution of seizures in

the BLSTM layers. During this phase, entire seizure

recordings are used as samples and fed to the CNN-

BLSTM in their entirety. When training the BLSTM,

we use the cross entropy loss applied to each individ-

ual window of the recording with the same weighting
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Figure 4. Wei-CNN baseline Architecture

as applied in the pre-training stage. Thus each win-

dow contributes to the loss for the entire recording.

We use a batch size of 2, indicating that a gradient

step is taken after two recordings are passed through

the network. The network is trained with a learning

rate of 0.005 using the ADAM optimizer [51]. As the

computational power of the BLSTM greatly increases

the chance of overfitting to the limited number of total

seizures in the training data, we adopt an early stop-

ping strategy and only train the combined model for

a single epoch. Using this training technique, we are

able to fully utilize the data in our dataset to train the

BLSTM-CNN.

2.3. Baseline Comparison Methods
2.3.1. Feature Based Classification

Our first set of baseline methods employs the two-

stage feature selection and classification pipeline dis-

cussed in Section 1.1. While many approaches to

seizure detection have been presented in the litera-

ture, variations in implementation, datasets used, and

experiment design make direct comparisons difficult.

As such, we opt to construct our baseline compar-

isons using feature extraction techniques representa-

tive of the major approaches in the field of seizure de-

tection as discussed in Section 1.1. From the time do-

main, we compute total signal power, sample entropy,

Largest Lyapunov Exponent (LLE), and line length on

a channel-wise basis. The features are extracted in-

dependently for each one second window of raw EEG

data. Mathematically, let X j
t [i] denote sample i of

channel j at time t. We calculate power in a sin-

gle channel using the expression 1
L
∑L

i=1(X j
t [i])2. Line

Figure 5. CNN-2D FFT image baseline architecture.

length is computed using the expression
∑L

i=2|X j
t [i] −

X j
t [i − 1]|. Sample entropy and LLE computations

are performed following [22] and [24; 25], respec-

tively. Intuitively sample entropy measures the degree

to which similar trajectories remain similar to previ-

ously observed paths. Likewise, LLE measures the rate

at which similar trajectories diverge from each other.

We calculate these features using the freely available

Python nolds package [52]. These time domain fea-

tures contribute a single scalar for each channel, re-

sulting in a total of 54 time domain features for each

one second window. In the time-frequency domain,

we compute the filter bank power in each channel by

passing X j
t through a set of 10 evenly spaced order four

Butterworth bandpass filters from 0 to 30 Hz. This re-

sults in a total of 180 time-frequency domain features.

The variety of classifiers used in the seizure de-

tection literature mirrors the variety of feature extrac-

tion techniques. We limit our baseline investigations

to MLP classifiers, as these classifiers have shown

high seizure detection efficacy in recent literature and

lead to complementary comparisons with our CNN-

BLSTM models. We construct a MLP classifier to

determine whether or not each EEG window Xt lies

within a seizure interval. This classification is done

based on (i) time-domain only, (ii) time-frequency do-

main only, and (iii) the combined feature set. Fea-

tures extracted for each channel are concatenated and

fed directly into the MLP classifier. The MLP base-

line includes two layers of ten hidden units each. Dur-

ing training, dropout of 0.5 is applied after each layer.

Due to the noisiness of classifications made on single

seconds of EEG signal, we apply the same temporal

smoothing and calibration described in 2.2.2 to limit
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false positives.
In addition, we implement the wavelet-based fea-

ture extraction and SVM classifier from Kaleem et al.
[19] (Kaleem-SVM). Using this classification pipeline,
the authors report a sensitivity, specificity, and accu-
racy of 99.7, 99.2, and 99.4, respectively, on the CHB-
MIT dataset in a patient specific seizure classification
task. A five level DWT is performed on 4 second win-
dows of EEG signals. Energy, sparsity of the amplitude
spectrum, and the sum of the derivative of the ampli-
tude spectrum are calculated for each subband. These
features are concatenated and classified using a linear
SVM.

2.3.2. Convolutional Models
We implement the CNN network from Wei et al.

[39] (Wei-CNN). This architecture has been shown to
perform well in the literature, achieving a sensitiv-
ity, specificity, and accuracy of 0.7211, 0.9589, and
0.8400, respectively, on the publicly available CHB-
MIT pediatric epilepsy dataset [53; 54]. While this
work trained the CNN models by leaving out a single
test patient, recordings from this left out patient were
used as a validation set for early stopping. As such
these results represent performance under less restric-
tive conditions than the leave-one-patient-out cross
validation paradigm considered in this work. The ar-
chitecture of this network, as shown in Figure 4, con-
tains five convolutional and max pooling layers before
two fully connected layers. Each layer of the Wei-
CNN uses a one-dimensional CNN kernel with a stride
of 1. The first through fifth layers of the network use
decreasing kernel sizes of 21, 11, 3, 3, and finally
3. Zero padding of 11, 6, 2, 2, and 2, respectively,
is used. Due to the larger size of the network, max
pooling in the Wei-CNN uses a kernel size and stride
of 3. Designed for windows five seconds in length,
this network is accordingly much bigger. This baseline
will assess the performance when using longer time
windows, as opposed to a temporal evolution model.
We also evaluate results using the CNN-MLP network
in our pre-training section. By comparing our model
to this network, the increase in performance from the
BLSTM is directly quantifiable. Again, we apply tem-
poral smoothing and calibration as described in Sec-
tion 2.2.2.

