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Distributed Multi-Target Tracking for Autonomous Vehicle Fleets
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Abstract— We present a scalable distributed target track-
ing algorithm based on the alternating direction method of
multipliers that is well-suited for a fleet of autonomous cars
communicating over a vehicle-to-vehicle network. Each sensing
vehicle communicates with its neighbors to execute iterations
of a Kalman filter-like update such that each agent’s estimate
approximates the centralized maximum a posteriori estimate
without requiring the communication of measurements. We
show that our method outperforms the Consensus Kalman
Filter in recovering the centralized estimate given a fixed
communication bandwidth. We also demonstrate the algorithm
in a high fidelity urban driving simulator (CARLA), in which 50
autonomous cars connected on a time-varying communication
network track the positions and velocities of 50 target vehicles
using on-board cameras.

I. INTRODUCTION

A key challenge in integrating autonomous vehicles into
the transportation infrastructure is ensuring their safe opera-
tion in the presence of potential hazards, such as human-
operated vehicles and pedestrians. However, tracking the
paths of these safety-critical targets using on-board sensors
is difficult in urban environments due to the presence of
occlusions. Collaborative estimation among networked au-
tonomous vehicles has the potential to alleviate the limi-
tations of each vehicle’s individual perception capabilities.
Networked fleets of autonomous vehicles operating in urban
environments can collectively improve the safety of their
planning and decision-making by collaboratively tracking the
trajectories of nearby vehicles in real-time.

Constraints on communication and computation impose
fundamental challenges on collaborative tracking. Given
limited communication bandwidth, information communi-
cated between vehicles must be succinct and actionable.
Communication channels must also be free to form and
dissolve responsively given the highly dynamic nature of
urban traffic. Relying on centralized computation is neither
robust to single points of failure, nor communication-efficient
in disseminating information to those vehicles to whom it
is relevant. Rather, a fully-distributed scheme that exploits
the computational and communication resources of an au-
tonomous fleet is crucial to reliable tracking.
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Fig. 1.  Autonomous vehicles (in green) track the trajectory of target
vehicles (in blue and red) with images from on-board cameras at a four-way
intersection using our algorithm.

In this paper, we consider the problem of distributed target
tracking in a fleet of vehicles collaborating over a dynamic
communication network, posed as a Maximum A Posteri-
ori (MAP) optimization problem. Our key contribution is
a scalable Distributed Rolling Window Tracking (DRWT)
algorithm derived from the Alternating Direction Method
of Multipliers (ADMM) distributed optimization framework.
The algorithm consists of closed-form algebraic iterations
reminiscent of the Kalman filter and Kalman smoother, but
guarantees that the network of vehicles converge to the
centralized MAP estimate of the targets’ trajectories over
a designated sliding time window. We show in extensive
simulations that our DRWT algorithm converges to the
centralized estimate orders of magnitude faster than a state-
of-the art Consensus Kalman Filter for the same bandwidth.
We demonstrate our algorithm in a realistic urban driving
scenario in the CARLA simulator, in which 50 autonomous
cars track 50 target vehicles in real time using only seg-
mented images from their on-board cameras.

The paper is organized as follows. We give related work
in Sec. II and pose the distributed estimation problem in
Sec. III. In Sec. IV, we formulate the centralized MAP
optimization problem, and we derive our DRWT algorithm
in Sec. V. Sec. VI presents results comparing our DRWT
to the Consensus Kalman Filter, and describes large-scale
simulations in a CARLA urban driving scenario.

II. RELATED WORK

Several approaches have previously been applied to solv-
ing distributed estimation problems. In distributed filtering
methods, consensus techniques enable the asymptotic diffu-
sion of information throughout the communication network,
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allowing individual computation nodes to approximate the
joint estimate in the Consensus Kalman Filter [1], [2], [3],
[4]. Alternatively, using finite consensus techniques can im-
prove communication efficiency [5]. Similar techniques have
also been applied to particle filtering [6], [7]. However, the
messages communicated in these consensus-based methods
contain both information vectors and information matrices,
so the communication cost scales superlinearly with the size
of the estimate. Our approach recovers the same centralized
solution while only communicating the estimate vector.

