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constraints. The solution will be a set of gain matrices mapped

to each possible sampling rate value and system stability is

guaranteed under arbitrary sampling rate switching trajectories.

Then we develop a novel co-regulated MPC strategy wherein

both the system state trajectory and the sampling rate trajectory

are predicted within the receding horizon. This results in a

more aggressive control solution for co-regulated systems to

handle highly dynamic environments. The effectiveness of the

proposed controllers are demonstrated based on a linearized

multicopter UAS model [5]. The proposed control strategies

can be easily applied to co-regulation design in different

application scenarios. The controllers presented here are correct

by construction, thereby guaranteeing the safety and stability of

the co-regulated system at design time compared with previous

control strategies.

II. CO-REGULATED SYSTEM MODEL

Figure 1 shows a block diagram of co-regulation representing

an augmented, stacked state-space system

ẋp = Axp +Bup(xp, xc)

ẋc = uc(xp, xc)
(1)

where xp and up are the traditional physical system states and

control inputs, xc is the state representing the sampling rate, and

uc is the computational control input that regulates the sampling

rate. In this work we assume the physical system is controllable,

and direct feedback of the full states xp and xc are available.

Output from a computational model representing sampling

rate is fed to the physical controller which adjusts physical

system performance accordingly. Simultaneously, output from

the physical plant is fed to the cyber controller which adjusts

sampling rate in response to physical performance [5]. up and

uc are functions of both xp and xc, thus control performance

and sampling rate are directly linked. Since the sampling rate

dynamically changes at discrete intervals, the corresponding

discrete-time system matrices Φ and Γ become functions of

the sampling rate value at each time index, xc[k]. In this work,

we focus on the analysis in discrete time because the proposed

control algorithms will be implemented in digital computers.

The resulting discrete-time-varying system model with respect

to time index k is then,

xp[k + 1] = Φ(xc[k])xp[k] + Γ(xc[k])up[k] (2)

and the control input is

up[k] = up(xp[k], xc[k]). (3)

We can now design a feedback computational control law

to calculate the coupled control input uc, which adjusts the

sampling rate, in real time, as the dynamics of the system

change. In previous work [5] we presented a computational

system control law as

uc[k] =

pushes rate higher with state error

Kcp ‖xp[k]− xp,ref [k]‖−

pushes rate towards its reference

Kc (xc[k]− xc,ref [k]) .
(4)

The coupling gain, Kcp, is used to increase the sampling

rate of the system in response to physical state error. The

gain, Kc, drives xc toward a desired reference sampling rate

xc,ref , chosen to minimize resource usage and maintain system

stability. xp,ref [k] denotes the physical states reference at time

index k. In this work we assume xp,ref = 0 to simplify the

notation. Kcp and Kc are found by employing an optimization

scheme that minimizes a cost function composed of custom

metrics measuring resource usage, control performance, and

energy consumption [5]. Hence at sampling instance k, the

discrete-time computational system model can be denoted as

x′

c[k + 1] = xc[k] +
1

xc[k]
uc[k]

xc[k + 1] = x′

c[k + 1] rounded to nearest value in Σ,

(5)

where Σ = {f1, f2, . . . , fN} is a pre-defined finite set that

contains stable sampling rate values as prescribed operating

points. This limits the sampling rate of the co-regulated system

to a finite number to simplify the analysis. The bounds and

the resolution of the values in Σ can be customized depending

on the application. The general rule to generate Σ is to:

1) set the upper bound based on the system computational

bandwidth given all other computing tasks,

2) set the lower bound to the rate where system performance

degrades beyond acceptable limits, or otherwise is

unstable,

3) set the resolution based on the system dynamics and

application scenarios, that can guarantee system stability

and accommodate performance requirements, such as

disturbance rejection, dynamic response, etc.

The next sampling rate can then be calculated by (4) and (5)

based on the current plant states.

III. EXPLICIT SOLUTION - INFINITE HORIZON DESIGN

We now introduce an Infinite Horizon Control (IHC) design

strategy for co-regulated systems that stabilizes the system

under arbitrary sampling rate switching trajectories among all

possible values in Σ. This will result in a set of explicit gain

matrices that can be stored as a look-up table, enabling fast,

online implementations. The physical system controller (3) is

then up[k] = −Kp(xc[k])xp[k]. The advantage of this IHC

design strategy is that the controller synthesis problem can be

solved offline without any dependency on the state or sampling

rate trajectory.

The physical system model (2) can then be represented as

xp[k + 1] = A(xc[k])xp[k],

A(xc[k]) = Φ(xc[k])− Γ(xc[k])Kp(xc[k]).
(6)

Then the co-regulated system can be analyzed as a switched

system where the sampling rate, xc, is treated as an arbitrary

switching sequence that takes values in the set Σ. Therefore,

system evolution will be characterized by an infinite product

of closed-loop matrices taken from A(xc). The proposed

controller in this section will provide control gain matrices

Kp(xc) for each sampling rate in Σ.