Finally, we implement a two dimensional CNN
model (CNN-2D) that operates on the FFT features
in an image format. The CNN-2D architecture is de-
tailed in Figure 5. The EEG signal is windowed into
one second non-overlapping segments and an FFT is
calculated. FFT amplitudes from 0 to 30 Hz are ar-
ranged into an 2D image with channel along one axis
and frequency along the other. These 2D images are
input into a 4 layer CNN, where the number of kernels
is doubled after each layer. ReLU operations are ap-
plied at each layer, and max pooling is applied after

the second and fourth layers. Each convolution uses a
kernel of size 3 with stride 1 and no padding. In ad-
dition, each max pooling operation uses a kernel size
and stride of 2. Finally, global average pooling is
applied, followed by frame-wise classification using a
single fully connected layer. This approach was in-
spired by [35; 37; 38] where time-frequency decompo-
sitions are used in conjunction with 2D convolutions.

2.4. Cross Validation

Most studies optimize patient-specific seizure detec-
tors, in which a single recording is set aside for test-
ing, and a detector is trained on the remaining record-
ings. This method of evaluation assumes that seizure
recordings for a given patient are available a priori
[55]. This patient specific approach is appropriate for
settings such as responsive neurostimulation or in de-
veloping seizure alert systems for a particular patient.
However, during clinical review, a clinician would like
to prospectively detect seizures with no a priori EEG
data from the patient. During this phase of the clinical
workflow, long continuous EEG recordings are retro-
spectively analyzed for seizure content by trained neu-
rologists, requiring considerable time.

Patient agnostic or inter-patient seizure detection
trains detectors based at the population level. This
leave-one-patient-out procedure is shown in Figure 6.
To ensure that trained models generalize to new pa-
tients, we perform cross validation by removing a sin-
gle patient from the dataset. This patient is used as
a test subject while models are trained on the remain-
ing patients. In this way we mimic a clinical review
setting, where previously trained models are applied
to newly admitted patients on-the-fly. A similar cross
validation was used in [56] to reduce bias in estimating
the generalization error of a neonatal seizure detection
algorithm. We emphasize that leave-one-patient-out
is a far more challenging paradigm than the patient-
specific evaluations used in prior work due to the vari-
able seizure presentations across individuals. Hence,
the performance metrics are expected to be lower.

2.5. Evaluation

We evaluate performance of our detectors both at the
level of individual EEG windows Xt and at the level
of seizures. At the window level, each snippet Xt is
labeled as belonging to the seizure or baseline class
yt ∈ {0, 1}. We evaluate the Area Under the Receiver
Operating Curve (AUC-ROC) and the Area Under the
Precision-Recall Curve (AUC-PR). These metrics pro-
vide summary scores that capture behavior at a range
of detection thresholds. In addition, we include the
sensitivity and specificity of computed based on the
thresholds computed during the calibration phase.
While these metrics are less clinically relevant than
those evaluated at the seizure level, they offer a conve-
nient illustration of each model’s overall performance.
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Figure 6. Cross validation procedure, in which one patient is left-out for testing while the rest of the dataset is used for training. This procedure

is repeated for each patient and the performance is averaged across all N folds.

Table 2. IID Window Level Results

AUC-ROC AUC-PR Sensitivity Specificity Number of Parameters

CNN-BLSTM 0.9042 0.6491 0.6304 0.9295 30 k

CNN-MLP 0.8624 0.6031 0.5370 0.9555 11 k

Wei-CNN 0.7642 0.4880 0.4048 0.9209 174 k

CNN-2D 0.8243 0.5268 0.4695 0.9491 1.5 k

MLP-All 0.8448 0.5895 0.5138 0.9532 8 k

MLP-Time 0.8380 0.5614 0.5096 0.9540 2 k

MLP-Filterbank 0.7135 0.3761 0.3371 0.9148 6 k

Kaleem-SVM 0.7054 0.4304 0.3643 0.9454 –

At the seizure level, we consider contiguous seizure

classifications produced by each model. Namely, if the

model prediction exceeds the threshold determined in

Section 2.2.2, a seizure onset is marked. This seizure

classification continues until the model output once

again falls below the threshold. Any detections of this

kind that fall within an annotated seizure are consid-

ered true positives. Conversely, any contiguous detec-

tions that do not overlap with an annotated seizure are

considered false positives. We quantify the sensitiv-

ity (true positives divided by total number of seizures),

latency of seizure detection, and False Positive Rate

(FPR) of each model. The goal in a clinical setting is

to achieve high accuracy with low FPR.

3. Experimental Results

3.1. Window Level Accuracy
Table 2 reports the window-level detection perfor-

mance along with the number of trainable parameters

for each model. We observe that the CNN-BLSTM

model outperforms all competing models achieving

an AUC-ROC and AUC-PR of 0.9042 and 0.6491,

respectively. This model is followed by the CNN-

MLP (AUC-ROC 0.8620, AUC-PR 0.6017) and CNN-

2D (AUC-ROC 0.8243, AUC-PR 0.5268). The Wei-

CNN baseline performs the worst of all end-to-end

models with an AUC-ROC of 0.7642 and AUC-PR

of 0.4880. Of the feature-based MLP baselines, the

network trained using all features performs best with

an AUC-ROC of 0.8448 and an AUC-PR of 0.5895.

