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Controller Design for Time-varying Sampling,
Co-Regulated Systems

Xinkai Zhang and Justin Bradley

Abstract— “Co-regulation” is a time-varying periodic
sampling strategy wherein the sampling rate is dynamically
adjusted in response to the performance of the controlled
system. The controller for co-regulated system needs to
adjust control outputs corresponding to the current (chang-
ing) sampling rate. This makes performance guarantees
such as stability difficult to obtain. In this paper we develop
two stability guaranteed control algorithms for co-regulated
systems. First is a correct-by-construction stabilizing con-
troller where the control gain matrices are pre-computed
offline for a set of sampling rates. This method allows for
arbitrary switching of the sampling rates but as a result
can be overly conservative. Then a hybrid Model Predic-
tive Control (MPC) algorithm is tailored for co-regulated
systems where both the system state trajectory and the
sampling rate (scheduling parameter) trajectory are pre-
dicted within the receding horizon. The performances of the
proposed controllers are demonstrated and discussed for a
co-regulated multicopter Unmanned Aircraft System (UAS).
The results show co-regulation can efficiently reallocate
computational resources based on control performance by
varying the sampling rate at runtime, while the proposed
control strategies can guarantee co-regulated system sta-
bility when working under a time-varying sampling rate.

Index Terms— Sampled-data control, Time-varying sys-
tems, Lyapunov methods, Control applications

[. INTRODUCTION

HE computational challenges presented by the new gen-
eration of autonomous systems requires careful allocation
of computational resources to accomplish mission objectives.
For control systems this dynamic resource allocation challenge
can be met through aperiodic sampling strategies, exemplified
by event-triggered control [1], or self-triggered control [2].
We have developed a strategy, “co-regulation,” [3] wherein
sampling rate and control inputs are simultaneously changed to
adjust overall system performance and reallocate computational
resources. In co-regulation, a specially designed controller
adjusts performance as a function of the sampling rate governed
by a “computational controller” that reallocates computation
in the form of sampling rate to the controller based on
performance.
The novelty of co-regulation is in its coupling of computa-
tional and physical systems via equations of motion rather than
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incorporating the delays of motion into the models used for task
scheduling. In this way, the controller is designed to depend on
the changing sampling rate, and the sampling rate is designed
to depend on system performance. Different from conventional
self-triggered control wherein the sampling interval is decided
by complex, online optimization [4], co-regulation calculates
the sampling rate trajectory via a separate computational
feedback controller that can be executed extremely fast (i.e.,
O(1) complexity) with negligible resource consumption much
like a PID controller [3]. Co-regulation serves as the basis for
developing the required mathematical, real-time scheduling,
and time-varying controller foundations needed to build a more
complete resource-aware, cyber-physical autonomy.
Designing controllers for co-regulated systems presents
new challenges because traditional computer-based controllers
correspond to a single sampling rate. Varying that sampling rate
results in unpredictable performance. As a result, co-regulated
controllers need to adjust their gain to correspond with the time-
varying sampling rate. Simultaneously, the computational con-
troller changing sampling rate must respond to the performance
needs of the system while avoiding potentially destabilizing
sampling rates and still meeting other scheduling deadlines. In
previous work [5], a Gain-Scheduled Discrete Linear Quadratic
Regulator (GSDLQR) control algorithm was designed for a
co-regulated Unmanned Aircraft System (UAS). The stability
of the system was analyzed in [6], however, the co-regulated
system stability cannot be guaranteed during the control design
process. Rather, we can only verify if the designed GSDLQR
controller can stabilize a specific system model. In this work,
we focus on designing stability-guaranteed controllers based
on a general, linear system model. We first provide an explicit
approach where an infinite horizon optimal control problem
is built for co-regulated systems with customized stability
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Fig. 1: Co-Regulation Block Diagram [5]
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constraints. The solution will be a set of gain matrices mapped
to each possible sampling rate value and system stability is

guaranteed under arbitrary sampling rate switching trajectories.

