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ARTICLE INFO ABSTRACT

Keywords: Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used in connectomics for studying the

Functional neuroimaging functional relationships between regions of the human brain. rs-fMRI connectomics, however, has inherent ana-

Resting:state fMRI lytical challenges, such as how to properly model negative correlations between BOLD time series. In addition,

gon;ect:)mlcs functional relationships between brain regions do not necessarily correspond to their anatomical distance, making
radients

the functional topology of the brain less well understood. Recent machine learning techniques, such as word2vec,
have used embedding methods to map high-dimensional data into vector spaces, where words with more similar
meanings are mapped closer to one another. Inspired by this approach, we have developed the graph embedding
pipeline rest2vec for studying the vector space of functional connectomes. We demonstrate how rest2vec uses
the phase angle spatial embedding (PhASE) method with dimensionality reduction to embed the connectome
into lower dimensions, where the functional definition of a brain region is represented continuously in an in-
trinsic “functional space.” Furthermore, we show how the “functional distance” between brain regions in this
space can be applied to discover biologically-relevant connectivity gradients. Interestingly, rest2vec can be con-
ceptualized in the context of the recently proposed maximum mean discrepancy (MMD) metric, followed by a
double-centering approach seen in kernel PCA. In sum, rest2vec creates a low-dimensional representation of the
rs-fMRI connectome where brain regions are mapped according to their functional relationships, giving a more
informed understanding of the functional organization of the brain.

1. Introduction

Neuroimaging data acquired from magnetic resonance imaging
(MRI) tend to be vast and high-dimensional. In particular, resting-state
functional MRI (rs-fMRI) produces temporal snapshots of the brain’s de-
fault activity in the absence of tasks, offering a window into the func-
tional macroscale organization of the brain. As computational tools have
become more widely available over the past two decades, researchers
have applied graph theory-based models to neuroimaging data to study
the network properties of the brain, which has grown into the field of
connectomics (Sporns et al., 2005). In connectomics analyses, the brain
can be represented as an N x N matrix, where the rows and columns are
N brain regions of interest (ROI), and the elements of the matrix repre-

sent some measure of connection between them (e.g., number of white
matter fibers, Pearson correlation of blood oxygenation level-dependent
(BOLD) time series). Given this volume of high-dimensional data, how-
ever, one quickly runs into the “curse of dimensionality.” Originally
coined by Bellman (1961), the term refers to the challenge of visualiz-
ing and analyzing high-dimensional data. Because the number of points
in a Cartesian space grows exponentially with increasing dimensions,
high-dimensional spaces become extremely sparse, an effect known as
the “empty space phenomenon.” Consequently, this makes understand-
ing the properties of these data more difficult, as metric comparisons
become less effective with increasing dimensionality (Lee and Verley-
sen, 2007).
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There are a variety of dimensionality reduction techniques that
address this problem. These methods work by embedding a high-
dimensional manifold, represented by the discrete points of the data,
into a lower dimension (e.g., two or three dimensions), which can then
be visualized. This process becomes complicated, however, if the mani-
fold of the underlying data is nonlinear, as is thought to be the case with
neuroimaging data (Gerber et al., 2010; McClurkin et al., 1991; Wolz
etal., 2012; Ye et al., 2015). One of the most well-known example cases
of a nonlinear manifold is the 3D Swiss roll. Nonlinear dimensionality
reduction techniques, such as isometric mapping (isomap), address the
characteristic Swiss roll problem by preserving the intrinsic geometry of
nonlinear manifolds (i.e., unrolling the Swiss roll) in lower-dimensional
spaces (Tenenbaum et al., 2000; Ye et al., 2015).

Negative correlations also remain a challenging factor in rs-fMRI
connectomics, as they are more difficult to interpret using network mod-
els. Simpler models generally either threshold or apply other transfor-
mations, such as taking the absolute value, to remove negative corre-
lations; this process, however, likely removes substantive dynamics of
brain connectivity (Rubinov and Sporns, 2011). Although some analyses
account for negative correlations, these often introduce additional pa-
rameters that must be arbitrarily set to determine their relative contribu-
tion (Rubinov and Sporns, 2011). Previously, we introduced probability-
associated community estimation (PACE) (Zhan et al., 2017) and phase
angle spatial embedding (PhASE) (Morrissey et al., 2018) to address
these challenges. These methods take inspiration from the Ising model
from statistical mechanics, where magnetic ions are designated with ei-
ther in-phase or out-of-phase spin state configurations (Pekalski, 2001).
We adapted this model to describe the phase relationship between re-
gions of the brain, where each brain region is an N-dimensional vector
whose elements are defined by its phase coupling with every other re-
gion in the brain.

Having generated this embedding space, how might the organiza-
tion of the functional connectome best be visualized and understood?
In the domain of natural language processing, Mikolov et al. (2013) cre-
ated the word2vec method to map words with similar meanings near
one another in a vector space (e.g., “king” is close to “man,” “queen”
is close to “woman”). Inspired by this approach, we propose a novel
graph embedding pipeline, rest2vec, that uses this phase angle repre-
sentation with the nonlinear dimensionality reduction method isomap
to embed the functional connectome in a lower-dimensional embedding
based on its functional relationships. In this space, the functional con-
nectome is arranged by its intrinsic geometry, where the regions of the
brain are mapped according to their functional connectivity indepen-
dent of anatomical constraints. Here, the Euclidean distance between
regions in this space can be thought of as an intrinsic “functional dis-
tance,” with similar regions having a short functional distance between
one another and dissimilar regions having a large functional distance
between one another.

We show how this vectorized approach has implications for detect-
ing connectivity gradients by linking rest2vec to the maximum mean dis-
crepancy (MMD) metric. The MMD was originally developed as a metric
describing the distance between probability distributions (Gretton et al.,
2012). Here, we treated the MMD as a modularity index, similar to Q-
based maximization methods (Blondel et al., 2008), such that, when
maximized, it detects the sets of brain regions with the most dissim-
ilar functional connectivity. By reformulating this connectome modu-
larity problem in a probabilistic sense, we are able to generate con-
tinuous community assignment values for each region, as opposed to
a binary classification. Finally, we also show how brain regions in the
rest2vec embedding space can be mapped to behavioral metrics using
the Neurosynth meta-analysis database (Yarkoni et al., 2011). Together,
rest2vec uses nonlinear dimensionality reduction and manifold learning
techniques to create a low-dimensional representation of the rs-fMRI
connectome where brain regions are mapped according to their func-
tional relationships, giving a more informed understanding of the func-
tional organization of the brain.
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2. Materials and methods
2.1. Dataset description

Two independent and publicly available rs-fMRI connectome
datasets composed of healthy subjects were used: one from the Func-
tional 1000 (F1000) Connectomes Project (Biswal et al., 2010) with 177
regions of interest (ROI) available through the USC Multimodal Connec-
tivity Database (1000_Functional_Connectomes study, http://
umed.humanconnectomeproject.org/umcd/default/index), and one by
Diez et al. (2015) with 2514 ROIs available through the Neu-
rolmaging Tools & Resources Collaboratory (NITRC) (https://www.
nitrc.org/projects/biocr_hcatlas/). Each of these studies were performed
in accordance with their institution’s respective ethics committees.
These are referred to as the “F1000” and “Diez” datasets hereafter.

