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ABSTRACT 34	

Immunotherapy has emerged as a promising approach to treat cancer. However, partial 35	

responses across multiple clinical trials support the significance of characterizing inter- and 36	

intra-tumoral heterogeneity to achieve better clinical results and as potential tools in selecting 37	

patients for different types of cancer immunotherapies. Yet, the type of heterogeneity that 38	

informs clinical outcome and/or patient selection has not been fully explored. In particular, the 39	

lack of characterization of immune response-related genes in cancer cells hinders the further 40	

development of metrics to select and optimize immunotherapy. Therefore, we analyzed single 41	

cell RNA-seq data from lung adenocarcinoma patients and cell lines to characterize the intra-42	

tumoral heterogeneity of immune response-related genes and demonstrated their potential 43	

impact on the efficacy of immunotherapy. We discovered that IFNγ signaling pathway genes are 44	

heterogeneously expressed and co-regulated with other genes in single cancer cells, including 45	

MHC class II (MHCII) genes. The downregulation of genes in IFNγ signaling pathways in cell 46	

lines corresponds to an acquired resistance phenotype. Moreover, analysis of two groups of 47	

tumor-restricted antigens, neoantigens and cancer testis antigens, revealed heterogeneity in 48	

their expression in single cells. These analyses provide a rationale for applying multi-antigen 49	

combinatorial therapies to prevent tumor escape and establish a basis for future development of 50	

prognostic metrics based on intra-tumoral heterogeneity. 51	

  52	
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INTRODUCTION 53	

The recent decade has witnessed the advent and significant advancement of immunotherapy as 54	

an effective anticancer strategy. Its demonstrated efficacy against multiple cancer types has 55	

attracted more attention to predict the outcomes of various immunotherapies alone or in 56	

combination with other therapeutic modalities. One of the most promising approaches to 57	

activate immune responses is the immune checkpoint blockade, such as anti-CTLA4 and anti-58	

PD-1 that block inhibitory molecules on immune cells to unleash anti-tumor immunity. Moreover, 59	

recent studies have begun shedding light on the role of IFNγ pathway genes on immune 60	

checkpoint blockade therapy, demonstrating the effective anti-tumor immune response induced 61	

by IFNγ when recognizing its cognate receptor on cancer cells or antigen presenting cells (1, 2). 62	

Another immunotherapy approach gaining more interest is targeting neoantigens or cancer 63	

testis antigens (CTAs), whose expressions are cancer cell specific. Both therapeutic vaccines 64	

as well as T cell receptor re-directed adoptive cell transfer therapy have been demonstrated to 65	

boost T cell responses against tumors expressing these antigenic targets. Several such 66	

treatments have entered clinical trials (3-5). However, many of these monotherapies are 67	

effective in only a fraction of patients. Although, studies have illustrated the inter-tumoral 68	

heterogeneity (between patients) of immune signatures (6, 7), as well as intra-tumoral 69	

heterogeneity (within the tumor) of immune cells in multiple cancer types (8-10), it remains 70	

elusive how the underlying intra-tumoral heterogeneity of immune response-related gene 71	

expression in tumor cells will impact responses and ability to predict outcome.  In the current 72	

study, we demonstrate that single cell RNA-sequencing (scRNA-seq) of tumor cells can be used 73	

to identify such intra-tumoral heterogeneity. 74	

 75	

Lung cancer is one of the most highly mutated cancer types (11) and despite the improved 76	

success of immunotherapies in lung cancer, a low response rate (≤20%) is still observed (12).  77	

Herein, we used previously published scRNA-seq data from lung adenocarcinoma (LUAD) and 78	
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two LUAD cell lines, LC2/ad-R (vandetanib resistant) and LC2/ad (vandetanib susceptible)  (13), 79	

as a test set to demonstrate the functional intra-tumoral heterogeneity of immune-response 80	

related genes that might impact immunotherapy responses (13-15). We found that MHCII genes 81	

are heterogeneously expressed among tumor cells obtained from LUAD patients and their 82	

expression correlates with a favorable prognosis. Interestingly, MHCII genes are 83	

heterogeneously expressed within single cells from individual patients. MHCII genes can be 84	

induced by IFNγ (16). We then sought to identify the intra-tumoral heterogeneity of IFNγ 85	

signaling pathway and observed co-expression of IFNγ signaling pathway genes in a fraction of 86	

