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a b s t r a c t 

Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used in connectomics for studying the 

functional relationships between regions of the human brain. rs-fMRI connectomics, however, has inherent ana- 

lytical challenges, such as how to properly model negative correlations between BOLD time series. In addition, 

functional relationships between brain regions do not necessarily correspond to their anatomical distance, making 

the functional topology of the brain less well understood. Recent machine learning techniques, such as word2vec, 

have used embedding methods to map high-dimensional data into vector spaces, where words with more similar 

meanings are mapped closer to one another. Inspired by this approach, we have developed the graph embedding 

pipeline rest2vec for studying the vector space of functional connectomes. We demonstrate how rest2vec uses 

the phase angle spatial embedding (PhASE) method with dimensionality reduction to embed the connectome 

into lower dimensions, where the functional definition of a brain region is represented continuously in an in- 

trinsic “functional space. ” Furthermore, we show how the “functional distance ” between brain regions in this 

space can be applied to discover biologically-relevant connectivity gradients. Interestingly, rest2vec can be con- 

ceptualized in the context of the recently proposed maximum mean discrepancy (MMD) metric, followed by a 

double-centering approach seen in kernel PCA. In sum, rest2vec creates a low-dimensional representation of the 

rs-fMRI connectome where brain regions are mapped according to their functional relationships, giving a more 

informed understanding of the functional organization of the brain. 
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. Introduction 

Neuroimaging data acquired from magnetic resonance imaging

MRI) tend to be vast and high-dimensional. In particular, resting-state

unctional MRI (rs-fMRI) produces temporal snapshots of the brain’s de-

ault activity in the absence of tasks, offering a window into the func-

ional macroscale organization of the brain. As computational tools have

ecome more widely available over the past two decades, researchers

ave applied graph theory-based models to neuroimaging data to study

he network properties of the brain, which has grown into the field of

onnectomics ( Sporns et al., 2005 ). In connectomics analyses, the brain

an be represented as an 𝑁 ×𝑁 matrix, where the rows and columns are

brain regions of interest (ROI), and the elements of the matrix repre-
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ent some measure of connection between them (e.g., number of white

atter fibers, Pearson correlation of blood oxygenation level-dependent

BOLD) time series). Given this volume of high-dimensional data, how-

ver, one quickly runs into the “curse of dimensionality. ” Originally

oined by Bellman (1961) , the term refers to the challenge of visualiz-

ng and analyzing high-dimensional data. Because the number of points

n a Cartesian space grows exponentially with increasing dimensions,

igh-dimensional spaces become extremely sparse, an effect known as

he “empty space phenomenon. ” Consequently, this makes understand-

ng the properties of these data more difficult, as metric comparisons

ecome less effective with increasing dimensionality ( Lee and Verley-

en, 2007 ). 
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There are a variety of dimensionality reduction techniques that

ddress this problem. These methods work by embedding a high-

imensional manifold, represented by the discrete points of the data,

nto a lower dimension (e.g., two or three dimensions), which can then

e visualized. This process becomes complicated, however, if the mani-

old of the underlying data is nonlinear, as is thought to be the case with

euroimaging data ( Gerber et al., 2010; McClurkin et al., 1991; Wolz

t al., 2012; Ye et al., 2015 ). One of the most well-known example cases

f a nonlinear manifold is the 3D Swiss roll. Nonlinear dimensionality

eduction techniques, such as isometric mapping (isomap), address the

haracteristic Swiss roll problem by preserving the intrinsic geometry of

onlinear manifolds (i.e., unrolling the Swiss roll) in lower-dimensional

paces ( Tenenbaum et al., 2000; Ye et al., 2015 ). 

Negative correlations also remain a challenging factor in rs-fMRI

onnectomics, as they are more difficult to interpret using network mod-

ls. Simpler models generally either threshold or apply other transfor-

ations, such as taking the absolute value, to remove negative corre-

ations; this process, however, likely removes substantive dynamics of

rain connectivity ( Rubinov and Sporns, 2011 ). Although some analyses

ccount for negative correlations, these often introduce additional pa-

ameters that must be arbitrarily set to determine their relative contribu-

ion ( Rubinov and Sporns, 2011 ). Previously, we introduced probability-

ssociated community estimation (PACE) ( Zhan et al., 2017 ) and phase

ngle spatial embedding (PhASE) ( Morrissey et al., 2018 ) to address

hese challenges. These methods take inspiration from the Ising model

rom statistical mechanics, where magnetic ions are designated with ei-

her in-phase or out-of-phase spin state configurations ( P ȩ kalski, 2001 ).

e adapted this model to describe the phase relationship between re-

ions of the brain, where each brain region is an 𝑁-dimensional vector

hose elements are defined by its phase coupling with every other re-

ion in the brain. 

Having generated this embedding space, how might the organiza-

ion of the functional connectome best be visualized and understood?

n the domain of natural language processing, Mikolov et al. (2013) cre-

ted the word2vec method to map words with similar meanings near

ne another in a vector space (e.g., “king ” is close to “man, ” “queen ”

s close to “woman ”). Inspired by this approach, we propose a novel

raph embedding pipeline, rest2vec, that uses this phase angle repre-

entation with the nonlinear dimensionality reduction method isomap

o embed the functional connectome in a lower-dimensional embedding

ased on its functional relationships. In this space, the functional con-

ectome is arranged by its intrinsic geometry , where the regions of the

rain are mapped according to their functional connectivity indepen-

ent of anatomical constraints. Here, the Euclidean distance between

egions in this space can be thought of as an intrinsic “functional dis-

ance, ” with similar regions having a short functional distance between

ne another and dissimilar regions having a large functional distance

etween one another. 

We show how this vectorized approach has implications for detect-

ng connectivity gradients by linking rest2vec to the maximum mean dis-

repancy (MMD) metric. The MMD was originally developed as a metric

escribing the distance between probability distributions ( Gretton et al.,

012 ). Here, we treated the MMD as a modularity index, similar to 𝑄 -

ased maximization methods ( Blondel et al., 2008 ), such that, when

aximized, it detects the sets of brain regions with the most dissim-

lar functional connectivity. By reformulating this connectome modu-

arity problem in a probabilistic sense, we are able to generate con-

inuous community assignment values for each region, as opposed to

 binary classification. Finally, we also show how brain regions in the

est2vec embedding space can be mapped to behavioral metrics using

he Neurosynth meta-analysis database ( Yarkoni et al., 2011 ). Together,

est2vec uses nonlinear dimensionality reduction and manifold learning

echniques to create a low-dimensional representation of the rs-fMRI

onnectome where brain regions are mapped according to their func-

ional relationships, giving a more informed understanding of the func-

ional organization of the brain. 
. Materials and methods 

.1. Dataset description 

Two independent and publicly available rs-fMRI connectome

atasets composed of healthy subjects were used: one from the Func-

ional 1000 (F1000) Connectomes Project ( Biswal et al., 2010 ) with 177

egions of interest (ROI) available through the USC Multimodal Connec-

ivity Database ( 1000_Functional_Connectomes study, http://

mcd.humanconnectomeproject.org/umcd/default/index ), and one by

iez et al. (2015) with 2514 ROIs available through the Neu-

oImaging Tools & Resources Collaboratory (NITRC) ( https://www.

itrc.org/projects/biocr_hcatlas/ ). Each of these studies were performed

n accordance with their institution’s respective ethics committees.

hese are referred to as the “F1000 ” and “Diez ” datasets hereafter. 

