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ABSTRACT

Immunotherapy has emerged as a promising approach to treat cancer. However, partial
responses across multiple clinical trials support the significance of characterizing inter- and
intra-tumoral heterogeneity to achieve better clinical results and as potential tools in selecting
patients for different types of cancer immunotherapies. Yet, the type of heterogeneity that
informs clinical outcome and/or patient selection has not been fully explored. In particular, the
lack of characterization of immune response-related genes in cancer cells hinders the further
development of metrics to select and optimize immunotherapy. Therefore, we analyzed single
cell RNA-seq data from lung adenocarcinoma patients and cell lines to characterize the intra-
tumoral heterogeneity of immune response-related genes and demonstrated their potential
impact on the efficacy of immunotherapy. We discovered that IFNy signaling pathway genes are
heterogeneously expressed and co-regulated with other genes in single cancer cells, including
MHC class Il (MHCII) genes. The downregulation of genes in IFNy signaling pathways in cell
lines corresponds to an acquired resistance phenotype. Moreover, analysis of two groups of
tumor-restricted antigens, neoantigens and cancer testis antigens, revealed heterogeneity in
their expression in single cells. These analyses provide a rationale for applying multi-antigen
combinatorial therapies to prevent tumor escape and establish a basis for future development of

prognostic metrics based on intra-tumoral heterogeneity.
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INTRODUCTION

The recent decade has withessed the advent and significant advancement of immunotherapy as
an effective anticancer strategy. Its demonstrated efficacy against multiple cancer types has
attracted more attention to predict the outcomes of various immunotherapies alone or in
combination with other therapeutic modalities. One of the most promising approaches to
activate immune responses is the immune checkpoint blockade, such as anti-CTLA4 and anti-
PD-1 that block inhibitory molecules on immune cells to unleash anti-tumor immunity. Moreover,
recent studies have begun shedding light on the role of IFNy pathway genes on immune
checkpoint blockade therapy, demonstrating the effective anti-tumor immune response induced
by IFNy when recognizing its cognate receptor on cancer cells or antigen presenting cells (1, 2).
Another immunotherapy approach gaining more interest is targeting neoantigens or cancer
testis antigens (CTAs), whose expressions are cancer cell specific. Both therapeutic vaccines
as well as T cell receptor re-directed adoptive cell transfer therapy have been demonstrated to
boost T cell responses against tumors expressing these antigenic targets. Several such
treatments have entered clinical trials (3-5). However, many of these monotherapies are
effective in only a fraction of patients. Although, studies have illustrated the inter-tumoral
heterogeneity (between patients) of immune signatures (6, 7), as well as intra-tumoral
heterogeneity (within the tumor) of immune cells in multiple cancer types (8-10), it remains
elusive how the underlying intra-tumoral heterogeneity of immune response-related gene
expression in tumor cells will impact responses and ability to predict outcome. In the current
study, we demonstrate that single cell RNA-sequencing (scRNA-seq) of tumor cells can be used

to identify such intra-tumoral heterogeneity.

Lung cancer is one of the most highly mutated cancer types (11) and despite the improved
success of immunotherapies in lung cancer, a low response rate (£20%) is still observed (12).