Then we develop a novel co-regulated MPC strategy wherein
both the system state trajectory and the sampling rate trajectory
are predicted within the receding horizon. This results in a
more aggressive control solution for co-regulated systems to
handle highly dynamic environments. The effectiveness of the
proposed controllers are demonstrated based on a linearized
multicopter UAS model [5]. The proposed control strategies
can be easily applied to co-regulation design in different
application scenarios. The controllers presented here are correct
by construction, thereby guaranteeing the safety and stability of
the co-regulated system at design time compared with previous
control strategies.

II. CO-REGULATED SYSTEM MODEL

Figure 1 shows a block diagram of co-regulation representing
an augmented, stacked state-space system
ip = Azp + Bup(zp, 20)

(D

-T.Cc = uc(gjpa xc)

where z,, and w,, are the traditional physical system states and
control inputs, x.. is the state representing the sampling rate, and
1. is the computational control input that regulates the sampling
rate. In this work we assume the physical system is controllable,
and direct feedback of the full states x;,, and z. are available.
Output from a computational model representing sampling
rate is fed to the physical controller which adjusts physical
system performance accordingly. Simultaneously, output from
the physical plant is fed to the cyber controller which adjusts
sampling rate in response to physical performance [5]. u, and
u, are functions of both z;,, and z., thus control performance
and sampling rate are directly linked. Since the sampling rate
dynamically changes at discrete intervals, the corresponding
discrete-time system matrices ® and I" become functions of
the sampling rate value at each time index, x.[k]. In this work,
we focus on the analysis in discrete time because the proposed
control algorithms will be implemented in digital computers.
The resulting discrete-time-varying system model with respect
to time index k is then,

xplk+ 1] = O(z

and the control input is
up[k] = up(wp[k], zc[K]). 3)
We can now design a feedback computational control law
to calculate the coupled control input u., which adjusts the
sampling rate, in real time, as the dynamics of the system

change. In previous work [5] we presented a computational
system control law as

c[k)ap[k] + T (zc[k])up[F] 2

pushes rate higher with state error

welk] = Kop |2y (K] — e Rl = Ko (2elk] — e rep[K]) -
4)

pushes rate towards its reference

The coupling gain, K, is used to increase the sampling
rate of the system in response to physical state error. The
gain, K, drives x. toward a desired reference sampling rate
Ze,ref> Chosen to minimize resource usage and maintain system

stability. ,, e r[k] denotes the physical states reference at time
index k. In this work we assume x,, oy = 0 to simplify the
notation. K, and K. are found by employing an optimization
scheme that minimizes a cost function composed of custom
metrics measuring resource usage, control performance, and
energy consumption [5]. Hence at sampling instance k, the
discrete-time computational system model can be denoted as

wolk +1] = x.[k] + uelk]

zo[k] (5)

xelk + 1] = zL[k + 1] rounded to nearest value in X,

where ¥ = {f1, f2,..., fn} is a pre-defined finite set that
contains stable sampling rate values as prescribed operating
points. This limits the sampling rate of the co-regulated system
to a finite number to simplify the analysis. The bounds and
the resolution of the values in 3 can be customized depending
on the application. The general rule to generate X is to:

1) set the upper bound based on the system computational
bandwidth given all other computing tasks,

2) set the lower bound to the rate where system performance
degrades beyond acceptable limits, or otherwise is
unstable,

3) set the resolution based on the system dynamics and
application scenarios, that can guarantee system stability
and accommodate performance requirements, such as
disturbance rejection, dynamic response, etc.

The next sampling rate can then be calculated by (4) and (5)
based on the current plant states.

[1l. EXPLICIT SOLUTION - INFINITE HORIZON DESIGN

We now introduce an Infinite Horizon Control (IHC) design
strategy for co-regulated systems that stabilizes the system
under arbitrary sampling rate switching trajectories among all
possible values in X. This will result in a set of explicit gain
matrices that can be stored as a look-up table, enabling fast,
online implementations. The physical system controller (3) is
then u,[k] = —K,(z.[k])z,[k]. The advantage of this IHC
design strategy is that the controller synthesis problem can be
solved offline without any dependency on the state or sampling
rate trajectory.

The physical system model (2) can then be represented as

zplk +1] = A(zc[k])ap[k],
A(zc[k]) = @(c[k]) — T(wc[k]) Kp(zc[k]).