The F1000 dataset has data from 986 subjects collected across mul-

iple sites using a common scanning and preprocessing protocol. Data

ere motion corrected and spatially smoothed with a 6 mm FWHM

aussian kernel. A band-pass filter was applied between 0.005–0.01

z. Nuisance parameters, CSF, white matter, and the average global

ignal were regressed out prior to spatial normalization to the MNI152

emplate. Spatially constrained spectral clustering was used to deter-

ine the ROIs ( Craddock et al., 2012 ). The average difference in age

etween male ( 𝑁 = 426 , 𝑀 ± SD = 28 . 7 ± 12 . 7 ) and female ( 𝑁 = 560 ,
 ± SD = 27 . 9 ± 12 . 7 ) subjects in the F1000 dataset was 0.83 years and

as not statistically significant ( 𝑡 (984) = 1 . 025 , 𝑝 = 0 . 306 ). 
The Diez dataset has 12 subjects (6 male) with a mean age of

3 . 5 ± 8 . 7 years; no individual subject ages were reported. An inter-

eaved gradient-echo EPI sequence was used to acquire BOLD T2 ∗ im-

ges (scanning time = 7.28 min, 200 volumes total). Motion correc-

ion, slice-timing correction, and smoothing (6 mm FWHM Gaussian ker-

el) were applied. A band-pass filter was applied between 0.001–0.08

z; linear and quadratic trends were also removed. Motion, CSF, white

atter, and average global signal were regressed out prior to spatial

ormalization to the MNI152 template. Spatially constrained clustering

 Craddock et al., 2012 ) was used to determine the 2514 ROIs. Finally,

he Pearson correlation coefficient of the BOLD time series between ROIs

as calculated as the measure of functional connectivity between ROIs

 Diez et al., 2015 ). 

.2. rest2vec 

The pipeline for rest2vec is shown in Fig. 1 . Rest2vec aims to create

 graph embedding of rs-fMRI connectomes by transforming positive

nd negative edges into 𝑁-dimensional phase angle vectors that can

hen be represented in a low-dimensional embedding using nonlinear

imensionality reduction. Briefly, we first computed the probability of

bserving a negative edge between all pairs of regions across all sub-

ects to form the probability matrix 𝐏 − . This probability is then used to

etermine the phase angle Θ𝑖,𝑗 between regions to create the phase an-

le spatial embedding (PhASE) matrix 𝚯. This process embeds the phase

elationship between all regions in an 𝑁-dimensional Euclidean space

nd transforms the values between 0 (fully in-phase) and 𝜋∕2 (fully out-

f-phase). The intrinsic geometry of the connectome was then visual-

zed in two dimensions using the nonlinear dimensionality reduction

ethod isomap ( Tenenbaum et al., 2000 ). Finally, we use kernel func-

ions to link rest2vec to the maximum mean discrepancy MMD metric

 Gretton et al., 2012 ) to demonstrate how rest2vec can be used to study

unctional connectivity gradients. The representative matrices for each

tep are displayed in Figure A.1. 

.2.1. Phase angle spatial embedding (PhASE) 

A functional connectome derived from rs-fMRI is defined as an undi-

ected graph 𝐺( 𝑉 , 𝐸) , composed of a set of vertices 𝑉 representing the

rain regions of interest (ROI), and signed, weighted edges 𝐸 describing

http://umcd.humanconnectomeproject.org/umcd/default/index
https://www.nitrc.org/projects/biocr_hcatlas/
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Fig. 1. rest2vec processing pipeline. (Top) The frequency of observing a negative edge between regions 𝑖 and 𝑗 across all subjects in the 𝑁 ×𝑁 × 𝑆 array 𝐖 of 

rs-fMRI connectomes is computed to form the probability of negative correlation matrix 𝐏 − . (Middle) The phase angle transformation is applied to compute the phase 

angle spatial embedding (PhASE) matrix 𝚯. (Bottom) Dimensionality reduction and the maximum mean discrepancy (MMD) are used to analyze the properties of 

the new embedding space, where the functional connectome is represented by its intrinsic geometry. 
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he measure of connectivity between them based on their BOLD time se-

ies. Typically, some measure of correlation, e.g., Pearson correlation,

etween BOLD time series is used to describe the functional connectivity

etween ROIs. 

Previously, we introduced probability associated community esti-

ation (PACE) ( Zhan et al., 2017 ), and phase angle spatial embed-

ing (PhASE) ( Morrissey et al., 2018 ) for encoding resting-state fMRI

onnectomes based on the phase relationship between brain regions

 Morrissey et al., 2018 ) to account for negative correlations in func-

ional connectomes. We begin by briefly summarizing these procedures

n the context of rest2vec. 

Let 𝐖 be an 𝑁 ×𝑁 × 𝑆 array (i.e., a tensor) composed of 𝑁 ×𝑁

eighted, signed functional connectomes for 𝑁 regions and 𝑆 observa-

ions. In our case, we consider the observations from a group of 𝑆 sub-

ects. Given some weight of functional coupling between regions 𝑖 and 𝑗

e.g., Pearson correlation), we define the probability of negative correla-

ion matrix 𝐏 − where each element 𝑃 − 
𝑖,𝑗 

is the probability of observing a
egative edge between 𝑖 and 𝑗 defined as 𝐏 − 
𝑖,𝑗 

= Prob 
([
𝑊 𝑖,𝑗 < 0 

])
, where,

n the case of 𝑆 subjects, we estimate this probability by the following

 

− 
𝑖,𝑗 

= 

1 
𝑆 

𝑆 ∑
𝑠 

[
𝑊 𝑖,𝑗,𝑠 < 0 

]
, (1)

here 𝑊 𝑖,𝑗,𝑠 is the edge between regions 𝑖 and 𝑗 for the 𝑠 th subject, and

he Iverson bracket expression [ 𝑊 𝑖,𝑗,𝑠 < 0] equals 1 if 𝑊 𝑖,𝑗,𝑠 < 0 , and 0

therwise. Because 𝑃 − 
𝑖,𝑗 

∈ [0 , 1] , it also follows naturally that 𝑃 − 
𝑖,𝑗 

+ 𝑃 + 
𝑖,𝑗 

=
 . 

One advantage of this procedure is that the probability measure de-

ned in Eq. (1) can be defined by the user for their specific context.

y taking advantage of this relationship, we then define the phase an-

le spatial embedding (PhASE) matrix 𝚯, where the phase angle Θ𝑖,𝑗 

etween regions 𝑖 and 𝑗 is defined as 

𝑖,𝑗 = arctan 

√ √ √ √ 

𝑃 − 
𝑖,𝑗 

𝑃 + 
𝑖,𝑗 

. (2)
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Thus Θ𝑖,𝑗 ∈ [0 , 𝜋∕2] , where 0 represents a fully in-phase (co-

ctivating) relationship and 𝜋∕2 represents a fully out-of-phase (anti-

ctivating) relationship. Each column of 𝚯 is a vector embedding

ach region in an 𝑁-dimensional Euclidean space such that 𝚯∶ ,𝑖 =
Θ𝑖, 1 Θ𝑖, 2 ⋯ Θ𝑖,𝑁 

]T ∈ [
0 , 𝜋∕2 

]𝑁 

. 

.2.2. Relation of PhASE to the maximum mean discrepancy 

Here we describe how PhASE can be linked to the maximum mean

iscrepancy (MMD) developed by Gretton et al. (2012) to address the

onnectome modularity problem. Following the formulation defined in

retton et al. (2012) , consider the random variables 𝑥 and 𝑦 defined on

 metric space  equipped with the metric 𝑑, with the corresponding

orel probabilities 𝑝 and 𝑞 (i.e., 𝑥 ∼ 𝑝 and 𝑦 ∼ 𝑞). Given observations

 ∶= { 𝑥 1 , … , 𝑥 𝑚 } and 𝑌 ∶= { 𝑦 1 , … , 𝑦 𝑛 } drawn from the probability dis-

ributions 𝑝 and 𝑞, 𝑝 = 𝑞 if and only if 𝐄 𝑥 [ 𝑓 ( 𝑥 )] = 𝐄 𝑦 [ 𝑓 ( 𝑦 )] ∀𝑓 ∈ 𝐶( ) ,
here 𝐶( ) is the space of bounded continuous functions on  . Next,

iven a class of functions  such that 𝑓 ∶  → ℝ , the maximum mean

iscrepancy (MMD) between 𝑝 and 𝑞 with respect to  is defined as 

MD [  , 𝑝, 𝑞] ∶= sup 
𝑓∈ 

(
𝐄 𝑥 [ 𝑓 ( 𝑥 )] − 𝐄 𝑦 [ 𝑓 ( 𝑦 )] 

)
. (3)

This can be empirically estimated given 𝑋 and 𝑌 as 

MD [  , 𝑋, 𝑌 ] ∶= sup 
𝑓∈ 

( 

1 
𝑚 

𝑚 ∑
𝑖 =1 

𝑓 ( 𝑥 𝑖 ) − 

1 
𝑛 

𝑛 ∑
𝑖 =1 

𝑓 ( 𝑦 𝑖 ) 

) 

, (4)

here 𝑚 is equal to the number of observations in 𝑋 and 𝑛 is equal to

he number of observations in 𝑌 . 