lung adenocarcinoma single cells that had a higher level of MHCII expression. Similar results 87	

were found to be enriched in LC2/ad cell line. Further analysis showed that the opposite trend, 88	

where discoordinated expression of IFNγ signaling pathway genes was associated with a lower 89	

level of MHCII expression, was enriched in LC2/ad-R cell line that acquired a vandetanib 90	

resistance phenotype. This relationship between IFNγ signaling pathway genes and MHCII 91	

genes could also be important in determining resistance to immunotherapy in lung 92	

adenocarcinoma. We also uncovered heterogeneity in the expression of predicted cancer 93	

neoantigens and CTAs in single cells from both LUAD patients and cell lines. Interestingly, the 94	

decrease in the number of neoantigens is also correlated with the acquired resistance 95	

phenotype. Our study suggests that using combinatorial strategy to target multiple tumor 96	

antigens in select patients could improve immunotherapy efficacy.  97	
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RESULTS 98	

Prognostic prediction of lung adenocarcinoma by the expression pattern of cell cycle 99	

and MHCII genes 100	

Identifying patients at higher risk of tumor progression or recurrence is crucial for making 101	

individualized treatment plans. Despite recently recognized intra-tumoral heterogeneity, there is 102	

a lack of understanding of how this is associated with prognosis. In this study, we aimed to 103	

characterize the heterogeneity of prognostic predictors in single cancer cells. We first identified 104	

pathways that are of potential prognostic predictors in LUAD cohorts from The Cancer Genome 105	

Atlas Research Network (TCGA) (Supplementary Table S1). We found that the top pathways 106	

associated with an unfavorable prognosis are enriched for cell cycle related pathways, while the 107	

top pathways associated with a favorable prognosis are enriched for T cell signaling related 108	

pathways (Figure 1A, Supplementary Table S1). Interestingly, the common genes shared by 109	

the top favorable prognostic pathways are MHCII genes. Further survival analysis validated the 110	

association of upregulated MHCII genes with a better overall survival rate (Figure 1B, 111	

Supplementary Table S2). Surprisingly, MHCI genes do not have a significant association with 112	

overall survival in LUAD (Supplementary Table S2). Compared to the expression of MHC 113	

genes in normal tissues, MHCII genes are more downregulated compared with that of MHCI 114	

(Figure 1C). Previously, it has been shown that higher MHCII expression was also associated 115	

with better prognosis in multiple other tumor types, such as melanoma and triple negative breast 116	

cancer (17, 18). Especially in melanoma patients, the expression of MHCII can predict response 117	

to anti-PD-1/anti-PD-L1 therapy (18).  118	

 119	

Single cancer cells express distinct prognosis-associated gene modules  120	

Next, we assessed the expression level of prognosis-associated genes, discovered from 121	

analyzing bulk cancer sample RNA-seq data, in LUAD patients at single cell level 122	

(Supplementary Table S2). We reanalyzed previously reported scRNA-seq data from LUAD 123	
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patient tumor xenografts (PDXs) (14, 15). The LC-PT-45 tumor was taken from a treatment-124	

naïve 60-year-old male patient with an irregular primary lung lesion, while the LC-MBT-15 tumor 125	

was taken from a 57-year-old female with a metachronous brain metastasis after standard 126	

chemotherapy and erlotinib treatment. A total of 77 and 49 single cells were sequenced for LC-127	

PT-45 and LC-MBT-15, respectively. An average of 5 million reads were sequenced for each 128	

single cell, which is needed to saturate the mutation detection (Supplementary Figure S1A). 129	

Additional quality control was performed to remove low quality single cells, which account for a 130	

small percentage, based on sequencing metrics, including genome mapping percentage, multi-131	

mapped read percentage, mitochondrial DNA mapping percentage, cell-to-mean correlation and 132	

transcriptome variance (Supplementary Figure S1B), following a published method (19). High 133	

quality single cells were used in following analyses.  134	

 135	

Min et al. previously reported the distinct subpopulations of LUAD single cells with respect to the 136	

expression of cell cycle genes (15). Here, we further sought to determine whether prognosis-137	

associated genes/pathways, including cell cycle genes and antigen presenting pathway genes, 138	

are heterogeneously expressed in single LUAD cells and whether there are any expression 139	

patterns among these genes. We applied a self-organizing map (SOM), which adopts 140	

unsupervised machine learning approach to map genes into coordinately expressed groups 141	