Herein, we used previously published scRNA-seq data from lung adenocarcinoma (LUAD) and
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two LUAD cell lines, LC2/ad-R (vandetanib resistant) and LC2/ad (vandetanib susceptible) (13),
as a test set to demonstrate the functional intra-tumoral heterogeneity of immune-response
related genes that might impact immunotherapy responses (13-15). We found that MHCII genes
are heterogeneously expressed among tumor cells obtained from LUAD patients and their
expression correlates with a favorable prognosis. Interestingly, MHCII genes are
heterogeneously expressed within single cells from individual patients. MHCII genes can be
induced by IFNy (16). We then sought to identify the intra-tumoral heterogeneity of IFNy
signaling pathway and observed co-expression of IFNy signaling pathway genes in a fraction of
lung adenocarcinoma single cells that had a higher level of MHCII expression. Similar results
were found to be enriched in LC2/ad cell line. Further analysis showed that the opposite trend,
where discoordinated expression of IFNy signaling pathway genes was associated with a lower
level of MHCII expression, was enriched in LC2/ad-R cell line that acquired a vandetanib
resistance phenotype. This relationship between IFNy signaling pathway genes and MHCI/
genes could also be important in determining resistance to immunotherapy in lung
adenocarcinoma. We also uncovered heterogeneity in the expression of predicted cancer
neoantigens and CTAs in single cells from both LUAD patients and cell lines. Interestingly, the
decrease in the number of neoantigens is also correlated with the acquired resistance
phenotype. Our study suggests that using combinatorial strategy to target multiple tumor

antigens in select patients could improve immunotherapy efficacy.
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RESULTS

Prognostic prediction of lung adenocarcinoma by the expression pattern of cell cycle
and MHCII genes

Identifying patients at higher risk of tumor progression or recurrence is crucial for making
individualized treatment plans. Despite recently recognized intra-tumoral heterogeneity, there is
a lack of understanding of how this is associated with prognosis. In this study, we aimed to
characterize the heterogeneity of prognostic predictors in single cancer cells. We first identified
pathways that are of potential prognostic predictors in LUAD cohorts from The Cancer Genome
Atlas Research Network (TCGA) (Supplementary Table S1). We found that the top pathways
associated with an unfavorable prognosis are enriched for cell cycle related pathways, while the
top pathways associated with a favorable prognosis are enriched for T cell signaling related
pathways (Figure 1A, Supplementary Table S1). Interestingly, the common genes shared by
the top favorable prognostic pathways are MHCII genes. Further survival analysis validated the
association of upregulated MHCII genes with a better overall survival rate (Figure 1B,
Supplementary Table S$2). Surprisingly, MHC/I genes do not have a significant association with
overall survival in LUAD (Supplementary Table S$2). Compared to the expression of MHC
genes in normal tissues, MHCII genes are more downregulated compared with that of MHCI
(Figure 1C). Previously, it has been shown that higher MHCII expression was also associated
with better prognosis in multiple other tumor types, such as melanoma and triple negative breast
cancer (17, 18). Especially in melanoma patients, the expression of MHCII can predict response

to anti-PD-1/anti-PD-L1 therapy (18).

Single cancer cells express distinct prognosis-associated gene modules
Next, we assessed the expression level of prognosis-associated genes, discovered from
analyzing bulk cancer sample RNA-seq data, in LUAD patients at single cell level

(Supplementary Table S2). We reanalyzed previously reported scRNA-seq data from LUAD
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patient tumor xenografts (PDXs) (14, 15). The LC-PT-45 tumor was taken from a treatment-
naive 60-year-old male patient with an irregular primary lung lesion, while the LC-MBT-15 tumor
was taken from a 57-year-old female with a metachronous brain metastasis after standard
chemotherapy and erlotinib treatment. A total of 77 and 49 single cells were sequenced for LC-
PT-45 and LC-MBT-15, respectively. An average of 5 million reads were sequenced for each
single cell, which is needed to saturate the mutation detection (Supplementary Figure S1A).
Additional quality control was performed to remove low quality single cells, which account for a
small percentage, based on sequencing metrics, including genome mapping percentage, multi-
mapped read percentage, mitochondrial DNA mapping percentage, cell-to-mean correlation and
transcriptome variance (Supplementary Figure S1B), following a published method (19). High

quality single cells were used in following analyses.

