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a b s t r a c t

A recently discovered universal rank-based matrix method to extract trends from noisy time series is
described in Ierley and Kostinski (2019) but the formula for the output matrix elements, implemented
there as an open-access supplement MATLAB computer code, is O(N4), with N the matrix dimension.
This can become prohibitively large for time series with hundreds of sample points or more. Based on
recurrence relations, here we derive a much faster O(N2) algorithm and provide code implementations
in MATLAB and in open-source JULIA. In some cases one has the output matrix and needs to solve an
inverse problem to obtain the input matrix. A fast algorithm and code for this companion problem,
also based on the recurrence relations, are given. Finally, in the narrower, but common, domains of (i)
trend detection and (ii) parameter estimation of a linear trend, users require, not the individual matrix
elements, but simply their accumulated mean value. For this latter case we provide a yet faster O(N)
heuristic approximation that relies on a series of rank one matrices. These algorithms are illustrated
on a time series of high energy cosmic rays with N > 4× 104.
Program summary
Program Title: Pfromdata, QofP, mbasisandcoeffs, nonzerop, Qavgapprox, PofQ, mexact, CodeTesting
CPC Library link to program files: http://dx.doi.org/10.17632/mkcxrky9jc.1
Licensing provisions: MIT
Programming language: MATLAB and Julia
Nature of problem: An order-rank data matrix and its transform to a stable form are used repeatedly
to detect and/or extract trends from noisy data. An efficient yet accurate calculation of the matrix
transform is therefore required.
Solution method: We introduce and apply an analytic recursion relation, which speeds up the execution
of the matrix transform from O(N4) arithmetic operations to O(N2). Since this matrix transform is
called often during optimization, our improvement allows for far shorter optimization times, for a
given sample size. For example, a transform whose time is extrapolated to an unrealistic 75 days on
a Dell personal laptop computer with a 2.2 GHz quad-core AMD processor running 32 bit MATLAB
version R2015b on 64 bit Windows 10 (N = 5000), now takes a fraction of a second.
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1. Introduction

A broadly-applicable rank-based approach for detection and
extraction of generally non-linear trends in noisy time series has
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recently been introduced [4] and we shall now briefly review the
mathematical essentials. The input time series is segmented into
nt samples, with each sample having nT data points. A square
nT × nT population matrix P is then calculated such that Pj,k is
the population (number) of data points with order j (position in
the sample), and rank k (position in the sample after an ascending
sort) [4]. Alternatively, Pj,k can also be viewed as a 2D probability
density function (pdf) or a histogram over the plane defined by
rank and times axes. The matrix P is illustrated below in (1).
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(1)

To ‘‘zoom in’’ on the trends hidden in P , the Q -transform was
introduced [4] as follows

Qj,k =

(∑j
m=1

∑k
n=1 Pm,n +

∑nT
m=j+1

∑nT
n=k+1 Pm,n

jk+ (nT − j)(nT − k)

−

∑j
m=1

∑nT
n=k+1 Pm,n +

∑nT
m=j+1

∑k
n=1 Pm,n

(nT − j)k+ j(nT − k)

)
nT

nt

(2)

To understand the construction, consider the division of P into
quadrants for calculation of Qj,k as shown on the RHS of (1).
Each element of Q is the difference between the average matrix
element of the combined upper left and lower right quadrants
of P , and the average matrix element of the combined upper
right and lower left quadrants, normalized by the overall average
matrix element of P , ⟨P⟩ ≡

∑nT
m=1

∑nT
n=1 Pm,n/n

2
T = nt/nT .

The number of operations (+,−,×,÷) required to compute
Q using Eq. (2) is O(n4

T ). For large nT and repeated calls, as
will often be needed in applications, the computation time can
become prohibitively long. In addition, setting ⟨Q ⟩ = 0 where
angular brackets denote average over matrix elements, functions
as a trend detector when the functional form of the trend is not
available and we shall illustrate it on the time series of cosmic
rays in 5. To that end, our purpose in this paper is four-fold:

(i) present a O(n2
T ) algorithm for computing the Q -transform

and its MATLAB implementation;
(ii) supply an open source (Julia) implementation;
(iii) present an efficient O(nT ) calculation of ⟨Q ⟩, where ⟨Q ⟩ is

the average matrix element of Q . The departure of this (scalar)
quantity from zero is used to detect presence of trend [4].

