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Abstract— Modeling the relationships between the quality 
response variables and process settings or in situ sensing variables 
is a fundamental problem in quality engineering. Such 
relationships are important for product quality prediction, 
process monitoring, optimization. Data collected from a single 
system often only carry limited information, hence making 
modeling one system at a time challenging. Multi-task learning 
(MTL) jointly models multiple similar-but-non-identical systems 
and utilize the similarities among systems for better performance. 
However, existing MTL becomes much less effective if important 
variables are missing or unmeasurable in the underlying process 
(latent variables). More importantly, commonly shared latent 
variables across systems often reflect important process 
patterns/behaviors. We proposed an MTL framework for 
multivariate or profile responses by explicitly decomposing the 
variation among systems into explainable variation and latent 
variation. Specifically, the explainable variation is from variables 
observed in data, while the latent variation is from the latent basis 
functions automatically generated from model residuals. The 
proposed method improves the prediction accuracy and 
interpretability of modeling. The simulation and a case study in a 
silicon ingot manufacturing network demonstrate that the 
proposed method can improve the quality modeling performance 
and recovers critical process knowledge for silicon ingot 
manufacturing based on Czochralski (CZ) process.   
 

Note to Practitioners— This research is motivated by quality 
modeling of a semiconductor manufacturing network consist of 
multiple furnaces (systems) producing silicon ingots. An accurate 
quality model in manufacturing is essential for downstream tasks 
such as process monitoring and optimization. As data collected 
from a single system often only carry limited information, 
aggregating data from multiple systems in quality modeling can 
significantly improve the performance. However, different 
systems in a network are often similar-but-non-identical to each 
other due to different degradation status, usage history, product 
receipts. As a result, data from different systems are 
heterogeneous from each other, hence making combining all data 
for modeling inappropriate. Multi-task learning (MTL) solves this 
problem and recovers the similar-but-non-identical nature of 
systems. However, existing MTL is much less effective if important 
latent factors/variables are missing or unmeasurable in the 
underlying process. More importantly, such latent factors can 
reflect important process patterns/behaviors. In this work, we 
improve the MTL framework by explicitly explaining the 
unexplained variations using the latent factors automatically 
generated from model residuals. The simulation and a case study 
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Index Terms— Czochralski (CZ) process, decomposition 
modeling, manufacturing network, multi-task learning, 
semiconductor manufacturing 

I. INTRODUCTION 
manufacturing network connects manufacturing systems 
via sensing, computation, and actuation networks. For 

example, in the silicon ingot production of wafer 
manufacturing, shown in Fig. 1, each silicon ingot grows from 
a furnace/crucible using the same Czochralski (CZ) process [2]. 
However, an ingot typically requires over 50 hours to produce. 
Multiple furnaces are typically used as a connected 
manufacturing network to increase throughput. Different ingot 
growth furnaces are subject to different degradation conditions 
and operating environments, which lead to a different variable 
relationship among the in situ process variables and product 
quality variables [3]. Consequently, the data are collected from 
similar-but-not-identical furnaces. Another challenge is that 
important factors/variables are constantly missing or 
unmeasurable in various manufacturing processes (referred as 
latent factors). For examples, in silicon ingot production, 
critical variables such as deposition thickness can not be 
measured while the ingots are under formation [4]. More 
importantly, such latent factors, which assume to be shared 
across systems, can reflect important process 
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Fig. 1. A schematic of a crystal growth furnace network: the furnaces (left) and 
its internal structure (redrawn with authors’ permission) [1] 
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patterns/behaviors. We will demonstrate this observation in the 
case study. All above issues pose significant challenges for 
quality modeling in a manufacturing network. 

In literature, there are two major strategies to model similar-
but-not-identical systems (e.g., furnaces). One strategy is to 
model all systems with the same model structure and model 
parameters. It assumes that all systems are identical [1]. They 
do not consider the heterogeneities among the systems and 
cannot reflect the heterogeneities in the model structures or 
parameters.  

The other strategy will use the same type of model with 
different model parameters for different machines. The model 
can be independently estimated for each machine based on its 
own data, but it may take a longer time to obtain sufficient 
samples. To model the data aggregated from different machines 
with heterogeneity, people proposed transferred learning and 
multi-task learning (MTL) framework. For transfer learning [5], 
it designates a source model, which is trusted to be accurate for 
the source system and transfers the model with updated 
parameters to the target system by incorporating the system 
similarities. However, it is sometimes difficult to find a reliable 
source model when all systems are experiencing a shortage of 
training samples. As a result, MTL, which simultaneously 
models the data from all systems, is a more suitable framework 
to adopt under this case scenario.  

MTL treats modeling the data from each system/machine as 
a learning task. MTL jointly estimates the model parameters for 
multiple tasks and can adopt different regularizations to recover 
the similar-but-non-identical nature of model parameters 
among systems. In this work, we propose MTL with latent 
variation decomposition (LVD), called MTL-LVD, to integrate 
the parameter-based MTL framework with principal 
component analysis (PCA), which explains the latent variation 
in the model residual space for multivariate responses. The 
simulation study and the case study on the silicon ingot 
manufacturing data show that MTL-LVD discovers the latent 
variation patterns among similar-but-non-identical systems and 
achieve significantly better quality prediction accuracy. 

The rest of the paper is organized as follows. Section II 
reviews the past literature on CZ process modeling and relevant 
technics. Section III introduces the proposed MTL-LVD 
framework; Section IV includes a simulation study, examining 
the performance of MTL-LVD on discovering the multi-
dimensional latent variation terms and the model prediction 
accuracy; Section V performs a case study, illustrating the 
superior performance of MTL-LVD on product quality 
forecasting based on the ingot manufacturing data; Section VI 
draws the conclusion and discussed some future research 
directions.  

II. LITERATURE REVIEW 
Data-driven analysis and modeling help CZ process to 

explore its properties, optimize its productivity, have been 
extensive studied in the past. For example, researchers studied 
the dynamic properties of ingot striations using functional data 
analysis [6], defect concentration using neural network models 
[7], quality modeling using logistic regression [1], model-based 

CZ process control. The simplest approach to model all systems 
is to assume that all systems are identical with the same model 
structure and model parameters [1]. In the literature, various 
predictive regression models, such as Ridge Regression [8], 
LASSO [9], Elastic Net [10], can be estimated by using the 
identical system assumption. Since they do not consider the 
heterogeneities among the systems so they cannot reflect the 
heterogeneities in the model structures or parameters.  

To handle the heterogeneities, people proposed MTL to 
jointly estimate the model parameters for multiple systems 
using various regularizations to enforce the similarity. 
Commonly adopted regularization includes low-rank 
regularization [11, 12], cluster-wise parameter regularization 
[13, 14], task-relation learning [15, 16]. Other MTL works 
include recovering variable relationships among tasks through 
multi-task sparse structure learning [17], improved clustering 
using multi-task nonnegative matrix factorization [18], and 
improved principal component analysis through Multitask PCA 
[19]. A major limitation of the MTL methods is the assumption 
that the observed variables can fully explain the variation of 
data. When important factors/variables are missing or 
unmeasurable, failing to estimate the variation pattern in the 
residual space can significantly impact the modeling 
performance. 

For recovering the latent variation that can not be explained 
by the observed variables from residual space, we can apply 
principal component analysis (PCA). In the literature, there 
have been various PCA works handling various types of data 
such as kernel PCA [20], sparse PCA [21]. To handle the 
functional or tensor-structured data, there have been various 
functional PCA, such as smoothed FPCA [22], sparse FPCA 
[23], sparse longitudinal FPCA [24], multi-channel FPCA 
(MFPCA) [25], sparse multi-channel FPCA (SMFPCA) [26]. 
The past methods can effectively discover the latent variation 
patterns from data in an unsupervised fashion. However, 
extending the knowledge frontier on applying unsupervised 
variation decomposition for a predictive MTL model remains a 
challenge. In this work, we propose to integrate PCA for latent 
variation decomposition (LVD) to recover the latent variation 
in the residual space. We refer to the proposed method as MTL-
LVD. 

III. THE PROPOSED DATA FILTERING METHOD 

A. MTL-LVD 
Without the loss of generality, we can assume that there are 

𝑚𝑚 similar-but-non-identical systems and MTL-LVD is build 
based on the following assumption: 1) We assume that there are 
𝑚𝑚 similar-but-non-identical systems/machines in a 
manufacturing network and the 𝑗𝑗𝑡𝑡ℎ machine is producing 𝑛𝑛𝑗𝑗 
parts (e.g., ingots). 2) When building a linear model for each 
system, model parameters for multiple systems are similar-but-
non-identical (e.g., following low-rank structure). 3) There can 
be latent variation among systems lying in a low-dimensional 
linear space, which can be represented by a set of bases. 