Then the co-regulated system can be analyzed as a switched
system where the sampling rate, x., is treated as an arbitrary
switching sequence that takes values in the set . Therefore,
system evolution will be characterized by an infinite product
of closed-loop matrices taken from .A(z.). The proposed
controller in this section will provide control gain matrices
K,(z.) for each sampling rate in X.

A general linear quadratic optimal controller is designed
by minimizing the cost function J = [ (xp(t)" Qup(t) +
up(t)T Ruy(t))dt, where @ = QT > 0 and R = RT >
0. Since the sampling rate of the co-regulated system is
time-varying, we denote the cost by integrating over the
sampling interval trajectory as J = Y7 J[k], where

(6)
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t[k]+ L .
TIE = fyn 7 (@, (67 Qe () + uy (6)7 Ruuy (1)) . Sinee
the control input u,(¢) is constant over each sampling period,
the cost can be equivalently denoted in discrete time as [7]

T[] = wp k] QulK]ap K] + 2 [k]" Qualk]up[K]

T up [T Qa K up ], @
where
1/ [k]
QulH] = / B(r)TQd(r)dr,
1/wo[k]
Q12lk] = / o ()T QT (7)dr,
0 (8)

1/ (k]
@l = [ reyere) + mar

-
(1) = e, T(1) :/ e Bdn),
0
A and B are the system matrices in (1). We then seek to
calculate the control gain matrices K,(z.),Vz. € X by
minimizing the infinite horizon cost function J.

The co-regulated system stability is analyzed by drawing
from results in the control community on aperiodic sampling [4]
and switched system [8] analysis. In this section we design a
correct-by-construction controller to guarantee the asymptotic
stability of co-regulated system over all possible sampling rate
switching trajectories. The idea of this controller design is
based on two arguments:

e The co-regulated system is asymptotically stable if
there exists a positive definite Lyapunov function
V(zplkl,z[k]) = a,[k]" P(x.[k])z,[k] such that
ar(la, k) < Vel zok]) < as(la,[k]l). and
whose difference along the solution of (6) is negative
definite. That is, AV (x,|k], z.[k]) = V(zplk + 1], z.[k +
1)) = V(zplk], zc]k]) < —as(||zp[k]|]) can be satisfied
Vzplk] € R™ and Vz.[k] € X, where as(-), as(-) and
as(+) are koo functions [9].

o Since the sampling rate is evolving at runtime and its
trajectory is not known in advance, the best we can do is
to minimize the upper bound of all possible trajectories.
Based on the discrete cost function at each sampling
interval (7), we denote the upper bound cost value as

Jeoreg = Z,io_o I??X J[k]. Thus, Jeoreq corresponds to
Tz [k]€D
the worst-case scenario leading to the largest cost value

among all possible sampling rate trajectories.

The optimization problem for the co-regulated controller
design can be formulated by combining the above two
arguments together as:

min Jeoreg
up[k] 9)
Subject to: AV (zplk], z.[k]) < 0.
To build a numerically tractable optimization problem, we
leverage results from [10] to construct a correct-by-construction
stable controller for co-regulated systems.

Theorem 1: For the co-regulated system in (6), assume there
exists a set of control gain matrices K, (x.) for each possible
sampling rate value z. € ¥, and the control law

uplk] = —Kp(c[k])p K] (10)

is applied at each time index k. The closed-loop co-regulated
system is asymptotically stable for all sampling rate switching
trajectories if there exists P = PT > 0 such that

A(zC)TPA(xC) — P+ Q1i(x.) — QlQ(xC)K;D(xC)* (11

Kp(xC)TQH(xC)T + Kp(xc)TQ2($c)Kp(mc) <0
can be met for all z, € ¥. A(z.) is defined in (6), Q1(z.),
Q2(x.) and Q12(x.) are calculated based on (8) for all possible
sampling rate values in 2. Moreover, the upper bound of the
infinite horizon cost in (9) can be denoted as

Jcm"eg = xp[O]TP‘TP[O]v
where z,[0] is the initial state.