(iv) provide an illustrative example from a long cosmic ray
time series;

To provide a point of reference for (i) and (iii), we com-
pare to 2D convolution, which is numerically comparable to the
Q-transform. We find that: (1) our O(n2) scaling for (i) matches
2D convolution with a small (3 × 3, 4 × 4, etc.) mask
(2) our O(n) scaling for (iii) matches the scaling of an approx-
imate 2D convolution, which similarly to (iii) uses a low rank
approximation [3].

2. Derivation of the algorithm

To begin, note that Eq. (2) can be simplified by making use
of constraints on P that each row and column sum to nt . Thus,
the sums of elements in the four quadrants of P, entering the
numerator of (2) are not independent. Numbering the quad-
rants as 1–4 beginning from the upper right, moving counter-
clockwise, and calling the sums of elements in each quadrant i

as Σ (i)
j,k, we have

Σ
(1)
j,k =

j∑
m=1

nT∑
n=k+1

Pm,n

Σ
(2)
j,k =

j∑
m=1

k∑
n=1

Pm,n

Σ
(3)
j,k =

nT∑
m=j+1

k∑
n=1

Pm,n

Σ
(4)
j,k =

NT∑
m=j+1

nT∑
n=k+1

Pm,n

(3)

Their dependence on each other are expressed as follows:

Σ
(1)
j,k +Σ

(2)
j,k = jnt

Σ
(2)
j,k +Σ

(3)
j,k = knt

Σ
(3)
j,k +Σ

(4)
j,k = (nT − j)nt

Σ
(4)
j,k +Σ

(1)
j,k = (nT − k)nt

(4)

This system of four equations in four unknowns (Σ (i)
j,k, i =

1 − 4) is under-determined and when recast as a 4 × 4 matrix
equation, has a matrix rank of three. Thus, only one of the four
Σ

(i)
j,k is independent and we picked Σ (2)

j,k for that purpose.

Σ
(1)
j,k = jnt −Σ

(2)
j,k

Σ
(2)
j,k = Σ

(2)
j,k

Σ
(3)
j,k = knt −Σ

(2)
j,k

Σ
(4)
j,k = (nT − j− k)nt +Σ

(2)
j,k

(5)

This can be substituted back into Eq. (2),

Qj,k =

(
(nT − j− k)nt + 2Σ (2)

j,k

jk+ (nT − j)(nT − k)
−

(j+ k)nt − 2Σ (2)
j,k

(nT − j)k+ j(nT − k)

)
nT

nt

(6)

Define D as a (nT − 1)× (nT − 1) matrix, whose elements are
the product of the two denominators in Eq. (2):

Dj,k = (jk+ (nT − j)(nT − k))(j(nT − k)+ (nT − j)k) (7)

The Q matrix can be expressed compactly in terms of Σ (2)
j,k and

Dj,k.

Qj,kDj,k =
2n3

T

nt

(
Σ

(2)
j,k −

nt

nT
jk

)
(8)

The motivation for this is that the second quadrant sum Σ
(2)
j,k

satisfies a recurrence relation.

Σ
(2)
j,k = Σ

(2)
j−1,k +Σ

(2)
j,k−1 −Σ

(2)
j−1,k−1 + Pj,k (9)

Taken together with Eq. (8), this yields a recurrence relation
for Q .

Qj,k =
1

Dj,k

(
Dj,k−1Qj,k−1 + Dj−1,kQj−1,k

− Dj−1,k−1Qj−1,k−1 +
2n3

T

nt
(Pj,k −

nt

nT
)

) (10)

The algorithm used to calculate Q via (10) is described in
Algorithm 1 and its MATLAB and Julia implementations accom-
pany this manuscript. The full Q matrix is calculable in O(n2

T )
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operations, as is seen by observing that each element of Q can
be calculated in O(1) from a small number of neighboring Q ele-
ments and some constants, and that the total number of elements
in Q is (nT − 1)2.