Sensor fusion techniques accomplish distributed estima-
tion by computing a centralized approximation given individ-
ual estimates throughout the network [8]. A key challenge in
sensor fusion is keeping track of cross-correlation in condi-
tioning individual estimates on previously-fused centralized
estimates [9]. Covariance Intersection (CI) addresses this
issue by computing a consistent centralized estimate that
accounts for any possible cross-correlation between individ-
val estimates [10], [11], [12], [13]. However, in ensuring
consistency, CI is often extremely conservative and therefore
significantly suboptimal, especially for large networks.

Other estimation techniques approach distributed estima-
tion using optimization. One approach is to aggregate all
observations of each target to form a non-linear least squares
objective function which recovers the MAP estimate [14],
though such an approach requires all-to-all communication.
In [15], each robot communicates its measurement and state
estimate to its neighbors to solve the MAP least-squares
problem using the conjugate gradient method. However,
this approach still requires each node to communicate its
measurements to its neighbors. Alternatively, some methods
have been proposed to divide targets among the trackers
using Voronoi partitions [16], and to track multiple targets
using the Probability Hypothesis Density (PHD) filter [17].

In this paper, we apply a novel approach to the problem of
target tracking. We pose target tracking as a MAP estimate
over a rolling window that bears some similarity to [18]. We
apply ADMM, a technique that allows for distributed opti-
mization of problems with separable objectives, to distribute
the resulting MAP optimization problem (see [19], [20] for
a detailed survey of ADMM). This approach guarantees
convergence to the centralized solution [21].

III. PROBLEM FORMULATION

A. Communication model

We consider the scenario of N camera-equipped au-
tonomous vehicles (“sensors”) navigating a city that also
contains M other vehicles (“targets”). Each sensor takes
measurements of the positions of the targets in its vicinity
and can communicate with other nearby sensors. We model
the communication network among the [N sensors at time ¢
as a dynamic undirected graph G, = (V,&;), with vertices
V = {1,...,N} corresponding to sensors and edges &;
containing pairs of sensors that can directly share information
with each other. The presence of an edge (i, ) depends on
the proximity between sensors ¢ and j at time ¢. The neighbor

set N+ ={j| (i,j) € &} consists of sensors j that can
communicate with sensor ¢ at time ¢.

B. Target assignment

We assume that the each target in the environment has
a unique identifier known to all sensors. This data associ-
ation task is addressed in [22], and can be performed in a
completely distributed fashion.

The set of sensors observing any given target changes
due to occlusions coupled with the limited sensing-range of
the cameras. At each time that a sensor observes one or
more targets, it generates a set of features for each target
([23], [24], [25]) which identify the target. This identifier is
communicated to its neighbors. Considering the case of a
particular target, we denote the set of sensors that observe
it over the time horizon [t — T, ¢] as W;. The subgraph of
sensors that are relevant to the target in the time horizon is
G, C G, such that V, = VNW, and & = {(¢,7) | (i,7) €
&t,i,7 € V}}. Sensor i knows that sensor j belongs to V;
since sensor j communicates a descriptor of each observed
target. We assume that the subgraph G; is connected at all
times ¢ (that is, there exists a set of edges that form a path
between any 4, j € V}).

C. Distributed estimation

Given a particular target, each sensor has the task of
estimating the target’s state x € R" which includes its
position and velocity over discrete timesteps modeled as a
linear Gaussian system in which

Xep1 = AgXy + Wy, (D

with linear dynamics A; € R"™ "™ and additive noise
w; ~ N (0,Q;) € R". In the following, we represent the
trajectory over the time horizon [t — T, t] using the notation
Xp_Tp = [X;[T X;F]T. Sensor ¢ makes an observa-

tion of the target at time ¢ according to
Vit = CiiXxe + Vi, (2

with measurement vector y;, € R™, measurement matrix
Ci: € R™™" and additive noise v;; ~ N (0, R, ;) € R™.
We also refer to the joint set of observations across all
sensors in the network as

i = Cix¢ + vy, 3)

where the joint variables y; € R™, C; € R™*", and
v; € R™ are the column-wise concatenations over all ¢ € V/,
of yi+, C;+ and v, ;, respectively.