 A linear regression model for the observable predictors, such 
as process setting variables or scalar features of in situ 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

variables, 𝒙𝒙𝑗𝑗 = �𝑥𝑥𝑗𝑗(1),⋯ , 𝑥𝑥𝑗𝑗(𝑝𝑝)�′ ∈ ℝ𝑝𝑝×1 and a single response 
𝑦𝑦𝑗𝑗 of the machine/system 𝑗𝑗, where 𝑗𝑗 = 1, … ,𝑚𝑚, can be written 
as 

 
 𝑦𝑦𝑗𝑗 = 𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗 + 𝜖𝜖𝑗𝑗 ,  𝑗𝑗 = 1,⋯ ,𝑚𝑚, (1) 

  
where 𝜷𝜷𝑗𝑗 ∈ ℝ𝑝𝑝×1 and the residual 𝜖𝜖 follows the normal i.i.d. 
distribution 𝑁𝑁(0,𝜎𝜎2). Multi-task learning (MTL) aims to 
jointly improve the estimation accuracy of 𝜷𝜷𝑗𝑗 for multiple 
similar-but-non-identical systems by enforcing the similarity of 
𝜷𝜷𝑗𝑗. One of the most commonly adopted regularizations for 
MTL is nuclear norm  || ∙ ||∗ [27], which ensures the estimated 
𝜷𝜷𝑗𝑗 form low-rank structure matrix as 𝐵𝐵 =

�
𝜷𝜷1

(1) ⋯ 𝜷𝜷𝑚𝑚
(1)

⋮ ⋱ ⋮
𝜷𝜷1

(𝑑𝑑) ⋯ 𝜷𝜷𝑚𝑚
(𝑑𝑑)
� across systems 

 
 

𝑚𝑚𝑚𝑚𝑛𝑛��𝑦𝑦𝑗𝑗 − 𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗
(𝑟𝑟)�

2

2
𝑚𝑚

𝑗𝑗=1

+ 𝜆𝜆1‖𝐵𝐵‖∗ (2) 

 
where the model hyper-parameter 𝜆𝜆1 of the nuclear-norm can 
be selected via five-fold cross-validation (CV).  

In this work, to model multivariate responses for systems 
with 𝑑𝑑 responses, the observed data for each machine 𝑗𝑗 become 
(𝒙𝒙𝑗𝑗, 𝒚𝒚𝑗𝑗), where 𝒚𝒚𝑗𝑗 = �𝑦𝑦𝑗𝑗(1),⋯ ,𝑦𝑦𝑗𝑗(𝑑𝑑)�′ ∈ ℝ𝑑𝑑×1, 𝑗𝑗 = 1, … ,𝑚𝑚. 
Furthermore, we propose to decompose the latent variation 
patterns into a low-dimensional subspace with latent parameters 
for each response 𝑟𝑟 as 𝒗𝒗(𝑟𝑟) = (𝑣𝑣(𝑟𝑟)

1, … , 𝑣𝑣(𝑟𝑟)
𝑞𝑞)′, 𝑟𝑟 = 1, … ,𝑑𝑑. 

The corresponding latent variables for each system 𝑗𝑗 are 
denoted as 𝒖𝒖𝑗𝑗 = (𝑢𝑢1,𝑗𝑗 , … ,𝑢𝑢𝑞𝑞,𝑗𝑗)′. Collectively, 𝑦𝑦𝑗𝑗(𝑟𝑟) can be 
decoupled into the observable variations explained by the input 
variable 𝒙𝒙𝑗𝑗 and the latent variables 𝒖𝒖𝑗𝑗 as 

 
 𝑦𝑦𝑗𝑗(𝑟𝑟) = 𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗

(𝑟𝑟) + 𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟) + 𝜖𝜖𝑗𝑗
(𝑟𝑟), 𝑗𝑗 = 1,⋯ ,𝑚𝑚 (3) 

 
where 𝜷𝜷𝑗𝑗

(𝑟𝑟) ∈ ℝ𝑝𝑝×1 is the model coefficient machine 𝑗𝑗 and 
response 𝑟𝑟, and the residual 𝜖𝜖𝑗𝑗

(𝑟𝑟) follows the normal i.i.d 
distribution 𝑁𝑁(0,𝜎𝜎2). It worth noting that the assumption 
would not hurt the generalization of the proposed method since 
we can always use more sets of latent parameters 𝒗𝒗(𝑟𝑟) to model 
the non-i.i.d. variation patterns.  

Since the machines are similar-but-non-identical, we assume 
that the model coefficients among machines 𝜷𝜷𝑗𝑗 = 1,⋯ ,𝑚𝑚 form 
low-rank structures, which can be recovered by nuclear-norm 
regularization. Without loss of generality, we can assume that 
the latent parameters 𝒗𝒗(𝑟𝑟) are shared among all machines 𝑗𝑗. 
Collectively, we propose to borrow the framework from the 
parameter-based MTL and estimate the model parameters 𝜷𝜷𝑗𝑗

(𝑟𝑟) 
via  

 
𝑚𝑚𝑚𝑚𝑛𝑛���𝑦𝑦𝑗𝑗(𝑟𝑟) − 𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟)�
2

2
𝑑𝑑

𝑟𝑟=1

𝑚𝑚

𝑗𝑗=1
+ 𝜆𝜆1‖𝐵𝐵‖∗ 

(4) 

 𝑠𝑠. 𝑡𝑡.𝑉𝑉′𝑉𝑉 = 𝐼𝐼  

where 𝐵𝐵 = �
𝜷𝜷1

(1) ⋯ 𝜷𝜷𝑚𝑚
(1)

⋮ ⋱ ⋮
𝜷𝜷1

(𝑑𝑑) ⋯ 𝜷𝜷𝑚𝑚
(𝑑𝑑)
� and 𝑉𝑉′ = (𝒗𝒗(1) ⋯ 𝒗𝒗(𝑑𝑑)). 

Here, 𝐵𝐵 represents model coefficient matrix corresponding to 
the predictors for 𝑑𝑑 responses and 𝑗𝑗 systems. Furthermore, 𝑉𝑉 is 
the matrix realized from 𝒗𝒗(𝑟𝑟) for 𝑑𝑑 responses. To ensure that 𝑉𝑉 
supports the latent space,  we assume that 𝑉𝑉 is a semi-
orthogonal matrix, which is guaranteed by the constraint 𝑉𝑉′𝑉𝑉 =
𝐼𝐼. It is worth mentioning that we do not enforce the 
orthogonality between 𝐵𝐵 and 𝑉𝑉 to ensure the fidelity of 
parameters estimated for the observable predictors. 

 

B. Parameter estimation and hyper-parameter tuning of 
MTL-LVD 

Estimating the parameters of MTL-LVD in Equation (4) is 
not trivial due to the combination of the nuclear norm, 
orthogonality constraint, and decomposed model coefficients 
(i.e. 𝜷𝜷𝑗𝑗

(𝑟𝑟) and 𝒗𝒗(𝑟𝑟)). We proposed the regularized regression 
approach together with the block coordinate descent algorithm 
to iteratively update 𝜷𝜷𝑗𝑗

(𝑟𝑟),  𝒖𝒖𝑗𝑗, and 𝒗𝒗(𝑟𝑟). The model hyper-
parameters in addition to 𝜆𝜆1, such as 𝑞𝑞, the dimension of the 
latent variation term 𝑉𝑉 in Equation (4), can be tuned via the 
five-fold cross-validation (CV).  

Realizing the Equation (4) considering the observational 
data, we denote 𝑋𝑋𝑗𝑗 = (𝒙𝒙1,𝑗𝑗 , … ,𝒙𝒙𝑛𝑛𝑗𝑗,𝑗𝑗)′ as the design matrix, 𝑈𝑈𝑗𝑗 =
(𝒖𝒖1,𝑗𝑗 , … ,𝒖𝒖𝑛𝑛𝑗𝑗,𝑗𝑗)′ as the generated PCA scores, and 𝒚𝒚𝑗𝑗(𝑟𝑟) =
(𝑦𝑦1,𝑗𝑗

(𝑟𝑟), … ,𝑦𝑦𝑛𝑛𝑗𝑗,𝑗𝑗
(𝑟𝑟))′  to be the 𝑟𝑟th response vector for the 𝑗𝑗th 

system, where 𝑛𝑛𝑗𝑗 is the number of samples for the 𝑗𝑗th system. 
The following constrained quadratic optimization problem can 
be used to estimate 𝐵𝐵,𝑈𝑈,𝑉𝑉. 