Algorithm 1: An O(n2
T ) implementation of the Q-transform, using

recurrence in Eq. (10). The (1,1) element is found first. Rows
and columns are found by moving rightwards or downwards
from diagonal elements. All elements are found from neighboring
elements to the left, above-left, and above.
Data: nT × nT population matrix P , satisfying row and column

sum constraints
Result: (nT − 1)× (nT − 1) matrix Q
for i = 1 to nT − 1 do

Qi,i ← Pi,i,Di,i,Qi−1,iDi−1,i,Qi,i−1Di,i−1,Qi−1,i−1Di−1,i−1;
for m = i+ 1 to nT − 1 do

Qi,m ←

Pi,m,Di,m,Qi−1,mDi−1,m,Qi,m−1Di,m−1,Qi−1,m−1Di−1,m−1;
Qm,i ←

Pm,i,Dm,i,Qm−1,iDm−1,i,Qm,i−1Dm,i−1,Qm−1,i−1Dm−1,i−1;
end

end

3. Analytical results

One key result of this paper is Eq. (10), just derived. This
permits an O(n2

T ) method for calculating Q that is much faster
than the O(n4

T ) brute force evaluation of Eq. (2), especially for
large nT . Another essential result is the transformation for P ,
given Q . This was obtained by rearranging Eq. (10) as follows.

Pj,k =

(
Dj,kQj,k − Dj,k−1Qj,k−1 − Dj−1,kQj−1,k

+Dj−1,k−1Qj−1,k−1

)
nt

2n3
T
+

nt

nT

(11)

Not only does this transformation turn out to be stably com-
putable but also efficiently so. In fact, it can be accomplished
also in O(n2

T ) operations and is implemented in MATLAB and Julia
programs in the accompanying files. These results allow analyses
of previously inaccessible data because of the prohibitively long
computation times. The confirmation of the speed up of Eq. (10)
over Eq. (2) directly in terms of CPU time is given in Fig. 1.

As a sample application, possible because of the computational
improvement provided by calculating the Q -transform recur-
sively rather than by the direct evaluation of the double sums
in Eq. (2), we choose nT = 5000 ≈ 212.3, which lies just outside
of the axis range shown in Fig. 1. A calculation using the recursive
result in Eq. (10) takes about 0.7 s [1]. In comparison, using Fig. 1
to extrapolate the O(n4

T ) curve out to log2(nT ) = 12.3, a brute
force calculation would take approximately 80 days and hence is
not shown in the figure.

4. Fast algorithm for calculating ⟨Q ⟩

We now turn to efficient calculation of ⟨Q ⟩, the mean matrix
element of Q in the special case of large nT and small nt . For
example, the single sample (one time series) cases, the matrix P
is sparse, consisting of NT

2
− NT zeros and need not be stored

in memory in its entirety. Rather, only indices of the non-zero
matrix elements, found by independently sorting each of the
repeated nt trials, may suffice to calculate Q . Also, it was shown
in [4] that the entire Q information is not required when one is
concerned merely with trend detection or parameter estimation

Fig. 1. A comparison of calculation times for the Q-transform. A recursive
approach reduces the CPU time from O(n4

T ) to O(n2
T ). The blue curve shows

results from an implementation of the brute force approach of Eq. (2), while
the red curve shows timing data from the optimized calculation of Eq. (10).
The contrast in complexity order becomes apparent for larger size matrices,
log2(nT ) ⪆ 4. Note that the calculation time becomes intractable for nT ⪆ 210

≈

1024 for the brute force calculation [1]. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

of a linear trend. One such application (time series of cosmic ray
arrivals) is discussed in the next section. In such cases, it suffices
to calculate only element-averaged metric

⟨Q ⟩ ≡
1

(nT − 1)2

nT−1∑
j,k=1

Qj,k (12)

A sufficiently large value of ⟨Q ⟩ implies the presence of a
trend. Here, ’’sufficiently large’’ is with reference to a fiducial
value expected for pure noise, a formula for which in terms of
nT and nt is given in [4]. Using the results of Section 3, Q , and
thus ⟨Q ⟩ (which has (nT − 1)2 terms), can be computed from P
in O(n2