The MLP trained with time domain features achieves

slightly lower but still comparable performance mea-

sures. The network trained using only filter bank

features performs significantly worse, with an AUC-

ROC and AUC-PR of 0.7135 and 0.3761, respectively.

While the MLP-All model achieves decent perfor-

mance with roughly 8 k parameters, the CNN-MLP

model outperforms it while increasing the parameter

count by only roughly 3 k. The addition of the BLSTM

network enlarges the model to roughly 30 k parame-

ters with an accompanying increase in AUC-ROC and

AUC-PR. This threefold increase in parameters be-

tween the CNN-MLP and CNN-BLSTM is justified by

this gain in performance, while the CNN-BLSTM re-

mains significantly smaller than the much larger Wei-

CNN model. The Kaleem-SVM performed worst of

all, achieving AUC-ROC and AUC-PR of 0.7054 and

0.4304, retrospectively.

In addition, Table 2 includes sensitivity and speci-

ficity measures for each model computed on a window-

wise basis. We observe that the CNN-BLSTM model

outperforms all other baselines in sensitivity, achieving

a sensitivity of 0.6304. The CNN-MLP, Wei-CNN, and
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(a) (b) (b)

Figure 7. Violin plots depicting seizure level (a) sensitivity (b) false positives per hour (c) latency for each model. Horizontal lines indicate
single datapoints from each trial of leave-one-patient-out cross validation. Width of the violin shows the smoothed distribution of each metric.

CNN-2D all exhibited lower sensitivities, with 0.5370,
0.4048, and 0.4695, respectively. Again we observe
that the MLP-All model achieves a decent performance
in these metrics, with a sensitivity and specificity of
0.5138 and 0.9532. All models exhibit specificities
above 0.9, with the CNN-MLP achieving the highest
specificity of 0.9555.

3.2. Seizure Level Results

Figure 7 depicts violin plots for sensitivity, false
positive rate, and latency for each model. In these
plots, metrics computed from each left-out patient are
indicated by horizontal lines within the violin. The
width of the violin represents the distribution of the
computed metrics across all patients. In Figure 7 (a)
we see that the CNN-BLSTM maintains high sensi-
tivity across the dataset, while baseline models fail
to generalize to some patients. In addition, Figure 7
(b) shows that CNN-BLSTM false positive rates clus-
ter near 3 false positives per hour. In contrast, the
baselines exhibit higher false positive rates in some
patients. Tables A.3 and A.4 in the appendix report
the patient-specific performance metrics. Table A.3
shows performance for the CNN-based models (CNN-
BLSTM, CNN-MLP, Wei-CNN, CNN-2D) while Ta-
ble A.4 shows results for MLP-based models (MLP
All Features, MLP-Time Domain Features, and MLP-
Filterbank Features). When averaged across left-out
patients the CNN-BLSTM achieves an average sensi-
tivity of 0.91 while allowing an average of 3.3 FPs/hr.
The CNN-MLP, Wei-CNN, and CNN-2D all exhibit
lower sensitivities at 0.90, 0.77, and 0.84, respectively,
and FPs/hr of 9.6, 7.5, and 10.2, respectively. Thus the
CNN-BLSTM achieves the highest sensitivity with the
lowest false positive rate. Finally, Figure 7 (c) shows
the spread of onset latencies for each model. In the
CNN-BLSTM onset latency is distributed around 10
seconds while other models report a higher average la-
tency.

Sensitivity versus FPR plots are shown in Figure
8, grouped according to the baseline model type. In
this plot we sweep the threshold globally across each
left-out patient and compute the overall sensitivity and
false positives per hour across all testing runs. As opti-
mal calibration points differ for each model, these plots
do not correspond directly averaged metrics given in
Tables A.3 and A.4. Despite this fact, we observe
several important trends. The CNN-BLSTM achieves
much higher sensitivities at lower FPRs when com-
pared to baseline methods. Only when false posi-
tives are increased to much higher levels do baseline
methods achieve the level of sensitivity of the CNN-
BLSTM method at lower FPR.

Figure 9 shows the classifications for a representa-
tive seizure recording. In each figure, time proceeds
along the x-axis while the model output is shown on
the y-axis. This output ranges continuously from 0
(baseline) to 1 (seizure). The calibration threshold for
each model is indicated by the horizontal dashed black
line. Regions containing positive seizure detections are
shaded blue. As seen the CNN-BLSTM exhibits a high
degree of certainty in the seizure label throughout the
entire seizure, activating slightly after the annotated
onset and continuing past its annotated duration. This
extension past the end of the seizure is less clinically
relevant than accurate onset detection and is likely due
to artifact in the EEG recording occurring past the off-
set annotation.