Proof: The uncertainty of the sampling rate z.[k] trajec-
tory brings challenges in constructing a time-varying Lyapunov
function parameter P(x.[k]). Since our goal is to synthesize sta-
ble controllers, we can choose P(z.[k]) = P > 0 to construct a
common Lyapunov function V (z,[k], z.[k]) = x,[k]T Pz, k]
Vi, € 8.V satisfies aa(||zp[k]|]) = Amax(P) ||xp[k]||2 where
Amax is the largest eigenvalue, and o (||z,[k]]) = o ||z, [K]|?
where o is a small positive scalar. The difference of the
Lyapunov function along the solution of (6) is given by

AV (plk], ze[k]) = V(p[k + 1], zc[k + 1])—
V(zplk], zc[k]) = xp[k]T(A(xcUf])TPA(xC[kD — P)zp[k].
Further, based on the constraints in (11), we conclude:
AVl 2K <~ 17 (Q1[H] — Qualk Ky (el -
Kp(zc[k]) T Qua[k]" + Kp(%[k])TQz[/f]Kp(ﬂfc[k]))xp[k(]l-S)

Substituting Q1 [k], Q12[k] and Q2[k] from (8) into (13), the
right hand side becomes

[k / @) — D) K )T Q(@(7) = D() K () dr K]

12)

a7 [ ) Ky aelb])T ROy (o)) k]

This implies AV (x,[k], z.[k]) < 0 for all non-zero states [10],
hence the co-regulated system is asymptotically stable for all
possible sampling rate trajectories.

Then, we need to prove the upper bound of the infinite
horizon cost is (12). Since the resulting closed-loop system is
asymptotically stable, then z,[0o] = 0 and V' (zp[o0], z.[o0]) =
0. By summing (13) from k = 0 to oo, based on the control
law defined in (10), we get 2,,[0]7 Pz, [0] > >"77, J[k], where
J[k] is defined in (7) as the cost at time index k. Thus Jeoreq
can be selected as z,[0]7 Px,[0]. [ |

With this result the controller design can be recast as follows:
synthesize a set of constant feedback gain matrices, K, (z.),
Vx. € X, such that the control law (10) can minimize the cost
function (12) while satisfying the stability constraints in (11).
Solving the corresponding Riccati inequalities in (11) will
provide P, and hence the controller gain matrices, K, p(xc), for
a co-regulated system. However, a solution can not be obtained
conveniently since (11) is not convex [10].

From [10], we leverage an efficient method to solve this
problem by formulating the stability constraints in (11) as a
set of Linear Matrix Inequalities (LMI) V. € 3,

Wo (P(@e)Wo—T(xe)W (2)) " [Wo W ()T ]
P (z)Wo—T(z)W () Wo 0 > 0.
[_we 0 Qo)
_W(mc) ¢
(14)
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where Wy = P~ W(x.) = Kp(x.)P~!, I is the identity

matrix and
_ Q1(ze) Q12(zc)

Q) = | Quaa)”  Qalzd)]-
The satisfaction of all LMIs in (14) provides stability constraints
for the optimization. The objective function for the optimization
is Jeoreg = 7p[0]7 Px,[0]. It is equivalent to minimize the
trace of P or W ! [10], although the problem is now non-
convex. A convex equivalent can be had by minimizing
log(det(W; *)) [10]. Thus the controller synthesis algorithm
for co-regulated system can be summarized as:

log(det (W, ™))

15)

min
Wo, W (z.)
subject to: Wy = W > 0, validate (14) Vz, € .
Then the set of control matrices K (x.) can be achieved as:
K(z.) = W(JCC)W(;17 V. € X. a7
This control strategy provides an explicit solution for
co-regulated systems by calculating control gain matrices
corresponding to each sampling rate. The asymptotic stability
of the co-regulated system can be guaranteed for all possible
sampling rate trajectories. This analysis is focused on a discrete-
time co-regulated system model (6) that captures the behavior
of the continuous model (1) at sampling times. The results
from related literature (Proposition 16 in [4]) has shown that
for a Linear Time-Invariant (LTI) sampled data system, the
asymptotic stability in continuous-time and in discrete-time are
equivalent. Thus the asymptotic stability of the continuous-time
co-regulated system model (1) can also be guaranteed.