T ) operations. In order to calculate ⟨Q ⟩, only accumulated
mean value is needed and the rest of the matrix elements need
not be stored, thereby reducing complexity of the calculation. To
that end, as is shown in Appendix B.3 of [4], since Eq. (2) is a
linear map between elements of P and Q , it may be expressed as
a matrix equation,

q = Mp (13)

where q and p are (nT−1)2×1 and n2
T×1 column vector versions

of P and Q , and M is (nT − 1)2× n2
T . Thus, ⟨Q ⟩ can be written as,

⟨Q ⟩ =
1

(nT − 1)2
[111...]  
(nT−1)2

q

=
1

(nT − 1)2
[111...]Mp

= mTp

(14)

where,

m =
1

(nT − 1)2
MT
[111...]T (15)



4 D. Kestner, G. Ierley and A. Kostinski / Computer Physics Communications 254 (2020) 107382

Writing the n2
T × 1 vector m as an nT × nT matrix m, we can

express ⟨Q ⟩ as the sum of elements of the Hadamard (element-
wise) product of m and P itself.

⟨Q ⟩ =
∑
j,k

mj,kPj,k (16)

The equation form can now be expressed. Comparing Eqs. (15)
and (13) with Eq. (2) and carefully converting between matrix
indices and linear vector indices, we find an expression for m,

mj,k =
nT

nt (nT − 1)2

( j−1∑
m=1

k−1∑
n=1

d(1)m,n +

nT−1∑
m=j

nT−1∑
n=k

d(1)m,n−

j−1∑
m=1

nT−1∑
n=k

d(2)m,n −

nT−1∑
m=j

k−1∑
n=1

d(2)m,n

) (17)

where

d(1)m,n =
1

mn+ (nT −m)(nT − n)

d(2)m,n =
1

m(nT − n)+ (nT −m)n

(18)

The matrix m is not determined by the data, and depends
solely on nt and nT , the former being only an inverse multiplica-
tive constant. Once m is constructed, the mean element of Q is
easily accessed from Eq. (16). For sparse P , nt ≪ nT , this means
a calculation of order nT , much faster than the O(n2

T ) needed to
calculate the matrix Q explicitly prior to averaging. As it stands,
m takes O(n4

T ) to construct, which can become prohibitive for
large nT . Not only this, but m is memory limited to about nT =
√
10 × 104 for an 8 GB RAM, being of type double (8 bytes per

element). Since for nt ≪ nT the matrix P is sparse, in this case we
only need calculate the elements of m corresponding to nonzeros
in P . This greatly reduces demands on memory, allowing nT ,
the number of data points per trial, to be as large as about 109

for nt = 1 and a 8 GB RAM. Also, there is an O(nT ) way to
approximate any element of m in O(1), operations, reducing the
calculation of m for sparse P to O(nT ). For nonsparse P , when
the full matrix m is needed, the approximation scheme gives m
in O(n2

T ), due the number of elements needed. We also find that
m may be calculated exactly, up to accumulated rounding errors
due to finite machine precision, by an O(n2

T ) recursive algorithm,
much like for Q in Section 2. The advantage in this case is that
m need only be calculated once, for each nT , and then it applies
to any dataset of the same size parameter nT , modulo a rescaling
due to varying nt . This saves the time needed for calculating Q
itself each time. The disadvantage of using recursion to find m as
compared with using the approximate approach is that recursion
can only create contiguous rectangular blocks of m. In contrast,
the approximation for m allows only the needed elements to be
calculated, regardless of how they are spatially related in the
matrix. To this we now turn.

To describe how the matrix m is approximated, which is the
most efficient way to calculate ⟨Q ⟩ for large nT and nt ≪ nT , we
first note the following: the rank one matrix that is an outer prod-
uct of the first column of m with itself, normalized by 1/m(1, 1),
provides a fair approximation of the entire matrix m. Seeing that
this approximation is rank one suggests the approximation can be
improved by adding another rank one term. This turns out to be
so. One simply takes a linear combination of the first two columns
of m, and since the first row and column of m are already exact,
chooses this combination such that a new vector is obtained with
vanishing first element. The outer product of this vector with
itself is zero along the first row and column, and thus does not
alter the previous exact rank one approximation there. If one then