To apply these definitions in the context of connectomics, we use

he same definitions of 𝑥, 𝑦, 𝑝, 𝑞, 𝑋, and 𝑌 defined above to assign each

egion to one of the two distributions 𝑝 or 𝑞. Under the working assump-

ion that the distributions of functional modules in the connectome are

ar apart (i.e., their within-module connections are greater than their

etween-module connections ( Fortunato, 2010 )), we thus seek to dis-

over the arrangement of regions such that the MMD between them is

aximized. 

Using a reproducible kernel Hilbert space (RKHS), the squared form

f Eq. (4) can be evaluated using kernel functions as 

MD 

2 [  , 𝑋, 𝑌 ] ∶= 

1 
𝑚 ( 𝑚 − 1) 

𝑚 ∑
𝑖 =1 

𝑚 ∑
𝑗≠𝑖 

𝑘 ( 𝑥 𝑖 , 𝑥 𝑗 ) + 

1 
𝑛 ( 𝑛 − 1) 

𝑛 ∑
𝑖 =1 

𝑛 ∑
𝑗≠𝑖 

𝑘 ( 𝑦 𝑖 , 𝑦 𝑗 ) 

− 

2 
𝑚𝑛 

𝑚 ∑
𝑖 =1 

𝑛 ∑
𝑗=1 

𝑘 ( 𝑥 𝑖 , 𝑦 𝑗 ) . (5) 

From Eq. (5) , kernel functions can be used, in our case, to compute

he kernel matrix 𝐊 where the similarity 𝐾 𝑖,𝑗 between regions 𝑖 and 𝑗,

n the case of the radial basis function (RBF) kernel 𝑘 rbf , is given by 

 𝑖,𝑗 = 𝑘 rbf ( 𝚯𝑖, ∶ , 𝚯𝑗, ∶ ) = exp 

( 

− 𝜎

𝑁 ∑
𝓁=1 

|Θ𝑖, 𝓁 − Θ𝑗, 𝓁 |2 ) 

, (6)

or phase angle Θ between regions 𝑖 and 𝑗 in reference to all other regions

ndexed by 𝓁, for 𝑁 regions, using the scaling factor 𝜎. 

Similarly, we let the cosine kernel 𝑘 cos evaluating the similarity be-

ween regions 𝑖 and 𝑗 be defined as 

 𝑖,𝑗 = 𝑘 cos ( 𝚯𝑖, ∶ , 𝚯𝑗, ∶ ) = 

1 
𝑁 

𝑁 ∑
𝓁=1 

cos 
(
Θ𝑖, 𝓁 − Θ𝑗, 𝓁 

)
, (7)

sing the same variable definitions as RBF kernel. Because the RBF ker-

el has an additional parameter, and the cosine kernel has a geometric

elation to angles, the cosine kernel is used here; the Taylor expansion

f both these kernels can be shown to have similar leading terms. 

.2.3. From the maximum mean discpreancy to rest2vec connectivity 

radients 

Following the kernel definitions above and the equation as described

y Gretton et al. (2012) (with a modified notation for our purposes), as-

uming a two-community partition, let the maximum mean discrepancy
MMD) between two modules 𝑉 𝐴 and 𝑉 𝐵 be defined as 

MD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 = 

1 
𝑚 

2 

𝑚 ∑
𝑖,𝑗∈𝑉 𝐴 

𝐾 𝑖,𝑗 − 

2 
𝑚𝑛 

𝑚,𝑛 ∑
𝑖 ∈𝑉 𝐴 𝑗∈𝑉 𝐵 

𝐾 𝑖,𝑗 + 

1 
𝑛 2 

𝑛 ∑
𝑖,𝑗∈𝑉 𝐵 

𝐾 𝑖,𝑗 , (8)

here ||𝑉 𝐴 || = 𝑚, ||𝑉 𝐵 || = 𝑛, |𝑉 | = 𝑚 + 𝑛 = 𝑁, 𝑉 𝐴 ∪ 𝑉 𝐵 = 𝑉 , 𝑉 𝐴 ∩ 𝑉 𝐵 = ∅,
nd 𝑖 is allowed to equal 𝑗. 

We seek to find a partition between 𝑉 𝐴 and 𝑉 𝐵 such that Eq. (8) is

aximized. First, we can rewrite MMD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 = 𝐲 T 𝐊𝐲 for 𝐲 ∈ ℝ 

𝑁×1 

nd 𝐊 ∈ ℝ 

𝑁×𝑁 , where 

 𝑖 = 

{ 1 
𝑚 

if 𝑖 ∈ 𝑉 𝐴 

− 

1 
𝑛 

if 𝑖 ∈ 𝑉 𝐵 
. (9)

Thus we define the optimal partition Modularity ( 𝑉 ) into modules 𝑉 𝐴 
nd 𝑉 𝐵 as 

odularity ( 𝑉 ) = argmax 
𝑉 𝐴 ,𝑉 𝐵 

𝑉 𝐴 ∪𝑉 𝐵 = 𝑉 
𝑉 𝐴 ∩𝑉 𝐵 =∅

MMD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 . (10)

This maximization problem can be approximated in a simplified way

y relaxing Eq. (10) to a Rayleigh quotient maximization problem. Let-

ing 𝐲 be defined as above, where 

𝐲 ‖ = 

(
𝑁 

𝑚𝑛 

)1∕2 
, (11)

e perform change of variables to the unit length vector 𝐯 , where 

 = 

(
𝑚𝑛 

𝑁 

)1∕2 
𝐲, (12)

nd ‖𝐯 ‖2 = 1 , 𝐯 T 𝟏 = 0 , where 𝟏 = [1 ⋯ 1] T , 𝟏 ∈ ℝ 

𝑁×1 . Then we can

ewrite Eq. (10) in terms of 𝐯 to define the partition that maximizes

MD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 as 

odularity ( 𝑉 ) = argmax ‖𝐯 ‖=1 𝐯 T 𝟏 =0 
𝑁 

𝑚𝑛 
𝐯 T 𝐊𝐯 . (13)

To compute MMD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 in Eq. (13) , in the context of connec-

omics, requires ground truth knowledge of 𝑚 and 𝑛 in advance. Thus, to

ccount for this, we assume that 𝑁 is large and that the two communi-

ies 𝑉 𝐴 and 𝑉 𝐵 are approximately the same size such that |𝑚 − 𝑛 | ∈ 𝑜 ( 𝑁) .
he normalization factor in Eq. (13) can then be simplified to 

odularity ( 𝑉 ) ≊ 4 
𝑁 

argmax ‖𝐯 ‖=1 𝐯 T 𝟏 =0 𝐯 T 𝐊𝐯 . (14)

Finally we relax the constraints of 𝐯 from 𝑣 𝑖 ∈
{ 

√ |𝑉 𝐵 |
𝑁|𝑉 𝐴 | , − 

√ |𝑉 𝐴 |
𝑁|𝑉 𝐵 |

}
aking only two values to taking any real values such that 𝐯 ∗ ∈ ℝ 

𝑁 .

hese relaxed constraints allow us to conveniently reframe Eq. (13) as

 Rayleigh quotient maximization problem. We account for arbitrary

rigin for the Rayleigh quotient maximization by centering the kernel

imilarity matrix 𝐊 to 𝐊̃ = 𝐂 𝑁 

𝐊𝐂 𝑁 

, where the centering matrix 𝐂 𝑁 

=
 𝑁 

− 

1 
𝑁 

𝐉 𝑁 

, 𝐂 𝑁 

∈ ℝ 

𝑁×𝑁 , 𝐈 𝑁 

∈ ℝ 

𝑁×𝑁 is the identity matrix, and 𝐉 𝑁 

∈
 

𝑁×𝑁 is the ones matrix (i.e., 𝟏𝟏 T ). 
Rather than finding MMD ( 𝑉 𝐴 , 𝑉 𝐵 ) 2 as a function of the partition, we

pproximate the optimal partition Modularity ( 𝑉 ) by finding the vector

 