(metagenes) (20). A second-level SOM was then processed by mapping all samples together 142	

into a two-dimensional mosaic pattern based on metagene expression. K-means clustering 143	

grouped metagenes into six clusters based on co-expression in scRNA-seq from LC-PT-45 144	

patient (Figure 2A). Gene set enrichment analysis on genes in these six clusters showed that 145	

Cluster A was enriched in cell cycle genes, while Cluster B was enriched for antigen 146	

presentation pathways, specifically MHCII presentation (Figure 2A, Supplementary Table S3). 147	

We then observed that cells were separated into three groups based on their distinct metagene 148	

expression patterns: cell cycle pathway high (I), antigen presentation pathway high (II), and both 149	
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pathways low (III) (Figure 2B). We also analyzed the PDX tumor cells from the other LUAD 150	

patient (LC-MBT-15). As previously reported, LC-MBT-15 exhibits a less heterogeneous 151	

transcriptional profile (14). Nevertheless, SOM analysis revealed that metagenes representing 152	

cell cycle and MHCII genes were mapped into different metagene modules (Supplementary 153	

Figure S2, Supplementary Table S3).  154	

 155	

We further applied above analysis on scRNA-seq data from two human LUAD cell lines, 156	

LC2/ad-R and LC2/ad. LC2/ad-R is a subclone of LC2/ad that has acquired resistance to 157	

vandetanib (13). Similar to LUAD patient samples, metagenes representing cell cycle and 158	

MHCII genes were also mapped into different metagene modules in the two cell line data 159	

(Figure 2C, Supplementary Table S3). Additionally, single cells from two cell lines were also 160	

separated into three groups: cell cycle pathway high (I), antigen presentation pathway high (II), 161	

and both pathways low (III) (Figure 2D). We noticed that more single cells from LC2/ad cell line 162	

belong to group II (51 out of 89) compared to single cells from LC2/ad-R cell line (1 out of 70) (p 163	

< 10-5, Fisher’s exact test), which suggests that a significant downregulation of antigen 164	

presentation pathway in LC2/ad-R cell line could render this cell line resistance to 165	

immunotherapy in additional to vandetanib. 166	

 167	

Heterogeneity of IFNγ stimulated genes in single cells 168	

Since it is known that MHCII genes, a class of genes in antigen presentation pathway, can be 169	

regulated through IFNγ signaling pathway (16) and we showed that antigen presentation 170	

pathway genes are heterogeneously expressed by LUAD cells, we next examined the 171	

expression pattern of IFNγ signaling pathway genes. Recent works also began to uncover the 172	

role of IFNγ signaling pathway on cancer immune checkpoint blockade therapies. Gao et al. 173	

identified the genomic variations, such as copy number variations and single-nucleotide 174	

polymorphisms of IFNγ pathway genes in melanoma patients as a resistance mechanism to 175	



	 9	

anti-CTLA4 therapy (1). By contrast, Benci et al. suggested an IFN-driven PD-L1-independent 176	

resistance to immune checkpoint blockade (21). These different conclusions on the roles that 177	

IFNγ signaling pathway plays in cancer resistance to immunotherapy could be due to distinct 178	

clinical trial cohorts as well as the underlying intra-tumoral heterogeneity of IFNγ signaling 179	

pathway genes. However, it is not known whether this cancer-immunity interaction network 180	

exhibits differential gene expression at the single cell level, which could be an important 181	

prognostic factor and shed light on the mechanism of cancer immune resistance.  182	

 183	

Here, we used the LUAD and cell line scRNA-seq data sets to examine the intra-tumoral 184	

heterogeneity of IFNγ signaling pathway. IFNγ signaling pathway genes were curated from 185	

Gene Ontology Database and Reactome Pathway Database. Single cells from LUAD patients 186	

were first clustered based on expression of MHCII genes into two groups: MHCII low and MHCII 187	

high (Figure 3A, Supplementary Figure S3A). Gene Set Variation Analysis (GSVA) score of 188	

IFNγ signaling pathway, which indicates the extent of coordinated expression among pathway 189	

genes, was then calculated for each individual cell. We found a significant decrease of IFNγ 190	

signaling pathway GSVA scores in MHCII low group (Figure 3B, Supplementary Figure S3B). 191	