Min et al. previously reported the distinct subpopulations of LUAD single cells with respect to the
expression of cell cycle genes (15). Here, we further sought to determine whether prognosis-
associated genes/pathways, including cell cycle genes and antigen presenting pathway genes,
are heterogeneously expressed in single LUAD cells and whether there are any expression
patterns among these genes. We applied a self-organizing map (SOM), which adopts
unsupervised machine learning approach to map genes into coordinately expressed groups
(metagenes) (20). A second-level SOM was then processed by mapping all samples together
into a two-dimensional mosaic pattern based on metagene expression. K-means clustering
grouped metagenes into six clusters based on co-expression in scRNA-seq from LC-PT-45
patient (Figure 2A). Gene set enrichment analysis on genes in these six clusters showed that
Cluster A was enriched in cell cycle genes, while Cluster B was enriched for antigen
presentation pathways, specifically MHCII presentation (Figure 2A, Supplementary Table S3).
We then observed that cells were separated into three groups based on their distinct metagene

expression patterns: cell cycle pathway high (1), antigen presentation pathway high (Il), and both
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pathways low (lll) (Figure 2B). We also analyzed the PDX tumor cells from the other LUAD
patient (LC-MBT-15). As previously reported, LC-MBT-15 exhibits a less heterogeneous
transcriptional profile (14). Nevertheless, SOM analysis revealed that metagenes representing
cell cycle and MHCII genes were mapped into different metagene modules (Supplementary

Figure S2, Supplementary Table S3).

We further applied above analysis on scRNA-seq data from two human LUAD cell lines,
LC2/ad-R and LC2/ad. LC2/ad-R is a subclone of LC2/ad that has acquired resistance to
vandetanib (13). Similar to LUAD patient samples, metagenes representing cell cycle and
MHCII genes were also mapped into different metagene modules in the two cell line data
(Figure 2C, Supplementary Table S3). Additionally, single cells from two cell lines were also
separated into three groups: cell cycle pathway high (1), antigen presentation pathway high (ll),
and both pathways low (lll) (Figure 2D). We noticed that more single cells from LC2/ad cell line
belong to group Il (51 out of 89) compared to single cells from LC2/ad-R cell line (1 out of 70) (p
< 10°, Fisher's exact test), which suggests that a significant downregulation of antigen
presentation pathway in LC2/ad-R cell line could render this cell line resistance to

immunotherapy in additional to vandetanib.

Heterogeneity of IFNy stimulated genes in single cells

Since it is known that MHCII genes, a class of genes in antigen presentation pathway, can be
regulated through IFNy signaling pathway (16) and we showed that antigen presentation
pathway genes are heterogeneously expressed by LUAD cells, we next examined the
expression pattern of IFNy signaling pathway genes. Recent works also began to uncover the
role of IFNy signaling pathway on cancer immune checkpoint blockade therapies. Gao et al.
identified the genomic variations, such as copy number variations and single-nucleotide

polymorphisms of IFNy pathway genes in melanoma patients as a resistance mechanism to
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anti-CTLA4 therapy (1). By contrast, Benci et al. suggested an IFN-driven PD-L1-independent
resistance to immune checkpoint blockade (21). These different conclusions on the roles that
IFNy signaling pathway plays in cancer resistance to immunotherapy could be due to distinct
clinical trial cohorts as well as the underlying intra-tumoral heterogeneity of IFNy signaling
pathway genes. However, it is not known whether this cancer-immunity interaction network
exhibits differential gene expression at the single cell level, which could be an important

prognostic factor and shed light on the mechanism of cancer immune resistance.

Here, we used the LUAD and cell line scRNA-seq data sets to examine the intra-tumoral
heterogeneity of IFNy signaling pathway. IFNy signaling pathway genes were curated from
Gene Ontology Database and Reactome Pathway Database. Single cells from LUAD patients
were first clustered based on expression of MHCII genes into two groups: MHCI/ low and MHCII
high (Figure 3A, Supplementary Figure S3A). Gene Set Variation Analysis (GSVA) score of
IFNy signaling pathway, which indicates the extent of coordinated expression among pathway
genes, was then calculated for each individual cell. We found a significant decrease of IFNy
signaling pathway GSVA scores in MHCII low group (Figure 3B, Supplementary Figure S3B).
We also investigated expression of IFNy signaling pathway genes in LC2/ad-R and LC2/ad cell
lines. GSVA analysis showed that significantly more single cells in LC2/ad-R cell line
downregulated IFNy signaling pathway genes compared to that in LC2/ad cell line (Figure 3C,D,

Supplementary Figure S4).