 
𝑚𝑚𝑚𝑚𝑛𝑛���𝑦𝑦𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�
2

𝑑𝑑

𝑟𝑟=1

𝑚𝑚

𝑗𝑗=1
+ 𝜆𝜆1‖𝐵𝐵‖∗, 

(5) 

 𝑠𝑠. 𝑡𝑡.𝑉𝑉′𝑉𝑉 = 𝐼𝐼  
 
Equation (5) can be further written by organizing the 

multivariate responses in a matrix format as 
 

𝑚𝑚𝑚𝑚𝑛𝑛��𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗 − 𝑈𝑈𝑗𝑗𝑉𝑉′�
2

𝑚𝑚

𝑗𝑗=1

+ 𝜆𝜆1‖𝐵𝐵‖∗, (6) 

 𝑠𝑠. 𝑡𝑡.𝑉𝑉′𝑉𝑉 = 𝐼𝐼  
where 𝑌𝑌𝑗𝑗 = (𝒚𝒚𝑗𝑗(1), … ,𝒚𝒚𝑗𝑗(𝑑𝑑)) and 𝐵𝐵𝑗𝑗 = �𝜷𝜷𝑗𝑗

(1) ⋯ 𝜷𝜷𝑗𝑗
(𝑑𝑑)�. 

To optimize, we propose to follow the block coordinate type of 
strategy to update 𝐵𝐵,𝑈𝑈,𝑉𝑉 iteratively until convergence. To 
achieve this, we first prove the following propositions: 

Proposition 1:  Given 𝐵𝐵, 𝑈𝑈𝑗𝑗 in Equation (6), 𝑉𝑉 can be solved 
in a closed form via the singular value decomposition (SVD) as 
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follows: 
 

�
𝑌𝑌1 − 𝑋𝑋1𝐵𝐵1𝑘𝑘−1

⋮
𝑌𝑌𝑚𝑚 − 𝑋𝑋𝑚𝑚𝐵𝐵𝑚𝑚𝑘𝑘−1

�

′

�
𝑈𝑈1𝑘𝑘−1
⋮

𝑈𝑈𝑚𝑚𝑘𝑘−1
� =

𝑅𝑅𝑅𝑅𝑊𝑊′, 

𝑉𝑉 = 𝑅𝑅𝑊𝑊′, 

(7) 

where the first 𝑞𝑞 columns in 𝑅𝑅 are used for 𝑉𝑉 = 𝑅𝑅𝑊𝑊′ if 𝑞𝑞 < 𝑑𝑑. 
This proposition is also named as the Procrustes rotation 
procedure, and the detailed proof is shown in [21].  

Proposition 2: Given 𝐵𝐵𝑗𝑗 and V in Equation (6), 𝑈𝑈𝑗𝑗 can be 
solved via  
 

 𝑈𝑈𝑗𝑗 = �𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗�𝑉𝑉. (8) 
 

The proof of Proposition 2 is shown in the Appendix. 
Proposition 3: Given 𝑈𝑈𝑗𝑗 and V in Equation (6), 𝐵𝐵𝑗𝑗 can be 

solved via the proximal gradient descent as follows: 
 𝐵𝐵 = 𝑃𝑃 diag(𝜎𝜎�1 …𝜎𝜎�𝑚𝑚)𝑄𝑄′, (9) 

where 𝜎𝜎�𝑖𝑖 = �
𝜎𝜎𝑖𝑖 − 𝜆𝜆

0
𝜎𝜎𝑖𝑖 + 𝜆𝜆

   
𝜎𝜎𝑖𝑖 ≥ 𝜆𝜆1

−𝜆𝜆1 ≤ 𝜎𝜎𝑖𝑖 ≤ 𝜆𝜆1
𝜎𝜎𝑖𝑖 ≤ −𝜆𝜆1

, and 𝑃𝑃,𝜎𝜎𝑖𝑖 ,𝑄𝑄 can be 

obtained by SVD decomposition on 𝐵𝐵� =

�
𝜷𝜷�1

(1)
⋯ 𝜷𝜷�𝑚𝑚

(1)

⋮ ⋱ ⋮
𝜷𝜷�1

(𝑑𝑑)
⋯ 𝜷𝜷�𝑚𝑚

(𝑑𝑑)
� as 𝐵𝐵� = 𝑃𝑃𝑑𝑑𝑚𝑚𝑃𝑃𝑃𝑃(𝜎𝜎1 …𝜎𝜎𝑚𝑚)𝑄𝑄′  and 

 𝜷𝜷�𝑗𝑗
(𝑟𝑟)

= 𝜷𝜷𝑗𝑗
(𝑟𝑟) − 𝑡𝑡1(∇�𝑦𝑦𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�
2

/
∇𝜷𝜷𝑗𝑗

(𝑟𝑟)). 
 

The derivation of ∇�𝑦𝑦𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗
(𝑟𝑟) + 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�

2
/∇𝜷𝜷𝑗𝑗

(𝑟𝑟) is 
shown in the Appendix.  
By decomposing the optimization problem into three sub-
problems via the block coordinate descent approach, the 
iterative algorithm is summarized in Algorithm 1. 

Proposition 4: The proposed algorithm for solving Equation 
(6) can converge to a stationary point.   

The convergence of the block coordinate descent algorithm 
(BCD) can be proved by the monotonic decrease of Equation 
(6) since each BCD update would only decrease the objective 
function. Furthermore, the objective function in Equation (6) is 
lower bounded by zero. Therefore, the BCD algorithm must 
converge to a stationary point.  

Finally, we would like to analyze the complexity of the 
proposed algorithm. Recall that there are 𝑚𝑚 similar-but-non-
identical systems, the dimensionality of the response is 𝑑𝑑, the 
number of samples in each system are 𝑛𝑛𝑗𝑗, the number of 
observed variables is 𝑝𝑝, the number of latent variables is 𝑞𝑞. The 
computational complexity of updating all parameters in each 
iteration becomes O(𝑞𝑞𝑝𝑝𝑛𝑛𝑑𝑑 + 𝑝𝑝2𝑛𝑛𝑑𝑑 + 𝑝𝑝2𝑚𝑚𝑑𝑑2 + 𝑝𝑝𝑚𝑚2𝑑𝑑). The 
derivation can be seen in the Appendix. 

IV. SIMULATION 
To evaluate the performance of MTL-LVD, we performed a 

simulation study to evaluate two performance metrics as 
follows: 1) MTL-LVD is able to recover the simulated 
orthogonal loadings of the decomposed latent variation. 2) The 
prediction error of the multivariate response variable in root 
mean squared prediction errors (RMSPEs) on the testing data 
set (𝒚𝒚𝑗𝑗(𝑟𝑟), 𝑋𝑋𝑗𝑗): ∑ ∑ �𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�
𝐹𝐹

2𝑑𝑑
𝑟𝑟=1

𝑚𝑚
𝑗𝑗=1  for 𝑚𝑚 

systems and 𝑑𝑑 responses. 
The settings to generate the simulation data set are 

summarized in TABLE I. Assuming that there are eight similar-
but-non-identical systems (𝑚𝑚 = 8). Within each system, there 
are eight observable variables in 𝒙𝒙𝑗𝑗 = (𝑥𝑥1,𝑗𝑗 , … , 𝑥𝑥𝑝𝑝,𝑗𝑗)′ (𝑝𝑝 = 10), 
and three variables in the latent variation term 𝒖𝒖𝑗𝑗 =
(𝑢𝑢1,𝑗𝑗 , … ,𝑢𝑢𝑞𝑞,𝑗𝑗)′ (𝑞𝑞 = 3). Each system has 15 data points 
generated from 𝒙𝒙𝑗𝑗′~𝑁𝑁(𝝁𝝁𝑋𝑋, Σ𝑋𝑋), and 𝒖𝒖𝑗𝑗′~𝑁𝑁(𝝁𝝁𝑈𝑈 ,Σ𝑈𝑈), where 𝝁𝝁𝑋𝑋, 
𝝁𝝁𝑈𝑈~𝑁𝑁(𝟎𝟎, 𝐼𝐼), and Σ𝑋𝑋, Σ𝑈𝑈 are covariance matrix with diagonal 
elements as 1 and off-diagonal elements as 0.1. Additionally, 
each system has 𝑑𝑑 multivariate responses as 𝑑𝑑 = 50. The 
underlying model used to generate the response is 
 𝑦𝑦𝑗𝑗(𝑟𝑟) = 𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗

(𝑟𝑟) + 𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟) + 𝜀𝜀, (10) 
where 𝑗𝑗 = 1, … ,8, 𝑟𝑟 = 1, … ,50. The similarity of the system is 
simulated through the low-rank structure of the model 

parameter matrix 𝐵𝐵 = �
𝜷𝜷1

(1) ⋯ 𝜷𝜷𝑚𝑚
(1)

⋮ ⋱ ⋮
𝜷𝜷1

(𝑑𝑑) ⋯ 𝜷𝜷𝑚𝑚
(𝑑𝑑)
� of Equation (6). 