adds this new rank one matrix to the old, while choosing a scalar
coefficient to match any of the elements in the original second
column of m, one obtains a rank two approximation of m that
is exact in the first two rows and columns. This holds true for
any symmetric matrix, as a little algebra can show. Moreover,
this extends easily: a third ’’basis vector’’ may be obtained with
vanishing first and second elements by judiciously mixing the
first three exact columns of m. Again adding the outer product
of this new vector with itself to the rank 2 approximation, with
an appropriate constant chosen to match an arbitrary element of
the exact third column of m, a rank 3 approximation is obtained
that is exact in the first three rows and columns. And so on. By
generalization, beginning with r columns of m yields a rank r
approximation, exact in the first r rows and columns of m. Since
m always has the same form when regarded as a two dimensional
function, the effect of increasing the number of rows/columns nT
is to bring nearby columns closer numerically. Therefore, prac-
tically, difficulties arise with the above approximation scheme
due to nearby columns of m becoming linearly dependent for
large nT , but these can be circumvented by avoiding successive
columns, but picking columns increasingly separated with nT , so
as to roughly maintain proportionate horizontal locations in the
matrix m. It also proves advantageous to mix the columns such
that the zeros in the new column vectors are also spaced out
proportionately within the matrix and not merely adjacent and
at the beginning. Letting x1, . . . xr be the selected exact columns
of m, and v1, . . . vr the new vectors,

vi = (x1|x2...|xr)

⎛⎜⎜⎝
1

ai(1)
...

ai(r − 1)

⎞⎟⎟⎠ (19)

where the coefficients ai(1), . . . , ai(r−1) are given by the require-
ment,

(vi(1), vi(1+ s), . . . , vi(1+ (i− 2)s))T = (0, 0, . . . , 0)T (20)

Heuristically, the optimal case is when the zeros in the new
column vectors have the same spacing as the columns. This im-
proves the conditioning of a certain matrix that must be inverted
in this process. Also, we find that for uniform column spacing,
there is an optimal rank approximation of r = 6. In this case, the
optimal column/row zero spacings s are given empirically by s =
[0.92143543 + 0.02465247 × nT ]. Taking non-uniformly spaced
columns of the matrix m yields generally much better results, as
found for example by using MATLAB’s Genetic Algorithm to find
the optimal columns of m for a rank r = 6 expansion with row
zero spacings matching the column spacings. We also choose the
coefficients of the rank 1 matrices in order to optimize the ap-
proximation of m along its diagonal, via least squares (MATLAB’s
backslash operator).

Mathematically, the above can be summarized by saying that
we approximate m with a handful (r , the rank of the approxima-
tion) of its columns,

m ≈ m1 +m2 +m3 + · · · +mr (21)

The rank 1 matrices mi are outer products of column vectors
with themselves,

mi = vivTi (22)

The vectors vi, i = 1, . . . , r are linear combinations of r
different columns of the exact m, calculated from Eq. (17), using
the speedups of Eqs. (A.1) and (A.2). This is thus an approximation
of the full column space of m. The generation of the approximate
m is shown in Algorithm 2
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Algorithm 2: Algorithm for approximation of m. A subset of
columns of m are calculated exactly, then linearly combined to
form a new set of basis vectors. Basis vectors form rank 1 matri-
ces, with coefficients that minimize error along the full diagonal
of m.
input : nT , the size of (square) matrix m
output: Low rank approximation to m
approximation rank r ← min (6, ⌊ nT2 ⌋);
exact column spacing s← round(0.92143543+ 0.02465247nT );
x1, ...xr ← sample exact columns of m, columns 1,
1+s,...1+(r-1)s;
v1 ← x1;
for i=2 to r do

vi ← linearly combine x1, ...xi to make elements 1,
1+s,...,1+(i-2)s be zero

end
calculate diagonal of m using equations Eq. (A.1) and Eq. (A.3);
c1, ..., cr ←
min[(diag(c1v1v1T + c2v2v2T + ...+ crvrvrT )− diag(m))2];
return v1, ...vr, c1, ..., cr ;

Fig. 2. O(nT ) vs. O(n2
T ) calculations of ⟨Q ⟩ ≡ average over all elements of Q ,

in the limit nt ≪ nT . The relative difference δ ≡ (⟨Q ⟩approx. − ⟨Q ⟩exact )/⟨Q ⟩exact
is shown in the inset. The linear time includes the time to ‘‘precompute’’ the
needed subset of elements of the matrix m (see the text) and take the Hadamard
product with P . The quadratic time includes the time to calculate, store, and
average the full Q matrix.