While the joint measurements (3) are not available to
any single sensing agent, each agent uses its individual
measurements (2) as well as communication with its neigh-
bors to estimate the target’s state. We compare the sensor’s
estimated mean and covariance with the mean and covari-
ance computed with full knowledge of all measurements.
In the distributed estimation problem, each sensor seeks to
approximate the centralized (best-possible) estimate using
only individual measurements and local communication.
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IV. CENTRALIZED ESTIMATION

The centralized estimate, which is conditioned on all
measurements and priors in the network, gives the best
estimate of a target’s state and therefore represents the best
possible performance. The MAP batch estimate maximizes
the probability of the estimated target trajectory xo.; condi-
tioned on the full set of measurements y(.; and a prior of
mean X, and covariance Pg:

X0:¢ = argmax p(Xo:t | Xo, Y1:t) “4)
X0:t
t—1 t
= arg max p(Xo | Xo) HP(XT+1 | x7) HP(YT | X7).
x0:¢ 7=0 T=1
&)

Given Gaussian conditional probabilities, the posterior in (5)
is the Gaussian distribution A (Xo.¢, f’o;t)-

In the case of linear Gaussian systems, we can solve (5) as
a linear system of equations. However, recursively estimating
the trajectory reduces the size of the system of equations,
improving computational efficiency. Instead of maximizing
p(x¢ | Xo,¥0:t), the Kalman filter infers X; from the result
of the previous timestep’s estimate, the prior distribution
(X1, Py1):

X; = argmax p(Xy | X¢—1,¥¢)- (6)
Xt

However, the Kalman filter only exactly replicates the result
of the batch estimate for the final timestep ¢. For some
intermediate 7 < ¢, X, is conditioned on the full measure-
ment set yg.; in the batch approach, but only on yq., in
the filtering approach. Employing the Rauch-Tung-Striebel
smoother exactly recovers the batch solution by computing
p(Xr | Xr41) for 7 =¢—1,...,0 (a backward pass of the
trajectory performed after the Kalman filter’s forward pass).
For our application of persistently tracking targets, a MAP
rolling window approach is appropriate as it incorporates
smoothing effects into a single Kalman filter-like update.
The rolling window refers to a time horizon [t — T, t] over
which we compute the MAP estimate. Given the prior
(X¢—7:t—1,Pt_7.4_1), we compute the window’s posterior

distribution by factoring the original MAP solution as

Xy_ry = argmax {p(X¢_ri—1 | Xe—1i0-1)
Xt—T:t (7)
p(xe | xe—1)p(ye | x0) }-

The estimate X; 7.; is conditioned on Xg, yo.; and is
equivalent to performing a filtering pass for the times O, .. ., ¢
and a smoothing pass from time ¢ to time t — 7. We then
increment the rolling window forward to [t — T+ 1,¢ + 1],
retaining the estimate (X;—741.1, lat_TH:t) as the prior
for that window. Therefore, the rolling window approach
preserves much of the smoothing effect of the batch estimate
while maintaining a constant problem size at each time step.

Applying (1) and (3) to (7) yields

J (Re—1it) = || %¢ — At—1§<t—1Hé:] + ly: — thitHQR;l

for which the minimizing X;_7.; is the solution to (7).
We can express the MAP rolling window estimate as

" _ —1 _

Xi-re = (H] W, 'H,;)  H/ W, 'z )
N _ —1

Pire= (H W;'H,) (10)

given the block matrices

0 -« —-A, I
0 0 C, F,

H, = I - 0 0 ~|la |,
0 I 0

Zy = [ o' YtT i;rfT:tfl ]Ta

W, = blkdiag (Qt—l,Rt, pth:tfl) .

We implement this procedure recursively by retaining the
lower-right block of the covariance matrix lst,T:t as the
prior covariance Pt,TH:t for the next timestep’s estimate.
The estimate over all but timestep ¢ — 1" becomes the prior
mean X;_741.¢. Therefore, we have a tractable centralized
target tracking method that serves as a benchmark for our
distributed target tracking algorithm.

V. DISTRIBUTED ESTIMATION

One typical approach for the distributed implementation of
the MAP estimate is to use consensus techniques to diffuse
information across the network, enabling each agent to
minimize (8). This is true of Consensus Kalman Filter (CKF)
approaches, in which each agent maintains local measure-
ment information (2) rather than the joint measurements [2],
[3], [4], [11, [5]. The CKF uses asymptotic consensus with
Metropolis weights to sum GLRZ tl G, and GItR;tlyi7t
overall i € V], where G;; = [0 0 Ciyl. The fused
observations are then fused with local copies of the dynamics
terms and prior terms of the cost function. The consensus
rounds diffuse the joint measurement information to each
sensor, enabling local computation of (9) and (10).