A general linear quadratic optimal controller is designed

by minimizing the cost function J =
∫

∞

0
(xp(t)

TQxp(t) +
up(t)

TRup(t))dt, where Q = QT > 0 and R = RT >

0. Since the sampling rate of the co-regulated system is

time-varying, we denote the cost by integrating over the

sampling interval trajectory as J =
∑

∞

k=0 J [k], where
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J [k] =
∫ t[k]+ 1

xc[k]

t[k]

(

xp(t)
TQxp(t) + up(t)

TRup(t)
)

dt. Since

the control input up(t) is constant over each sampling period,

the cost can be equivalently denoted in discrete time as [7]

J [k] = xp[k]
TQ1[k]xp[k] + 2xp[k]

TQ12[k]up[k]

+ up[k]
TQ2[k]up[k],

(7)

where

Q1[k] =

∫ 1/xc[k]

0

Φ(τ)TQΦ(τ)dτ,

Q12[k] =

∫ 1/xc[k]

0

Φ(τ)TQΓ(τ)dτ,

Q2[k] =

∫ 1/xc[k]

0

(Γ(τ)TQΓ(τ) +R)dτ,

Φ(τ) = eAτ , Γ(τ) =

∫ τ

0

eAηBdη,

(8)

A and B are the system matrices in (1). We then seek to

calculate the control gain matrices Kp(xc), ∀xc ∈ Σ by

minimizing the infinite horizon cost function J .

The co-regulated system stability is analyzed by drawing

from results in the control community on aperiodic sampling [4]

and switched system [8] analysis. In this section we design a

correct-by-construction controller to guarantee the asymptotic

stability of co-regulated system over all possible sampling rate

switching trajectories. The idea of this controller design is

based on two arguments:

• The co-regulated system is asymptotically stable if

there exists a positive definite Lyapunov function

V (xp[k], xc[k]) = xp[k]
TP (xc[k])xp[k] such that

α1(‖xp[k]‖) ≤ V (xp[k], xc[k]) ≤ α2(‖xp[k]‖), and

whose difference along the solution of (6) is negative

definite. That is, ∆V (xp[k], xc[k]) = V (xp[k+1], xc[k+
1]) − V (xp[k], xc[k]) ≤ −α3(‖xp[k]‖) can be satisfied

∀xp[k] ∈ R
n and ∀xc[k] ∈ Σ, where α1(·), α2(·) and

α3(·) are k∞ functions [9].

• Since the sampling rate is evolving at runtime and its

trajectory is not known in advance, the best we can do is

to minimize the upper bound of all possible trajectories.

Based on the discrete cost function at each sampling

interval (7), we denote the upper bound cost value as

Jcoreg =
∑

∞

k=0 max
xc[k]∈Σ

J [k]. Thus, Jcoreg corresponds to

the worst-case scenario leading to the largest cost value

among all possible sampling rate trajectories.

The optimization problem for the co-regulated controller

design can be formulated by combining the above two

arguments together as:

min
up[k]

Jcoreg

Subject to: ∆V (xp[k], xc[k]) < 0.
(9)

To build a numerically tractable optimization problem, we

leverage results from [10] to construct a correct-by-construction

stable controller for co-regulated systems.

Theorem 1: For the co-regulated system in (6), assume there

exists a set of control gain matrices Kp(xc) for each possible

sampling rate value xc ∈ Σ, and the control law

up[k] = −Kp(xc[k])xp[k] (10)

is applied at each time index k. The closed-loop co-regulated

system is asymptotically stable for all sampling rate switching

trajectories if there exists P = PT > 0 such that

A(xc)
TPA(xc)− P +Q1(xc)−Q12(xc)Kp(xc)−

Kp(xc)
TQ12(xc)

T +Kp(xc)
TQ2(xc)Kp(xc) < 0

(11)

can be met for all xc ∈ Σ. A(xc) is defined in (6), Q1(xc),
Q2(xc) and Q12(xc) are calculated based on (8) for all possible

sampling rate values in Σ. Moreover, the upper bound of the

infinite horizon cost in (9) can be denoted as

Jcoreg = xp[0]
TPxp[0], (12)

where xp[0] is the initial state.