We note that this approximation is essentially a low rank ma-
trix approximation that uses low rank matrix completion, topics
that both arise in data science [5].

With this approximation of m, we now show that the cost of
computing m is reduced from O(n2

T ) to O(nT ) for the overhead,
and O(1) operations for each element after that. We also show
that the memory overhead is also O(nT ), plus the cost of each
element computed after that (between O(nT ) and O(n2

T )).
Since only the non-zero entries of P contribute to the element-

wise product with m, and P can have as few as O(nT ) non-zero
entries (when nt = 1), ⟨Q ⟩ can be computed in as low as O(nT )
operations, after overhead that is also O(nT ), leaving a grand total
of O(nT ) operations. This is in contrast to the O(n2

T ) operations

Fig. 3. Time series of energies of high energy cosmic rays. There are a total of
49223 events between 2004 and 2019. Energy scale is 1018eV = 1EeV. The data
is uncorrelated (white), and has a non Gaussian distribution.
Source: Data is taken from the Pierre Auger Observatory Public Event
Explorer [2], and represents 1% of all data taken by the observatory.

it would take to compute Q using the recursive algorithm of
Section 2, and then sum and average the elements of Q . This
difference is illustrated in Fig. 2.

5. Illustration on time series of cosmic rays

To illustrate the importance of the numerical acceleration for
trend detection as just described in the previous section, we pick
an example from cosmic ray physics. The data consists of 49,223
events (only 1% of the total data is available to general public), in
a form of a time series of arrivals with various energies (see Fig. 3
from data in [2]).

Energy-resolved flux (spectrum) plays the central role in the
field and it is universally assumed that the underlying time series
are statistically stationary. Are they? Here we ask whether the
time series in Fig. 3 are stationary and we use ⟨Q ⟩ to test the
hypothesis. Stationarity implies that ⟨Q ⟩ ≈ 0 and the significance
of the deviation is judged in units of the standard deviation of
steady value ⟨Q ⟩ = 0 via the asymptotics in equation (10) of
reference [4]. Calculation of the auto-correlation function for this
cosmic ray data shows that it is uncorrelated (‘‘white’’) so using
⟨Q ⟩-asymptotics is particularly relevant.

For sake of consistency, we tested a variety of data parti-
tioning, but with the same product ntnT . Table 1 shows the
importance of the approximate ⟨Q ⟩ algorithm. For nt approaching
unity, dimensions of Q are ∼ 104

×104 and the O(N) algorithm is
crucial. Table 2 shows the calculations. To our surprise, the ⟨Q ⟩-
test consistently detects a presence of a trend beyond reasonable
doubt. Specifically, ⟨Q ⟩ = 0.06 gives the confidence limit of 19σ
(taking the case nt ⪆ 100 for specificity). The associated linear
trend is large enough to affect the spectrum and cast doubt on the
traditional power-law analysis as the latter implies stationarity
via the Wiener–Khintchin theorem.

6. Concluding remarks

In conclusion, we have discovered an O(N2) calculation of a
previously O(N4) matrix transform with applications in trend de-
tection from noisy data. This increases the efficiency of the trans-
form, and allows access to previously out-of-reach data sample
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Table 1
To investigate the range of possibilities, we compare several partitions of the
time-series of cosmic rays. By trimming the data from 49223 down to 49140
datapoints, the number of distinct integers nt , nT such that ntnT equals the
total number of kept data points is maximized, providing many partitions for
study. The product ntnT is held constant. In this table, timing dependence of
partitions is shown. For all entries shown, nt = 49140/nT is integer. One can
see that the fast approximate calculation for ⟨Q ⟩ is possible for all possible
partitions, while those based on full calculation of Q become memory limited
past about nT = 104 , as indicated by the dashes. The approximate calculation
stores neither P nor Q , and is able to be performed up to the maximum nT . Thus,
the approximate method is the only way to probe these partitions. For nT greater
than a few hundred, the approximate calculation, consisting of approximating
basis vectors and coefficients for m, followed by a Hadamard product with P , is
much faster than direct evaluation of Q and its mean element.
nT Time Q (s) Time Q sum