∗ that maximizes the Rayliegh quotient such that 

odularity ( 𝑉 ) ≊ 4 
𝑁 

argmax 
𝐯 ∗ ≠0 𝐯 ∗ ∈ℝ 𝑁 

𝐯 ∗T 𝐊̃ 𝐯 ∗ 
𝐯 ∗T 𝐯 

. (15)

We can then compute the mapping vector 𝐯 ∗ that maximizes the

ayleigh quotient by computing the eigenvector 𝐪 of 𝐊̃ corresponding

o the largest eigenvalue 𝜆max of 𝐊̃ . Similar to the Fiedler vector in spec-

ral clustering methods ( Weisstein, 1999 ), the elements of 𝐪 assign both

ommunity affiliation based on its sign ( + or - ) as well as magnitude.

urther, 𝐪 can be binarized to determine discrete community labels for

ach region as 

 

∗ = 

{ 

𝑖 ∈ 𝑉 𝐴 if 𝑞 𝑖 ≥ 0 
𝑖 ∈ 𝑉 𝐵 if 𝑞 𝑖 < 0 , ∀ 𝑖 = 1 , 2 , 3 , …𝑁. (16)
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In sum, these derivations suggest that connectivity gradients in-

ormed by rest2vec can be extracted by considering the top eigenvectors

f the centered kernel matrix 𝐊̃ . 

.3. Visualizing rest2vec in 2D using nonlinear dimensionality reduction 

Isomap ( Tenenbaum et al., 2000 ) was used to reduce the PhASE

atrix 𝚯 as a manifold  ∈ ℝ 

𝑁×𝑁 to a 𝑑-dimensional embedding

 ∈ ℝ 

𝑁×𝑑 , where 𝑑 < 𝑁 . Isomap is advantageous for this procedure as

t is a nonlinear technique, using methods such as Dijkstra’s algorithm

 Dijkstra, 1959 ) to compute the geodesic distances between vertices

n high-dimensional space. Nonlinear methods importantly address the

wiss roll problem faced by traditional linear methods such as PCA and

DS ( Tenenbaum et al., 2000 ). 

In our case, we used 𝑘 = 12 and 𝑘 = 50 nearest neighbors, for the

1000 and Diez datasets, respectively, to reduce to two dimensions using

he Isomap implementation in the Scikit-learn version 0.21.3 library

 Pedregosa et al., 2011 ). To account for any bias due to the choice of

earest neighbors, we also re-calculated the isomap embedding using

 = {20 , 40 , 60 , 80 , 100} with the Diez dataset as an example. The residual

ariance ( Tenenbaum et al., 2000 ) 1 − 𝑅 

2 (𝐷  

, 𝐷 𝑌 

)
was used to quantify

ow similar the pairwise distances were between the original and low-

imensional spaces, and was shown to be consistent across a reasonable

ange of values for 𝑘 (Figure A.3). 

Because the isomap procedure centers data about the origin, and by

q. (2) the phase angle between perfectly in-phase regions is zero, we

nalyzed each region’s Euclidean distance to the origin in this space to

bserve how the phase relationship between regions is preserved with

espect to its low-dimensional embedding. After generating the isomap

mbedding, the distance 𝐷 𝑖 to the origin of the isomap space [ 0 ⋯ 0 ] ∈
 

1×𝑑 for the 𝑖 th region was calculated using the Euclidean distance in

he 2D isomap embedding. 

Because of its natural representation for distance to the origin, the

ata was transformed to polar coordinates of radius 𝑟 and angle 𝜃 using

he polar transformation 

 = 

√
𝑥 2 + 𝑦 2 (17)

= atan2 ( 𝑦, 𝑥 ) (18)

o visualize the functional embedding space. 

.4. Statistical analysis of rest2vec 

.4.1. Functional community mapping analysis 

We used the Louvain community algorithm ( Blondel et al., 2008 )

s implemented in the Brain Connectivity Toolbox ( Rubinov and

porns, 2010 ) to independently evaluate the mapping of functional com-

unities in the low-dimensional embedding, as well as the contribution

f negative edges on functional community clustering. The Louvain algo-

ithm was applied on the group average Pearson correlation connectome

 𝐖 ), the thresholded connectome with only positive weights ( 𝐖 

+ ), and

he absolute value of the thresholded connectome ( |𝐖 |). The parameter

was set to 1 for each connectome. For 𝐖 , the negative weights were

reated symmetrically. 

The silhouette score ( Pedregosa et al., 2011; Rousseeuw, 1987 ), a

etric commonly used to evaluate clustering algorithms such as 𝑘 -

eans, was used to assess the clustering performance of the functional

ommunities in the embedding space. We also computed the silhouette

core from a random permutation of the Louvain labels from 𝐖 as a

egative control for comparison. Because the Louvain algorithm returns

ifferent results with each run, we performed 100 iterations of the al-

orithm to compute the mean and standard deviation of the overall sil-

ouette coefficient for each connectome. 
.4.2. Using 𝑘 -means clustering to define gradient clusters in the rest2vec 

mbedding 

𝑘 -means clustering was used to formally classify clusters for regions

such as the precuneus) that had heterogeneous mappings in the isomap

mbedding. The 𝑘 -means clustering algorithm was performed using the

cikit-learn implementation ( Pedregosa et al., 2011 ) for 𝑘 = 2 clusters

n the isomap embedding. The same seed value was used to ensure re-

roducible results. 

To determine how affiliated other (non-precuneus) regions were to

ither of the two clusters, regions were first assigned to the precuneus

luster they were closest to in the isomap embedding. A diverging clus-

er affiliation scale was computed based on the Euclidean distance of

ach region to its precuneus cluster’s centroid in the isomap embed-

ing, which we termed “intrinsic functional distance, ” such that regions

ith more positive or negative values were closer to the centroid of their

espective precuneus cluster. The cluster affiliation 𝑎 𝑖 was defined as 

 𝑖 = 

⎧ ⎪ ⎨ ⎪ ⎩ 
max 

(
𝑑 𝐶 0 

)
− 𝑑 𝐶 0 ,𝑖 

if 𝑖 ∈ 𝐶 0 

𝑑 𝐶 1 ,𝑖 
− max 

(
𝑑 𝐶 1 

)
if 𝑖 ∈ 𝐶 1 

, (19)

here 𝑑 is the intrinsic functional distance from region 𝑖 to the centroid

f cluster 𝐶. 

.4.3. rest2vec consistency with Neurosynth meta-analysis association 

erms 

The Neurosynth meta-analysis database ( Yarkoni et al., 2011 ) was

sed to search for behavioral and psychiatric terms to obtain a NIfTI

mage containing the association measured between the key term and

MRI activity across studies in the database. For this study, we used the

association test ” images provided by Neurosynth, which provides the

 -score describing the association between the key term and each voxel.

In order to map this data to the rest2vec embedding, we used the

NI coordinates from the Diez dataset as a lookup value to obtain the

 -score of the corresponding voxel in the Neurosynth association test

IfTI file. The glass brain and embedding data was then plotted such

hat the regions with 𝑧 -scores > 0 were mapped to a color gradient; all

ther regions were set to a uniform gray value in the background. 

.5. Code and data availability 

All code used to produce the results and figures is available online

ia GitHub ( https://github.com/zmorrissey/rest2vec ) and our labora-

ory website ( http://brain.uic.edu/ ). We also provide the MNI ( 𝑥, 𝑦, 𝑧 )-

oordinates and the rest2vec embedding ( 𝑥, 𝑦 )-coordinates for each

ataset. 

.5.1. Statistics 

The StatsModels library version 0.10.1 for Python ( Seabold and Perk-

old, 2010 ) was used for statistical analyses. Student’s independent 𝑡 -test

as used to test if there were any differences in age between male and

emale subjects for the F1000 dataset. The ordinary least squares (OLS)

ethod was used to fit the parameters for the linear regression between

somap distance to origin and phase angle. For silhouette score analyis,

 one-way ANOVA followed by Tukey’s post hoc test was used. 