The CKF requires communication of local informa-
tion matrices and information vectors during consensus, a
communication-intensive process that is a drawback of the
method. Furthermore, performing an approximation of the
centralized estimate at each node is redundant, failing to
take advantage of the distributed nature of the computational
resources in the network. In contrast to the CKF, we propose
a Distributed Rolling Window Tracking (DRWT) algorithm
that uses an ADMM-based approach to enable each sensor to

. - 2 replicate the centralized estimate without reconstructing the
+ ||Ke—rit—1 — Ke—r—1]p—2 . (8 . . . .
t—Tit—1 centralized cost function. First, we pose the centralized cost
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function (8) as a separable problem with linear constraints:

minimize
)A(iwt,T:tViGVQ

1 R
{ ‘szt At—lxi,t—lHé;ll

Vi

+|lyie — Ci,tﬁi,t“;;g

+ |Xip—ii—1 — Rip—Ti— 1Hp 1

Vj € Niy
\V/j S M,h

subject to X ¢—7:¢ = Ty

Xjt—T:t = T4y

(1)

for which ZLev, PZ Tl = P;}T:Fl. In the following,
we express the cost ‘function in (11) as Zievg Ji(Xit—1:t)
and omit the subscript t —7 :t¢ from the primal vari-
able X;. The slack variable r;; ¢ R™T+D  encodes
agreement constraints between neighbors ¢ and j. The
ADMM approach to solving problems of this form
uses the augmented Lagrangian, which adds to the cost
function a quadratic penalty for constraint violations,
Sievy Sieni, (p/2) (1% = rigl|* + [x; — ri5]*). The aug-
mented problem is equivalent to the original problem as the
added penalty is zero for the feasible set of estimates. We
find the saddle point of the augmented Lagrangian

= Z Ji (xi) + Z (/\;; (xi —1ij) + lu'zg (x; rlﬂ))
iGV' jENi,t
23 (—ral 4l —rgl’) 2

JGNLt

by alternating between minimizing L, with respect to the
primal variables x and r and performing a gradient ascent
step on the dual variables \;; and p;;. Each i € V] can
update its respective X;, Ty, A;j, and p;; for all j € Nt in
parallel since minimizing L, with respect to these variables
does not depend on the values of its neighbors’ variables.
Furthermore, as shown in [20], [26], substituting p; =
> jens, Nij + pij and assuming the initialization piO =0
yields the minimization of r;; as 3(x; + x;). Initializing
pEO) =0 and %% = arg min, J;(x;), the following iter-
ations alternate between a gradient ascent step on p; and
a minimization step on X;, converging to the centralized
estimate when run in parallel across all i € V}:

B N RS
]ENz,t
kgkﬂ) = arg min {Ji (x;) + x?pgkﬂ)
" (14)

STy

Furthermore, due to our assumption of a linear Gaussian
system (14) can be expressed in closed form as

JEN; ¢«

(H] W, TH, + 2p|A 1) 25 =

H/ W'z —pl" 4 3 (%

LxY, 09)
JEN;

using the local versions of the block matrices in (9) (replac-
ing Cy, Qi—1, Ry, Pioriy—1, yi, and X¢—7ip—1 with C;y,
Q:/|Vi|.Rit, Pi 71, ¥ie, and X; s 7.1, Tespectively).
We note that the matrix inverse in (15) only needs to be
computed once rather than at every primal update iteration.

Lemma 1. Given a connected G, and priors X;_1.—1
Cll’ldpqt Tt 1SMC/’lll’lalX,Lt Tit—1 = X¢—Tt— 1V26Vtand
Zzev’ P” T = Pt .41, there is a saddle point of
(12) at

%" (16)

a7

= X¢t—T:t

pv(k) = Hz—rw;l - H:W;lHif{th:tv

where X1 is the centralized MAP rolling window estimate
given priors X; t—1:t—1, Pis—1:—1.

Proof. The Hessian of L, with respect to the primal variables
%; Vi € V] is positive definite. Observing that

oL 0 . 0
L = T&J(XFT:Q = 67)21

=~ J()A(th:t) =0

0%, X;i=Xt_T:t
for each 1 € VI, L, is minimized with respect to the
prlmal vanables at X; = Xe_7 Vi €V, Substltutmg the
= 0.