The different pattern we observed on the coordinated expression of IFNy signaling pathway
genes is consistent with their role in directing anti-proliferative and pro-apoptotic effects on
tumor cells (2). However, their roles in activating MHCII expression, enhancing tumor antigen
presentation, and inducing the recruitment of other immune cells suggest that the lack of

coordinated expression of IFNy signaling pathway genes in sub-set of cancer cells within a
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tumor would render these cells resistance to immunotherapy in addition to small molecule
inhibitors (22). Further studies are necessary to demonstrate how the heterogeneity of IFNy

signaling pathway expression influences the efficacy of immunotherapy.

Heterogeneous expression of predicted cancer neoantigens in single cells

Neoantigens are a group of promising targets to induce anti-tumor immunity through recognition
of neoantigen-specific T cells and are advantageous in their selective expression in cancer cells
without the risk of causing autoimmunity. It has been proposed that targeting multiple
neoantigens simultaneously will likely be important to prevent tumor escape by editing of the
mutated epitope (5, 11). Here we aimed to analyze whether or not neoantigens are
heterogeneously expressed. If so, then this would warrant further investigation of a new strategy
in cancer immunotherapy where a combination of neoantigens could be administered as
therapeutic vaccines or a combination of neoantigen specific T cell receptors could be used to
modify patients’ own T cells in adoptive cell transfer therapy. Consequently, the analysis of the
heterogeneity of neoantigen expression in single cancer cells would facilitate the development

of these therapeutic regimens.

To answer this question, somatic mutations in each single cell were further assessed for
neoantigen prediction (See methods). Only neoantigens detected in more than three cells were
selected. We found more than half of the neoantigens exhibited a bimodal expression (Figure
4A and Supplementary Figure S5), suggesting the possibility of tumor escape with single
neoantigen epitope based therapy. Surprisingly, we not only found the same bimodal
expression of neoantigens in LC2/ad-R and LC2/ad cell lines, but also revealed that LC2/ad-R
cell lines have a significant decrease of neoantigen load compared with the non-resistant
parental cell line (Supplementary Figure S6A, B). This suggested the degree of neoantigen

load might affect cancer cell drug-responses. In addition to detecting neoantigens, we also

10
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identified both wild-type alleles and/or variant containing alleles (single nucleotide variants
(SNV) and insertion/deletion (INDEL)) for many genes in many single cells, indicating that cells
without neoantigen identified is not mainly due to drop-out of corresponding genes

(Supplementary Figure S7).

Heterogeneous expression of cancer testis antigen in single cells

CTAs are a group of tumor antigens with normal expression restricted to male germ cells in the
testis. In cancer, alteration of gene regulation results in aberrant expression of CTAs in various
tumor types (23). Previous studies have demonstrated the extensive heterogeneity of CTAs
among patients of different cancer types (6, 7). However, little is known about the heterogeneity
of all possible CTAs expressed within each patient. Thus, we examined the expression of all
possible CTAs in LUAD single cells and demonstrated the extensive heterogeneity of their
expression at the single cell level. To restrict our analysis on only CTAs expressed in tumors,
we selected a subset of 276 known CTAs that are transcriptionally silent in normal non-germline
tissues based on Genotype-Tissue Expression (GTEx) data (7). Only CTAs with normalized
counts > 0 in more than 2 cells were selected. In both LUAD patients, we observed both
significant inter-tumoral heterogeneity and inter-tumoral heterogeneity of expressed CTAs
(Figure 4B). In addition, compared with neoantigens, CTAs exhibit a lower expression level
(Figure 4 and Supplementary Figure S5). Further analysis of CTAs in cell lines revealed that
LC2/ad-R and LC2/ad cell lines can also be separated based on CTA expression. Expression of
MAGEA6 and MAGEA2 is significantly higher in LC2/ad-R compared with LC2/ad
(Supplementary Figure. S6C). These results suggest that CTAs could be therapeutic targets

for cancers that are resistant to small molecule inhibitor therapy.