(16)

[V. ONLINE SOLUTION - MPC FOR CO-REGULATION

The explicit control strategy in Section III provides a stable
but conservative solution since the optimization problem is
constructed as minimizing the upper bound of the infinite
horizon cost among all possible sampling rate trajectories.
However, the sampling rate trajectory of a co-regulated system
is propagated based on the computational system control model
in (4) and (5). This allows us to design a co-regulated MPC
strategy that predicts both system states and sampling rate
trajectories within the prediction horizon based on the current
measurements. The proposed control algorithm builds on hybrid
MPC design for Linear Parameter Varying (LPV) systems [11],
with the unique feature of predicting both system states and
sampling rate trajectories within the receding horizon.

The goal is to provide an optimal feedback control law

uplk] = u”(xp k], xc[k]) (18)
depending on the current state value, x,, [k], and sampling rate
value, z.[k]. Following the receding horizon control strategy,
only the first computed control input in the solution sequence,
u*, is applied to the plant during the current time index, k.
At the next time index, a new MPC problem based on new
measurements is solved over a shifted horizon. We define the
cost function for co-regulated systems as

J(xp[K], up[k]) = @plk + N]T Pay[k + N]+

N—-1
(zp[k + i) Quplk + 4] + uplk + 4] Ruy[k + 1)) ,

i=0
19)

where P, ), R are symmetric positive definite matrices.
The co-regulated MPC problem is then constructed as

uplk] = u* (zplk], z.[k]) = arg Hlin J(@plk], upk])

Subject to:
gl i+ 1] = B(ae ] [k + i) + T (e ] uyk + ],
uclk +1] = Kep |lzp[k + 4| — Ko (zc[k + 1] — zeper)

, ) . 1 .
zolk+i+ 1] =a]k+1i+ muc[k + i,
xelk + i+ 1] = zL[k + i + 1] rounded to nearest value in %,
zplk+i+1] €X, [k + N] € Xy, upylk+1il €U,

(20)
where X, U, and X, are state, control, and terminal state
constraints and are convex polytopes. The closed-loop stability
and feasibility of the co-regulated system under MPC can be
ensured by choosing the appropriate terminal weight, P, and
terminal set, Xy, leveraging the results from [12]-[14].

It has been shown that for LPV systems, if the terminal set
Xy is configured as the maximal positive invariant set [15] for
the closed-loop system for all affecting parameters, the receding
horizon control problem is persistently feasible [14]. For co-
regulated systems (6), the terminal set can be configured as
OLRE OLQFE i agsociated with the state and input constraints
and defined as the maximum positive invariant set for all z. € X
of the multi-model closed-loop system z, [k +1] = A(z.)zp k],
where A(z.) = ®(x.) —I'(z:)Krgr(zc), Kror (2.) denotes
the LQR gains associated with sampling rate z.. The co-
regulated MPC problem (20) is feasible for all £ > 0 if
Xy = OLQE and if x,[0] € ky(OLPF). ky denotes the N-
step controllable set, indicating there exists a sequence of N
inputs that evolves the system to the set OL%" while satisfying
the constraints. The proof for feasibility of this LPV-MPC
problem can be found in [14]. We leverage the method in [14]
to calculate the OLPF for our co-regulated UAS model. The
maximum positive invariant sets for the discrete UAS models
corresponding to each possible sampling rate values z. € ¥
are computed considering the state and control constraints, then
OLRQFR can be achieved as the invariant set for all z. € ¥ [14].
The operations calculating OZ9F can be performed using the
Multi-Parametric Toolbox (MPT) in MATLAB [16].