Proof: The uncertainty of the sampling rate xc[k] trajec-

tory brings challenges in constructing a time-varying Lyapunov

function parameter P (xc[k]). Since our goal is to synthesize sta-

ble controllers, we can choose P (xc[k]) = P > 0 to construct a

common Lyapunov function V (xp[k], xc[k]) = xp[k]
TPxp[k]

∀xc ∈ Σ. V satisfies α2(‖xp[k]‖) = λmax(P ) ‖xp[k]‖
2

where

λmax is the largest eigenvalue, and α1(‖xp[k]‖) = σ ‖xp[k]‖
2

where σ is a small positive scalar. The difference of the

Lyapunov function along the solution of (6) is given by

∆V (xp[k], xc[k]) = V (xp[k + 1], xc[k + 1])−

V (xp[k], xc[k]) = xp[k]
T (A(xc[k])

TPA(xc[k])− P )xp[k].

Further, based on the constraints in (11), we conclude:

∆V (xp[k], xc[k]) < −xp[k]
T (Q1[k]−Q12[k]Kp(xc[k])−

Kp(xc[k])
TQ12[k]

T +Kp(xc[k])
TQ2[k]Kp(xc[k]))xp[k].

(13)

Substituting Q1[k], Q12[k] and Q2[k] from (8) into (13), the

right hand side becomes

−xp[k]
T

∫ 1
xc[k]

0

(Φ(τ)− Γ(τ)Kp(xc[k]))
TQ(Φ(τ)− Γ(τ)Kp(xc[k]))dτ xp[k]

−xp[k]
T

∫ 1
xc[k]

0

(Γ(τ)Kp(xc[k]))
TR(Γ(τ)Kp(xc[k]))dτ xp[k].

This implies ∆V (xp[k], xc[k]) < 0 for all non-zero states [10],

hence the co-regulated system is asymptotically stable for all

possible sampling rate trajectories.

Then, we need to prove the upper bound of the infinite

horizon cost is (12). Since the resulting closed-loop system is

asymptotically stable, then xp[∞] = 0 and V (xp[∞], xc[∞]) =
0. By summing (13) from k = 0 to ∞, based on the control

law defined in (10), we get xp[0]
TPxp[0] >

∑

∞

k=0 J [k], where

J [k] is defined in (7) as the cost at time index k. Thus Jcoreg
can be selected as xp[0]

TPxp[0].
With this result the controller design can be recast as follows:

synthesize a set of constant feedback gain matrices, Kp(xc),
∀xc ∈ Σ, such that the control law (10) can minimize the cost

function (12) while satisfying the stability constraints in (11).

Solving the corresponding Riccati inequalities in (11) will

provide P , and hence the controller gain matrices, Kp(xc), for

a co-regulated system. However, a solution can not be obtained

conveniently since (11) is not convex [10].

From [10], we leverage an efficient method to solve this

problem by formulating the stability constraints in (11) as a

set of Linear Matrix Inequalities (LMI) ∀xc ∈ Σ,




W0 (Φ(xc)W0−Γ(xc)W (xc))
T [W0 −W (xc)

T ]
Φ(xc)W0−Γ(xc)W (xc) W0 0

[

W0

−W (xc)

]

0 Q(xc)
−1



 > 0.

(14)

Authorized licensed use limited to: University of Nebraska - Lincoln. Downloaded on December 17,2020 at 19:40:30 UTC from IEEE Xplore.  Restrictions apply. 



2475-1456 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2020.3044261, IEEE Control

Systems Letters

where W0 = P−1, W (xc) = Kp(xc)P
−1, I is the identity

matrix and

Q(xc) =

[

Q1(xc) Q12(xc)
Q12(xc)

T Q2(xc)

]

. (15)

The satisfaction of all LMIs in (14) provides stability constraints

for the optimization. The objective function for the optimization

is Jcoreg = xp[0]
TPxp[0]. It is equivalent to minimize the

trace of P or W−1
0 [10], although the problem is now non-

convex. A convex equivalent can be had by minimizing

log(det(W−1
0 )) [10]. Thus the controller synthesis algorithm

for co-regulated system can be summarized as:

min
W0,W (xc)

log(det(W−1
0 ))

subject to: W0 = WT
0 > 0, validate (14) ∀xc ∈ Σ.

(16)

Then the set of control matrices K(xc) can be achieved as:

K(xc) = W (xc)W
−1
0 , ∀xc ∈ Σ. (17)

This control strategy provides an explicit solution for

co-regulated systems by calculating control gain matrices

corresponding to each sampling rate. The asymptotic stability

of the co-regulated system can be guaranteed for all possible

sampling rate trajectories. This analysis is focused on a discrete-

time co-regulated system model (6) that captures the behavior

of the continuous model (1) at sampling times. The results

from related literature (Proposition 16 in [4]) has shown that

for a Linear Time-Invariant (LTI) sampled data system, the

asymptotic stability in continuous-time and in discrete-time are

equivalent. Thus the asymptotic stability of the continuous-time

co-regulated system model (1) can also be guaranteed.