More specifically, the parameters for the observed predictors of 
TABLE I 

SETTINGS OF SIMULATION DATA SETS 

Simulation Settings Values 

Number of Machines Simulated 8 

Length of Response 50 

Number of Samples for Each Machine 15 

Number of Observed Predictors 10 

Number of Latent Predictors 3 

 

ALGORITHM 1 
PSEUDOCODE FOR OPTIMIZATION ALGORITHM FOR SOLVING 

MTL-LVD 
Initialize 𝜷𝜷′: 
 
Initialize 
   𝐵𝐵𝑗𝑗, 𝑈𝑈𝑗𝑗, 𝑉𝑉 as 𝐵𝐵0, 𝑈𝑈𝑗𝑗0, 𝑉𝑉0. 
end 
 
for 𝑗𝑗 = 1,2,3, … do 
   Update 𝑉𝑉 given 𝐵𝐵 and 𝑈𝑈𝑗𝑗 according to (6). 
   Update 𝑈𝑈𝑗𝑗 given 𝐵𝐵 and 𝑉𝑉 according to (7).  
   Update 𝐵𝐵 given 𝑈𝑈𝑗𝑗 and 𝑉𝑉 according to (8). 

      If 
�𝐿𝐿𝑘𝑘−𝐿𝐿𝑘𝑘−1�𝐹𝐹

2

𝐿𝐿𝑘𝑘−1
≤ 𝜖𝜖, then  

         Stop 
      end 

end 
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machine 𝑗𝑗, 𝜷𝜷𝑗𝑗 = �𝜷𝜷𝑗𝑗
(1)′ ⋯ 𝜷𝜷𝑗𝑗

(𝑑𝑑)′�
′
, corresponds to the 

column 𝑗𝑗 of 𝐵𝐵 = �
𝜷𝜷1

(1) ⋯ 𝜷𝜷𝑚𝑚
(1)

⋮ ⋱ ⋮
𝜷𝜷1

(𝑑𝑑) ⋯ 𝜷𝜷𝑚𝑚
(𝑑𝑑)
�, which was simulated 

with a random linear combination of 𝑛𝑛 basis vectors out of 𝑚𝑚 
basis vectors [28], where 𝑛𝑛 < 𝑚𝑚. To simulate the basis matrix 
𝑉𝑉′ = (𝒗𝒗(1) ⋯ 𝒗𝒗(𝑑𝑑)), where 𝒗𝒗(𝑟𝑟) = (𝑣𝑣(𝑟𝑟)

1, … , 𝑣𝑣(𝑟𝑟)
𝑞𝑞)′, which 

was randomly generated by pseudo-spline basis implemented in 
GAMSEL package [29] with an input vector of 𝑐𝑐𝑐𝑐𝑠𝑠𝑚𝑚𝑛𝑛𝑐𝑐( 𝒛𝒛

10
) and 

𝒛𝒛 = (1, … ,50)′. The error term 𝜀𝜀 follows 𝑁𝑁(0, Σ), and we set 

the signal-to-noise ratio (
𝑣𝑣𝑣𝑣𝑟𝑟𝑖𝑖𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣�𝒙𝒙𝑗𝑗′𝜷𝜷𝑗𝑗

(𝑟𝑟)+𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟)�

𝑣𝑣𝑣𝑣𝑟𝑟𝑖𝑖𝑣𝑣𝑛𝑛𝑣𝑣𝑣𝑣(𝜀𝜀)
) as 10.  

To evaluate the accuracy of the estimated MTL-LVD 
models, we compare the proposed method with three 
benchmark methods: a linear regression models with 𝑙𝑙1-norm 
(LASSO) [9] for every single system (LASSO-S), a linear 
regression model with 𝑙𝑙1-norm (LASSO) for all systems 
(LASSO-A), and MTL with nuclear norm (MTL-N). MTL-N 
has the loss function from Equation (2), which models the data 
combined from all systems but does not consider the latent 
variation, represented by 𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟) in Equation (10).  

For all methods in the simulation and the case study in the 
next section, 5-fold CV was employed to tune the model hyper-
parameters for all the models based on training data, including 
the penalty coefficient on the nuclear-norm (𝜆𝜆1) of MTL-N and 
MTL-LVD. Furthermore, the dimension of the latent variation 
term 𝑉𝑉′ for MTL-LVD is also tuned via the 5-fold CV. To 
ensure the reproducibility of the results, 50 replications were 
performed in the simulation study. Within each replication, the 
data are randomly partitioned in a 70-30 fashion for the training 
and testing datasets. In each replication, all models were trained 
based on the same training data set and tested for prediction 
accuracy in root mean squared errors (RMSEs) using the testing 
data set. 

TABLE II reports the average of RMSEs with standard errors 
(S.E.) shown in parenthesis based on 50 simulation replications. 
We can see that MTL-LVD offers a better prediction 
performance than all three benchmark models. Specifically, 
Linear-S has a significantly higher prediction error due to the 
limited amount of sample size for model training, since only the 
data from a single system are used. In the meantime, Linear-A 
has a much smaller prediction error by aggregating the samples 
from all similar-but-non-identical systems. However, neither of 
these two models consider the heterogeneity among systems 
when the data are aggregated. Using the MTL framework with 

nuclear norm (MTL-N) to fit different sets of model parameters 
for different systems, the prediction error can be further 
reduced. However, MTL-N was not capable of capturing the 
unexplained latent variation, which was simulated by the 
𝒖𝒖𝑗𝑗′𝒗𝒗(𝑟𝑟) term in data generator of Equation (10). As a result, the 
MTL-N was outperformed by the proposed method MTL-LVD, 
which achieves the lowest prediction error among all methods 
tested. 

Another purpose of the simulation is to validate whether the 
MTL-LVD can discover the simulated latent variation, which 
can only be explained by the latent variation term. Specifically, 
we would like to validate if MTL-LVD recovers the true basis 
structure simulated in the latent variation term (𝒗𝒗(𝑟𝑟) in Equation 
(5)), which has three simulated basis vectors aggregated as 𝑉𝑉 =
(𝒗𝒗(1) 𝒗𝒗(2) 𝒗𝒗(3)). We generated Fig. 1 to compare the true 
values of three basis vectors in 𝑉𝑉 as solid lines and the 
recovered values by MTL-LVD as dotted lines in a simulaiton 
replication. We can observe that MTL-LVD recovers the all 
three basis vectors with minor discrepancies. The exact 
recovery of basis vectors is not always guaranteed since 
different sets of basis vectors can span the same latent space. 
As the result, the initialization of 𝑉𝑉 in Algorithm 1 impacts the 
final 𝑉𝑉 estimated. Although the basis recovered can be different 
each time, the improvement of prediction accuracy by 
introducing the latent variation decomposition is significant 
(TABLE II). In summary, the proposed MTL-LVD has the 
capability to achieve the best prediction accuracy while 
recovering the multi-dimensional latent variation. 