The F1000 dataset has data from 986 subjects collected across mul-
tiple sites using a common scanning and preprocessing protocol. Data
were motion corrected and spatially smoothed with a 6 mm FWHM
Gaussian kernel. A band-pass filter was applied between 0.005-0.01
Hz. Nuisance parameters, CSF, white matter, and the average global
signal were regressed out prior to spatial normalization to the MNI152
template. Spatially constrained spectral clustering was used to deter-
mine the ROIs (Craddock et al., 2012). The average difference in age
between male (N =426, M +SD =28.7 + 12.7) and female (N = 560,
M = SD = 27.9 + 12.7) subjects in the F1000 dataset was 0.83 years and
was not statistically significant (#(984) = 1.025, p = 0.306).

The Diez dataset has 12 subjects (6 male) with a mean age of
33.5 £ 8.7 years; no individual subject ages were reported. An inter-
leaved gradient-echo EPI sequence was used to acquire BOLD T2* im-
ages (scanning time = 7.28 min, 200 volumes total). Motion correc-
tion, slice-timing correction, and smoothing (6 mm FWHM Gaussian ker-
nel) were applied. A band-pass filter was applied between 0.001-0.08
Hz; linear and quadratic trends were also removed. Motion, CSF, white
matter, and average global signal were regressed out prior to spatial
normalization to the MNI152 template. Spatially constrained clustering
(Craddock et al., 2012) was used to determine the 2514 ROIs. Finally,
the Pearson correlation coefficient of the BOLD time series between ROIs
was calculated as the measure of functional connectivity between ROIs
(Diez et al., 2015).

2.2. rest2vec

The pipeline for rest2vec is shown in Fig. 1. Rest2vec aims to create
a graph embedding of rs-fMRI connectomes by transforming positive
and negative edges into N-dimensional phase angle vectors that can
then be represented in a low-dimensional embedding using nonlinear
dimensionality reduction. Briefly, we first computed the probability of
observing a negative edge between all pairs of regions across all sub-
jects to form the probability matrix P~. This probability is then used to
determine the phase angle ©, ; between regions to create the phase an-
gle spatial embedding (PhASE) matrix @. This process embeds the phase
relationship between all regions in an N-dimensional Euclidean space
and transforms the values between 0 (fully in-phase) and z /2 (fully out-
of-phase). The intrinsic geometry of the connectome was then visual-
ized in two dimensions using the nonlinear dimensionality reduction
method isomap (Tenenbaum et al., 2000). Finally, we use kernel func-
tions to link rest2vec to the maximum mean discrepancy MMD metric
(Gretton et al., 2012) to demonstrate how rest2vec can be used to study
functional connectivity gradients. The representative matrices for each
step are displayed in Figure A.1.

2.2.1. Phase angle spatial embedding (PhASE)

A functional connectome derived from rs-fMRI is defined as an undi-
rected graph G(V, E), composed of a set of vertices V representing the
brain regions of interest (ROI), and signed, weighted edges E describing
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Fig. 1. rest2vec processing pipeline. (Top) The frequency of observing a negative edge between regions i and j across all subjects in the N X N X .S array W of
rs-fMRI connectomes is computed to form the probability of negative correlation matrix P~. (Middle) The phase angle transformation is applied to compute the phase
angle spatial embedding (PhASE) matrix @. (Bottom) Dimensionality reduction and the maximum mean discrepancy (MMD) are used to analyze the properties of
the new embedding space, where the functional connectome is represented by its intrinsic geometry.

the measure of connectivity between them based on their BOLD time se-
ries. Typically, some measure of correlation, e.g., Pearson correlation,
between BOLD time series is used to describe the functional connectivity
between ROIs.

Previously, we introduced probability associated community esti-
mation (PACE) (Zhan et al., 2017), and phase angle spatial embed-
ding (PhASE) (Morrissey et al., 2018) for encoding resting-state fMRI
connectomes based on the phase relationship between brain regions
(Morrissey et al., 2018) to account for negative correlations in func-
tional connectomes. We begin by briefly summarizing these procedures
in the context of rest2vec.

Let W be an N X N x.§ array (i.e., a tensor) composed of N x N
weighted, signed functional connectomes for N regions and .S observa-
tions. In our case, we consider the observations from a group of .S sub-
jects. Given some weight of functional coupling between regions i and j
(e.g., Pearson correlation), we define the probability of negative correla-
tion matrix P~ where each element P is the probability of observing a

negative edge between i and j defined as P;; = Prob([W;; < 0]), where,
in the case of .S subjects, we estimate this probability by the following

s

|

P =L 3w, <ol W
N

where W, ; ; is the edge between regions i and j for the sth subject, and

the Iverson bracket expression [W;; ; < 0] equals 1 if W, ; <0, and 0
otherwise. Because Pz_, € [0, 1], it also follows naturally that PI‘J + Px+, =
1.

One advantage of this procedure is that the probability measure de-
fined in Eq. (1) can be defined by the user for their specific context.
By taking advantage of this relationship, we then define the phase an-
gle spatial embedding (PhASE) matrix ©, where the phase angle ©;;
between regions i and j is defined as

@

0, ; = arctan
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Thus 0,; €10,7/2], where 0 represents a fully in-phase (co-
activating) relationship and z/2 represents a fully out-of-phase (anti-
activating) relationship. Each column of © is a vector embedding
each region in an N-dimensional Euclidean space such that @.; =

(01 ;5 - @['N]T S [O,TE/Z]N,

2.2.2. Relation of PhASE to the maximum mean discrepancy

Here we describe how PhASE can be linked to the maximum mean
discrepancy (MMD) developed by Gretton et al. (2012) to address the
connectome modularity problem. Following the formulation defined in
Gretton et al. (2012), consider the random variables x and y defined on
a metric space X equipped with the metric d, with the corresponding
Borel probabilities p and ¢ (i.e., x ~ p and y ~ ¢). Given observations
X :={xy,....,x,}and Y :={y,,...,y,} drawn from the probability dis-
tributions p and ¢, p = ¢ if and only if E [f(x)] = E,[f(0] Vf € CX),
where C(X) is the space of bounded continuous functions on X. Next,
given a class of functions F such that f : X —» R, the maximum mean
discrepancy (MMD) between p and ¢ with respect to F is defined as
MMD[F, p, q] := sup (ExLf ()] = E,Lf(3)])- ®3)

This can be empirically estimated given X and Y as

m n

MMD[F, X, Y] := sup <l Y -1y f(y,-)), @
fer\™M i i3

where m is equal to the number of observations in X and » is equal to

the number of observations in Y.