The prediction output of baseline methods are
shown in Figure 9 (b)–(h). While most baselines cor-
rectly detect seizure activity during the seizure inter-
val, this detection generally occurs much later than the
onset. Also notable is the presence of false positive de-
tections, such as in Figure 9 (c), where the Wei-CNN
makes three spurious false positive detections through-
out the recording. Figure 9 (i) shows the unsmoothed
prediction output for the CNN-MLP model. When
comparing this image to the smoothed CNN-MLP out-
put in Figure 9 (b), the effect of temporal smoothing is
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(a) End-to-End Baselines (b) Feature-Based MLP Baselines

Figure 8. Sensitivity versus false positive rate curves for each model. The metrics are calculated as the seizure detection threshold is swept is
swept from 0 to 1 for each patient. The threshold sweep is performed globally and not calibrated separately for each patient.

clear. After smoothing, the temporally contiguous pos-
itive seizure classification during the true seizure event
remains with high certainty, while the more sporadic
deviations away from baseline are averaged resulting
in a lower certainty of seizure.

The raw EEG signal and CNN-BLSTM classifica-
tion for a representative seizure is shown in Figure 10.
In this image, EEG signals in the longitudinal bipolar
montage are arranged vertically while time proceeds
horizontally. Annotated onset in this recording corre-
sponds to a patient push button alarm occurring 600
seconds after the start of the recording, in the figure
indicated by the vertical dashed black line. The CNN-
BLSTM detects the seizure at 599 seconds, one second
prior to the push button alarm annotation. Thus the
onset time detected by the CNN-BLSTM corresponds
closely to the annotated onset of the seizure.

4. Discussion

We have developed a novel CNN-BLSTM network
for robust inter-patient epileptic seizure detection in
long windows of continuously acquired EEG. Our
model uses a CNN to extract discriminative hidden
representations directly from the EEG signal. These
representations are then classified using a recurrent
BLSTM network, which learns the temporal evolution
of seizure presentations by fusing information from the
past and future. The combination of these two ele-
ments yields a detection performance with high sen-
sitivity and low error. We validate our model on a
challenging dataset of focal epilepsy patients, in which
the seizures exhibit a high degree of heterogeneity.
To evaluate the clinical utility of our model, we train
and test our CNN-BLSTM network using leave-one-
patient-out cross validation. Thus we ensure that our
model can generalize to new patients in a continuous
epilepsy monitoring setting.

Our model achieves higher sensitivity than numer-
ous baseline comparison methods, correctly classify-
ing 0.955 of seizures averaged across patients. This
performance is mirrored in the AUC-ROC and AUC-
PR scores, where our model again outperforms com-
peting methods. At the patient level, we see in Ta-
ble A.3 that our model correctly detects all seizures for
many patients. The lowest patient sensitivity is 0.5, in-
dicating that one half of the seizures are still correctly
classified. By calibrating the model’s detection thresh-
old on the training set, we restrict the amount of false
positive to two minutes per hour. This low FPR gener-
alizes across patients, as the average number of FPs/hr
during testing was 3.3.

When examining the output of an individual model
in Figure 9 (i), we observe a high degree of noise.
This behavior can be effectively ameliorated by apply-
ing temporal smoothing to the output of each model,
as seen in Figure 9 (b). However, we note that our
BLSTM network further suppresses this classification
noise by directly learning the evolution of a seizure
over time. This temporal suppression is especially ev-
ident when comparing results between the CNN-MLP
and CNN-BLSTM, as the former includes the dis-
criminative feature extraction of the CNN architecture
without the temporal element granted by the BLSTM.
When calibrated identically, the CNN-MLP achieves a
similar sensitivity of 0.90 with a much higher rate of
9.6 false positives per hour. This behavior is evident in
Figure 9 (b), where the CNN-MLP correctly identifies
the seizure but exhibits less confidence in non-seizure
and makes a spurious false positive detection.

As is evident in Figure 7 (c), the average onset
latency for the CNN-BLSTM is evenly distributed
around 10 seconds. Comparison methods exhibit
higher positive latencies, indicating that the seizure
detection occurs after the annotated onset. While
these later detections can still be useful for identifying
seizure in long recordings, often the seizure onset is
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(a) CNN-BLSTM (b) CNN-MLP (c) Wei-CNN

(d) CNN-2D (e) MLP-All Features (f) MLP-Time Domain Features

(g) MLP-Band Pass Features (h) Kaleem-SVM (i) CNN-MLP Unsmoothed

Figure 9. Model outputs for a representative seizure recording. Seizure prediction scores for each window of the EEG recording are pictured
for the duration of the recording. Time proceeds along the x-axis while seizure prediction certainty is shown on the y-axis. 0 indicates
non-seizure baseline while 1 denotes seizure, while higher values indicate increasing model confidence in seizure activity. Seizure prediction
thresholds for each model calculated during calibration are shown as a horizontal dashed line. Any predictions crossing this threshold are
considered positive seizure predictions and are shown in blue. True labels are shown in orange , where 0 indicates baseline and 1 indicates
seizure..
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Figure 10. EEG recording and CNN-BLSTM classification corresponding to Figure 9 (a). Seizure onset annotation is depicted by the vertical
dashed line at 600 seconds. CNN-BLSTM seizure classification is shown shaded in light blue. The CNN-BLSTM declares the onset of a
seizure at 599 seconds, in accordance with the clinical annotation.

most important for diagnosis. As seen in Figure 10, the
CNN-BLSTM responds to electrographic signatures of
epilepsy prior to the push button alarm seizure annota-
tion. Thus we observe that the CNN-BLSTM is ca-
pable of recognizing clinically relevant epileptic and
detecting seizures with low latency.