.5.2. Visualization 

Graphics were drawn using the Matplotlib version 3.1.1

 Hunter, 2007 ) and Seaborn version 0.9.0 ( Seaborn, 2019 ) li-

raries using Python version 3.7.3 from the Anaconda distribution

 Anaconda, 2018 ). Glass brain figures were visualized using the

lot_connectome function from the Nilearn version 0.6.2 library

 Abraham et al., 2014 ). Inkscape version 0.92 was used for final

rrangement of some figures ( Albert et al., 2019 ). 

Brain surface plots were created by representing the 𝑁 × 4 array,

onsisting of the MNI ( 𝑥, 𝑦, 𝑧 ) -coordinates for all 𝑁 regions, and the

https://github.com/zmorrissey/rest2vec
http://brain.uic.edu/
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 × 1 vector containing the data value associated with each region,

s a 3D volume. For brain distance maps, the intrinsic functional dis-

ance vector was made by computing the Euclidean distance between

he mean ( 𝑥, 𝑦 ) -coordinates of the anatomical region in the isomap em-

edding and all other regions. For regions that had heterogeneous map-

ing (i.e., multiple clusters) in the isomap space, 𝑘 -means clustering was

erformed to calculate cluster affiliations for each region as described

bove in Eq. (19) . 

The 3D volume containing the original data was then interpo-

ated using a linear grid interpolation and registered to the MNI tem-

late volume with 12 degrees of freedom using the FLIRT tool in

he FSL ( Jenkinson et al., 2012 ) interface from the Nipype version

.3.0-rc1 library ( Gorgolewski et al., 2011 ). The interpolated 3D vol-

me was mapped to the Freesurfer pial surface template using the

ol_to_surf function from the Nilearn library. The surface data was

hen visualized using the plot_surf_stat_map function from the

ilearn library. 

. Results 

.1. Functional connectivity gradients with rest2vec 

.1.1. The maximum eigenvector from rest2vec defines a principal 

unctional connectivity gradient 

After applying the rest2vec pipeline to the F1000 and Diez datasets,

e used the maximum eigenvector of the double-centered kernel simi-

arity matrix 𝐊̃ to extract the principal connectivity gradient of the func-

ional connectome ( Fig. 2 ). We visualized the anatomical and functional

mbedding by anatomical lobe to visualize how each lobe participates

n the principal gradient. We observed a symmetrical partition when

iewed in the functional embedding space ( Fig. 2 , middle), primarily

emarcating between the task-negative network (TNN) and the default

ode network (DMN). When the brain is faceted by lobe affiliation,

everal notable patterns emerge. For example, the frontal lobe is de-

arcated into the prefrontal cortex (PFC) and pre-motor areas and dor-

olateral PFC anatomically, which are respectively situated in opposite

uadrants of the functional embedding. In addition, the parietal lobe is

plit largely into default mode network (DMN) regions – including re-

ions of the inferior parietal lobule and precuneus – and primary and

econdary unimodal areas, including somatosensory cortices and areas

nvolved in visual processing. Consistent with this observation, the oc-

ipital lobe has the largest proportion of regions belonging to the puta-

ive TPN at 83.4%. Similar demarcations can be observed in the F1000

ataset as well (Fig. A.7). 

In addition, the second and third eigenvalues of the kernel similar-

ty matrix 𝐊̃ account for a notable portion of the variance of the data

Fig. A.5), so we also examined the gradients given by these two eigen-

ectors (Figure A.8, Figure A.9). The second eigenvector gradient re-

ealed a rostral-caudal gradient, most notable for the sub-lobar, limbic,

nd temporal lobes, and a medial-lateral gradient for the parietal and

rontal lobes. The third eigenvector gradient revealed a largely anterior-

osterior gradient across all lobes except for the parietal and occipi-

al lobes, which were dominated by a single community. Interestingly,

here is a notable hemispheric asymmetry in the frontal lobe in areas

f the left hemisphere, suggestive of language and speech regions of

he brain. Taken together, these data suggest that rest2vec is able to re-

over biologically-relevant connectome gradient properties, while also

ccounting for the presence of negative edges, thereby removing heuris-

ic steps that may bias downstream analyses as a result. 

.1.2. Region-specific gradients defined by intrinsic functional distance in 

he rest2vec space 

While the kernel similarity matrix eigenvectors from rest2vec can re-

eal unbiased functional connectivity gradients, we then asked whether

ne could investigate specific brain regions of interest (ROIs) to query

egion-specific gradient connectivity information. We hypothesized that
he Euclidean distance within the rest2vec isomap embedding space

ould be used as a metric of “intrinsic functional distance ” between

rain regions, where if two regions are close together in the embedding

pace they are more functionally coupled. From Eq. (2) , lower values of

𝑖,𝑗 indicate a more in-phase relationship between regions. Thus we hy-

othesized that more in-phase regions would be embedded closer to the

rigin of the isomap space, whereas more out-of-phase regions would be

mbedded further from the origin. The 2-norm of each 𝑁-dimensional

ector of the PhASE matrix ‖‖Θ𝑖, ∶ ‖‖ was used as a summary measure of

ach region’s overall phase value. For each dataset, there was a sta-

istically significant positive correlation between each region’s ‖‖𝚯𝑖, ∶ ‖‖
nd its distance from the origin of the 2D isomap embedding (F1000

ataset: 𝐹 (1 , 175) = 87 . 55 , 𝑅 

2 = 0 . 33 , 𝑟 = 0 . 58 , 𝑝 < 0 . 0001 ; Diez dataset:

 (1 , 2512) = 340 . 2 , 𝑅 

2 = 0 . 119 , 𝑟 = 0 . 34 , 𝑝 < 0 . 0001 ) (Figure A.2, left).

his pattern can be seen when the rows and columns of the PhASE ma-

rix are sorted by ascending ‖‖𝚯𝑖, ∶ ‖‖ values, in particular for the coarser

arcellation from the F1000 dataset (Figure A.2, right). Together this

uggests that regions mapped closer to the origin were more in-phase

ith other regions, whereas more out-of-phase regions were mapped

urther from the origin. 

To examine this relationship further, we faceted the anatomical and

unctional embeddings of the Diez dataset by anatomical lobe affiliation

anked by ascending distance to the origin ( Fig. 3 ). Notably, the brain-

tem displayed the most centrally embedded regions (median distance =
.9), followed by (in ascending order): sub-lobar, limbic lobe, temporal

obe, frontal lobe, cerebellum, parietal lobe, and occipital lobe regions.

t the other extreme, the occipital lobe displayed the most distant and

ensely clustered representation in the embedding space (median dis-

ance = 24). Examination of the phase angle vectors for occipital lobe

egions revealed highly in-phase relationships within the occipital lobe,

hile regions outside the occipital lobe were mostly out-of-phase (Fig.

.10). Since the occipital lobe and large portions of the parietal lobe

e.g., motor cortices), and cerebellum are mapped further in the periph-

ry, this suggests that regions involved in primary sensory processing are

apped further in the periphery, while regions such as the brainstem,

halamus, and heteromodal areas have more in-phase relationships and

re mapped closer to the origin. Interestingly, some lobes, such as the

rontal lobe, appeared to have non-normal distance distributions. Fur-

her inspection revealed this bimodal distribution to be composed of

rimarily ROIs from the middle frontal gyrus below the median, and su-

erior and medial frontal and precentral gyri, above the median, among

ther regions (Figure A.11). Additionally, those regions above the me-

ian were more strongly affiliated with different functional communi-

ies, whereas those below the median were less affiliated with either

unctional community, discussed in more detail below. 

The F1000 dataset also showed the occipital lobe being furthest from

he origin and densely clustered in the embedding space (Figure A.4). Al-

hough there were fewer brainstem ROIs in the F1000 dataset, the brain-

tem, sub-lobar, and temporal regions likewise were more centrally-

mbedded in the F1000 dataset. Interestingly, the coarser parcellation of

he F1000 dataset showed similar median distances across the parietal,

rontal, and limbic lobes. This suggests that while the overall distance

istributions are similar across parcellations, finer parcellations may in-

rinsically be able to detect more subtle differences in how regions are

apped in the embedding space. Furthermore, the Diez dataset also in-

lude ROIs from the cerebellum, which are likely to influence the topol-

gy of the embedding space compared to the F1000, which does not

nclude the cerebellum. Together, these results suggest that the over-

ll distance distributions reveal consistent trends in different parcella-

ions, and that more granular parcellations, as well as contribution of

rainstem and cerebellum may contribute additional information to the

mbedding topology. 

