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ABSTRACT

To tackle fundamental scientific questions regarding health, resilience and sustainability of water resources
which encompass multiple disciplines, researchers need to be able to easily access diverse data sources and to
also effectively incorporate these data into heterogeneous models. To address these cyberinfrastructure chal-
lenges, a new sustainable and easy-to-use Open Data and Open Modeling framework called Meta-Scientific-
Modeling (MSM) is developed. MSM addresses the challenges of accessing heterogeneous data sources via the
Open Data architecture which facilitates integration of various external data sources. Data Agents are used to
handle remote data access protocols, metadata standards, and source-specific implementations. The Open
Modeling architecture allows different models to be easily integrated into MSM via Model Agents, enabling direct
heterogeneous model coupling. MSM adopts a graphical scientific workflow system (VisTrails) and does not
require re-compiling or adding interface codes for any diverse model integration. A study case is presented to
illustrate the merit of MSM.

Software/data availability

Name Author Year first available Size Data format Access

VisTrails New York University 2007 300 Mb Python language https://www.vistrails.org/index.php/Main_Page

GES DISC through OPeNDAP NASA 2011 OPeNDAP https://developer.earthdata.nasa.gov/opendap/quickstart
USGS Water Service USGS Xml webservices http://waterservices.usgs.gov/

NOAA Radar Precipitation NOAA 2004 Shapefile https://water.weather.gov/precip/archive/

https://water.weather.gov/precip/downloads/

1. Introduction

1.1. Context and motivation

weather, floods, landslides, erosions, droughts, water quality, air qual-
ity, climate variability, evolution of landscape, and pollutant transport
within soil column and rivers. To improve our understanding of the
complex behaviors of the various processes (e.g., physical, hydrological,
atmospheric, biological, chemical) and the interactions among them, as
well as to improve the accuracy and reliability of the models’ predictions

Models are developed for various applications, such as predictions of and simulations, researchers need to make an effective use of various

Abbreviations: MSM, Meta Scientific Modeling; MKS, Multiscale Kalman Smoother; NOAA, National Oceanic and Atmospheric Administration; OPeNDAP, Open-
source Project for a Network Data Access Protocol; VIC, Variable Infiltration Capacity; XDAC, Data-Agent-Component Service that offers the services to access
external data making use of Data Agents. It returns DataSets as its results.
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available data across disciplines to improve theories, algorithms,
models, and validations. However, a large amount of such valuable data
often goes unused, due to the significant overhead of time and effort
needed to discover, access, understand, and process these heterogeneous
data (Kannan et al., 2000; McPhillips et al., 2009; Parada and Liang,
2004; Ravindran et al., 2010; Salas and Liang, 2013). While a number of
modeling systems exist for scientific communities (Bhat and Jadhav,
2010; Bryant, 2007; DeLuca et al., 2008; Peckham et al., 2013; Rajib
et al., 2016; Salas et al., 2012), most of them do not support directly
accessing to heterogeneous data sources over the Internet. Also, the
complexity of the existing models makes them difficulty to be shared and
used by others. Consequently, the strengths and limitations of these
various developed models are not well evaluated, understood, and
widely used.

1.2. Strategy for solution

To address the aforementioned challenges, we develop an Open-data
and Open-model framework. Our approach is based on several funda-
mental concepts and strategies. First, we design an open system archi-
tecture which includes two types of open system interfaces, by which
individual models and heterogeneous data sources are connected to the
framework through model agents and data agents respectively. Thus,
this open system architecture makes it easy for the individual models to
be integrated into the framework by their model agents to access the
different data sources by making use of the data agents. Our framework
provides data agents for some popular sources, like NASA OPeNDAP and
radar data from NOAA. A data owner (or user) can also write his/her
own data agent if he/she wants his/her data to be widely disseminated
to the community through this framework. Second, we adopt a non-
proprietary workflow system that organizes the scientific tasks in a
reproducible manner. These tasks can be of different types including
data-retrieval, data pre-processing, model execution, model coupling,
and data visualization. Third, we develop a system-wide data fusion
scheme enabling the user to fuse data from several data sources and/or
models in his/her modeling exploration.

Our proposed Open-data Open-model framework MSM (Meta-Sci-
entific-Modeling), whose implementation is called msm, has effectively
addressed the drawbacks of the existing modeling systems, and thus has
the following unique features:

(1) Other systems use proprietary workflows with preliminary
functionalities (Dou et al., 2008). In contrast, the msm in-
corporates with an independent open source and graphical based
Workflow engine, which is benefited by the future improvements
of the generic open source workflow engine.

(2) Other systems suffer the lack of access support to external data
sources. On the contrary, the msm facilitates users to obtain data
directly from popular sources such as NASA OPeNDAP and USGS
web-services by just dragging a component inside a working
board area.