To apply these definitions in the context of connectomics, we use
the same definitions of x, y, p, g, X, and Y defined above to assign each
region to one of the two distributions p or ¢q. Under the working assump-
tion that the distributions of functional modules in the connectome are
far apart (i.e., their within-module connections are greater than their
between-module connections (Fortunato, 2010)), we thus seek to dis-
cover the arrangement of regions such that the MMD between them is
maximized.

Using a reproducible kernel Hilbert space (RKHS), the squared form
of Eq. (4) can be evaluated using kernel functions as

m m n n
2 o 1 1
MMD*(7, X, Y] 1= -t Z 2 Kxisx) + o 2 2 k)
i=1 j#i i=1 j#i
2 m n
- = D k). ®)
i=1 j=1
From Eq. (5), kernel functions can be used, in our case, to compute
the kernel matrix K where the similarity K ; between regions i and j,
in the case of the radial basis function (RBF) kernel kg, is given by

N
K;j = kppp(0;;,0; ) = exp (-6 Z 1©;, — ®j,f|2>> (6)
/=1
for phase angle ® between regions i and j in reference to all other regions
indexed by #, for N regions, using the scaling factor o.
Similarly, we let the cosine kernel k. evaluating the similarity be-
tween regions i and j be defined as
| &
Kij=kes(9;:.0; ) = N Z cos (G)i,f - G)j,/)v O]
¢=1
using the same variable definitions as RBF kernel. Because the RBF ker-
nel has an additional parameter, and the cosine kernel has a geometric
relation to angles, the cosine kernel is used here; the Taylor expansion
of both these kernels can be shown to have similar leading terms.

2.2.3. From the maximum mean discpreancy to rest2vec connectivity
gradients

Following the kernel definitions above and the equation as described
by Gretton et al. (2012) (with a modified notation for our purposes), as-
suming a two-community partition, let the maximum mean discrepancy
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(MMD) between two modules V, and V be defined as

m mn n
1 2 1

MMD(V,. VP =— ¥ K,-— Y Kj+= % K, ®
me iev, MmN ey gevy ne ijevy

where |V |=m, [Vg|=n, [V|=m+n=N, V,uVp=V, V,nVp =40,
and i is allowed to equal j.

We seek to find a partition between V, and V' such that Eq. (8) is
maximized. First, we can rewrite MMD(V,, V3)? = y'Ky for y € RNV*!
and K € RV*N | where
ifieV,

PRI ©)
ifieVy

Thus we define the optimal partition Modularity(V') into modules V,
and Vj as

Modularity(V') = argmax MMD(V,, VB)Z. (10)
Va:Vp
VaUVp=V
VanVp=g
This maximization problem can be approximated in a simplified way
by relaxing Eq. (10) to a Rayleigh quotient maximization problem. Let-
ting y be defined as above, where

N \1/2
Iyl = (%) . an
we perform change of variables to the unit length vector v, where
mn\ 172
v=(%) "y (12)

and ||v|>=1, vT1=0, where 1=[1--1]T, 1€ RN%!, Then we can
rewrite Eq. (10) in terms of v to define the partition that maximizes
MMD(V,, V;)? as

Modularity(V) = argmax EVTKV. (13)
Ivil=1vT1=0 """

To compute MMD(V,, V;;)? in Eq. (13), in the context of connec-
tomics, requires ground truth knowledge of m and » in advance. Thus, to
account for this, we assume that N is large and that the two communi-
ties V4 and V are approximately the same size such that |m — n| € o(N).
The normalization factor in Eq. (13) can then be simplified to

Modularity(V) & d argmax vIKyv. (14)
Ivli=1vT1=0

: : Vel _ Val
Finally we relax the constraints of v from v; € { " SRR / NVl }

taking only two values to taking any real values such that v* € RV,
These relaxed constraints allow us to conveniently reframe Eq. (13) as
a Rayleigh quotient maximization problem. We account for arbitrary
origin for the Rayleigh quotient maximization by centering the kernel
similarity matrix K to K = CyKC, where the centering matrix Cy =
Iy - %JN, Cy € RMN T, € RVN s the identity matrix, and J €
RN*N js the ones matrix (i.e., 117).

Rather than finding MMD(V,, V;)? as a function of the partition, we
approximate the optimal partition Modularity(V) by finding the vector
v* that maximizes the Rayliegh quotient such that

AT v
Modularity(V) & hd argmax . *IT(V :
Ty

vi#ovierN YV

15)

We can then compute the mapping vector v* that maximizes the
Rayleigh quotient by computing the eigenvector q of K corresponding
to the largest eigenvalue A,,,, of K. Similar to the Fiedler vector in spec-
tral clustering methods (Weisstein, 1999), the elements of q assign both
community affiliation based on its sign ( + or - ) as well as magnitude.
Further, q can be binarized to determine discrete community labels for
each region as
v = {iEVA ifg; >0

i€V,

, Vi=1,2,3,...N. 16
ifg, <0 ' 16)
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In sum, these derivations suggest that connectivity gradients in-
formed by rest2vec can be extracted by considering the top eigenvectors
of the centered kernel matrix K.

2.3. Visualizing rest2vec in 2D using nonlinear dimensionality reduction

Isomap (Tenenbaum et al., 2000) was used to reduce the PhASE
matrix ® as a manifold M € R¥*N to a d-dimensional embedding
Y € R¥*4 where d < N. Isomap is advantageous for this procedure as
it is a nonlinear technique, using methods such as Dijkstra’s algorithm
(Dijkstra, 1959) to compute the geodesic distances between vertices
in high-dimensional space. Nonlinear methods importantly address the
Swiss roll problem faced by traditional linear methods such as PCA and
MDS (Tenenbaum et al., 2000).

In our case, we used k = 12 and k = 50 nearest neighbors, for the
F1000 and Diez datasets, respectively, to reduce to two dimensions using
the Isomap implementation in the Scikit-learn version 0.21.3 library
(Pedregosa et al., 2011). To account for any bias due to the choice of
nearest neighbors, we also re-calculated the isomap embedding using
k = {20, 40, 60, 80, 100} with the Diez dataset as an example. The residual
variance (Tenenbaum et al., 2000) 1 — R?(D,,, Dy ) was used to quantify
how similar the pairwise distances were between the original and low-
dimensional spaces, and was shown to be consistent across a reasonable
range of values for k (Figure A.3).