11
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DISCUSSION

In this study, we applied both LUAD and cell line scRNA-seq to characterize the intra-tumoral
heterogeneity of immune response-related genes. We identified that (1) prognosis-related
genes, especially cell cycle pathway and antigen presentation pathway genes, are
independently co-expressed among single cells; (2) IFNy signaling pathways are
heterogeneously expressed within cancer cells and downregulation is correlated to a drug-
resistant phenotype; and (3) promising cancer vaccination targets, such as neoantigens and

CTAs, are also heterogeneously expressed.

Previous studies showed that IFNy induced the expression of MHCII genes in multiple myeloma
cells (24) and normal epidermal melanocytes (25). Since MHCII expression on cancer cells is
important for CD4+ T cell immunity as well as T cell exhaustion (26), our findings on the
heterogeneity expression in cancer cells, especially its lost coordinated expression with IFNy
signaling pathway genes in LC2/ad-R cell line, could have important implications in cancer
immunotherapy. Although it is yet to be determined whether cell cycle pathways and MHCI/
genes in tumor cells are mechanistically associated, recent findings that CDK4/6 inhibitors not
only induce cell cycle arrest, but also promote anti-tumor immunity through activation of
interferon signaling and suppression of regulatory T cells (Treg), indicates a connection
between these two gene modules (27). Besides, recent study investigating resistance to
immune checkpoint blockade in melanoma revealed a cancer resistance program, which is
enriched for upregulation of E2F targets and downregulation of antigen presentation, is
associated with T cell exclusion (28). While it is known that MHCII expression can be induced
by IFNy (16), the analysis of immune response-related genes in single cancer cells revealed
that genes of the IFNy signaling pathway are co-expressed, including many IFNy stimulated
genes in addition to MHCII. One of the co-expressed IFNy stimulated genes, IDO1, is

responsible for the conversion of tryptophan and other indole derivatives to kynurenine and has

12
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been widely studied as an important suppressor of anti-tumor immunity. Several IDO inhibitors
have entered clinical trials as monotherapies and in combination with CTLA-4 and PD-1 immune
checkpoint blockade (29). Our analysis also indicated that heterogeneity in IFNy signaling

pathways might impact the responses of IFNy-pathway-directed therapies.

Another aspect of intratumoral heterogeneity unveiled by our analysis is in cancer vaccine
targets, including neoantigens and CTAs. Many completed clinical trials have failed to observe
significant responses to CTA vaccines. For example, clinical trials in non-small cell lung
carcinoma, identified no significant difference in melanoma-associated antigen-A3 (MAGE-A3)
compared to control groups (30). Yet another recent clinical trial study in melanoma patients
reported 4/6 patients had no recurrence after neoantigen vaccination (3). Our study further
demonstrates the individuality and intra-tumoral heterogeneity of neoantigens and CTAs. The
analysis of heterogeneous expression of neoantigens and CTAs together highlights the
challenge of cancer vaccine mono-epitope therapy to elicit effective anti-tumor immunity and
supports the possible advantages of targeting multiple epitopes in neoantigen vaccine or

neoantigen specific T cell based immunotherapy.