We also investigated expression of IFNγ signaling pathway genes in LC2/ad-R and LC2/ad cell 192	

lines. GSVA analysis showed that significantly more single cells in LC2/ad-R cell line 193	

downregulated IFNγ signaling pathway genes compared to that in LC2/ad cell line (Figure 3C,D, 194	

Supplementary Figure S4).  195	

 196	

The different pattern we observed on the coordinated expression of IFNγ signaling pathway 197	

genes is consistent with their role in directing anti-proliferative and pro-apoptotic effects on 198	

tumor cells (2). However, their roles in activating MHCII expression, enhancing tumor antigen 199	

presentation, and inducing the recruitment of other immune cells suggest that the lack of 200	

coordinated expression of IFNγ signaling pathway genes in sub-set of cancer cells within a 201	
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tumor would render these cells resistance to immunotherapy in addition to small molecule 202	

inhibitors (22). Further studies are necessary to demonstrate how the heterogeneity of IFNγ 203	

signaling pathway expression influences the efficacy of immunotherapy.  204	

 205	

Heterogeneous expression of predicted cancer neoantigens in single cells 206	

Neoantigens are a group of promising targets to induce anti-tumor immunity through recognition 207	

of neoantigen-specific T cells and are advantageous in their selective expression in cancer cells 208	

without the risk of causing autoimmunity. It has been proposed that targeting multiple 209	

neoantigens simultaneously will likely be important to prevent tumor escape by editing of the 210	

mutated epitope (5, 11). Here we aimed to analyze whether or not neoantigens are 211	

heterogeneously expressed. If so, then this would warrant further investigation of a new strategy 212	

in cancer immunotherapy where a combination of neoantigens could be administered as 213	

therapeutic vaccines or a combination of neoantigen specific T cell receptors could be used to 214	

modify patients’ own T cells in adoptive cell transfer therapy. Consequently, the analysis of the 215	

heterogeneity of neoantigen expression in single cancer cells would facilitate the development 216	

of these therapeutic regimens.  217	

 218	

To answer this question, somatic mutations in each single cell were further assessed for 219	

neoantigen prediction (See methods). Only neoantigens detected in more than three cells were 220	

selected. We found more than half of the neoantigens exhibited a bimodal expression (Figure 221	

4A and Supplementary Figure S5), suggesting the possibility of tumor escape with single 222	

neoantigen epitope based therapy. Surprisingly, we not only found the same bimodal 223	

expression of neoantigens in LC2/ad-R and LC2/ad cell lines, but also revealed that LC2/ad-R 224	

cell lines have a significant decrease of neoantigen load compared with the non-resistant 225	

parental cell line (Supplementary Figure S6A, B). This suggested the degree of neoantigen 226	

load might affect cancer cell drug-responses. In addition to detecting neoantigens, we also 227	
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identified both wild-type alleles and/or variant containing alleles (single nucleotide variants 228	

(SNV) and insertion/deletion (INDEL)) for many genes in many single cells, indicating that cells 229	

without neoantigen identified is not mainly due to drop-out of corresponding genes 230	

(Supplementary Figure S7).  231	

 232	

Heterogeneous expression of cancer testis antigen in single cells 233	

CTAs are a group of tumor antigens with normal expression restricted to male germ cells in the 234	

testis. In cancer, alteration of gene regulation results in aberrant expression of CTAs in various 235	

tumor types (23). Previous studies have demonstrated the extensive heterogeneity of CTAs 236	

among patients of different cancer types (6, 7).  However, little is known about the heterogeneity 237	

of all possible CTAs expressed within each patient. Thus, we examined the expression of all 238	

possible CTAs in LUAD single cells and demonstrated the extensive heterogeneity of their 239	

expression at the single cell level. To restrict our analysis on only CTAs expressed in tumors, 240	

we selected a subset of 276 known CTAs that are transcriptionally silent in normal non-germline 241	

tissues based on Genotype-Tissue Expression (GTEx) data (7). Only CTAs with normalized 242	

counts > 0 in more than 2 cells were selected. In both LUAD patients, we observed both 243	

significant inter-tumoral heterogeneity and inter-tumoral heterogeneity of expressed CTAs 244	

(Figure 4B). In addition, compared with neoantigens, CTAs exhibit a lower expression level 245	

(Figure 4 and Supplementary Figure S5). Further analysis of CTAs in cell lines revealed that 246	