Given that the distance to the origin of the isomap embedding pre-

erved phase coupling characteristics across anatomical regions, we next

sked if the intrinsic functional distance between regions in this space

ould reveal biologically-relevant connectivity patterns. As a proof of
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Fig. 2. Visualizing the principal rest2vec gradient. 

Anatomical and functional embedding of the Diez 

dataset faceted by anatomical lobe affiliation. (Top) 

Merged representations of all 2514 regions in anatom- 

ical embedding (columns 1-3), functional embedding 

(column 4), and the percentage of regions within each 

community for each lobe (column 5). (Bottom) Facet 

of data for each anatomical lobe. Rows are arranged 

from top to bottom in ascending order of median dis- 

tance from the origin. Color indicates community af- 

filiation. Vertical gray reference line for each stacked 

barplot indicates 50%. 
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h  
oncept, we computed the intrinsic functional distance for regions that

ccupy distinct locations in the embedding space, namely the occipital

obe, which was densely clustered in the periphery, and the hippocam-

us, which was clustered centrally in the embedding. When the intrinsic

unctional distance to the occipital lobe was mapped as a color gradi-
nt on the brain surface, the dorsal and ventral visual streams ( Goodale,

011; Goodale and Milner, 1992; Ungerleider, 1982 ) became apparent

 Fig. 4 , left), consistent with the hypothesis that distance in this embed-

ing space preserves functionally relevant information. In contrast, the

ippocampus also had a relatively homogeneous cluster in the isomap
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Fig. 3. Anatomical and functional embedding of the 

Diez dataset faceted by anatomical lobe affiliation and 

ranked by ascending distance to origin. (Top) Merged 

representations of all 2514 regions in the anatomical 

embedding (columns 1-3), functional embedding (col- 

umn 4) and kernel density estimate of distance to ori- 

gin for all regions within each lobe (column 5). (Bot- 

tom) Facet of data for each anatomical lobe. Rows are 

arranged from top to bottom in ascending order of 

median distance from the origin. Color indicates lobe 

affiliation. Higher saturation indicates increasing dis- 

tance from the origin. Dashed gray lines in kernel den- 

sity estimate plots indicate the median distance. 
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mbedding, but showed a much more distributed surface map gradient

o regions of the default mode network (DMN), such as the precuneus,

refrontal cortex, thalamus, and inferior parietal lobule ( Fig. 4 , right). 

While certain anatomical regions showed a relatively homogeneous

lustering in the isomap embedding, such as the occipital lobe, others

howed heterogeneous clustering patterns. Thus we hypothesized that
est2vec could be used to identify functional subnetworks within in-

ividual regions based on their clustering within the isomap embed-

ing. As a test case, we examined the isomap embedding pattern for the

recuneus, which is known to participate in different networks across

ts dorsal-anterior/ventral-posterior axes ( Cavanna and Trimble, 2006;

hang and Li, 2012 ). The bivariate kernel density estimate plot of the
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Fig. 4. Intrinsic functional distance mapping with rest2vec. (Left) Occipital lobe. (Right) Hippocampus. (Top) Kernel density estimate plots of the occipital lobe and 

hippocampus in the isomap embedding. The intrinsic functional distance was then computed from the mean embedding coordinate of either the occipital lobe or the 

hippocampus to all other regions in the brain. Darker color indicates the region is closer to the mean coordinate of the occipital lobe or hippocampus, respectively. 

(Bottom) Intrinsic functional distance gradient projected onto the Freesurfer pial surface template. A: anterior. P: posterior. 
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recuneus ROIs in the Diez dataset suggested the presence of two pri-

ary clusters ( Fig. 5 , top left). To investigate this further, we used 𝑘 -

eans clustering to formally assign precuneus ROIs to one of two clus-

ers ( Fig. 5 , top middle). A meta-cluster was made that included all

ther regions in the Diez dataset by assigning regions to the precuneus

luster they were closer to. We then measured the intrinsic functional

istance between each region to its precuneus cluster centroid to as-

ign an affiliation value to each region ( Fig. 5 , top right). The brain

urface map projection of these data demarcated these two cluster cen-

roids into the dorsal-anterior precuneus and the ventral-posterior pre-

uneus ( Fig. 5 , bottom). The dorsal-anterior cluster of the precuneus

as most strongly affiliated with the occipital and superior parietal re-

ions, as well as the paracentral lobule, middle and superior tempo-

al cortices, and thalamus ( Fig. 5 , middle). The ventral-posterior cluster

f the precuneus was most strongly affiliated with the hippocampus,

uneus, cerebellum, parahippocampal cortex, posterior cingulate cor-

ex, calcarine cortex, amygdala, and superior occipital cortices. Thus

e showed that performing clustering analyses on a particular region in

his space (e.g., precuneus) revealed multiple, distinct connectivity gra-

ients, which have been previously reported in the literature. Together,

his demonstrates how rest2vec’s intrinsic functional distance can be

sed to discover functional connectivity gradients. 

.2. rest2vec provides a framework for functional connectome parcellation 

Since rest2vec could identify functionally relevant connectivity gra-

ients within anatomical lobes, we next asked if rest2vec could be used
o study functional community parcellation. We hypothesized that if

he rest2vec embedding is preserving the functional organization of

he connectome, then these functional communities would be clustered

ogether in the embedding. Additionally, the contribution of negative

dges should also yield the best clustering in the embedding space. 

To test this, we computed the community assignment labels for the

roup average Pearson correlation connectome ( 𝐖 ) using the Louvain

ommunity algorithm ( Blondel et al., 2008; Rubinov and Sporns, 2010 ).

e did the same procedure using the connectome with negative edges

emoved ( 𝐖 

+ ) and the absolute value of the connectome ( |𝐖 |). We cal-

ulated the silhouette coefficient ( Rousseeuw, 1987 ) as a metric of clus-

ering performance for each connectome, as well as a random permuta-

ion of the labels from 𝐖 as a negative control, across 100 iterations of

he Louvain algorithm. One-way ANOVA followed by Tukey’s post hoc

est revealed that the silhouette coefficient was statistically significantly

igher in both datasets for the Louvain community partition using the

riginal connectome 𝐖 , followed by 𝐖 

+ , |𝐖 |, and randomly assigned

abels having the lowest silhouette score ( 𝑝 < 0 . 001 for all pairwise com-

arisons) ( Fig. 6 , bottom). 

These results indicate that (i) the rest2vec embedding preserves func-

ional modularity, as demonstrated independently using the Louvain

ommunity algorithm, and (ii) the contribution of negative edges yields

he highest silhouette score, indicative of better clustering of functional

ommunities. Together, this suggests that rest2vec is able to map func-

ional community relationships into a lower-dimensional embedding

pace, and that the contribution of negative edges best preserves this

apping. 
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Fig. 5. Identifying subnetwork clusters within the precuneus using rest2vec. (Top, left) Kernel density estimate of the precuneus in the isomap embedding. (Top, 

middle) 𝑘 -means clustering results are indicated in blue and orange. (Top, right) Cluster affiliations for all other regions based on their minimum intrinsic functional 

distance to their precuneus cluster centroids. Darker color indicates that region is closer to the centroid of its cluster. (Middle) Strip plot of the ten regions with the 

greatest mean affiliation for each cluster. Points represent individual ROI. Vertical bars indicate the mean. (Bottom) Brain surface map of cluster affiliations for the 

precuneus. The precuneus is outlined by a dashed line in the medial view. A: anterior. P: posterior. 
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Fig. 6. Evaluating functional community mappings in the isomap embedding. (Top) For each dataset, the top row indicates the Louvain community assignment by 

distinct colors. The silhouette score for each ROI is shown below the respective community assignment plot. (Bottom) The overall silhouette coefficient for each 

connectome, computed across 100 iterations of the Louvain algorithm on each connectome. Bars represent the mean. Error bars indicate the standard deviation. 