(s)
Time m Basis and
Coefficients (s)

Time mi,jPi,j
sum (s)

49140 – – 0.968 1.58E-02
24570 – – 0.484 1.15E-02
9828 31.8 8.70E-02 0.200 1.14E-02
4095 2.85 1.53E-02 8.39E-02 7.37E-03
468 1.91E-02 3.95E-04 1.05E-02 7.02E-03
91 5.50E-04 2.94E-05 2.73E-03 7.69E-03
12 4.99E-05 2.34E-05 1.22E-03 7.11E-03

Table 2
Companion to Table 1 for calculated values of ⟨Q ⟩ under different data par-
titions. Both exact and approximate calculations give results that are roughly
independent of data partition for sufficiently large nT ⪆ 102 . For all entries, nt =

49140/nT . Accuracy of the approximate calculation is δ = ⟨Q ⟩approximate /⟨Q ⟩exact−
1, and is excellent, being better than 10−6 where nT is small enough that the
exact calculation can be performed and compared to. ⟨Q ⟩, normalized by its
standard deviation from zero for a comparable white noise process, is about 18,
indicating the presence of a trend in the data.
nT ⟨Q ⟩exact ⟨Q ⟩approximate δ ⟨Q ⟩ /σwhite noise

49140 – 6.09E-02 – 19.0
24570 – 6.09E-02 – 19.0
9828 6.10E-02 6.10E-02 3.65E-06 19.0
4095 6.09E-02 6.09E-02 2.13E-06 19.0
468 6.12E-02 6.12E-02 −2.92E-06 19.1
91 6.22E-02 6.22E-02 −7.95E-07 19.1
12 7.27E-02 7.27E-02 −1.78E-15 18.7

lengths N . For the special case of a small number of samples nt ,
we present also an O(N) calculation of trend detection metric ⟨Q ⟩
which bypasses the need to carry out the full Q -transform. Open
access computer codes are provided for both of these calculations.
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Appendix. Mathematical identities for matrix m used in soft-
ware

It follows from Eq. (17) that mj,k = mk,j, a symmetric matrix,
and mj,nT−k+1 = −mj,k, a matrix odd under vertical or horizontal
inversion. For the upper left matrix quadrant j ≤ nT − j and
k ≤ nT − k it can be shown from (17) that the following is
necessary:

mj,k =
nT

nt (nT − 1)2

×

(
2

nT−j∑
m=⌊ nT2 ⌋+1

ψ0(k−
nT (nT−m)
nT−2m

)− ψ0(1− k− mnT
nT−2m

)

nT − 2m

+
2
nT

(nT − 2k+ 1)
⏐⏐⏐cos(nTπ

2

)⏐⏐⏐) (A.1)

Here, ψ0 is the polygamma function of order 0 (e.g. MATLAB
psi function, Julia module SpecialFunctions’ polygamma function
with zero as the first argument). From this, the following can be
shown:

mj+1,k = mj,k −
2nT

nt (nT − 1)2
ψ0(k−

nT (nT−j)
nT−2j

)− ψ0(1− k− jnT
nT−2j

)

nT − 2j
(A.2)

This allows recursion down the columns of m in an exact
calculation. Let the subtracted quantity from mj,k be f (j, k). The
following is again necessary:

mj,j = mj+1,j+1 + f (j, j)+ f (j, j+ 1) (A.3)

This permits recurrence along the diagonal of m in an ex-
act calculation. Finally, it also is necessary that m satisfies the
following:

mj,k +mj−1,k−1 −mj,k−1 −mj−1,k = 2(d(1)j−1,k−1 + d(2)j−1,k−1) (A.4)

Here d(1)j,k and d(2)j,k are given in Eq. (18) of the main text. This
causes m as a whole to be calculable in O(n2

T ) operations, in
contrast to O(n4

T ) from Eq. (17) (O(n2
T ) per element).
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