In summary, we demonstrated that the intra-tumoral heterogeneity of immune module
expression will help to develop better prognosis of immunotherapies, Examining the gene
expression in single cancer cells not only provides a rationale for combinatorial
immunotherapies, in particular neoantigen/CTA-directed therapies, but also paves the road for

future analyses on how intra-tumoral heterogeneity impacts immunotherapy efficacy.
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MATERIAL AND METHODS
Single-cell RNA-seq Dataset
Raw reads of scRNA-seq and whole exome sequencing were all downloaded from NCBI GEO

DataSets website under accession number GSE69405 (https://www.ncbi.nlm.nih.gov/geo). Two

PDX samples were processed for scRNA-seq, LC-PT-45 and LC-MBT-15 (14). Raw reads of
scRNA-seq data from LC2/ad-R and LC2/ad cell lines were downloaded from the DNA Data
Bank of Japan under accession DRA001287. Raw reads of scRNA-seq were first mapped to
human genome reference GRCh37 with RSEM (31) and then normalized using SCnorm (32).

Genes with read counts fewer than 2 in more than 10% of all single cells are filtered out.

TCGA Dataset

Quantile normalized read counts of RNA-seq from LUAD patients and corresponding clinical
data were downloaded from The Broad Institute TCGA GDAC Firehose website
(http://gdac.broadinstitute.org/). Aggregated somatic mutation data processed by MuTect2 was

downloaded from NCI GDC Data Portal (https://portal.gdc.cancer.gov/).

Prognostic Gene and Pathway Analysis of Lung Adenocarcinoma

Each gene in the TCGA dataset was classified into “high-expression” and “low-expression” by
comparing to its mean expression. Then R package “survival” was used to calculate the Cox
Proportional Hazards regression hazard ratio (HR) and p-value of log-rank test. R package
“survminer” was used to plot Kaplan-Meier plots. Adjusted p-value of log-rank test was applied
using FDR correction method. R package “GSA” was used to identify pathways that are
potential prognosis predictor of overall survival in LUAD patients (33). Curated canonical
pathways were downloaded from Molecular Signatures Database (MSigDB) v6.1

(http://software.broadinstitute.org/gsea/msigdb/index.jsp).

14
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Somatic Mutation detection

Mapping of whole exome sequencing reads and preprocessing of mappable reads were
processed as described previously (14). Then somatic Mutations in both PDX samples were
called using MuTect2 with default settings.

Somatic Mutations of LC2/ad cell lines were curated from Catalogue Of Somatic Mutations In
Cancer (COSMIC) database. Over 97% of somatic mutations are overlapping between LC2/ad-

R and LC2/ad cell lines (13).

Self Organization Map Analysis on scRNA-seq

Prognostic genes with FDR < 0.05 were selected and genes with mean normalized counts < 2
were filtered. Gene expression data were then log transformed, centralized and clustered using
self-organizing map (SOM). Genes were clustered onto a 12x12 grid or 15x15 grid for LUAD
scRNA-seq and cell line scRNA-seq, respectively. R package “oposSOM” was implemented for
SOM processing and downstream analysis, including k-means clustering of metagenes and

second-level SOM (20).

Supervised Analysis of IFNy signaling pathways in scRNA-seq

IFNy signaling pathways genes were curated from Gene Ontology and Reactome pathway
database, under GO:0034341 and R-HAS-877300.1, respectively. GSVA was used to calculate
sample-wise gene set enrichment score of IFNy signaling pathways in each individual single
cells (34). K-means clustering was used to group single cells into MHCII low and MHCII high
groups based on MHCII gene expressions. Non-parametric Wilcoxon test was used to perform
significant test of GSVA scores between different groups. R package “pheatmap” was used to

generate heatmaps.

15
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Tumor-Specific HLA Typing, HLA-Binding Neoepitope Prediction and Expression in
scRNA-seq

Raw reads of whole exome sequencing were processed with OptiType (35). Then VCF files of
each individual single cell generated by GATK HaplotypeCaller and MHC class | alleles (HLA-A,
HLA-B and HLA-C) predicted by OptiType were used to predict neoepitope with topiary

(https://github.com/hammerlab/topiary). Netmhcpan were selected in topiary as the MHC

binding predictor. Cells were included if a neoantigen is detected regardless of its corresponding
wildtype antigen detection status. Only genes that have predicted neoepitopes in more than

three cells were examined for expression.