TABLE II 
AVERAGES AND STANDARD ERRORS OF RMSPES (OR MES) FROM 50 

SIMULATION RUNS 
Method Testing RMSE 

LASSO-S 1.670 
(0.264) 

LASSO-A 0.334 
(0.003) 

MTL-N 0.348 
(0.004) 

MTL-LVD 0.299 
(0.004) 

 

 
Fig. 2. The true values of the three basis vectors simulated (the solid line) and 
the correspondingly recovered basis vectors by MTL-LVD (the dotted line) 
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V. INGOT GROWTH MANUFACTURING CASE STUDY 
The CZ ingot growth process produces monocrystalline 

silicon ingots is both costly and time-consuming [2]. There can 
be various types of defects occurred on the ingots during 
manufacturing, such as the growth of a polycrystalline ingot 
when the monocrystalline ingot is desired [1]. Therefore, it is 
important to model the relationship between the product quality 
variable and the process variables to understand how the 
process variables can impact the product quality. Furthermore, 
the numerical patterns recovered from the residual space 
represent the commonalities of systems for the CZ process, 
hence can contain important process information. In this case 
study, the response variable is the diameter of the continuously 
formed circular ingot surfaces, which are then moving-
averaged into multivariate response vectors of length 50 for all 
ingot samples (𝑑𝑑 = 50 in Equation (4)). 10 process variables 
are generated as the summary statistics of the in situ process 
variables (𝒙𝒙𝑗𝑗′ ∈ ℝ10 in Equation (4)), with the variable names 
omitted due to the confidential concerns. Among the five 
different manufacturing systems (furnaces), we had the data of 
13, 19, 19, 21 and 25 ingots respectively. Each ingot is treated 
as a sample. TABLE IV summarizes the data setting of the 
crystal silicon growth process case study.  

Similar to the simulation study, we compare the MTL-LVD 
with three representative benchmarks: LASSO-S, LASSO-A, 
and MTL-N. 50 replications were performed in the case study 
with the data from 5 furnaces randomly partitioned in a 70-30 
fashion into the training and testing datasets within each 
replication with the same 5-fold CV to select tuning parameters 
as in the simulation studies.  

Finally, we will still use RMSE to evaluate the prediction 
accuracy and the result of the prediction error is summarized in 
TABLE IV. The proposed MTL-LVD has a significantly better 
performance on predicting the diameter of the silicon ingot 
surface than the three benchmark models did over replications. 
LASSO-S has the largest prediction error mainly because 
separately modeling each system will suffer from the effect of 
a small training data set. LASSO-A has a much smaller 
prediction error comparing with LASSO-S, since LASSO-A 
aggregates the samples from five similar-but-non-identical 
furnaces to increase the training sample size of the model. 
However, neither of these two models consider the 
heterogeneities among different manufacturing systems. Using 

the MTL framework with nuclear norm (MTL-N), we can fit 
similar-but-non-identical models for multiple systems 
(furnaces) in the network. As a result, the prediction error was 
greatly reduced. Similar to the result of the simulation study, 
MTL-N could not capture the unexplained variation by the 
observed variables. As a result, introducing the latent variation 
term in MTL-LVD significantly reduced the prediction error on 
the testing data. 

Furthermore, similar to the simulation study, to demonstrate 
the usefulness of the latent variation term in MTL-LVD, we 
show the relationship between the parameters of the latent 
variation term (𝒗𝒗(𝑟𝑟) in Equation (5)) and variation of the 
multivariate response (𝑦𝑦𝑗𝑗(𝑟𝑟) in Equation (5)) in Fig. 3. 
Specifically, 𝒗𝒗(𝑟𝑟) is determined to be one dimensional by 5-fold 
CV and becomes a scalar value for each response, so that in 
total, we have 𝑉𝑉′ = (𝑣𝑣(1), … , 𝑣𝑣(50)) for 50 responses. We 
expect that 𝑣𝑣(𝑟𝑟)should become a larger non-zero value as the 
variance of 𝑦𝑦𝑗𝑗(𝑟𝑟)increases to help to capture the unexplained 
variance by the observable variables.  

In Fig. 3, the variances of the first few responses are large, 
which shows that the variations introduced by different 
furnaces are large at the initial manufacturing stages (i.e., for 
the first a few hours of the process). The variation gradually 
decreased after the initial stages and stayed at a low level 
towards the end of the process. Correspondingly, we also 
observed that the parameters of the latent variation term were 
large at the initial stages and decreased afterwards. The pattern 
of the parameter values ensembles the patterns of response 
variances. The instability at the beginning stages of ingot 
formation in the CZ process is perhaps due to an unstable 
polysilicon melting, which can lead to variations in oxygen 
concentration at the early stages of different ingot formation 

TABLE IV 
SETTINGS OF DATA FROM THE INGOT GROWTH MANUFACTURING 

Settings Values 

Length of Response  50 

Number of Observed Predictors 10 

Sample Size for Furnace 1 13 

Sample Size for Furnace 2 19 

Sample Size for Furnace 3 19 

Sample Size for Furnace 4 21 

Sample Size for Furnace 5 25 

 

Fig. 3.  The variance of responses data across five manufacturing systems for 
50 responses (index 1-50) versus the value of V (the model parameters for latent 
variation term) 
  

TABLE III 
SETTINGS OF DATA FROM THE INGOT GROWTH MANUFACTURING 

Method Testing RMSE 

LASSO-S 7.454  
(1.478) 

LASSO-A 3.129  
(0.143) 

MTL-N 1.075  
(0.119) 

MTL-LVD 0.565  
(0.008) 
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[30]. In summary, the latent variation term in MTL-LVD can 
help the observed variables to capture the variation introduced 
during the data aggregation of multiple similar-but-non-
identical manufacturing systems. As a result, the prediction 
performance of MTL-LVD can be significantly improved.  

VI. SUMMARY 
Although machine learning methods require sufficient 

training data samples to generate a model with good prediction 
performance, such a sample size requirement can be hardly 
fulfilled in many manufacturing applications. In this research, 
we studied a motivating case of modeling the crystal silicon 
ingot manufacturing, which requires the furnace to be 
maintained at a temperature of approximately 1500 degrees 
Celsius over 50 hours. Due to the high cost of the production, 
the in situ manufacturing data and silicon ingot quality data can 
only be collected from a few silicon ingots from a furnace at a 
time. In this work, we incorporated a variation decomposition 
approach to model the latent variation, which cannot be 
captured by the observable variables, into the parameter-based 
MTL. Furthermore, we generalized the proposed methodology 
into a multivariate response and MTL model, which is capable 
of modeling multivariate responses monitored across multiple 
similar-but-non-identical systems (e.g., furnaces). The 
simulation study and the case study have shown that MTL-LVD 
can not only recover the latent variation among data of similar-
but-non-identical systems but also offer significantly better 
accuracy on predicting the multivariate response.  

There are several future research directions on MTL-LVD 
that deserve further investigations. The second one is 
incorporating different regularization terms into MTL-LVD 
based on different engineering perceptions/assumptions of the 
underlying problems. For example, 𝑙𝑙1-norm can be applied to 
replace the nuclear norm in the MTL-LVD to perform variable 
selection and filter out the sensor signals, which are not strongly 
correlated with the responses [9]. The third research direction 
is how to incorporate the estimated 𝑈𝑈 in prediction. In this 
work, we adopted a straightforward approach by averaging 𝑈𝑈 
in prediction, however, other approaches might further improve 
the performance. Another research direction can be using the 
model parameters of the latent variation term, which reflects the 
commonality of machines, to perform process monitoring. Such 
a learned commonality can also be continuously updated and 
become more accurate with incoming samples. 

APPENDIX 

A. Derivation of Proposition 2 
Given 𝐵𝐵 and V, 𝑈𝑈𝑗𝑗 in re-written Equation (2)  

𝐿𝐿 = � ∥ 𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗 − 𝑈𝑈𝑗𝑗𝑉𝑉′ ∥2
𝑚𝑚
𝑗𝑗=1 + 𝜆𝜆1||𝐵𝐵||∗, 

can be optimized at step 𝑘𝑘 via  
𝑈𝑈𝑗𝑗𝑘𝑘 = �𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗𝑘𝑘−1�𝑉𝑉𝑘𝑘. 