Because the isomap procedure centers data about the origin, and by
Eq. (2) the phase angle between perfectly in-phase regions is zero, we
analyzed each region’s Euclidean distance to the origin in this space to
observe how the phase relationship between regions is preserved with
respect to its low-dimensional embedding. After generating the isomap
embedding, the distance D; to the origin of the isomap space [0--- 0] €
R!X4 for the ith region was calculated using the Euclidean distance in
the 2D isomap embedding.

Because of its natural representation for distance to the origin, the
data was transformed to polar coordinates of radius r and angle 0 using
the polar transformation

R an

0 = atan2(y, x) (18)

to visualize the functional embedding space.

2.4. Statistical analysis of rest2vec

2.4.1. Functional community mapping analysis

We used the Louvain community algorithm (Blondel et al., 2008)
as implemented in the Brain Connectivity Toolbox (Rubinov and
Sporns, 2010) to independently evaluate the mapping of functional com-
munities in the low-dimensional embedding, as well as the contribution
of negative edges on functional community clustering. The Louvain algo-
rithm was applied on the group average Pearson correlation connectome
(W), the thresholded connectome with only positive weights (W*), and
the absolute value of the thresholded connectome (|W|). The parameter
y was set to 1 for each connectome. For W, the negative weights were
treated symmetrically.

The silhouette score (Pedregosa et al., 2011; Rousseeuw, 1987), a
metric commonly used to evaluate clustering algorithms such as k-
means, was used to assess the clustering performance of the functional
communities in the embedding space. We also computed the silhouette
score from a random permutation of the Louvain labels from W as a
negative control for comparison. Because the Louvain algorithm returns
different results with each run, we performed 100 iterations of the al-
gorithm to compute the mean and standard deviation of the overall sil-
houette coefficient for each connectome.
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2.4.2. Using k-means clustering to define gradient clusters in the rest2vec
embedding

k-means clustering was used to formally classify clusters for regions
(such as the precuneus) that had heterogeneous mappings in the isomap
embedding. The k-means clustering algorithm was performed using the
Scikit-learn implementation (Pedregosa et al., 2011) for k = 2 clusters
in the isomap embedding. The same seed value was used to ensure re-
producible results.

To determine how affiliated other (non-precuneus) regions were to
either of the two clusters, regions were first assigned to the precuneus
cluster they were closest to in the isomap embedding. A diverging clus-
ter affiliation scale was computed based on the Euclidean distance of
each region to its precuneus cluster’s centroid in the isomap embed-
ding, which we termed “intrinsic functional distance,” such that regions
with more positive or negative values were closer to the centroid of their
respective precuneus cluster. The cluster affiliation a; was defined as

max(d )—d . ifieq,
4= Co Co,i ’ (19)
de,; —max(dc, ifieC

where d is the intrinsic functional distance from region i to the centroid
of cluster C.

2.4.3. rest2vec consistency with Neurosynth meta-analysis association
terms

The Neurosynth meta-analysis database (Yarkoni et al., 2011) was
used to search for behavioral and psychiatric terms to obtain a NIfTI
image containing the association measured between the key term and
fMRI activity across studies in the database. For this study, we used the
“association test” images provided by Neurosynth, which provides the
z-score describing the association between the key term and each voxel.

In order to map this data to the rest2vec embedding, we used the
MNI coordinates from the Diez dataset as a lookup value to obtain the
z-score of the corresponding voxel in the Neurosynth association test
NIfTT file. The glass brain and embedding data was then plotted such
that the regions with z-scores > 0 were mapped to a color gradient; all
other regions were set to a uniform gray value in the background.

2.5. Code and data availability

All code used to produce the results and figures is available online
via GitHub (https://github.com/zmorrissey/rest2vec) and our labora-
tory website (http://brain.uic.edu/). We also provide the MNI (x, y, z)-
coordinates and the rest2vec embedding (x, y)-coordinates for each
dataset.

2.5.1. Statistics

The StatsModels library version 0.10.1 for Python (Seabold and Perk-
told, 2010) was used for statistical analyses. Student’s independent z-test
was used to test if there were any differences in age between male and
female subjects for the F1000 dataset. The ordinary least squares (OLS)
method was used to fit the parameters for the linear regression between
isomap distance to origin and phase angle. For silhouette score analyis,
a one-way ANOVA followed by Tukey’s post hoc test was used.

2.5.2. Visualization

Graphics were drawn using the Matplotlib version 3.1.1
(Hunter, 2007) and Seaborn version 0.9.0 (Seaborn, 2019) Ii-
braries using Python version 3.7.3 from the Anaconda distribution
(Anaconda, 2018). Glass brain figures were visualized using the
plot_connectome function from the Nilearn version 0.6.2 library
(Abraham et al., 2014). Inkscape version 0.92 was used for final
arrangement of some figures (Albert et al., 2019).

Brain surface plots were created by representing the N x 4 array,
consisting of the MNI (x, y, z)-coordinates for all N regions, and the
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N x 1 vector containing the data value associated with each region,
as a 3D volume. For brain distance maps, the intrinsic functional dis-
tance vector was made by computing the Euclidean distance between
the mean (x, y)-coordinates of the anatomical region in the isomap em-
bedding and all other regions. For regions that had heterogeneous map-
ping (i.e., multiple clusters) in the isomap space, k-means clustering was
performed to calculate cluster affiliations for each region as described
above in Eq. (19).

The 3D volume containing the original data was then interpo-
lated using a linear grid interpolation and registered to the MNI tem-
plate volume with 12 degrees of freedom using the FLIRT tool in
the FSL (Jenkinson et al., 2012) interface from the Nipype version
1.3.0-rcl library (Gorgolewski et al., 2011). The interpolated 3D vol-
ume was mapped to the Freesurfer pial surface template using the
vol_to_surf function from the Nilearn library. The surface data was
then visualized using the plot_surf_stat_map function from the
Nilearn library.

3. Results
3.1. Functional connectivity gradients with rest2vec

3.1.1. The maximum eigenvector from rest2vec defines a principal
functional connectivity gradient

After applying the rest2vec pipeline to the F1000 and Diez datasets,
we used the maximum eigenvector of the double-centered kernel simi-
larity matrix K to extract the principal connectivity gradient of the func-
tional connectome (Fig. 2). We visualized the anatomical and functional
embedding by anatomical lobe to visualize how each lobe participates
in the principal gradient. We observed a symmetrical partition when
viewed in the functional embedding space (Fig. 2, middle), primarily
demarcating between the task-negative network (TNN) and the default
mode network (DMN). When the brain is faceted by lobe affiliation,
several notable patterns emerge. For example, the frontal lobe is de-
marcated into the prefrontal cortex (PFC) and pre-motor areas and dor-
solateral PFC anatomically, which are respectively situated in opposite
quadrants of the functional embedding. In addition, the parietal lobe is
split largely into default mode network (DMN) regions — including re-
gions of the inferior parietal lobule and precuneus — and primary and
secondary unimodal areas, including somatosensory cortices and areas
involved in visual processing. Consistent with this observation, the oc-
cipital lobe has the largest proportion of regions belonging to the puta-
tive TPN at 83.4%. Similar demarcations can be observed in the F1000
dataset as well (Fig. A.7).