To guarantee the co-regulated MPC stability, we extend the
method in [13] to construct the terminal weight matrix P to
determine the terminal cost. The conventional approach to
guarantee stability for LTI system with an MPC controller is to
select P as the solution of the algebraic Riccati equation [13].
A co-regulated system contains a set of solutions for the Riccati
equations corresponding to each z. € ¥ (e.g., P(x.)). An upper
bound of the terminal cost needs to be determined among all
models in the multi-model description. The P value in co-
regulated MPC (19) must be satisfied Vx, € 3 [13]

A(-rc)TPA(wc> + KLQR(xc)TRKLQR(-rc) + Q -P < Oa
21
Different ways to find P are introduced in [13], [14], but P
must satisfy all LMIs in (21) to guarantee stability.
Theorem 2: Consider the co-regulated system model (2) and
optimal control law (19), (20). Assume X, X, U are closed and
contain the origin in their interior, and Xy is control invariant
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and X; C X [14]. If the terminal weight, P, satisfies inequality
constraints (21), and the terminal constraint X is chosen as
OLR@E the origin of the closed-loop co-regulated system is
asymptotically stable with domain of attraction xy(OL@),
Proof: Consider the co-regulated MPC problem (20)
at time index k. Let z,[k] € rn(OLPF) and let U* =
{uplk]*, uplk + 1], ..., up[k + N — 1]*} be the optimizer of
problem (20) and X = {zp[k], xp[k+1]", ..., xp[k+N]"} be
the corresponding optimal state trajectory. After implementing
the optimal control input u,[k|*, the next state z,[k + 1] is
achieved. Let J*(z,[k]) be the optimal total predicted cost
of (20) when applying the control U* to the system state zp[k].
Considering the co-regulated MPC problem (20) at time index
k+1, we attempt to construct an upper bound on J*(z, [k +1]).
Consider the sequence Uy = {u, [k + 1]*, ..., up[k + N —
1J*, —Krgr(zc[k + N])zp[k + N]}. Then the corresponding
state trajectory with this control sequence is X, = {zplk +
1%, ..., ap[k+ NT*, A(ze[k + N))zp[k + N]*}. Because U is
not the optimum for (20), .J(x,[k + 1],U;) is an upper bound
of J*(xp[k + 1]). Then
J(wpll +11,00) = J* (wplk]) = —(wpk]" Qup[K] + uplk]"" Rup K]
+ aplk + N (A(ze[k + N)T PAelk + N]) + Q
+ Krgr(zclk + N))T RKLgr(zc[k + N]) — P)zp[k + NJ*. o)
Since the condition in (21) can be met for all possible values
of z. € 3, and Q, R are positive definite, the right-hand side
of (22) is negative definite. Moreover, since by construction
J*(xplk 4+ 1]) < J(zp[k + 1],U;), we can further infer
J*(xplk +1]) — J*(zp[k]) < O for all non-zero states, x,.
To prove stability, we need to establish that J*(x,) is a
Lyapunov function. J*(z,) is positive definite due to the
symmetric positive definite P, @), and R matrices. J*(xp)
decreases along the closed-loop trajectories as discussed above.
It has been shown in [12] (Theorem 12.2) that J*(z,) is
continuous and J*(z,) < ngxp based on the assumptions in
the theorem and constraints (21). Thus J*(z,) is a Lyapunov
function, and the origin of the closed loop co-regulated system
is asymptotically stable if the initial state lies in &y (OL@T),
|

V. RESULTS - CO-REGULATED UAS

We apply the proposed explicit IHC and MPC strategies to a
co-regulated quadcopter UAS to verify the design effectiveness.
The UAS state consists of the vehicle’s position (ac,y,z)T,
velocity in R3, orientation in roll (¢), pitch (6), and yaw (1))
angles, and angular rate of change in yaw

vy = (2.9.2.0.0.0.8.9.2.9) |

The UAS comes equipped with an embedded inner-loop attitude
feedback controller which accepts as inputs the desired thrust,
T, roll angle, ¢, pitch angle, § and body yaw rate, r. Thus the
control input, u, = (4,6, r, T)T . The equations governing the
translational motions are

Pn T |08 ¢sin @ cos + sin ¢ sin ¢ 0
Pe| = —— |cos¢psinfsiny —singcosy| + |0
i m

Pd cos ¢ cos 0 g

where m is the total mass of the UAS, and g is gravity. We
leverage these nonlinear equations for high-fidelity simulation,
and use a linearized state-space system model about a stable
hover for control design leading to a linear state-space model
like (1).

15 15
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Fig. 2: Step response of explicit IHC and Co-regulated MPC.