Asterisks indicate Tukey’s post hoc pairwise comparison 𝑝 -values < 0 . 001 . 
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In addition to the Louvain community algorithm, which provides

iscrete comunity labels for each ROI, we also used the primary eigen-

ector 𝐪 of the centered kernel similarity matrix 𝐊̃ as a way to partition

he connectome into the first two communities, similar to the Fiedler

ector in traditional spectral clustering methods. To set the partition,

he index of regions corresponding to 𝑞 𝑖 ≥ 0 were assigned to commu-

ity 𝑉 𝐴 , and the index of regions corresponding to 𝑞 𝑖 < 0 were assigned

o community 𝑉 𝐵 . This approach was validated by iteratively evaluating

he maximum mean discpreancy (MMD) across 50 threshold values of 𝐪
Figure A.6). The results suggest that the MMD is maximized when the

artition yields communities of approximately equal size, which occurs

or both datasets when the partition threshold for 𝑞 𝑖 ≈ 0 . 
When the magnitude and sign of 𝑞 𝑖 are mapped to a diverging col-

rmap in the isomap space, it was observed that regions closer to the

ertical axis appeared more neutral, whereas regions further from the

ertical axis were polarized into either community, suggesting these

egions are more strongly mapped into that community. As observed

arlier in Fig. 2 , we found that the partition demarcated into the pu-

ative task-positive network (TPN) and task-negative network (TNN,

lso called default mode network (DMN)). This relationship can be seen

hen the primary eigenvector gradient is used to sort the 𝚯 matrix for

ach datasets, where the resulting grid communities show out-of-phase

elationships with the other community ( Fig. 7 , right). This can also be

bserved anatomically when the eigenvector gradient is mapped to the

rain surface ( Fig. 7 , bottom). 

Taken together, these data suggest that rest2vec is able to recover

unctional community information, while also accounting for the pres-

nce of negative edges, thereby removing heuristic steps that may bias

ownstream analyses as a result. Finally, we show that rest2vec can

odel these communities using a continuous gradient mapping, going

eyond traditional discrete community labeling methods. 

.3. rest2vec is consistent with Neurosynth meta-analysis association terms 

Finally, we sought to connect rest2vec to behavioral metrics. We

sed meta-analysis terms from the Neurosynth database ( Yarkoni et al.,

011 ) to obtain brain MR images containing the FDR-corrected 𝑧 -score

ssociation of each voxel to the key term. Then, we were able to query

ach MNI coordinate of the Diez dataset with the Neurosynth images to

ap each region’s association 𝑧 -score in the embedding space ( Fig. 8 ). 

We examined the embeddings for a selection of behavioral, psy-

hiatric, and physiological terms to show a range of different traits:

anxiety, ” “auditory, ” “decision making, ” “default mode, ” “motor con-

rol, ” “reward, ” “speech, ” and “visual. ” Interestingly, “reward, ” “anxi-

ty, ” and “decision making ” were centrally located, suggesting that they

re mapped with more in-phase regions and cluster together within the

mbedding space. As a comparison, more physiological terms mapped

losely to their respective anatomical clusters, such as “visual, ” “au-

itory, ” and “speech. ” “Auditory ” and “speech ” share notably similar

appings, suggestive of their shared function in language processing.

inally, the “default mode ” and “motor control ” mappings are consis-

ent with both the MMD gradient and Louvain modularity results. To-

ether, this demonstrates that rest2vec can be used to map Neurosynth

eta-analysis terms in the embedding space, offering additional insight

nto how the organization of the functional connectome can be linked

o behavior. 

. Discussion 

There have been many diverse and interesting approaches using di-

ensionality reduction and gradient mapping for studying brain or-

anization. Margulies et al. demonstrated the diffusion map embed-

ing method ( Margulies et al., 2016 ), revealing a principal unimodal-

ransmodal gradient. In addition, there have been studies linking cy-

oarchitecture to macroscale neuroimaging data for informing corti-

al gradient mapping ( Huntenburg et al., 2018; Paquola et al., 2019 ),
s well as seeing how conditions such as ischemic stroke affect the

radients within the embedding space ( Bayrak et al., 2019 ). Zhang

t al. constructed intrinsic connectivity maps using network motifs re-

orted in the literature with MDS to create a low-dimensional embed-

ing, identifying three gradients across external-internal, modulation-

epresentation, and anatomical centrality features ( Zhang et al., 2019 ).

ecently, Bethlehem et al. (2020) investigated how the functional com-

unities in their diffusion map embedding space change across age

sing a novel dispersion metric. In a different approach, Shafiei et al.

2020) have proposed using tools from the time series analysis field to

erform feature extraction on the temporal dynamics of functional con-

ectivity to study the intrinsic dynamics of cortical gradients. Interest-

ngly, the principal gradient identified across many of these techniques

ear a striking similarity, suggesting this gradient accounts for much of

he variance of intrinsic functional connectivity. 

In this study, we presented a novel graph embedding approach for

s-fMRI connectivity using rest2vec. Rest2vec improves upon current

ethods by using the full range of correlative information and repre-

enting the functional relationships of the brain in a low-dimensional

mbedding. Previous studies have suggested that negative correlations

ay have important – but still not fully understood – biological roles

 Rubinov and Sporns, 2010 ). There is evidence that weak functional

onnections signficantly contribute to the explanation of cognitive func-

ions in both health and disease ( Bassett et al., 2012; Santarnecchi et al.,

014 ), and have been shown to be important in other types of complex

etworks ( Csermely, 2004; Granovetter, 1983; Ma and Gao, 2012; On-

ela et al., 2007; Santarnecchi et al., 2014 ). 

Previous work from our group has demonstrated that using a

robability-based divisive approach with permutation testing could re-

over the hierarchical community structure of rs-fMRI connectomes

hile preserving negative edges, which we called probability-associated

ommunity estimation (PACE) ( Zhan et al., 2017 ). In addition, our

revious study ( Ye et al., 2015 ) demonstrated how nonlinear dimen-

ionality reduction and manifold learning techniques could be used to

nvestigate the intrinsic geometry of structural connectomes derived

rom diffusion imaging. Inspired by these approaches, we sought to

evelop a method by which rs-fMRI functional connectomes could be

epresented in their intrinsic geometry while also preserving negative

dge relationships. We chose to use the isomap method because it

ses a geodesic distance metric for generating the lower-dimensional

mbedding ( Tenenbaum et al., 2000 ). By doing so, distance in the

ower-dimensional embedding conveys meaningful information, and

lso yields consistent results across each run, in comparison to stochastic

ethods, such as 𝑡 -SNE ( van der Maaten and Hinton, 2008 ). 

In the context of functional connectivity, converting the embedding

oordinate system to a polar representation was an intuitive visualiza-

ion decision, as it centers the data around the origin, where regions

ith lower Θ𝑖,𝑗 values are mapped closer to the origin and regions with

igher Θ𝑖,𝑗 values are mapped in the periphery. Interestingly, regions

ith a greater number of high Θ𝑖,𝑗 values (i.e., more out-of-phase rela-

ionships) tended to be unimodal and also have low within-cluster Θ𝑖,𝑗 

alues, as seen most clearly in the occipital lobe (Fig. A.10). In contrast,

ore centrally-embedded regions tended to be located in brainstem and

ub-lobar regions, and also situated in the “transition zone ” of the MMD

radient. This suggests that these regions may be important for between-

odule communication. 

By using lower-dimensional embedding distance metrics, we were

ble to recover functionally relevant relationships. In the case of the

ccipital lobe, mapping the intrinsic functional distance to its cluster

entroid in the isomap embedding generated a gradient map in the

natomical space of the dorsal and ventral visual streams ( Goodale,

011; Goodale and Milner, 1992 ). On the dorsal surface, the gradi-

nt proximal to the occipital lobe can be seen going to the posterior

arietal regions, whereas on the ventral surface the proximal gradient

xtends from the occipital lobe to the inferior temporal lobe ( Fig. 4 ,

eft). In another example, the precuneus had two primary clusters in
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Fig. 7. Visualizing the primary eigenvector partition for the F1000 and Diez datasets. (Top) F100 dataset. (Middle) Diez dataset. (Left column) Glass brain plots 

showing each ROI. Color indicates community affiliation based on the magnitude of the maximum eigenvector 𝐪 of the kernel similarity matrix 𝐊̃ . (Middle column) 

Visualization of the 2D embedding in polar coordinates. (Right column) PhASE matrix 𝚯 sorted by the values of the maximum eigenvector 𝐪 . (Bottom) Brain surface 

map of the primary eigenvector partition gradient for the Diez dataset projected onto the Freesurfer pial surface template. Color indicates the interpolated value of 

𝑞 𝑖 . A: anterior. P: posterior. 
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Fig. 8. Mapping Neurosynth meta-analysis terms to the rest2vec embedding. Glass brain and isomap embedding are shown for each Neurosynth term. Regions with 

𝑧 -scores > 0 are colored; other regions are displayed in gray. The Neurosynth data was acquired from the “association test ” maps for each term. 
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he isomap embedding. When projected onto the brain surface, these

wo clusters demarcated the dorsal-anterior and ventral-posterior por-

ions of the precuneus ( Fig. 5 ). The dorsal-anterior gradient appeared

o primarily consist of the superior parietal, somatomotor, and occip-

tal cortices. The ventral-posterior gradient appeared to be composed

f the posterior cingulate, parahippocampal, and superior occipital cor-

ices and the hippocampus. 