LC2/ad-R and LC2/ad cell lines can also be separated based on CTA expression. Expression of 247	

MAGEA6 and MAGEA2 is significantly higher in LC2/ad-R compared with LC2/ad 248	

(Supplementary Figure. S6C). These results suggest that CTAs could be therapeutic targets 249	

for cancers that are resistant to small molecule inhibitor therapy.   250	

 251	

 252	

  253	
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DISCUSSION 254	

In this study, we applied both LUAD and cell line scRNA-seq to characterize the intra-tumoral 255	

heterogeneity of immune response-related genes. We identified that (1) prognosis-related 256	

genes, especially cell cycle pathway and antigen presentation pathway genes, are 257	

independently co-expressed among single cells; (2) IFNγ signaling pathways are 258	

heterogeneously expressed within cancer cells and downregulation is correlated to a drug-259	

resistant phenotype; and (3) promising cancer vaccination targets, such as neoantigens and 260	

CTAs, are also heterogeneously expressed. 261	

 262	

Previous studies showed that IFNγ induced the expression of MHCII genes in multiple myeloma 263	

cells (24) and normal epidermal melanocytes (25). Since MHCII expression on cancer cells is 264	

important for CD4+ T cell immunity as well as T cell exhaustion (26), our findings on the 265	

heterogeneity expression in cancer cells, especially its lost coordinated expression with IFNγ 266	

signaling pathway genes in LC2/ad-R cell line, could have important implications in cancer 267	

immunotherapy.  Although it is yet to be determined whether cell cycle pathways and MHCII 268	

genes in tumor cells are mechanistically associated, recent findings that CDK4/6 inhibitors not 269	

only induce cell cycle arrest, but also promote anti-tumor immunity through activation of 270	

interferon signaling and suppression of regulatory T cells (Treg), indicates a connection 271	

between these two gene modules (27). Besides, recent study investigating resistance to 272	

immune checkpoint blockade in melanoma revealed a cancer resistance program, which is 273	

enriched for upregulation of E2F targets and downregulation of antigen presentation, is 274	

associated with T cell exclusion (28). While it is known that MHCII expression can be induced 275	

by IFNγ (16), the analysis of immune response-related genes in single cancer cells revealed 276	

that genes of the IFNγ signaling pathway are co-expressed, including many IFNγ stimulated 277	

genes in addition to MHCII. One of the co-expressed IFNγ stimulated genes, IDO1, is 278	

responsible for the conversion of tryptophan and other indole derivatives to kynurenine and has 279	
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been widely studied as an important suppressor of anti-tumor immunity. Several IDO inhibitors 280	

have entered clinical trials as monotherapies and in combination with CTLA-4 and PD-1 immune 281	

checkpoint blockade (29). Our analysis also indicated that heterogeneity in IFNγ signaling 282	

pathways might impact the responses of IFNγ-pathway-directed therapies. 283	

 284	

Another aspect of intratumoral heterogeneity unveiled by our analysis is in cancer vaccine 285	

targets, including neoantigens and CTAs. Many completed clinical trials have failed to observe 286	

significant responses to CTA vaccines. For example, clinical trials in non-small cell lung 287	

carcinoma, identified no significant difference in melanoma-associated antigen-A3 (MAGE-A3) 288	

compared to control groups (30). Yet another recent clinical trial study in melanoma patients 289	

reported 4/6 patients had no recurrence after neoantigen vaccination (3). Our study further 290	

demonstrates the individuality and intra-tumoral heterogeneity of neoantigens and CTAs. The 291	

analysis of heterogeneous expression of neoantigens and CTAs together highlights the 292	

challenge of cancer vaccine mono-epitope therapy to elicit effective anti-tumor immunity and 293	

supports the possible advantages of targeting multiple epitopes in neoantigen vaccine or 294	

neoantigen specific T cell based immunotherapy. 295	

 296	

In summary, we demonstrated that the intra-tumoral heterogeneity of immune module 297	

expression will help to develop better prognosis of immunotherapies, Examining the gene 298	

expression in single cancer cells not only provides a rationale for combinatorial 299	

immunotherapies, in particular neoantigen/CTA-directed therapies, but also paves the road for 300	

future analyses on how intra-tumoral heterogeneity impacts immunotherapy efficacy. 301	

 302	

  303	
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MATERIAL AND METHODS 304	