In addition, the second and third eigenvalues of the kernel similar-
ity matrix K account for a notable portion of the variance of the data
(Fig. A.5), so we also examined the gradients given by these two eigen-
vectors (Figure A.8, Figure A.9). The second eigenvector gradient re-
vealed a rostral-caudal gradient, most notable for the sub-lobar, limbic,
and temporal lobes, and a medial-lateral gradient for the parietal and
frontal lobes. The third eigenvector gradient revealed a largely anterior-
posterior gradient across all lobes except for the parietal and occipi-
tal lobes, which were dominated by a single community. Interestingly,
there is a notable hemispheric asymmetry in the frontal lobe in areas
of the left hemisphere, suggestive of language and speech regions of
the brain. Taken together, these data suggest that rest2vec is able to re-
cover biologically-relevant connectome gradient properties, while also
accounting for the presence of negative edges, thereby removing heuris-
tic steps that may bias downstream analyses as a result.

3.1.2. Region-specific gradients defined by intrinsic functional distance in
the rest2vec space

While the kernel similarity matrix eigenvectors from rest2vec can re-
veal unbiased functional connectivity gradients, we then asked whether
one could investigate specific brain regions of interest (ROIs) to query
region-specific gradient connectivity information. We hypothesized that
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the Euclidean distance within the rest2vec isomap embedding space
could be used as a metric of “intrinsic functional distance” between
brain regions, where if two regions are close together in the embedding
space they are more functionally coupled. From Eq. (2), lower values of
©, ; indicate a more in-phase relationship between regions. Thus we hy-
pothesized that more in-phase regions would be embedded closer to the
origin of the isomap space, whereas more out-of-phase regions would be
embedded further from the origin. The 2-norm of each N-dimensional
vector of the PhASE matrix ||©, . || was used as a summary measure of
each region’s overall phase value. For each dataset, there was a sta-
tistically significant positive correlation between each region’s ||, .||
and its distance from the origin of the 2D isomap embedding (F1000
dataset: F(1,175) = 87.55, R?> =0.33, r =0.58, p < 0.0001; Diez dataset:
F(1,2512) = 3402, R>=0.119, r=0.34, p <0.0001) (Figure A.2, left).
This pattern can be seen when the rows and columns of the PhASE ma-
trix are sorted by ascending ||®; .|| values, in particular for the coarser
parcellation from the F1000 dataset (Figure A.2, right). Together this
suggests that regions mapped closer to the origin were more in-phase
with other regions, whereas more out-of-phase regions were mapped
further from the origin.

To examine this relationship further, we faceted the anatomical and
functional embeddings of the Diez dataset by anatomical lobe affiliation
ranked by ascending distance to the origin (Fig. 3). Notably, the brain-
stem displayed the most centrally embedded regions (median distance =
6.9), followed by (in ascending order): sub-lobar, limbic lobe, temporal
lobe, frontal lobe, cerebellum, parietal lobe, and occipital lobe regions.
At the other extreme, the occipital lobe displayed the most distant and
densely clustered representation in the embedding space (median dis-
tance = 24). Examination of the phase angle vectors for occipital lobe
regions revealed highly in-phase relationships within the occipital lobe,
while regions outside the occipital lobe were mostly out-of-phase (Fig.
A.10). Since the occipital lobe and large portions of the parietal lobe
(e.g., motor cortices), and cerebellum are mapped further in the periph-
ery, this suggests that regions involved in primary sensory processing are
mapped further in the periphery, while regions such as the brainstem,
thalamus, and heteromodal areas have more in-phase relationships and
are mapped closer to the origin. Interestingly, some lobes, such as the
frontal lobe, appeared to have non-normal distance distributions. Fur-
ther inspection revealed this bimodal distribution to be composed of
primarily ROIs from the middle frontal gyrus below the median, and su-
perior and medial frontal and precentral gyri, above the median, among
other regions (Figure A.11). Additionally, those regions above the me-
dian were more strongly affiliated with different functional communi-
ties, whereas those below the median were less affiliated with either
functional community, discussed in more detail below.

The F1000 dataset also showed the occipital lobe being furthest from
the origin and densely clustered in the embedding space (Figure A.4). Al-
though there were fewer brainstem ROIs in the F1000 dataset, the brain-
stem, sub-lobar, and temporal regions likewise were more centrally-
embedded in the F1000 dataset. Interestingly, the coarser parcellation of
the F1000 dataset showed similar median distances across the parietal,
frontal, and limbic lobes. This suggests that while the overall distance
distributions are similar across parcellations, finer parcellations may in-
trinsically be able to detect more subtle differences in how regions are
mapped in the embedding space. Furthermore, the Diez dataset also in-
clude ROIs from the cerebellum, which are likely to influence the topol-
ogy of the embedding space compared to the F1000, which does not
include the cerebellum. Together, these results suggest that the over-
all distance distributions reveal consistent trends in different parcella-
tions, and that more granular parcellations, as well as contribution of
brainstem and cerebellum may contribute additional information to the
embedding topology.

Given that the distance to the origin of the isomap embedding pre-
served phase coupling characteristics across anatomical regions, we next
asked if the intrinsic functional distance between regions in this space
could reveal biologically-relevant connectivity patterns. As a proof of



Z.D. Morrissey, L. Zhan, O. Ajilore et al.