There is evidence for the dorsal-anterior and ventral-posterior por-

ions of the precuneus being involved in different functions. A rs-fMRI

tudy by Zhang and Li (2012) identified the dorsal and anterior por-

ions of the precuneus having stronger connectivity with the occipital,

omatomotor, and posterior parietal cortices and the superior temporal

yri. In addition, they identified the ventral precuneus as being more

trongly associated with the middle frontal gyrus, posterior cingulate

ortex, cuneus, and calcarine sulcus. This demarcation is thought to

e due to the diverse roles of the precuneus. In particular, the dorsal-

nterior portion of the precuneus, which has strong connectivity with

he occipital and superior parietal cortices, is involved in processing

olymodal imagery and visuospatial information, whereas the ventral-

osterior precuneus is thought to be more involved in episodic memory

etrieval ( Cavanna and Trimble, 2006 ). While the study by Zhang and

i (2012) further subdivided the precuneus into eight clusters in their
tudy, our results were largely consistent with their observations, sug-

esting that rest2vec can detect heterogeneous connectivity patterns

ithin individual regions. 

In addition to representing the intrinsic geometry of functional con-

ectomes, we proposed using the maximum mean discrepancy (MMD)

ethod by Gretton et al. (2012) to partition the connectome into max-

mally functionally distinct modules. The MMD was originally imple-

ented to detect how different two probability distributions were to

est if they were from the same population ( Gretton et al., 2012 ). For

ur use case, we maximized the MMD as an objective function to find

wo populations of brain regions such that their distributions are as dis-

ant as possible to identify functional communities. One advantage is

his is a vectorized approach and does not rely on iterative methods. In

ddition, this method offers flexibility in the choice of probability and

ernel similarity measures used as input, and so are not limited to only

earson correlation measures. 

When the functional connectome is represented in its intrinsic em-

edding using nonlinear dimensionality reduction, the MMD gradient

licited a strikingly symmetric representation. Upon closer observation,

hese two communities were split approximately between the canoni-

al task-positive network (TPN) and the default mode network (DMN),

onsisting of the precuneus, inferior parietal lobule (IPL), posterior cin-
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ulate cortex, hippocampus, and areas of the prefrontal cortex (PFC),

mong others ( Buckner et al., 2008 ). This initial bifurcation gradient

s consistent with previous studies ( Margulies et al., 2016; Zhan et al.,

017; Zhang et al., 2019 ), and is a validation that this embedding pro-

edure is capturing functionally-relevant characteristics. In addition, we

howed lobe-specific affiliations for the two communities. These results

ere consistent with the putative DMN/TPN split. Notably, the IPL and

recuneus are shown in contrast to the postcentral regions within the

arietal lobe; similarly, the PFC and pre-motor areas show clear bound-

ries. In addition, the contribution of the second and third eigenvectors

ffer additional insight into the functional demarcations of the connec-

ome. Together, these results demonstrated that using this MMD max-

mization approach yielded reproducible and biologically-meaningful

onnectome partition gradients, and that the properties of these com-

unities can be represented using dimensionality reduction. 

In this study, we focused on analyzing the resting-state connectome’s

ntrinsic geometry with rest2vec, as it is thought to represent the brain’s

nherent functional connectivity. In principle, rest2vec could be applied

imilarly to task fMRI connectomes to study how the architecture of the

mbedding space is altered due to task activity. Cole et al. have previ-

usly suggested that there is a “task-general ” architecture of the func-

ional connectome that is shared across a variety of tasks ( Cole et al.,

014 ). Future work investigating how task embedding spaces are dis-

inct from rest could lead to interesting insights into the gradient orga-

ization of the brain as it engages between rest and task states. 

An open question is how the functional embedding space may relate

o structural connectivity. For example, structural connectomes have

n intuitive relationship to network navigation ( Seguin et al., 2018 ).

eguin et al. (2018) discovered that the navigation routing score for

rain regions is negatively correlated with their functional connectivity

trength. In our present study, we demonstrated the link between Eu-

lidean distance in the functional embedding space and gradients in the

natomical space. An interesting approach for future work would be to

etermine the relationship between structural network navigation and

ntrinsic functional connectome geometry. 

Allard and Serrano (2020) recently published a study using hyper-

olic space to study structural connectome navigation across multiple

pecies. Of particular interest, the hyperbolic representation of the struc-

ural connectome with the Yeo 17 functional network labels ( Yeo et al.,

011 ) revealed a noticeable segregation of the functional communities.

ogether, this suggests that representing both structural and functional

etworks in their intrinsic geometries is preserving organizational prop-

rties that are otherwise obscured by the anatomical spatial embedding

f the brain; future work that could integrate or compare the structural

nd functional connectome embeddings may help to shed more light on

he brain’s communication properties as inferred by these two modali-

ies. 

.1. Limitations and future directions 

In this paper, we used rs-fMRI connectomes from a group of subjects

n order to compute the probability of there being a negative correlation

etween each pairwise edge between regions. While this approach led

o consistent results across two independent datasets, we did not assess

ow robust this procedure was to inter-subject variability or the size of

roups. In addition, while average rs-fMRI connectomes yield a wealth

f functional connectivity information, they are a static representation

f a dynamic process. Furthermore, there has been increasing empha-

is on individual connectome analysis with aims towards personalized

edicine ( Finn et al., 2015; Miranda-Dominguez et al., 2014 ). To that

nd, future improvements on these methods will need to incorporate

ynamic as well as subject-specific analyses of functional connectivity.

ecent works by Betzel and Bassett (2017) and Gosak et al. (2019) have

uggested the concept of hierarchical or multi-scale networks, which

ould lead to natural extensions of this work via subject embedding

paces which are in turn composed of network embedding spaces. 
While we show how rest2vec can be linked to the maximum mean

iscrepancy and show the partition gradients for the first three eigenvec-

ors of the kernel similarity matrix, further work will need to be done

o develop a hierarchical way to detect 𝑁 communities with this ap-

roach. In addition, more robust methods could be used for maximizing

he MMD objective function to avoid the possibility of local maxima

o achieve better accuracy. While we highlight the theoretical relation-

hip between rest2vec and the MMD, as rest2vec is a low-dimensional

mbedding technique users are not limited to using the MMD to study

unctional communities in the embedding space, as we demonstrated

ith the widely-used Louvain community algorithm ( Fig. 6 ). 

.2. Conclusions 

Rest2vec incorporates both positive and negative edge connectiv-

ty using a model inspired by statistical mechanics to transform func-

ional connectome data into phase angle relationships. This representa-

ion of the connectome can be combined with nonlinear dimensionality

eduction techniques to represent the intrinsic geometry of the func-

ional connectome in a lower-dimensional embedding. Together, these

ethods allow for a vectorized approach to investigate the functional

elationships and connectivity gradients of rs-fMRI data. In addition, we

onnected rest2vec to the maximum mean discrepancy metric to demon-

trate how rest2vec can be used to address the modularity problem as

 kernel two-sample test. Finally, we show how rest2vec can be con-

ected to behavioral data using the Neurosynth meta-analysis database

o project behavioral scores in the embedding space. In summary, we

resented a rs-fMRI connectome graph embedding technique that uses

onlinear dimensionality reduction and statistical learning methods to

reate a low-dimensional representation of the intrinsic geometry of the

unctional connectome. 
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