Single-cell RNA-seq Dataset 305	

Raw reads of scRNA-seq and whole exome sequencing were all downloaded from NCBI GEO 306	

DataSets website under accession number GSE69405 (https://www.ncbi.nlm.nih.gov/geo). Two 307	

PDX samples were processed for scRNA-seq, LC-PT-45 and LC-MBT-15 (14). Raw reads of 308	

scRNA-seq data from LC2/ad-R and LC2/ad cell lines were downloaded from the DNA Data 309	

Bank of Japan under accession DRA001287. Raw reads of scRNA-seq were first mapped to 310	

human genome reference GRCh37 with RSEM (31) and then normalized using SCnorm (32). 311	

Genes with read counts fewer than 2 in more than 10% of all single cells are filtered out. 312	

 313	

TCGA Dataset 314	

Quantile normalized read counts of RNA-seq from LUAD patients and corresponding clinical 315	

data were downloaded from The Broad Institute TCGA GDAC Firehose website 316	

(http://gdac.broadinstitute.org/). Aggregated somatic mutation data processed by MuTect2 was 317	

downloaded from NCI GDC Data Portal (https://portal.gdc.cancer.gov/). 318	

 319	

Prognostic Gene and Pathway Analysis of Lung Adenocarcinoma 320	

Each gene in the TCGA dataset was classified into “high-expression” and “low-expression” by 321	

comparing to its mean expression. Then R package “survival” was used to calculate the Cox 322	

Proportional Hazards regression hazard ratio (HR) and p-value of log-rank test. R package 323	

“survminer” was used to plot Kaplan-Meier plots. Adjusted p-value of log-rank test was applied 324	

using FDR correction method. R package “GSA” was used to identify pathways that are 325	

potential prognosis predictor of overall survival in LUAD patients (33). Curated canonical 326	

pathways were downloaded from Molecular Signatures Database (MSigDB) v6.1 327	

(http://software.broadinstitute.org/gsea/msigdb/index.jsp).  328	

 329	
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Somatic Mutation detection  330	

Mapping of whole exome sequencing reads and preprocessing of mappable reads were 331	

processed as described previously (14). Then somatic Mutations in both PDX samples were 332	

called using MuTect2 with default settings.  333	

Somatic Mutations of LC2/ad cell lines were curated from Catalogue Of Somatic Mutations In 334	

Cancer (COSMIC) database. Over 97% of somatic mutations are overlapping between LC2/ad-335	

R and LC2/ad cell lines (13). 336	

 337	

Self Organization Map Analysis on scRNA-seq 338	

Prognostic genes with FDR < 0.05 were selected and genes with mean normalized counts < 2 339	

were filtered. Gene expression data were then log transformed, centralized and clustered using 340	

self-organizing map (SOM). Genes were clustered onto a 12x12 grid or 15x15 grid for LUAD 341	

scRNA-seq and cell line scRNA-seq, respectively. R package “oposSOM” was implemented for 342	

SOM processing and downstream analysis, including k-means clustering of metagenes and 343	

second-level SOM (20). 344	

 345	

Supervised Analysis of IFNγ signaling pathways in scRNA-seq 346	

IFNγ signaling pathways genes were curated from Gene Ontology and Reactome pathway 347	

database, under GO:0034341 and R-HAS-877300.1, respectively. GSVA was used to calculate 348	

sample-wise gene set enrichment score of IFNγ signaling pathways in each individual single 349	

cells (34). K-means clustering was used to group single cells into MHCII low and MHCII high 350	

groups based on MHCII gene expressions. Non-parametric Wilcoxon test was used to perform 351	

significant test of GSVA scores between different groups. R package “pheatmap” was used to 352	

generate heatmaps. 353	

 354	
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Tumor-Specific HLA Typing, HLA-Binding Neoepitope Prediction and Expression in 355	

scRNA-seq 356	

Raw reads of whole exome sequencing were processed with OptiType (35). Then VCF files of 357	

each individual single cell generated by GATK HaplotypeCaller and MHC class I alleles (HLA-A, 358	

HLA-B and HLA-C) predicted by OptiType were used to predict neoepitope with topiary 359	