Table 2 shows the approximate number of train-
able parameters for each of the networks used. With
roughly 30k parameters, the CNN-BLSTM network is
nearly an order of magnitude smaller than the Wei-
CNN, which contains roughly 174k trainable param-
eters. Smaller still is the CNN-MLP, which contains
only 11k. It is notable that the CNN-MLP and the
Wei-CNN perform comparably in summary statistics
AUC-ROC and F1 given that the CNN-MLP model
is roughly 15 times smaller. Smaller still, the feature
based MLP network contains only approximately 2.5k
trainable parameters. However, when comparing the
pre-computed features to the end-to-end CNNs it is
clear that extracting encodings directly from the multi-
channel EEG time series results in performance gains.
As such the CNN-BLSTM achieves the best tradeoff

between number of trainable parameters and perfor-
mance.

The increase in discriminative power when using a
CNN feature extractor comes with little, if any, extra
computational requirement. To heuristically evaluate
computational load, we timed feature extraction on a
roughly 4 minute sample of EEG. Bandpass, FFT, line-
length, and power features combined could be com-
puted in less than 5 seconds. However, using a freely
available Python package, the non-linear features sam-
ple entropy and LLE took roughly 60 and 320 seconds,
respectively, far too long for use in a clinical environ-
ment. By comparison, the CNN-BLSTM took roughly
0.15 seconds to classify this recording when running
on the CPU (i.e. without GPU acceleration), indicat-
ing that the computational complexity is on par with
the least expensive feature extraction techniques.

Extensions to the work presented here could further
leverage advances in deep learning to provide greater
translational benefits. As in all deep learning research,
increases in dataset size lead directly to performance
gains. Collecting more annotated continuous EEG
recordings promise to facilitate the development of
more powerful models. While accurate seizure detec-
tion is important in clinical practice, this task is only an
intermediate step in diagnosing epilepsy subtypes and
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identifying possible focal onset zones. Future exten-
sions could provide onset localization alongside detec-
tion to further assist the clinician. In addition, specific
EEG morphologies, such as rhythmicity, slowing, and
phase reversals, are often useful in diagnosis. Models
capable of annotating EEG for this content could pro-
vide further utility in long term epilepsy monitoring.

5. Conclusions

We have presented a CNN-BLSTM network for
inter-patient seizure detection that is optimized for use
in the epilepsy monitoring unit. Our model uses a CNN
network to learn a discriminative representation EEG
data on one-second windows. These representations
are scored using a BLSTM which analyzes the entire
seizure recording. The CNN-BLSTM network con-
tains a relatively small number of trainable parameters,
making it appropriate for clinical applications.

We show that even when limiting false positives,
the CNN-BLSTM provides clinically useful sensitiv-
ity. We further show that our method generalizes to
new patients via leave-one-patient-out cross validation.
Finally, our CNN-BLSTM outperforms larger mod-
els with more parameters. Taken together, our CNN-
BLSTM has the potential to facilitate clinical review
of multichannel scalp EEG.
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[34] A.-M. Tăuţan, M. Dogariu, B. Ionescu, Detection of epileptic
seizures using unsupervised learning techniques for feature ex-
traction, in: 2019 41st Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC),
IEEE, 2019, pp. 2377–2381.

[35] Y. Yuan, G. Xun, K. Jia, A. Zhang, A multi-view deep learning
framework for eeg seizure detection, IEEE journal of biomed-
ical and health informatics 23 (1) (2018) 83–94.

[36] Y. Gao, B. Gao, Q. Chen, J. Liu, Y. Zhang, Deep convo-
lutional neural network-based epileptic electroencephalogram
(eeg) signal classification, Frontiers in Neurology 11.

[37] H. Khan, L. Marcuse, M. Fields, K. Swann, B. Yener, Focal
onset seizure prediction using convolutional networks, IEEE
Transactions on Biomedical Engineering 65 (9) (2017) 2109–
2118.

[38] M. Taherisadr, M. Joneidi, N. Rahnavard, Eeg signal dimen-
sionality reduction and classification using tensor decomposi-
tion and deep convolutional neural networks, in: 2019 IEEE
29th International Workshop on Machine Learning for Signal
Processing (MLSP), IEEE, 2019, pp. 1–6.

[39] Z. Wei, J. Zou, J. Zhang, J. Xu, Automatic epileptic eeg de-
tection using convolutional neural network with improvements
in time-domain, Biomedical Signal Processing and Control 53
(2019) 101551.

[40] J. Craley, E. Johnson, C. Jouny, A. Venkataraman, Automated
noninvasive seizure detection and localization using switch-
ing markov models and convolutional neural networks, in:
International Conference on Medical Image Computing and
Computer-Assisted Intervention, Springer, 2019, pp. 253–261.

[41] J. Craley, E. Johnson, A. Venkataraman, Integrating convo-
lutional neural networks and probabilistic graphical modeling
for epileptic seizure detection in multichannel eeg, in: Interna-
tional Conference on Information Processing in Medical Imag-
ing, Springer, 2019, pp. 291–303.

[42] L. Zou, X. Liu, A. Jiang, X. Zhousp, Epileptic seizure detec-
tion using deep convolutional network, in: 2018 IEEE 23rd
International Conference on Digital Signal Processing (DSP),
IEEE, 2018, pp. 1–4.