Substituting (16) into (15) yields (17)

In other words, the network can minimize (8) in a fully dis-
tributed manner using only independent measurements and
local communication. By decomposing the centralized prob-
lem according to (11), each estimate X; converges to the solu-
tion of (9). A key assumption, however, 1s the decomposabil-
ity of prior information, ie., Z eV Pl GTao1 = P:T:tfl.
Given that the distributed prior inverse covariances sum
to the centralized prior inverse covariances, then the dis-
tributed posterior inverse covariances (where f’t_T;t is the
Hessian of the local cost function .J;) also sum to the
centralized posterior inverse covariances. However, this as-
sumption weakens in implementing DRWT recursively. In
performing the marginalization step in which P;_p.; is the
t—T 41 :tblock of f’t_T;t, the distributed implementation
is not exactly equivalent to the centralized. It is always true
that (3", eV PM 7i1) > Py_7.4-1. Consequently, the
distributed marglnahzatlon is conservative with respect to
the centralized solution. The conservativeness of the esti-
mated covariance is a feature of other distributed algoithms
as well—as Figure 3 shows, the CKF has an even more
conservative covariance estimate. Therefore, while DRWT
remains an unbiased estimator, it does not exactly replicate
the centralized covariance in its recursive implementation,
as the prior mean is under-weighted. Lemma 1 holds, with
the modification that the saddle point is the solution to a
centralized optimization problem with a potentially overes-
timated prior covariance. As we show in Sec. VI, this effect
is minimal in practice.

Finally, we propose a “hand-off” protocol by which sensor
1 removes itself from estimating a target after not directly
observing it in the 7" most recent timesteps. If there exists
J €Nt NV, (i.e, neighbor j is continuing to estimate
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Algorithm 1 Distributed Rolling Window Tracking

Algorithm 2 DRWT Primal Update

1: function DRWT(X; ;7.4 1, Pis7:4-1,yit Vi€ V)
2 for i € V; do

3 )A(Ef)t)_T:t < argmin, , . J; (Xit—7:t)

4: pgo) ~—0

5: P (HLW;;Hm)_l

6: end for

7 while stopping criterion is unmet do

8: for i €V, d

9: (kﬂg <+ Equation (13) > dual update
10: EI;HT) ., < Equation (14) > primal update
11: end for

12: k+—k+1

13: end while

14: foricV, ¢V ,jeN; NV, do

Is: Pjira (Prlpe+Plr,) > hand-off
16: end for

17: return fci,t—T:t, ]-Si,t—T:t Vi € Vt/

18: end function

the target), then ¢ transfers the Hessian of its local cost
function to a single neighbor j at the end of the ADMM
iterations. Sensor j fuses the new information matrix with its
own, thereby preserving the same joint information across the
entire network. Algorithm 1 summarizes DRWT, including
the hand-off protocol.

After each communication round per timestep, sensor
1 updates its estimate of the target’s trajectory (14) by
inverting the Hessian of its local objective function which
requires O(n®(T + 1)3) floating point operations (flops),
posing a bottleneck for long window lengths. Here, we
provide an efficient algorithm for performing this update
in O(n(T + 1)) flops rather than cubic complexity, without
any matrix inversion. We factor the Hessian using Cholesky
decomposition to obtain a lower triangular matrix L, for
each 7=t —1T,---,t and compute o, to update X;; 1.
using forward and backward iterations, reminiscent of the
Kalman smoothing procedure. The Cholesky decomposition
of the Hessian takes O(n(T + 1)) flops, along with the
forward and backward iterations. We present the algorithm
in Algorithm 2.

VI. SIMULATION RESULTS
A. Performance Comparison

We compare the performance of the DRWT method in
Algorithm 1 to the CKF in a distributed estimation problem
involving a static network with [V| = 100 and |£] = 400.
All sensors acquire noisy measurements of the target at
each time step, and perform DRWT with 7' = 1. During
each estimation phase, the same bandwidth limitations are
imposed on the CKF and DRWT. We benchmark both
distributed methods against the centralized MAP estimate.

Results from 2000 Monte Carlo simulations of this sce-
nario show that DRWT method outperforms the CKF. DRWT

1: function PRIMALUPDATE(ka X, %, Vj € Niyg)

2 =52 jen, ( i +x(k)) %pg@
3 9= Qi o N
4: initialization
5: b1 t<—PzT +Xi, T t+p|./\[|
6: Bir— fHPZT (XiT—t T Q¢
forward pass
8: forr=t—-T+1,---,tdo
9 L, L]+ ® 1+ ﬁAjle;,llArfl
10: L7-77-_1L;.r_1 — 7|VL”Q;71AT_1
11: L, 10,1 <—,Bzr 1
12: P, L., _ 1LTT 1+P”+'yT
13: )BZ’T'<_ L‘r‘r 10— 1+P17X’LT+QT
14: end for
15: L,L[ « —Li; 1L/, | + CTR;[C; + 1,
16: Lioy < —Ls1—10¢-1 + CFRZgY@t + a;
17: SARPES v
18: backward pass
19: forr=t,---,t—T+1do
20: gD T (LTT & e )
21: end f(;r
22: return XEktHT) "