IV. ONLINE SOLUTION - MPC FOR CO-REGULATION

The explicit control strategy in Section III provides a stable

but conservative solution since the optimization problem is

constructed as minimizing the upper bound of the infinite

horizon cost among all possible sampling rate trajectories.

However, the sampling rate trajectory of a co-regulated system

is propagated based on the computational system control model

in (4) and (5). This allows us to design a co-regulated MPC

strategy that predicts both system states and sampling rate

trajectories within the prediction horizon based on the current

measurements. The proposed control algorithm builds on hybrid

MPC design for Linear Parameter Varying (LPV) systems [11],

with the unique feature of predicting both system states and

sampling rate trajectories within the receding horizon.

The goal is to provide an optimal feedback control law

up[k] = u∗(xp[k], xc[k]) (18)

depending on the current state value, xp[k], and sampling rate

value, xc[k]. Following the receding horizon control strategy,

only the first computed control input in the solution sequence,

u∗, is applied to the plant during the current time index, k.

At the next time index, a new MPC problem based on new

measurements is solved over a shifted horizon. We define the

cost function for co-regulated systems as

J(xp[k], up[k]) = xp[k +N ]TPxp[k +N ]+
N−1
∑

i=0

(

xp[k + i]TQxp[k + i] + up[k + i]TRup[k + i]
)

,

(19)

where P , Q, R are symmetric positive definite matrices.

The co-regulated MPC problem is then constructed as

up[k] = u∗(xp[k], xc[k]) = argmin
up

J(xp[k], up[k])

Subject to:

xp[k + i+ 1] = Φ(xc[k])xp[k + i] + Γ(xc[k])up[k + i],

uc[k + i] = Kcp ‖xp[k + i]‖ −Kc (xc[k + i]− xc,ref ) ,

x′

c[k + i+ 1] = xc[k + i] +
1

xc[k + i]
uc[k + i],

xc[k + i+ 1] = x′

c[k + i+ 1] rounded to nearest value in Σ,

xp[k + i+ 1] ∈ X, xp[k +N ] ∈ Xf , up[k + i] ∈ U,
(20)

where X, U, and Xf are state, control, and terminal state

constraints and are convex polytopes. The closed-loop stability

and feasibility of the co-regulated system under MPC can be

ensured by choosing the appropriate terminal weight, P , and

terminal set, Xf , leveraging the results from [12]–[14].

It has been shown that for LPV systems, if the terminal set

Xf is configured as the maximal positive invariant set [15] for

the closed-loop system for all affecting parameters, the receding

horizon control problem is persistently feasible [14]. For co-

regulated systems (6), the terminal set can be configured as

OLQR
∞

. OLQR
∞

is associated with the state and input constraints

and defined as the maximum positive invariant set for all xc ∈ Σ
of the multi-model closed-loop system xp[k+1] = A(xc)xp[k],
where A(xc) = Φ(xc)−Γ(xc)KLQR(xc), KLQR (xc) denotes

the LQR gains associated with sampling rate xc. The co-

regulated MPC problem (20) is feasible for all k ≥ 0 if

Xf = OLQR
∞

and if xp[0] ∈ κN (OLQR
∞

). κN denotes the N -

step controllable set, indicating there exists a sequence of N

inputs that evolves the system to the set OLQR
∞

while satisfying

the constraints. The proof for feasibility of this LPV-MPC

problem can be found in [14]. We leverage the method in [14]

to calculate the OLQR
∞

for our co-regulated UAS model. The

maximum positive invariant sets for the discrete UAS models

corresponding to each possible sampling rate values xc ∈ Σ
are computed considering the state and control constraints, then

OLQR
∞

can be achieved as the invariant set for all xc ∈ Σ [14].

The operations calculating OLQR
∞

can be performed using the

Multi-Parametric Toolbox (MPT) in MATLAB [16].

To guarantee the co-regulated MPC stability, we extend the

method in [13] to construct the terminal weight matrix P to

determine the terminal cost. The conventional approach to

guarantee stability for LTI system with an MPC controller is to

select P as the solution of the algebraic Riccati equation [13].

A co-regulated system contains a set of solutions for the Riccati

equations corresponding to each xc ∈ Σ (e.g., P (xc)). An upper

bound of the terminal cost needs to be determined among all

models in the multi-model description. The P value in co-

regulated MPC (19) must be satisfied ∀xc ∈ Σ [13]

A(xc)
TPA(xc) +KLQR(xc)

TRKLQR(xc) +Q− P ≤ 0,
(21)

Different ways to find P are introduced in [13], [14], but P

must satisfy all LMIs in (21) to guarantee stability.

Theorem 2: Consider the co-regulated system model (2) and

optimal control law (19), (20). Assume X, Xf , U are closed and

contain the origin in their interior, and Xf is control invariant
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