(3) The msm does not require a central administration, and each
modeler has the responsibility of his/her own model and its
corresponding model agent. This makes msm de-centralized and
more sustainable than the approaches that require adaption and
recompilation to be made by a central administration team.

(4) Unlike other modeling systems, the msm enables models to be
freely connected with each other in the msm framework. That is,
once the user has written a single Agent for his/her specific model
to connect into the msm, he/she is able not only to access all the
data sources but also to integrate it with other models already
connected to the msm framework without any additional effort.

The remainder of this paper is organized as follows. Section 2 briefly
overviews the relevant existing work and background. Section 3 pre-
sents the design of our framework and its implementation of the msm.
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Section 4 illustrates our framework’s functionality and usability via
examples. Section 5 presents an end-to-end modeling process to
demonstrate the current version of msm framework. Finally, Section 6
gives our conclusions and planned future work.

2. Related works and background
2.1. Existing systems

There have been several efforts in developing different frameworks
to integrate models to meet different needs in the broad Earth science
and environmental domains, including Open Modeling Interface
(OpenMI]) (Gregersen et al., 2007; Knapen et al., 2011; Moore and
Tindall, 2005), Community Surface Dynamics Modeling System
(CSDMS?)(Peckham et al., 2013), Object Modeling System (oMS®)
(Ahuja et al., 2005), Interactive Component Modeling System (ICMS*)
(Vertessy et al., 2002), Earth System Modeling Framework (ESMF®) (Hill
et al., 2004), and Community Hydrological Prediction System (CHPS®).
CHPS is a main hydrological modeling framework used by the NOAA’s
River Forecast Centers (RFCs). Its main hydrologic modeling software is
FEWS (Flood Early Warning System) (Krzhizhanovskaya et al., 2011;
Werner et al., 2013). All of these existing model integration systems
have their strengths and shed lights on this important research area.
Nevertheless, these existing frameworks have several weaknesses which
are briefly summarized below.

Lack of Data Access: As mainly focusing on modeling environments,
open data access is not considered in the existing modeling frameworks
by design, although a few of them (e.g., FEWS) support some data
sources. In general, the access to data sources in those modeling
frameworks relies on user’s own application implementation, for
example, as illustrated in CSDMS (University of Colorado Boulder,
2012).

No Data Fusion: Data fusion for multiple datasets and/or model re-
sults is not provided by the existing modeling frameworks.

Preliminary Workflow: While many of these frameworks have some
basic ad-hoc workflow-like schemes to link models, a standard and so-
phisticated scientific graphical workflow engine is missing. As a result,
workflow-provenance management is not available (Deelman and
Chervenak, 2008).

Lack of Model Source-Code Transparency: While the requirements
on models to be linked to a framework vary from one framework to
another, most frameworks require the source code of the models. For
example, CSDMS requires (1) to implement a Basic Modeling Interface
(BMI) for a model to become CSDMS compliant model, which requires
some refactoring of the model source code (Hutton et al., 2014); and (2)
to implement an additional Component Model Interface (CMI) by
CSDMS Integration Facility staff that wraps the CSDMS-compliant model
to be used in the CSDMS framework. Some frameworks are not centrally
administrated such as OpenMI, OMS, and ESFM, while others need
central administration for framework development and use, such as
CSDMS and FEWS.

2.2. Desirable features

Table 1 shows a list of functionalities that are important for hydro-
logical modeling systems. It also compares the functionalities of the
existing systems: OpenMI (Gregersen et al., 2007; Knapen et al., 2011),
CSDMS (Peckham et al., 2013), FEWS (Gijsbers, 2010; Werner et al.,

https://www.openmi.org/.
https://csdms.colorado.edu/wiki/Main_Page.
https://alm.engr.colostate.edu/cb/wiki/16961.
http://www.clw.csiro.au/products/icms/index.html.
https://www.earthsystemcog.org/projects/esmf/.
http://www.nws.noaa.gov/ohd/hrl/chps/.
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Table 1
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Comparison of available features among model/integration systems. An “X” in the table represents a feature
offered by the corresponding tool. Colors of green, orange, and white represent, respectively, features that are
desirable and offered by the corresponding tools, desirable but not offered by the tools, and not required and

not offered either by the tools.
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Execution Central Server X
location Individual X
Adding Central process required
existing
models End user can add models alone X
) Models' Any (or many) languages X
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source -
openness Commercial X
Code refactor/recompile not required for X
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A % Data visualization
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" Graphical workflow engine X
é Automatic process provenance X
& | Non-proprietary open workflow X
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= variable
E Tasks I/0 Graphical connection variable to X
O | ports variable
= Variables grouped in several
- > X X
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Workflow checks pre-required tasks X X

2013), OMS (Ahuja et al., 2005), ICMS (Rizzoli et al. (1998), ESMF (Hill
et al., 2004) with those from our msm framework. The ones marked with

an “X” in the column “Desirable” are critical in term:
spent by researchers in tedious activities such as

and administering data, and/or improving the modeling systems’

s of reducing the time
codifying, retrieving,

sustainability. In the following, the features of each category shown in
Table 1 are discussed.