[43] A. OShea, G. Lightbody, G. Boylan, A. Temko, Neonatal
seizure detection from raw multi-channel eeg using a fully con-
volutional architecture, Neural Networks 123 (2020) 12–25.

[44] L. Vidyaratne, A. Glandon, M. Alam, K. M. Iftekharuddin,
Deep recurrent neural network for seizure detection, in: 2016
International Joint Conference on Neural Networks (IJCNN),
IEEE, 2016, pp. 1202–1207.

[45] X. Hu, S. Yuan, F. Xu, Y. Leng, K. Yuan, Q. Yuan, Scalp eeg
classification using deep bi-lstm network for seizure detection,
Computers in Biology and Medicine 124 (2020) 103919.

[46] A. Affes, A. Mdhaffar, C. Triki, M. Jmaiel, B. Freisleben,
A convolutional gated recurrent neural network for epilep-
tic seizure prediction, in: International Conference on Smart
Homes and Health Telematics, Springer, 2019, pp. 85–96.

[47] W. Liang, H. Pei, Q. Cai, Y. Wang, Scalp eeg epileptogenic
zone recognition and localization based on long-term recurrent
convolutional network, Neurocomputing 396 (2020) 569–576.

[48] K. Ayodele, W. Ikezogwo, M. Komolafe, P. Ogunbona, Super-
vised domain generalization for integration of disparate scalp
eeg datasets for automatic epileptic seizure detection, Comput-
ers in Biology and Medicine (2020) 103757.

[49] G. L. Krauss, R. S. Fisher, The Johns Hopkins Atlas of Dig-
ital EEG: An Interactive Training Guide, The Johns Hopkins
University Press, 2007.

[50] K. Simonyan, A. Zisserman, Very deep convolutional net-
works for large-scale image recognition, arXiv preprint
arXiv:1409.1556.

[51] D. P. Kingma, J. Ba, Adam: A method for stochastic optimiza-
tion, arXiv preprint arXiv:1412.6980.

[52] C. Schlzel, Nonlinear measures for dynamical systems (Jun.
2019). doi:10.5281/zenodo.3814723.
URL https://doi.org/10.5281/zenodo.3814723

[53] A. H. Shoeb, Application of machine learning to epilep-
tic seizure onset detection and treatment, Ph.D. thesis, Mas-
sachusetts Institute of Technology (2009).

[54] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff,
P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K.
Peng, H. E. Stanley, Physiobank, physiotoolkit, and physionet:
components of a new research resource for complex physio-
logic signals, circulation 101 (23) (2000) e215–e220.

[55] H. Qu, J. Gotman, A seizure warning system for long-term
epilepsy monitoring, Neurology 45 (12) (1995) 2250–2254.

[56] S. B. Nagaraj, N. J. Stevenson, W. P. Marnane, G. B. Boy-
lan, G. Lightbody, Neonatal seizure detection using atomic
decomposition with a novel dictionary, IEEE Transactions on
Biomedical Engineering 61 (11) (2014) 2724–2732.

Appendix A. Results by Patient

16



Ta
bl

e
A

.3
.J

H
H

C
N

N
Se

iz
ur

e
R

es
ul

ts
by

Pa
tie

nt

C
N

N
-B

L
ST

M
C

N
N

-M
L

P
W

ei
-C

N
N

C
N

N
-2

D

Pa
tie

nt
FP

s/
hr

Se
ns

iti
vi

ty
L

at
en

cy
(s

)
FP

s/
hr

Se
ns

iti
vi

ty
L

at
en

cy
(s

)
FP

s/
hr

Se
ns

iti
vi

ty
L

at
en

cy
(s

)
FP

s/
hr

Se
ns

iti
vi

ty
L

at
en

cy
(s

)
Pa

tie
nt

1
2.

5
1.

00
22

.0
0

9.
1

1.
00

30
.7

5
11

.6
1.

00
12

.0
0

14
.0

1.
00

28
.0

0
Pa

tie
nt

2
1.

5
1.

00
3.

50
1.

5
1.

00
11

.5
0

13
.5

1.
00

12
.5

0
3.

0
1.

00
12

.0
0

Pa
tie

nt
3

1.
0

1.
00

3.
33

2.
0

1.
00

24
.0

0
0.

0
1.

00
22

.6
7

6.
0

1.
00

25
.0

0
Pa

tie
nt

4
7.

1
0.

50
-3

.0
0

14
.9

0.
50

5.
00

12
.6

0.
50

9.
00

18
.1

0.
50

29
.0

0
Pa

tie
nt

5
0.

0
1.

00
-2

4.
00

0.
0

1.
00

-8
.0

0
0.

0
1.

00
3.

00
0.

0
1.

00
-4

.0
0

Pa
tie

nt
6

0.
0

1.
00

15
.0

0
3.

0
1.

00
24

.0
0

0.
0

1.
00

62
.0

0
6.

0
1.

00
27

.0
0

Pa
tie

nt
7

4.
7

0.
89

-7
.1

2
7.

0
1.

00
16

.8
9

19
.3

1.
00

-3
0.

89
5.

3
1.

00
27

.6
7

Pa
tie

nt
8

1.
5

1.
00

22
.0

0
9.

0
1.