Anatomy Embedding

Brainstem 00°
L R 135° 45°
40
180"' 0°
‘ 225° 315°
270°
Sub-lobar 90°
L Y R 135° 45°
40
180"‘ 0°
% D e
270°
Limbic Lobe -
L ~TR 135° 45°
40
: 180"‘ 0°
A D ool | e
270°
Temporal Lobe -
L - R 135° 45°
40
180° 0°
i
<> ‘ 225° 315°
270°
Frontal Lobe -
N 135° 45°
40
1807 0°
225° 315°
270°
Cerebellum o
L i R L 135° 45°
40
180°] 0°
< 225° 315°
270°
Parietal Lobe 55
L R 135° 45°
40
" 1807 0°
A P
< 225° 315°
270°
Occipital Lobe -
135° 45°

180°

l»
S
o
o

a3 T

concept, we computed the intrinsic functional distance for regions that
occupy distinct locations in the embedding space, namely the occipital
lobe, which was densely clustered in the periphery, and the hippocam-
pus, which was clustered centrally in the embedding. When the intrinsic
functional distance to the occipital lobe was mapped as a color gradi-
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ent on the brain surface, the dorsal and ventral visual streams (Goodale,
2011; Goodale and Milner, 1992; Ungerleider, 1982) became apparent
(Fig. 4, left), consistent with the hypothesis that distance in this embed-
ding space preserves functionally relevant information. In contrast, the
hippocampus also had a relatively homogeneous cluster in the isomap
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embedding, but showed a much more distributed surface map gradient rest2vec could be used to identify functional subnetworks within in-
to regions of the default mode network (DMN), such as the precuneus, dividual regions based on their clustering within the isomap embed-
prefrontal cortex, thalamus, and inferior parietal lobule (Fig. 4, right). ding. As a test case, we examined the isomap embedding pattern for the
While certain anatomical regions showed a relatively homogeneous precuneus, which is known to participate in different networks across
clustering in the isomap embedding, such as the occipital lobe, others its dorsal-anterior/ventral-posterior axes (Cavanna and Trimble, 2006;

showed heterogeneous clustering patterns. Thus we hypothesized that Zhang and Li, 2012). The bivariate kernel density estimate plot of the
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Fig. 4. Intrinsic functional distance mapping with rest2vec. (Left) Occipital lobe. (Right) Hippocampus. (Top) Kernel density estimate plots of the occipital lobe and
hippocampus in the isomap embedding. The intrinsic functional distance was then computed from the mean embedding coordinate of either the occipital lobe or the
hippocampus to all other regions in the brain. Darker color indicates the region is closer to the mean coordinate of the occipital lobe or hippocampus, respectively.
(Bottom) Intrinsic functional distance gradient projected onto the Freesurfer pial surface template. A: anterior. P: posterior.

precuneus ROIs in the Diez dataset suggested the presence of two pri-
mary clusters (Fig. 5, top left). To investigate this further, we used k-
means clustering to formally assign precuneus ROIs to one of two clus-
ters (Fig. 5, top middle). A meta-cluster was made that included all
other regions in the Diez dataset by assigning regions to the precuneus
cluster they were closer to. We then measured the intrinsic functional
distance between each region to its precuneus cluster centroid to as-
sign an affiliation value to each region (Fig. 5, top right). The brain
surface map projection of these data demarcated these two cluster cen-
troids into the dorsal-anterior precuneus and the ventral-posterior pre-
cuneus (Fig. 5, bottom). The dorsal-anterior cluster of the precuneus
was most strongly affiliated with the occipital and superior parietal re-
gions, as well as the paracentral lobule, middle and superior tempo-
ral cortices, and thalamus (Fig. 5, middle). The ventral-posterior cluster
of the precuneus was most strongly affiliated with the hippocampus,
cuneus, cerebellum, parahippocampal cortex, posterior cingulate cor-
tex, calcarine cortex, amygdala, and superior occipital cortices. Thus
we showed that performing clustering analyses on a particular region in
this space (e.g., precuneus) revealed multiple, distinct connectivity gra-
dients, which have been previously reported in the literature. Together,
this demonstrates how rest2vec’s intrinsic functional distance can be
used to discover functional connectivity gradients.

3.2. rest2vec provides a framework for functional connectome parcellation

Since rest2vec could identify functionally relevant connectivity gra-
dients within anatomical lobes, we next asked if rest2vec could be used

to study functional community parcellation. We hypothesized that if
the rest2vec embedding is preserving the functional organization of
the connectome, then these functional communities would be clustered
together in the embedding. Additionally, the contribution of negative
edges should also yield the best clustering in the embedding space.

To test this, we computed the community assignment labels for the
group average Pearson correlation connectome (W) using the Louvain
community algorithm (Blondel et al., 2008; Rubinov and Sporns, 2010).
We did the same procedure using the connectome with negative edges
removed (W™) and the absolute value of the connectome (|W|). We cal-
culated the silhouette coefficient (Rousseeuw, 1987) as a metric of clus-
tering performance for each connectome, as well as a random permuta-
tion of the labels from W as a negative control, across 100 iterations of
the Louvain algorithm. One-way ANOVA followed by Tukey’s post hoc
test revealed that the silhouette coefficient was statistically significantly
higher in both datasets for the Louvain community partition using the
original connectome W, followed by W*, |W|, and randomly assigned
labels having the lowest silhouette score (p < 0.001 for all pairwise com-
parisons) (Fig. 6, bottom).

These results indicate that (i) the rest2vec embedding preserves func-
tional modularity, as demonstrated independently using the Louvain
community algorithm, and (ii) the contribution of negative edges yields
the highest silhouette score, indicative of better clustering of functional
communities. Together, this suggests that rest2vec is able to map func-
tional community relationships into a lower-dimensional embedding
space, and that the contribution of negative edges best preserves this
mapping.
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In addition to the Louvain community algorithm, which provides
discrete comunity labels for each ROI, we also used the primary eigen-
vector q of the centered kernel similarity matrix K as a way to partition
the connectome into the first two communities, similar to the Fiedler
vector in traditional spectral clustering methods. To set the partition,
the index of regions corresponding to g; > 0 were assigned to commu-
nity V,, and the index of regions corresponding to ¢; < 0 were assigned
to community V. This approach was validated by iteratively evaluating
the maximum mean discpreancy (MMD) across 50 threshold values of q
(Figure A.6). The results suggest that the MMD is maximized when the
partition yields communities of approximately equal size, which occurs
for both datasets when the partition threshold for ¢; ~ 0.

When the magnitude and sign of ¢; are mapped to a diverging col-
ormap in the isomap space, it was observed that regions closer to the
vertical axis appeared more neutral, whereas regions further from the
vertical axis were polarized into either community, suggesting these
regions are more strongly mapped into that community. As observed
earlier in Fig. 2, we found that the partition demarcated into the pu-
tative task-positive network (TPN) and task-negative network (TNN,
also called default mode network (DMN)). This relationship can be seen
when the primary eigenvector gradient is used to sort the ® matrix for
each datasets, where the resulting grid communities show out-of-phase
relationships with the other community (Fig. 7, right). This can also be
observed anatomically when the eigenvector gradient is mapped to the
brain surface (Fig. 7, bottom).

Taken together, these data suggest that rest2vec is able to recover
functional community information, while also accounting for the pres-
ence of negative edges, thereby removing heuristic steps that may bias
downstream analyses as a result. Finally, we show that rest2vec can
model these communities using a continuous gradient mapping, going
beyond traditional discrete community labeling methods.