Cancer Testis Antigen Expression in scRNA-seq
CTAs genes are selected as previously reported (7). Briefly, known CTAs with negligible
expression in GTEx normal tissues (95" percentile value < 1 normalized counts in all somatic

tissue types) are analyzed for scRNA-seq data.

Statistics

All p-values are false discovery rate (FDR) corrected and FDR < 0.05 is treated as significant.

16
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Figure 1. Cell cycle genes and MHCII genes are potential prognostic predictors of LUAD.
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pathways with respect to patient overall survival. Each dot represents the individual gene score
within corresponding pathway and red line is the score for the gene set calculated from R
package of GSA. B. Kaplan-Meier plot showing the 5-year overall survival with respect to HLA-
DRA and HLA-DMB expressions for patients in TCGA LUAD cohorts. Log-rank test was
performed for significance. C. Heatmap of the relative expression of MHC genes in tumor

tissues compared to matched normal tissues for TCGA LUAD data.
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Figure 2. Expression of genes in cell cycle pathway and antigen presentation pathway
among single cancer cells are co-regulated. A and C, Gene pathway clusters from metagene
analysis of single cells from PDX LC-PT-45 (A) or from LC2/ad-R and LC2/ad cell lines (C). K-
means clustering of metagenes on SOMs into 6 (A) and 8 clusters (C), respectively.

Hypergeometric test was then performed on each cluster of metagenes to determine enrichment

24



504
505
506
507
508
509
510
511
512
513

514

of canonical pathways. For PDX LC-PT-45 (A), Cluster A is enriched for cell cycle pathways,
while Cluster B is enriched for antigen presentation pathways. For LC2/ad-R and LC2/ad cell
lines (C), Cluster G/H is enriched for cell cycle pathways, while Cluster F is enriched for antigen
presentation pathways. P-values in the bracket are false discovery rate corrected. B and D,
Second level clustering of SOMs for 77 single cells from PDX LC-PT-45 (B) or 159 single cells
from LC2/ad-R and LC2/ad cell lines (D). Each square is a unique SOM pattern with heatmap
indicating the gene expression level of metagenes. Cells with the same SOM are collapsed with
only one representative SOM. SOMs are arranged by mapping all cells together into a two
dimensional mosaic pattern based on metagene expression. Co-expression of cell cycle
pathway and antigen presentation pathway further separate cells into three major groups: cell

cycle pathway high (1), antigen presentation pathway high (1), and both pathways low (lII).
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Figure 3. Co-expression of IFNy signaling pathway genes in LC-PT-45 and cell lines. A
and C, Heatmaps of MHCII gene expression levels for single cell in PDX LC-PT-45 (A) or in
LC2/ad-R and LC2/ad cell lines (C). K-means clustering was performed to group all single cells
into two clusters, MHCII low and MHCII high, in (A); while in (C), LC2/ad-R or LC2/ad were used
to label cells. B and D, Comparison of GSVA scores of IFNy signaling pathway genes between
MHCII _low and MHCII_high groups (B) and LC2/ad-R and LC2/ad groups (D). GSVA scores of

IFNy signaling pathway were calculated for each individual cell analyzed in (A) and (D)
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respectively. Non-parametric Wilcoxon test was performed between different groups.
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Figure 4. Heterogeneous expression of neoantigens and CTAs in single cancer cells. A.
Heatmap showing the expression of neoantigens in single cells from LC-PT-45. Log2
normalized counts being 0 represents either no expression or no somatic mutation detected.
Cells were included if a neoantigen is detected regardless of its corresponding wildtype antigen
detection status. Only neoantigens detected in more than three cells were selected. B. Heatmap
showing the expression of CTAs in single cells from LC-PT-45 and LC-MBT-15. CTAs whose
expressions are transcriptionally silent in normal non-germline tissues based on Genotype-
Tissue Expression (GTEx) data and with normalized counts > 0 in more than 2 cells were

selected.
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