Derivation: 
For the ease of representation, let’s denote (𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗) above 

as 𝑌𝑌 and 𝑉𝑉′ above as 𝐵𝐵. The proof of Proposition 2 is equivalent 
to solving matrix 𝑈𝑈𝑗𝑗 in the following matrix least square 

formulation: 
argmin

𝐴𝐴
∥ 𝑌𝑌 − 𝑈𝑈𝑗𝑗𝐵𝐵 ∥2 

where, 
 ∥ 𝑌𝑌 − 𝑈𝑈𝑗𝑗𝐵𝐵 ∥2 

= 𝑡𝑡𝑟𝑟((𝑌𝑌 − 𝑈𝑈𝑗𝑗𝐵𝐵)𝑇𝑇(𝑌𝑌 − 𝑈𝑈𝑗𝑗𝐵𝐵)) 
= 𝑡𝑡𝑟𝑟�𝑌𝑌𝑇𝑇𝑌𝑌 + 𝐵𝐵𝑇𝑇𝑈𝑈𝑗𝑗𝑇𝑇𝑈𝑈𝑗𝑗𝐵𝐵 − 𝑌𝑌𝑇𝑇𝑈𝑈𝑗𝑗𝐵𝐵 − 𝐵𝐵𝑇𝑇𝑈𝑈𝑗𝑗′𝑌𝑌� 
= 𝑡𝑡𝑟𝑟(𝑌𝑌𝑇𝑇𝑌𝑌) + 𝑡𝑡𝑟𝑟�𝐵𝐵𝑇𝑇𝑈𝑈𝑗𝑗𝑇𝑇𝑈𝑈𝑗𝑗𝐵𝐵� − 2𝑡𝑡𝑟𝑟�𝑌𝑌𝑇𝑇𝑈𝑈𝑗𝑗𝐵𝐵� 

By taking the first derivative of the above formulation and 
set it equal to zero, we have: 

𝛻𝛻𝑈𝑈𝑗𝑗𝑡𝑡𝑟𝑟�𝑈𝑈𝑗𝑗
′𝑈𝑈𝑗𝑗𝐵𝐵𝐵𝐵′� − 2𝛻𝛻𝑈𝑈𝑗𝑗𝑡𝑡𝑟𝑟�𝑌𝑌

′𝑈𝑈𝑗𝑗𝐵𝐵� = 0, 
2𝑈𝑈𝑗𝑗𝐵𝐵𝐵𝐵′ − 2𝑌𝑌𝐵𝐵′ = 0, 
−2𝑈𝑈𝑗𝑗𝐵𝐵𝐵𝐵𝑇𝑇 = −2𝑌𝑌𝐵𝐵′. 

Therefore, the solution is 
𝑈𝑈𝑗𝑗 = (𝑌𝑌𝐵𝐵𝑇𝑇)(𝐵𝐵𝐵𝐵𝑇𝑇)−1 = ((𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗)𝑉𝑉)(𝑉𝑉′𝑉𝑉)−1, 

and recall that 𝑉𝑉′𝑉𝑉 = 𝐼𝐼, then we have, 
𝑈𝑈𝑗𝑗 = �𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗�𝑉𝑉. 

B. Derivation of the gradient in Proposition 3 
𝛻𝛻�||𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝑘𝑘𝒗𝒗(𝑟𝑟)||𝐹𝐹2�
𝛻𝛻𝜷𝜷𝑗𝑗

(𝑟𝑟)

=
�𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝑘𝑘𝒗𝒗(𝑟𝑟)�
′
(𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟))
𝛻𝛻𝜷𝜷𝑗𝑗

(𝑟𝑟)

= −�𝒚𝒚𝑗𝑗(𝑟𝑟)′𝑋𝑋𝑗𝑗�
′
− 𝑋𝑋𝑗𝑗′𝒚𝒚𝑗𝑗(𝑟𝑟) + 2𝑋𝑋𝑗𝑗′𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) + 𝑋𝑋𝑗𝑗′𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)

+ 𝑋𝑋𝑗𝑗′𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟) = −2𝑋𝑋𝑗𝑗′𝒚𝒚𝑗𝑗(𝑟𝑟) + 2𝑋𝑋𝑗𝑗′𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗
(𝑟𝑟) + 2𝑋𝑋𝑗𝑗′𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟) 

C. The Computational Complexity of the Model Updating 
Algorithm 

The model updating algorithm can be decomposed into three 
steps. At iteration 𝑘𝑘, we have: 

11: Optimize 𝑉𝑉 given 𝐵𝐵 and 𝑈𝑈𝑗𝑗: 
 

�
𝑌𝑌1 − 𝑋𝑋1𝐵𝐵1𝑘𝑘−1

⋮
𝑌𝑌𝑚𝑚 − 𝑋𝑋𝑚𝑚𝐵𝐵𝑚𝑚𝑘𝑘−1

�

′

�
𝑈𝑈1𝑘𝑘−1
⋮

𝑈𝑈𝑚𝑚𝑘𝑘−1
� = 𝑅𝑅𝑅𝑅𝑊𝑊′, 

𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑊𝑊′. 

 

12: Optimize 𝑈𝑈𝑗𝑗 for given 𝐵𝐵 and 𝑉𝑉: 
 𝑈𝑈𝑗𝑗𝑘𝑘 = �𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗𝑘𝑘−1�𝑉𝑉𝑘𝑘  

13: Optimize 𝐵𝐵 given 𝑈𝑈𝑗𝑗 and 𝑉𝑉: 
 𝐵𝐵𝑘𝑘 = 𝑃𝑃𝑑𝑑𝑚𝑚𝑃𝑃𝑃𝑃(𝜎𝜎�1 …𝜎𝜎�𝑚𝑚)𝑄𝑄′,  

Recall that there are 𝑚𝑚 similar-but-non-identical systems, the 
dimensionality of the response is 𝑑𝑑 (𝑌𝑌𝑗𝑗 ∈ ℝ𝑛𝑛𝑗𝑗×𝑑𝑑), the number of 
samples in each system are 𝑛𝑛𝑗𝑗, the number of observed variables 
is 𝑝𝑝 (𝑋𝑋𝑗𝑗 ∈ ℝ𝑛𝑛𝑗𝑗×𝑝𝑝), the number of latent variables is 𝑞𝑞 (𝑈𝑈𝑗𝑗 ∈
ℝ𝑛𝑛𝑗𝑗×𝑞𝑞). Furthermore, 𝐵𝐵𝑗𝑗 = �𝜷𝜷𝑗𝑗

(1) ⋯ 𝜷𝜷𝑗𝑗
(𝑑𝑑)� ∈ ℝ𝑝𝑝×𝑑𝑑, 

where 𝑗𝑗 = 1, … ,𝑚𝑚, 𝐵𝐵 = �
𝜷𝜷1

(1) ⋯ 𝜷𝜷𝑚𝑚
(1)

⋮ ⋱ ⋮
𝜷𝜷1

(𝑑𝑑) ⋯ 𝜷𝜷𝑚𝑚
(𝑑𝑑)
� ∈ ℝ𝑝𝑝×𝑑𝑑, 𝑉𝑉 ∈

ℝ𝑑𝑑×𝑞𝑞and we assume that 𝑞𝑞 < 𝑑𝑑. 
Since 𝑌𝑌𝑗𝑗 − 𝑋𝑋𝑗𝑗𝐵𝐵𝑗𝑗 has a complexity of O(𝑛𝑛𝑗𝑗𝑝𝑝𝑑𝑑 + 𝑛𝑛𝑗𝑗𝑑𝑑)=O((𝑝𝑝 +

1)𝑛𝑛𝑗𝑗𝑑𝑑), �
𝑌𝑌1 − 𝑋𝑋1𝐵𝐵1𝑘𝑘−1

⋮
𝑌𝑌𝑚𝑚 − 𝑋𝑋𝑚𝑚𝐵𝐵𝑚𝑚𝑘𝑘−1

� has a complexity of O((𝑝𝑝 + 1)𝑛𝑛𝑑𝑑), 
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where 𝑛𝑛 = 𝑛𝑛1+, … , +𝑛𝑛𝑚𝑚. �
𝑌𝑌1 − 𝑋𝑋1𝐵𝐵1𝑘𝑘−1

⋮
𝑌𝑌𝑚𝑚 − 𝑋𝑋𝑚𝑚𝐵𝐵𝑚𝑚𝑘𝑘−1

�

′

�
𝑈𝑈1𝑘𝑘−1
⋮

𝑈𝑈𝑚𝑚𝑘𝑘−1
� has a 

complexity of O((𝑝𝑝 + 1)𝑛𝑛𝑑𝑑 +  𝑛𝑛𝑑𝑑𝑞𝑞)= O((𝑝𝑝 + 𝑞𝑞 + 1)𝑛𝑛𝑑𝑑). 
Generating 𝑅𝑅𝑅𝑅𝑊𝑊′ in Step 11 has a complexity of O(𝑑𝑑𝑞𝑞2) [31], 
and 𝑉𝑉𝑘𝑘 = 𝑅𝑅𝑊𝑊′ has a complexity of O(𝑑𝑑𝑞𝑞2). Collectively, Step 
11 has a complexity of O((𝑝𝑝 + 𝑞𝑞 + 1)𝑛𝑛𝑑𝑑 + 2𝑑𝑑𝑞𝑞2) 

Step 12 has a complexity of O((𝑝𝑝 + 1)𝑛𝑛𝑗𝑗𝑑𝑑 + 𝑛𝑛𝑗𝑗𝑑𝑑𝑞𝑞)= O((𝑝𝑝 +
𝑞𝑞 + 1)𝑛𝑛𝑗𝑗𝑑𝑑) for 𝑈𝑈𝑗𝑗, where 𝑗𝑗 = 1, … ,𝑚𝑚. To update all 𝑈𝑈𝑗𝑗, the 
complexity becomes O((𝑝𝑝 + 𝑞𝑞 + 1)𝑛𝑛𝑑𝑑). 