3.3. rest2vec is consistent with Neurosynth meta-analysis association terms

Finally, we sought to connect rest2vec to behavioral metrics. We
used meta-analysis terms from the Neurosynth database (Yarkoni et al.,
2011) to obtain brain MR images containing the FDR-corrected z-score
association of each voxel to the key term. Then, we were able to query
each MNI coordinate of the Diez dataset with the Neurosynth images to
map each region’s association z-score in the embedding space (Fig. 8).

We examined the embeddings for a selection of behavioral, psy-
chiatric, and physiological terms to show a range of different traits:
“anxiety,” “auditory,” “decision making,” “default mode,” “motor con-
trol,” “reward,” “speech,” and “visual.” Interestingly, “reward,” “anxi-
ety,” and “decision making” were centrally located, suggesting that they
are mapped with more in-phase regions and cluster together within the
embedding space. As a comparison, more physiological terms mapped
closely to their respective anatomical clusters, such as “visual,” “au-
ditory,” and “speech.” “Auditory” and “speech” share notably similar
mappings, suggestive of their shared function in language processing.
Finally, the “default mode” and “motor control” mappings are consis-
tent with both the MMD gradient and Louvain modularity results. To-
gether, this demonstrates that rest2vec can be used to map Neurosynth
meta-analysis terms in the embedding space, offering additional insight
into how the organization of the functional connectome can be linked
to behavior.

” «

4. Discussion

There have been many diverse and interesting approaches using di-
mensionality reduction and gradient mapping for studying brain or-
ganization. Margulies et al. demonstrated the diffusion map embed-
ding method (Margulies et al., 2016), revealing a principal unimodal-
transmodal gradient. In addition, there have been studies linking cy-
toarchitecture to macroscale neuroimaging data for informing corti-
cal gradient mapping (Huntenburg et al., 2018; Paquola et al., 2019),
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as well as seeing how conditions such as ischemic stroke affect the
gradients within the embedding space (Bayrak et al., 2019). Zhang
et al. constructed intrinsic connectivity maps using network motifs re-
ported in the literature with MDS to create a low-dimensional embed-
ding, identifying three gradients across external-internal, modulation-
representation, and anatomical centrality features (Zhang et al., 2019).
Recently, Bethlehem et al. (2020) investigated how the functional com-
munities in their diffusion map embedding space change across age
using a novel dispersion metric. In a different approach, Shafiei et al.
(2020) have proposed using tools from the time series analysis field to
perform feature extraction on the temporal dynamics of functional con-
nectivity to study the intrinsic dynamics of cortical gradients. Interest-
ingly, the principal gradient identified across many of these techniques
bear a striking similarity, suggesting this gradient accounts for much of
the variance of intrinsic functional connectivity.

In this study, we presented a novel graph embedding approach for
rs-fMRI connectivity using rest2vec. Rest2vec improves upon current
methods by using the full range of correlative information and repre-
senting the functional relationships of the brain in a low-dimensional
embedding. Previous studies have suggested that negative correlations
may have important — but still not fully understood — biological roles
(Rubinov and Sporns, 2010). There is evidence that weak functional
connections signficantly contribute to the explanation of cognitive func-
tions in both health and disease (Bassett et al., 2012; Santarnecchi et al.,
2014), and have been shown to be important in other types of complex
networks (Csermely, 2004; Granovetter, 1983; Ma and Gao, 2012; On-
nela et al., 2007; Santarnecchi et al., 2014).

Previous work from our group has demonstrated that using a
probability-based divisive approach with permutation testing could re-
cover the hierarchical community structure of rs-fMRI connectomes
while preserving negative edges, which we called probability-associated
community estimation (PACE) (Zhan et al., 2017). In addition, our
previous study (Ye et al., 2015) demonstrated how nonlinear dimen-
sionality reduction and manifold learning techniques could be used to
investigate the intrinsic geometry of structural connectomes derived
from diffusion imaging. Inspired by these approaches, we sought to
develop a method by which rs-fMRI functional connectomes could be
represented in their intrinsic geometry while also preserving negative
edge relationships. We chose to use the isomap method because it
uses a geodesic distance metric for generating the lower-dimensional
embedding (Tenenbaum et al., 2000). By doing so, distance in the
lower-dimensional embedding conveys meaningful information, and
also yields consistent results across each run, in comparison to stochastic
methods, such as -SNE (van der Maaten and Hinton, 2008).

In the context of functional connectivity, converting the embedding
coordinate system to a polar representation was an intuitive visualiza-
tion decision, as it centers the data around the origin, where regions
with lower @, ; values are mapped closer to the origin and regions with
higher ©, ; values are mapped in the periphery. Interestingly, regions
with a greater number of high ©, ; values (i.e., more out-of-phase rela-
tionships) tended to be unimodal and also have low within-cluster ©; j
values, as seen most clearly in the occipital lobe (Fig. A.10). In contrast,
more centrally-embedded regions tended to be located in brainstem and
sub-lobar regions, and also situated in the “transition zone” of the MMD
gradient. This suggests that these regions may be important for between-
module communication.

By using lower-dimensional embedding distance metrics, we were
able to recover functionally relevant relationships. In the case of the
occipital lobe, mapping the intrinsic functional distance to its cluster
centroid in the isomap embedding generated a gradient map in the
anatomical space of the dorsal and ventral visual streams (Goodale,
2011; Goodale and Milner, 1992). On the dorsal surface, the gradi-
ent proximal to the occipital lobe can be seen going to the posterior
parietal regions, whereas on the ventral surface the proximal gradient
extends from the occipital lobe to the inferior temporal lobe (Fig. 4,
left). In another example, the precuneus had two primary clusters in
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z-scores > () are colored; other regions are displayed in gray. The Neurosynth data was acquired from the “association test” maps for each term.

the isomap embedding. When projected onto the brain surface, these
two clusters demarcated the dorsal-anterior and ventral-posterior por-
tions of the precuneus (Fig. 5). The dorsal-anterior gradient appeared
to primarily consist of the superior parietal, somatomotor, and occip-
ital cortices. The ventral-posterior gradient appeared to be composed
of the posterior cingulate, parahippocampal, and superior occipital cor-
tices and the hippocampus.