(https://github.com/hammerlab/topiary). Netmhcpan were selected in topiary as the MHC 360	

binding predictor. Cells were included if a neoantigen is detected regardless of its corresponding 361	

wildtype antigen detection status. Only genes that have predicted neoepitopes in more than 362	

three cells were examined for expression.   363	

 364	

Cancer Testis Antigen Expression in scRNA-seq 365	

CTAs genes are selected as previously reported (7). Briefly, known CTAs with negligible 366	

expression in GTEx normal tissues (95th percentile value < 1 normalized counts in all somatic 367	

tissue types) are analyzed for scRNA-seq data.  368	

 369	

Statistics 370	

All p-values are false discovery rate (FDR) corrected and FDR < 0.05 is treated as significant.   371	
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FIGURES AND FIGURE LEGENDS 

 

 

Figure 1. Cell cycle genes and MHCII genes are potential prognostic predictors of LUAD. 

A. Gene set analysis of TCGA LUAD data to determine the significance of curated canonical 
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pathways with respect to patient overall survival. Each dot represents the individual gene score 491	

within corresponding pathway and red line is the score for the gene set calculated from R 492	

package of GSA. B. Kaplan-Meier plot showing the 5-year overall survival with respect to HLA-493	

DRA and HLA-DMB expressions for patients in TCGA LUAD cohorts. Log-rank test was 494	

performed for significance. C. Heatmap of the relative expression of MHC genes in tumor 495	

tissues compared to matched normal tissues for TCGA LUAD data.  496	

  497	



 

Figure 2. Expression of genes in cell cycle pathway and antigen presentation pathway 

among single cancer cells are co-regulated. A and C, Gene pathway clusters from metagene 

analysis of single cells from PDX LC-PT-45 (A) or from LC2/ad-R and LC2/ad cell lines (C). K-

means clustering of metagenes on SOMs into 6 (A) and 8 clusters (C), respectively. 

Hypergeometric test was then performed on each cluster of metagenes to determine enrichment 
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of canonical pathways. For PDX LC-PT-45 (A), Cluster A is enriched for cell cycle pathways, 504	

while Cluster B is enriched for antigen presentation pathways. For LC2/ad-R and LC2/ad cell 505	

lines (C), Cluster G/H is enriched for cell cycle pathways, while Cluster F is enriched for antigen 506	

presentation pathways. P-values in the bracket are false discovery rate corrected. B and D, 507	

Second level clustering of SOMs for 77 single cells from PDX LC-PT-45 (B) or 159 single cells 508	

from LC2/ad-R and LC2/ad cell lines (D). Each square is a unique SOM pattern with heatmap 509	

indicating the gene expression level of metagenes.  Cells with the same SOM are collapsed with 510	

only one representative SOM. SOMs are arranged by mapping all cells together into a two 511	

dimensional mosaic pattern based on metagene expression. Co-expression of cell cycle 512	

pathway and antigen presentation pathway further separate cells into three major groups: cell 513	

cycle pathway high (I), antigen presentation pathway high (II), and both pathways low (III).   514	



 

Figure 3. Co-expression of IFNγ signaling pathway genes in LC-PT-45 and cell lines. A 

and C, Heatmaps of MHCII gene expression levels for single cell in PDX LC-PT-45 (A) or in 

LC2/ad-R and LC2/ad cell lines (C). K-means clustering was performed to group all single cells 

into two clusters, MHCII low and MHCII high, in (A); while in (C), LC2/ad-R or LC2/ad were used 

to label cells. B and D, Comparison of GSVA scores of IFNγ signaling pathway genes between 

MHCII_low and MHCII_high groups (B) and LC2/ad-R and LC2/ad groups (D). GSVA scores of 

IFNγ signaling pathway were calculated for each individual cell analyzed in (A) and (D) 

respectively. Non-parametric Wilcoxon test was performed between different groups.  

  



 

Figure 4. Heterogeneous expression of neoantigens and CTAs in single cancer cells. A. 

Heatmap showing the expression of neoantigens in single cells from LC-PT-45. Log2 

normalized counts being 0 represents either no expression or no somatic mutation detected. 

Cells were included if a neoantigen is detected regardless of its corresponding wildtype antigen 

detection status. Only neoantigens detected in more than three cells were selected. B. Heatmap 

showing the expression of CTAs in single cells from LC-PT-45 and LC-MBT-15. CTAs whose 

expressions are transcriptionally silent in normal non-germline tissues based on Genotype-

Tissue Expression (GTEx) data and with normalized counts > 0 in more than 2 cells were 

selected. 