23: end function

is significantly more communication-efficient, as sensors
communicate only their target estimates. From Figure 2,
DRWT yields better convergence to the centralized estimate
compared to the CKF method as a function of the total
number of communication bits per node. As Figure 3 shows,
the improved convergence of the DRWT contributes to im-
proved estimation performance over entire trajectories. The
estimated trajectories and covariances of the DRWT method
closely match the centralized estimates. The CKF does not
track the centralized estimate as closely and is also more
significantly overconservative in its estimate.

0 100 200 300 100)
Average total transmissions per node (kbit)

Fig. 2. Convergence of distributed estimation methods to the centralized
estimate as a function of bits of communication passed on a 100 node, 400
edge network for a single timestep’s estimate.
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— CKF
- —DRWT
. 0.45 g Centralized| ]
o 04
=)
|
H 035
0.3 .
0 3] 10 15 20 25
Time (s)
Fig. 3.  Mean squared error of estimation methods on a 100 node, 400

edge network with respect to ground truth, averaged over 4000 Monte Carlo
simulations. Solid lines show the indicate mean squared error, while dashed
lines represent estimated covariances, computed as trace(P).

B. CARLA Simulations

We demonstrate our algorithm in a scenario involving a
network of 50 sensor vehicles and 50 target vehicles within
CARLA [27], a simulation test-bed for autonomous driving
systems. For the simulation trials, each sensor vehicle is
equipped with a forward and a backward-facing camera,
each with a 90° field of view. As shown in Figure 4, sensor
vehicles acquire semantic segmentation and depth images at
4 Hz. The sensing radius of the vehicles is limited to 100m.

Fig. 4. CARLA frame showing raw and segmented camera images.

The relative position of each target vehicle is deduced
from the depth and segmentation images and the camera’s
projection matrix. Each sensor uses its odometry information
to transform the relative position of the target into the global
coordinate frame corresponding to the measurement used
by the vehicle in DRWT. The sensor estimates trajectories
of T' = 5s in length. For this simulation, we assume that
the target labeling is known a priori. The communication
network between sensor vehicles is modeled as a disk graph
with a 200m radius and is updated at 4 Hz. DRWT uses a
simple double integrator model for the vehicle dynamics.

Figure 5 shows the mean squared error of the estimated
target trajectories of all target vehicles for all the sensor
vehicles with respect to the centralized trajectory estimate.
Collaborative target tracking using DRWT significantly out-
performs the estimates made by any single agent. Increasing
the number of iterations of DRWT in each estimation round
can further reduce the remaining error.

Figure 6 shows how the information (represented as the
trace of the inverse covariance) corresponding to a given

10°

]

& 10°
"

107
"

10" i
0 50 100 150 200 250
Time (s)
Fig. 5. Mean squared error to the centralized estimate across the full

trajectories of all 50 targets. Red lines are the positional estimate errors for
each individual sensor (with no communication), and the blue lines are for
the DWRT positional estimates.

trzu‘.e(lg'l._ Y (m

50 100 150 200 250 300 350
Time (s)

Fig. 6. The sum of the traces of information matrices maintained by sensor
vehicles using DRWT for a single target in a CARLA simulation. Each
colored band represents the information of one sensor. Although any one
sensor possesses only a fraction of the joint information, the sum over the
network closely matches the information of a centralized estimator. Spikes
in individual bands correspond to execution of the hand-off procedure.

target is apportioned across the network. As the set of
sensors tracking a target changes in time, the hand-off
procedure enables their joint information to closely match
the information of the centralized estimate.

VII. CONCLUSION

The DRWT algorithm enables a fleet of autonomous
vehicles to track other vehicles in urban environment in the
presence of occlusions. In this method, each sensor-equipped
vehicle estimates the target’s state over a rolling window,
leading to a scalable algorithm that can be parallelized to
multiple targets. We show that DRWT converges to the
centralized estimate even with less communication bits per
node. Future work will focus on target tracking by vehicles
with non-linear dynamics and non-linear sensors such as
radar and lidar.
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