There is evidence for the dorsal-anterior and ventral-posterior por-
tions of the precuneus being involved in different functions. A rs-fMRI
study by Zhang and Li (2012) identified the dorsal and anterior por-
tions of the precuneus having stronger connectivity with the occipital,
somatomotor, and posterior parietal cortices and the superior temporal
gyri. In addition, they identified the ventral precuneus as being more
strongly associated with the middle frontal gyrus, posterior cingulate
cortex, cuneus, and calcarine sulcus. This demarcation is thought to
be due to the diverse roles of the precuneus. In particular, the dorsal-
anterior portion of the precuneus, which has strong connectivity with
the occipital and superior parietal cortices, is involved in processing
polymodal imagery and visuospatial information, whereas the ventral-
posterior precuneus is thought to be more involved in episodic memory
retrieval (Cavanna and Trimble, 2006). While the study by Zhang and
Li (2012) further subdivided the precuneus into eight clusters in their

study, our results were largely consistent with their observations, sug-
gesting that rest2vec can detect heterogeneous connectivity patterns
within individual regions.

In addition to representing the intrinsic geometry of functional con-
nectomes, we proposed using the maximum mean discrepancy (MMD)
method by Gretton et al. (2012) to partition the connectome into max-
imally functionally distinct modules. The MMD was originally imple-
mented to detect how different two probability distributions were to
test if they were from the same population (Gretton et al., 2012). For
our use case, we maximized the MMD as an objective function to find
two populations of brain regions such that their distributions are as dis-
tant as possible to identify functional communities. One advantage is
this is a vectorized approach and does not rely on iterative methods. In
addition, this method offers flexibility in the choice of probability and
kernel similarity measures used as input, and so are not limited to only
Pearson correlation measures.

When the functional connectome is represented in its intrinsic em-
bedding using nonlinear dimensionality reduction, the MMD gradient
elicited a strikingly symmetric representation. Upon closer observation,
these two communities were split approximately between the canoni-
cal task-positive network (TPN) and the default mode network (DMN),
consisting of the precuneus, inferior parietal lobule (IPL), posterior cin-
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gulate cortex, hippocampus, and areas of the prefrontal cortex (PFC),
among others (Buckner et al., 2008). This initial bifurcation gradient
is consistent with previous studies (Margulies et al., 2016; Zhan et al.,
2017; Zhang et al., 2019), and is a validation that this embedding pro-
cedure is capturing functionally-relevant characteristics. In addition, we
showed lobe-specific affiliations for the two communities. These results
were consistent with the putative DMN/TPN split. Notably, the IPL and
precuneus are shown in contrast to the postcentral regions within the
parietal lobe; similarly, the PFC and pre-motor areas show clear bound-
aries. In addition, the contribution of the second and third eigenvectors
offer additional insight into the functional demarcations of the connec-
tome. Together, these results demonstrated that using this MMD max-
imization approach yielded reproducible and biologically-meaningful
connectome partition gradients, and that the properties of these com-
munities can be represented using dimensionality reduction.

In this study, we focused on analyzing the resting-state connectome’s
intrinsic geometry with rest2vec, as it is thought to represent the brain’s
inherent functional connectivity. In principle, rest2vec could be applied
similarly to task fMRI connectomes to study how the architecture of the
embedding space is altered due to task activity. Cole et al. have previ-
ously suggested that there is a “task-general” architecture of the func-
tional connectome that is shared across a variety of tasks (Cole et al.,
2014). Future work investigating how task embedding spaces are dis-
tinct from rest could lead to interesting insights into the gradient orga-
nization of the brain as it engages between rest and task states.

An open question is how the functional embedding space may relate
to structural connectivity. For example, structural connectomes have
an intuitive relationship to network navigation (Seguin et al., 2018).
Seguin et al. (2018) discovered that the navigation routing score for
brain regions is negatively correlated with their functional connectivity
strength. In our present study, we demonstrated the link between Eu-
clidean distance in the functional embedding space and gradients in the
anatomical space. An interesting approach for future work would be to
determine the relationship between structural network navigation and
intrinsic functional connectome geometry.

Allard and Serrano (2020) recently published a study using hyper-
bolic space to study structural connectome navigation across multiple
species. Of particular interest, the hyperbolic representation of the struc-
tural connectome with the Yeo 17 functional network labels (Yeo et al.,
2011) revealed a noticeable segregation of the functional communities.
Together, this suggests that representing both structural and functional
networks in their intrinsic geometries is preserving organizational prop-
erties that are otherwise obscured by the anatomical spatial embedding
of the brain; future work that could integrate or compare the structural
and functional connectome embeddings may help to shed more light on
the brain’s communication properties as inferred by these two modali-
ties.

4.1. Limitations and future directions

In this paper, we used rs-fMRI connectomes from a group of subjects
in order to compute the probability of there being a negative correlation
between each pairwise edge between regions. While this approach led
to consistent results across two independent datasets, we did not assess
how robust this procedure was to inter-subject variability or the size of
groups. In addition, while average rs-fMRI connectomes yield a wealth
of functional connectivity information, they are a static representation
of a dynamic process. Furthermore, there has been increasing empha-
sis on individual connectome analysis with aims towards personalized
medicine (Finn et al., 2015; Miranda-Dominguez et al., 2014). To that
end, future improvements on these methods will need to incorporate
dynamic as well as subject-specific analyses of functional connectivity.
Recent works by Betzel and Bassett (2017) and Gosak et al. (2019) have
suggested the concept of hierarchical or multi-scale networks, which
could lead to natural extensions of this work via subject embedding
spaces which are in turn composed of network embedding spaces.
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While we show how rest2vec can be linked to the maximum mean
discrepancy and show the partition gradients for the first three eigenvec-
tors of the kernel similarity matrix, further work will need to be done
to develop a hierarchical way to detect N communities with this ap-
proach. In addition, more robust methods could be used for maximizing
the MMD objective function to avoid the possibility of local maxima
to achieve better accuracy. While we highlight the theoretical relation-
ship between rest2vec and the MMD, as rest2vec is a low-dimensional
embedding technique users are not limited to using the MMD to study
functional communities in the embedding space, as we demonstrated
with the widely-used Louvain community algorithm (Fig. 6).

4.2. Conclusions

Rest2vec incorporates both positive and negative edge connectiv-
ity using a model inspired by statistical mechanics to transform func-
tional connectome data into phase angle relationships. This representa-
tion of the connectome can be combined with nonlinear dimensionality
reduction techniques to represent the intrinsic geometry of the func-
tional connectome in a lower-dimensional embedding. Together, these
methods allow for a vectorized approach to investigate the functional
relationships and connectivity gradients of rs-fMRI data. In addition, we
connected rest2vec to the maximum mean discrepancy metric to demon-
strate how rest2vec can be used to address the modularity problem as
a kernel two-sample test. Finally, we show how rest2vec can be con-
nected to behavioral data using the Neurosynth meta-analysis database
to project behavioral scores in the embedding space. In summary, we
presented a rs-fMRI connectome graph embedding technique that uses
nonlinear dimensionality reduction and statistical learning methods to
create a low-dimensional representation of the intrinsic geometry of the
functional connectome.
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