In Step 13, we first use gradient to update un-thresholded 𝐵𝐵𝑗𝑗 

as 𝐵𝐵� = �
𝜷𝜷�1

(1)
⋯ 𝜷𝜷�𝑚𝑚

(1)

⋮ ⋱ ⋮
𝜷𝜷�1

(𝑑𝑑)
⋯ 𝜷𝜷�𝑚𝑚

(𝑑𝑑)
� ∈ ℝ𝑝𝑝𝑑𝑑×𝑚𝑚, where 𝜷𝜷�𝑗𝑗

(𝑟𝑟)
=

𝜷𝜷𝑗𝑗
(𝑟𝑟) − 𝑡𝑡1 �𝛻𝛻�𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�
𝐹𝐹

2
𝛻𝛻𝜷𝜷𝑗𝑗

(𝑟𝑟)� �.  
The computation of the gradient 
𝛻𝛻�𝒚𝒚𝑗𝑗(𝑟𝑟) − 𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗

(𝑟𝑟) − 𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟)�
𝐹𝐹

2
𝛻𝛻𝜷𝜷𝑗𝑗

(𝑟𝑟)�

= −2𝑋𝑋𝑗𝑗′𝒚𝒚𝑗𝑗(𝑟𝑟) + 2𝑋𝑋𝑗𝑗′𝑋𝑋𝑗𝑗𝜷𝜷𝑗𝑗
(𝑟𝑟) + 2𝑋𝑋𝑗𝑗′𝑈𝑈𝑗𝑗𝒗𝒗(𝑟𝑟) 

has a complexity O(𝑛𝑛𝑗𝑗𝑝𝑝 + 𝑝𝑝 + 𝑛𝑛𝑗𝑗𝑝𝑝2 + 𝑝𝑝2 + 𝑝𝑝 + 𝑛𝑛𝑗𝑗𝑝𝑝𝑞𝑞 + 𝑝𝑝𝑞𝑞 +
𝑝𝑝)= O((𝑛𝑛𝑗𝑗 + 3 + 𝑛𝑛𝑗𝑗𝑞𝑞 + 𝑞𝑞)𝑝𝑝 + (𝑛𝑛𝑗𝑗 + 1)𝑝𝑝2). Then, obtaining 

𝜷𝜷�𝑗𝑗
(𝑟𝑟)

 has the complexity of O(�𝑛𝑛𝑗𝑗 + 5 + 𝑛𝑛𝑗𝑗𝑞𝑞 + 𝑞𝑞�𝑝𝑝 + �𝑛𝑛𝑗𝑗 +
1�𝑝𝑝2) and obtaining 𝐵𝐵�  has the complexity of O((𝑛𝑛 + 5𝑚𝑚 +
𝑛𝑛𝑞𝑞 + 𝑞𝑞𝑚𝑚)𝑑𝑑𝑝𝑝 + (𝑛𝑛 + 𝑚𝑚)𝑑𝑑𝑝𝑝2).  

We assume that 𝑝𝑝𝑑𝑑 < 𝑚𝑚 and performing 𝐵𝐵� =
𝑃𝑃𝑑𝑑𝑚𝑚𝑃𝑃𝑃𝑃(𝜎𝜎1 …𝜎𝜎𝑚𝑚)𝑄𝑄′ has a complexity of O(𝑝𝑝𝑑𝑑𝑚𝑚2). Performing 
thresholding and reconstruct 𝐵𝐵 as 𝐵𝐵 = 𝑃𝑃𝑑𝑑𝑚𝑚𝑃𝑃𝑃𝑃(𝜎𝜎�1 …𝜎𝜎�𝑚𝑚)𝑄𝑄′ has 
a complexity of O((3 + 𝑝𝑝2𝑑𝑑2)𝑚𝑚 + 𝑝𝑝𝑑𝑑𝑚𝑚2). Collectively, Step 
13 has a time complexity as O((𝑛𝑛 + 5𝑚𝑚 + 𝑛𝑛𝑞𝑞 + 𝑞𝑞𝑚𝑚)𝑑𝑑𝑝𝑝 +
(𝑛𝑛 + 𝑚𝑚)𝑑𝑑𝑝𝑝2 + 𝑝𝑝𝑑𝑑𝑚𝑚2 + (3 + 𝑝𝑝2𝑑𝑑2)𝑚𝑚 + 𝑝𝑝𝑑𝑑𝑚𝑚2). 

The overall computational complexity becomes O(2𝑞𝑞2𝑑𝑑 +
2𝑝𝑝𝑛𝑛𝑑𝑑 + 2𝑞𝑞𝑛𝑛𝑑𝑑 + 2𝑛𝑛𝑑𝑑 + 𝑞𝑞𝑛𝑛𝑑𝑑 + 5𝑝𝑝𝑚𝑚𝑑𝑑 + 𝑞𝑞𝑝𝑝𝑛𝑛𝑑𝑑 + 𝑞𝑞𝑝𝑝𝑚𝑚𝑑𝑑 +
𝑝𝑝2𝑛𝑛𝑑𝑑 + 𝑝𝑝2𝑚𝑚𝑑𝑑 + 𝑝𝑝𝑚𝑚2𝑑𝑑 + 3𝑚𝑚 + 𝑝𝑝2𝑚𝑚𝑑𝑑2 + 𝑝𝑝𝑚𝑚2𝑑𝑑).  
𝑛𝑛: the sample size 
𝑝𝑝: the number of observed variables 
𝑞𝑞: the number of latent variables 
𝑑𝑑: the dimensionality of the response  
𝑚𝑚: the number of similar-but-non-identical systems, 
It is safe to assume 𝑞𝑞 < 𝑑𝑑,  𝑚𝑚 < 𝑛𝑛, We can simplify the 

complexity as O(𝑞𝑞𝑝𝑝𝑛𝑛𝑑𝑑 + 𝑝𝑝2𝑛𝑛𝑑𝑑 + 𝑝𝑝2𝑚𝑚𝑑𝑑2 + 𝑝𝑝𝑚𝑚2𝑑𝑑).  
 

REFERENCES 
 
[1] H. Sun, X. Deng, K. Wang, and R. Jin, "Logistic regression for 

crystal growth process modeling through hierarchical nonnegative 
garrote-based variable selection," IIE Transactions, vol. 48, no. 8, 
pp. 787-796, 2016. 

[2] G. Fisher, M. R. Seacrist, and R. W. Standley, "Silicon crystal 
growth and wafer technologies," Proceedings of the IEEE, vol. 100, 
no. 1, pp. 1454-1474, 2012. 

[3] R. Jin, X. Deng, X. Chen, L. Zhu, and J. Zhang, "Dynamic quality-
process model in consideration of equipment degradation," Journal 
of Quality Technology, vol. 51, no. 3, pp. 1-13, 2019. 

[4] E. Zafiriou, H. Chiou, and R. Adomaitis, "Nonlinear model based 
run-to-run control for rapid thermal processing with unmeasured 
variable estimation," in Symp. Control, Diagnosis and Modeling in 

Semiconductor Manufacturing, 187th Meeting Electrochem. Soc., 
1995, vol. 95, p. 18. 

[5] S. J. Pan and Q. Yang, "A survey on transfer learning," IEEE 
Transactions on Knowledge and Data Engineering, vol. 22, no. 10, 
pp. 1345-1359, 2009. 

[6] A. Shintani, T. Miyano, and M. Hourai, "A novel apporach to the 
characterization of growth striations in Czochralski silicon crystals," 
Journal of the Electrochemical Society, vol. 142, no. 7, p. 2463, 
1995. 

[7] M. Avci and S. Yamacli, "Neural network reinforced point defect 
concentration estimation model for Czochralski-grown silicon 
crystals," Mathematical and computer modelling, vol. 51, no. 7-8, 
pp. 857-862, 2010. 