00
34

.0
0

13
.5

1.
00

3.
50

22
.5

1.
00

29
.0

0
Pa

tie
nt

9
0.

0
0.

67
7.

50
0.

0
0.

67
18

.5
0

0.
0

0.
67

17
.0

0
0.

0
0.

67
22

.0
0

Pa
tie

nt
10

0.
0

1.
00

34
.0

0
0.

0
1.

00
39

.3
3

14
.4

1.
00

20
.3

3
9.

6
1.

00
41

.0
0

Pa
tie

nt
11

2.
1

1.
00

5.
21

2.
5

1.
00

14
.0

0
0.

0
0.

00
0.

00
3.

0
0.

71
25

.4
1

Pa
tie

nt
12

1.
7

0.
64

12
.2

9
5.

5
0.

91
15

.9
0

0.
9

0.
91

18
.7

0
6.

9
0.

91
16

.7
0

Pa
tie

nt
13

5.
2

0.
60

10
.0

0
5.

5
0.

50
33

.4
0

8.
3

0.
50

88
.6

0
12

.6
0.

70
54

.1
4

Pa
tie

nt
14

3.
0

1.
00

14
.0

0
12

.0
1.

00
19

.8
9

14
.3

0.
89

21
.1

2
31

.3
0.

89
24

.8
8

Pa
tie

nt
15

0.
0

1.
00

13
.5

0
3.

0
1.

00
18

.0
0

4.
5

1.
00

10
.5

0
3.

0
1.

00
22

.0
0

Pa
tie

nt
16

1.
7

0.
86

13
.8

3
3.

5
0.

86
14

.8
3

0.
9

0.
14

23
.0

0
8.

3
0.

86
12

.1
7

Pa
tie

nt
17

4.
4

1.
00

4.
00

6.
6

0.
67

23
.5

0
8.

8
0.

67
27

.5
0

24
.2

1.
00

-1
1.

00
Pa

tie
nt

18
4.

0
1.

00
13

.6
7

15
.9

1.
00

37
.6

7
7.

9
0.

67
62

.5
0

9.
9

0.
33

36
.0

0
Pa

tie
nt

19
9.

6
1.

00
16

.0
0

15
.5

1.
00

16
.7

5
5.

2
1.

00
13

.2
5

14
.0

1.
00

18
.0

0
Pa

tie
nt

20
1.

4
1.

00
-1

0.
50

1.
4

1.
00

12
.0

0
0.

0
1.

00
27

.5
0

5.
8

1.
00

16
.5

0
Pa

tie
nt

21
3.

7
1.

00
33

.3
3

11
.0

1.
00

38
.6

7
2.

7
1.

00
51

.3
3

5.
5

1.
00

35
.0

0
Pa

tie
nt

22
4.

5
1.

00
17

.0
0

20
.0

1.
00

10
.0

0
25

.4
1.

00
7.

00
2.

7
1.

00
28

.7
5

Pa
tie

nt
23

3.
4

0.
58

-3
.5

0
6.

5
0.

58
25

.2
1

6.
5

0.
67

21
.4

4
9.

3
0.

75
34

.0
6

Pa
tie

nt
24

1.
1

1.
00

-1
4.

80
5.

0
1.

00
6.

40
1.

7
1.

00
5.

00
5.

5
1.

00
0.

60
Pa

tie
nt

25
4.

1
1.

00
-2

7.
00

13
.3

1.
00

12
.6

7
5.

1
1.

00
12

.3
3

24
.6

1.
00

14
.3

3
Pa

tie
nt

26
1.

8
0.

75
11

.3
3

17
.6

0.
75

8.
33

21
.9

0.
75

1.
33

12
.3

0.
75

13
.3

3
Pa

tie
nt

27
2.

3
1.

00
70

.3
3

2.
7

1.
00

79
.0

0
2.

3
1.

00
82

.6
7

2.
7

1.
00

52
.1

7
Pa

tie
nt

28
5.

3
1.

00
5.

80
8.

8
1.

00
18

.6
0

6.
4

0.
80

13
.0

0
4.

7
0.

80
22

.7
5

Pa
tie

nt
29

7.
4

1.
00

-6
.8

3
13

.4
1.

00
16

.5
0

0.
0

0.
67

27
.5

0
12

.4
1.

00
19

.1
7

Pa
tie

nt
30

5.
6

0.
50

-5
0.

00
11

.3
1.

00
-1

8.
00

4.
2

0.
00

0.
00

8.
5

0.
00

0.
00

Pa
tie

nt
31

0.
9

1.
00

33
.7

5
4.

6
1.

00
57

.1
2

21
.0

1.
00

27
.5

0
8.

2
1.

00
54

.3
8

Pa
tie

nt
32

10
.3

1.
00

-6
.0

0
68

.9
0.

33
21

.0
0

3.
4

0.
00

0.
00

27
.5

0.
00

0.
00

Pa
tie

nt
33

2.
9

0.
84

33
.8

1
9.

7
0.

79
34

.8
7

17
.2

1.
00

14
.2

6
11

.4
0.

79
53

.9
3

Pa
tie

nt
34

6.
7

1.
00

-2
3.

50
17

.3
1.

00
-1

3.
50

2.
7

0.
50

36
.0

0
9.

3
1.

00
83

.5
0

A
ve

ra
ge

3.
3

0.
91

7.
03

9.
6

0.
90

20
.5

5
7.