The sampling rate trajectory of the co-regulated UAS is
regulated by the computational system model (5) and controller
controller (4). For the physical system control design, we use
the same manually tuned () and R parameters for both explicit
IHC and co-regulated MPC design. The prediction horizon
length of the MPC is manually tuned as N = 4 to achieve a
sufficient control performance while obtain fast solutions for
the MPC problem. Variations in the system state, inputs, and
sampling rate are shown for a step response in Figure 2 for
each control strategy.

The step responses in Figure 2 show that the system under
explicit IHC controller evolves much slower than the co-
regulated MPC controller and the settling time of the explicit
IHC controller is approximately four times longer than the
MPC controller. Because explicit IHC minimizes the upper
bound of the “worst-case” infinite horizon cost value among
all possible sampling rate trajectories without considering the
computational system model, it is a much more conservative
approach than co-regulated MPC. Co-regulated MPC constructs
a finite horizon cost function for the optimization problem at
each sampling instance based on the predicted sampling rate
trajectory according to the computational system model and
the current state measurement. The gains of the explicit IHC
are much less aggressive than the co-regulated MPC strategy.
As a result, this incurs a smaller overshoot (appoximately
0.1%) in position. The slower converging speed of explicit
IHC leads to a higher usage of computational resources. The
computational controller will reallocate more resources to the
control task in response to the higher physical state error during
the converging process. However, explicit IHC requires much
less computational to provide the control input since control
gains are pre-computed offline and can be implemented as a
look-up table for online execution. In our tests, while explicit
IHC requires a computation time of less than 0.4 ms for each
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step, co-regulated MPC requires 0.1 - 0.2 s since it requires
solving a mixed-integer quadratic programming problem at
each step. The computations for this work were performed on
a 2.3 GHz Intel i5 processor using MATLAB R2017a. The co-
regulated MPC problem was solved by leveraging the YALMIP
toolbox [17] with Gurobi optimization solver [18]. Future work,
such as extending the explicit MPC approach in [19], may
reduce the online computation required for co-regulated MPC
to be deployed onboard a small, computationally constrainted
UAS.

Figure 3 shows the UAS executing a commanded trajectory
under co-regulated MPC and explicit IHC controllers. As
observed, the UAS evolves slowly to the reference waypoint
with nearly no overshoot when controlled by the explicit IHC.
In constrast, it evolves much faster with a relatively larger
overshoot when controlled by MPC. Both explicit IHC and
MPC can stabilize the co-regulated system under a time-varying
sampling rate. In the test, we observed that the overshoot of
the MPC controlled UAS can be decreased by increasing the
prediction horizon length at the expense of more computation.

w

4.5 ——Reference Trajectory
— Co-regulated MPC
4 — Explicit THC
35
3
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2
15
1
0.5
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5, } 4
3 I = 4
1
Y

Fig. 3: Trajectory following performance for explicit IHC and
co-regulated MPC

These results lead to an intuition for deploying different
controllers for different working scenarios. For a co-regulated
system with slow dynamics, the explicit IHC controller can
provide smooth, stable control. For systems requiring faster
responses, the co-regulated MPC controller is capable of
providing more aggressive maneuvers but requires more online
computation time.

VI. CONCLUSION

In this paper we presented two stability guaranteed con-
trollers for a class of time-varying periodic sampling, co-
regulated systems. We first provided an explicit infinite horizon
control (IHC) design by drawing from specialized results for
an LPV system. A correct-by-construction stability constraint
was customized for co-regulated system structures when
constructing the offline optimization problem. The resulting
gain matrices for each possible co-regulated system sampling
rate value can found to guarantee stability for arbitrary sampling
rate switchings. However, unlike conventional LPV systems, co-
regulated systems are capable of predicting the future sampling

rate trajectory based on the computational system model. To
leverage this we proposed a MPC strategy for co-regulated
systems where both the system state trajectory and the sampling
rate trajectory are predicted within the receding horizon. The
feasibility and stability of the co-regulated MPC was presented.
Simulation results for a co-regulated multicopter UAS were
presented to demonstrate the effectiveness and tradeoffs of the
two control strategies.
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