[8] A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased 
estimation for nonorthogonal problems," Technometrics, vol. 12, 
no. 1, pp. 55-67, 1970. 

[9] R. Tibshirani, "Regression shrinkage and selection via the lasso," 
Journal of the Royal Statistical Society. Series B (Methodological), 
vol. 58, no. 1, pp. 267-288, 1996. 

[10] H. Zou and T. Hastie, "Regularization and variable selection via the 
elastic net," Journal of the Royal Statistical Society: Series B 
(Statistical Methodology), vol. 67, no. 2, pp. 301-320, 2005. 

[11] R. K. Ando and T. Zhang, "A framework for learning predictive 
structures from multiple tasks and unlabeled data," Journal of 
Machine Learning Research, vol. 6, no. 1, pp. 1817-1853, 2005. 

[12] J. Chen, L. Tang, J. Liu, and J. Ye, "A convex formulation for 
learning shared structures from multiple tasks," in Proceedings of 
the 26th Annual International Conference on Machine Learning, 
2009, pp. 137-144: ACM. 

[13] L. Jacob, P. Vert, and F. R. Bach, "Clustered multi-task learning: A 
convex formulation," in Proceedings of 2009 Advances in Neural 
Information Processing Systems, 2009, pp. 745-752. 

[14] Z. Kang, K. Grauman, and F. Sha, "Learning with Whom to Share 
in Multi-task Feature Learning," in Proceedings of the 28th 
International Conference on Machine Learning, 2011, pp. 521-528. 

[15] T. Evgeniou and M. Pontil, "Regularized multi-task learning," in 
Proceedings of the Tenth ACM SIGKDD International Conference 
on Knowledge Discovery and Data Mining, 2004, pp. 109-117: 
ACM. 

[16] S. Parameswaran and K. Q. Weinberger, "Large margin multi-task 
metric learning," in Proceedings of 2010 Advances in Neural 
Information Processing Systems, 2010, pp. 1867-1875. 

[17] A. R. Gonçalves, P. Das, S. Chatterjee, V. Sivakumar, F. J. Von 
Zuben, and A. Banerjee, "Multi-task sparse structure learning," in 
Proceedings of the 23rd ACM International Conference on 
Conference on Information and Knowledge Management, 2014, pp. 
451-460. 

[18] A. R. Goncalves, P. Das, S. Chatterjee, V. Sivakumar, F. J. V. 
Zuben, and A. Banerjee, "Multi-task Sparse Structure Learning," 
presented at the Proceedings of the 23rd ACM International 
Conference on Conference on Information and Knowledge 
Management, Shanghai, China, 2014. Available: 
https://doi.org/10.1145/2661829.2662091 

[19] I. Yamane, F. Yger, M. Berar, and M. Sugiyama, "Multitask 
principal component analysis," in Asian Conference on Machine 
Learning, 2016, pp. 302-317. 

[20] B. Schölkopf, A. Smola, and K.-R. Müller, "Kernel principal 
component analysis," in International conference on artificial 
neural networks, 1997, pp. 583-588: Springer. 

[21] H. Zou, T. Hastie, and R. Tibshirani, "Sparse principal component 
analysis," Journal of Computational and Graphical Statistics, vol. 
15, no. 2, pp. 265-286, 2006. 

[22] B. W. Silverman, "Smoothed functional principal components 
analysis by choice of norm," The Annals of Statistics, vol. 24, no. 1, 
pp. 1-24, 1996. 

[23] G. M. James, T. J. Hastie, and C. A. Sugar, "Principal component 
models for sparse functional data," Biometrika, vol. 87, no. 3, pp. 
587-602, 2000. 

[24] F. Yao, H. G. Müller, and J. L. Wang, "Functional data analysis for 
sparse longitudinal data," Journal of the American Statistical 
Association, vol. 100, no. 470, pp. 577-590, 2005. 

[25] K. Paynabar, C. Zou, and P. Qiu, "A change-point approach for 
phase-I analysis in multivariate profile monitoring and diagnosis," 
Technometrics, vol. 58, no. 2, pp. 191-204, 2016. 

https://doi.org/10.1145/2661829.2662091


> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

9 

[26] C. Zhang, H. Yan, S. Lee, and J. Shi, "Weakly correlated profile 
monitoring based on sparse multi-channel functional principal 
component analysis," IISE Transactions, vol. 50, no. 10, pp. 878-
891, 2018. 

[27] H. Zhou and L. Li, "Regularized matrix regression," Journal of the 
Royal Statistical Society: Series B (Statistical Methodology), vol. 
76, no. 2, pp. 463-483, 2014. 

[28] J. R. Rice, "Experiments on gram-schmidt orthogonalization," 
Mathematics of Computation, vol. 20, no. 94, pp. 325-328, 1966. 

[29] A. Chouldechova and T. Hastie, "Generalized additive model 
selection," arXiv preprint arXiv:1506.03850, 2015. 

[30] S. S. Pascoa, "Oxygen and related defects in Czochralski silicon 
crowns," MS Thesis, Department of Materials Science and 
Engineering, Norwegian University of Science and Technology, 
2014. 

[31] V. Vasudevan and M. Ramakrishna, "A hierarchical singular value 
decomposition algorithm for low rank matrices," arXiv preprint 
arXiv:1710.02812, 2017. 

 
Yifu Li is an assistant professor of 
Industrial & Systems Engineering at the 
University of Oklahoma. He received 
his Ph.D. and B.S. degree in Industrial 
and Systems Engineering from Virginia 
Tech.  

He previously worked as Research 
Assistant at Grado Department of 
Industrial and Systems Engineering of 

Virginia Tech and Feinberg School of Medicine of 
Northwestern University. His research interest is mainly on 
studying the interface between manufacturing data-driven 
modeling and data quality.  

He is a member of IEEE, INFORMS and IISE. His awards 
and honors include Best Poster Presentation at Center for 
Excellence in Logistics and Distribution (CELDi), Fayetteville 
AR, 2017, and Young Author Award at International Workshop 
on Intelligentized Welding Manufacturing (IWIWM), 
Lexington KY, 2019 

 
Hao Yan received the B.S. degree in 
Physics from the Peking University, 
Beijing, China, in 2011. He also received 
the M.S. degree in Statistics, the M.S. 
degree in Computational Science and 
Engineering, and the Ph.D. degree in 
Industrial Engineering from Georgia 
Institute of Technology, Atlanta, in 2015, 
2016, 2017, respectively.  

Currently, he is an assistant professor in the School of 
Computing, Informatics, and Decision Systems Engineering in 
Arizona State University. His research interests focus on 
developing scalable statistical learning algorithms for large-
scale high-dimensional data with complex heterogeneous 
structures to extract useful information for the purpose of 
system performance assessment, anomaly detection, intelligent 
sampling and decision making. 

He was also recipients of multiple awards including best 
paper award in IISE Transaction,  IEEE TASE, and ASQ 
Brumbaugh Award. He is a member of IEEE, INFORMS and 
IISE. 
 
 

 

Dr. Ran Jin is an Associate Professor 
and the Director of Laboratory of Data 
Science and Visualization at the Grado 
Department of Industrial and Systems 
Engineering at Virginia Tech. He 
received his Ph.D. degree in Industrial 
Engineering from Georgia Tech, 
Atlanta, his Master’s degrees in 
Industrial Engineering, and in 
Statistics, both from the University of 

Michigan, Ann Arbor, and his bachelor’s degree in Electronic 
Engineering from Tsinghua University, Beijing.  

He has been working with leading manufacturing companies 
in aerospace, semiconductor, personal care, optical fiber 
industries. His research focuses on machine learning in 
manufacturing, manufacturing computation services and 
cognitive-based interactive visualization.  

He is a member of IEEE and currently serving as an 
Associate Editor for IISE Transactions and an Associate Editor 
for ASME Transactions, Journal of Manufacturing Science and 
Engineering. For more information about Dr. Jin, please visit 
his faculty website at Virginia Tech: https://ise.vt.edu/ran-jin. 
 
 

 


	I. Introduction
	II. Literature Review
	III. The Proposed Data Filtering Method
	A. MTL-LVD
	B. Parameter estimation and hyper-parameter tuning of MTL-LVD

	IV. Simulation
	V. Ingot Growth Manufacturing Case Study
	VI. Summary
	Appendix
	A. Derivation of Proposition 2
	B. Derivation of the gradient in Proposition 3
	C. The Computational Complexity of the Model Updating Algorithm

	References