5
0.

77
21

.2
7

10
.2

0.
84

25
.3

9

17



Table
A

.4.JH
H

M
L

P
Seizure

R
esults

by
Patient

M
L

P-A
ll

M
L

P-Tim
e

D
om

ain
Features

M
L

P-Filterbank
Features

K
aleem

SV
M

Patient
FPs/hr

Sensitivity
L

atency
(s)

FPs/hr
Sensitivity

L
atency

(s)
FPs/hr

Sensitivity
L

atency
(s)

FPs/hr
Sensitivity

L
atency

(s)
Patient1

9.1
1.00

28.50
8.3

1.00
29.00

13.2
1.00

25.75
13.2

1.00
19.50

Patient2
4.5

1.00
11.50

10.5
1.00

10.50
6.0

1.00
9.00

0.0
1.00

110.00
Patient3

3.0
1.00

24.33
1.0

1.00
25.33

5.0
1.00

23.00
3.0

1.00
45.67

Patient4
15.7

0.50
10.00

14.9
0.75

9.67
14.9

1.00
9.75

0.8
0.00

0.00
Patient5

0.0
1.00

-8.00
0.0

1.00
-5.00

0.0
1.00

-10.00
12.7

1.00
-12.00

Patient6
6.0

1.00
24.00

9.0
1.00

25.00
6.0

1.00
23.00

0.0
1.00

21.00
Patient7

6.0
1.00

6.78
6.0

1.00
7.33

9.3
1.00

3.56
11.0

0.89
23.75

Patient8
16.5

1.00
25.00

13.5
1.00

29.50
13.5

1.00
23.00

1.5
0.50

25.00
Patient9

0.0
0.67

19.50
0.0

0.67
19.50

0.0
0.67

16.50
8.4

0.00
0.00

Patient10
4.8

1.00
39.67

4.8
1.00

40.67
4.8

1.00
37.67

0.0
1.00

39.67
Patient11

0.6
0.96

17.78
1.0

0.92
14.73

1.5
0.96

15.61
0.6

0.88
11.43

Patient12
5.7

1.00
11.55

11.8
1.00

11.82
6.9

1.00
10.45

6.3
0.82

9.11
Patient13

5.2
0.70

60.86
9.2

0.90
50.00

10.1
0.80

45.00
1.8

0.20
11.00

Patient14
34.7

1.00
22.44

29.3
0.89

26.88
36.3

1.00
6.11

18.0
0.78

36.57
Patient15

4.5
1.00

18.00
7.5

1.00
19.00

13.5
1.00

17.00
0.0

1.00
62.00

Patient16
5.2

0.71
12.00

4.4
0.71

13.60
8.3

0.86
11.33

6.1
0.57

5.50
Patient17

12.1
1.00

12.33
16.5

1.00
11.67

25.3
1.00

11.00
9.9

0.67
42.00

Patient18
10.9

1.00
37.67

16.9
1.00

47.33
12.9

1.00
33.33

6.9
0.67

81.00
Patient19

12.6
1.00

20.25
8.1

1.00
20.75

14.8
1.00

18.75
9.6

1.00
20.25

Patient20
1.4

1.00
15.00

4.3
1.00

19.00
1.4

1.00
12.50

0.0
1.00

52.00
Patient21

9.2
1.00

34.33
10.1

1.00
37.67

14.7
1.00

31.67
6.4

1.00
40.33

Patient22
3.6

1.00
23.50

6.4
1.00

23.75
10.9

1.00
20.25

7.3
1.00

3.50
Patient23

10.5
0.75

25.50
5.9

0.83
29.20

14.4
0.79

23.00
3.9

0.29
41.29

Patient24
4.4

1.00
10.20

3.9
1.00

12.40
8.3

1.00
8.00

11.0
1.00

25.20
Patient25

7.2
0.67

14.50
8.2

0.67
19.00

14.4
0.67

13.00
14.4

0.67
17.50

Patient26
3.5

0.75
14.33

3.5
0.75

13.33
8.8

0.75
13.00

3.5
1.00

41.25
Patient27

2.3
1.00

84.00
0.9

1.00
22.33

5.9
1.00

75.83
18.7

1.00
-0.67

Patient28
13.4

1.00
19.00

11.7
1.00

21.00
20.4

1.00
17.20

9.9
0.40

48.00
Patient29

10.9
1.00

13.67
9.9

1.00
9.67

13.4
1.00

11.33
7.4

0.67
28.50

Patient30
2.8

0.00
0.00

9.9
0.50

7.00
8.5

0.50
8.00

12.7
1.00

4.00
Patient31

5.9
1.00

61.25
6.4

0.88
75.57

9.6
1.00

56.00
4.1

0.88
105.43

Patient32
13.8

0.00
0.00

8.6
0.00

0.00
22.4

0.00
0.00

0.0
0.00

0.00
Patient33

13.1
0.84

43.00
11.8

0.84
46.38

13.7
0.89

38.35
11.7

0.68
61.31

Patient34
13.3

1.00
-11.00

10.7
1.00

-11.00
14.7

1.00
-13.00

6.7
1.00

-20.00

A
verage

8.0
0.87

21.81
8.4

0.89
21.55

11.3
0.91

18.97
6.7

0.75
29.38

18