Models: The first feature listed under this category in Table 1 is the
Execution Location, which has been chosen to be individual/local for
our msm to save the time required to upload and manage remote
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information. The choice of “individual” makes it easier to run models
that are installed individually and locally but are not required at a
centrally administrated system. It also makes it easier for the user to add
his/her models to the framework without the need of a central team. In
other words, the user does not need to wait for a centralized adminis-
tration to have his/her model integrated into the framework but can do
it by himself/herself.

Regarding the programming language, some existing systems (e.g.,
ICMS and ESMF) require specific languages. However, the language in
which a model is written should not be a restriction. A desirable
framework should be able to support models written in any languages by
supporting the models in their compiled forms or at least to support a
number of languages.

The framework should also be able to support the integration of not
only the Open Source models but also the Commercial models. This
feature is important since the commercial models usually do not provide
source codes, but they are often useful in research activities. Besides,
even though the re-compilation is possible with the Open Source models,
it may not be always honored successfully. This is because the diffi-
culties of finding and/or rebuilding dependencies (as third-party li-
braries of particular versions) are enormous in many cases. Besides, the
re-compiling and releasing processes would invalidate all the testing and
verifications that a model has already achieved. On the other hand,
when the added code is minimal, it is not efficient to have the entire
Open Source model be recompiled.

Data sources: With respect to the category of data sources, it is
desirable that the framework can retrieve the information directly from
the external sources and make it usable to models. Learning, retrieving,
downloading and administering these data usually take a considerable
portion of the researchers’ work-time. Thus, a desirable framework
should be able to help retrieve the data via the framework system itself
and also allow the user to easily connect new data sources into the
system.

Fitting I/0: Each model or data source has its own set of specific
requirements of input and output formats. In order to integrate models
and data sources together, the desirable framework should provide
necessary conversions between their inputs and outputs to enable them
fitting each other. Re-scaling data in time and space provides such a
“glue” facility to connect models with data sources and to link models
with each other. Doing this manually would take a considerable portion
of researchers’ time (Kouzes et al., 2009). For a desirable framework,
this feature should be not only provided but also represented in a way
that the user can easily use it, for example, through a graphical workflow
instead of coding.

Data fusion allows the user to fuse data from several data sources
and/or models that represent the same variable at the same time and for
the same spatial area. By having a data fusion feature available, the
researcher can analyze additional hypothesis. Finally, the re-gridding is
also a desirable binding feature used to process the data from different
sources that use disparate coordinate systems or resolutions.

Data analysis: Even though the user may need to create complex
views of the data using their preferred and/or familiar tools, a desirable
framework should be able to provide the user a minimum number of
functionalities to display spatial information for any given time step. In
that way, the researcher can save time by having a quick graphical view
of the results from his/her work such as hypothesis testing, data ana-
lyses, model simulations, etc., and only needs to spend additional time to
create graphic views using external tools for specifically chosen results.

Data management: Creating and administering data folders, detect-
ing errors injected by accidentally deleted or moved files, dealing with
machine-oriented data file names in thousands of files, etc. are not only a
considerable workload for the researcher, but also error prone due to its
tediousness. Since this is a repetitive machine-doable process, manual
execution, as it is typically done at present, not only distracts the re-
searchers from doing their real research but also easily injects errors (Ma
etal., 2010; Sonntag et al., 2011). Because of this, a desirable framework
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should provide data management functionalities, particularly from the
very beginning when the data are retrieved from the data sources,
through the workflow and coupling process until the results are obtained
and displayed (or exported).

Several techniques can be used to transfer data from one model to
another. Some techniques are easier for the user to implement and
modify the model integration with a reasonable model execution speed
for research (i.e., at a small scale), but may not be sufficient for execu-
tion performance for a production system (i.e., at a large scale like the
daily operation at the National Weather Forecast Offices). Other tech-
niques may provide better execution performance, but are more difficult
to make changes or to have additional models integrated. A desirable
research framework should focus more on easy integration and user-
friendly experience because the goal is to help researchers to analyze
various hypotheses and to conduct real research. Once a new hypothesis
is discovered, for example, a second tool (or the same tool with a
different configuration) can be used to thoroughly test the hypothesis in
depth where the system’s performance becomes more critical.

Workflow tools: To improve the understanding and explanation of
the modeling results and to ensure a reproducible process of researcher’s
modeling work, it is desirable to have the execution of his/her modeling
process controlled by a graphical workflow (Callaghan et al., 2010;
Deelman et al., 2009).

A desirable workflow engine should provide the provenance service
automatically to track the changes of the workflow itself (Barkstrom,
2010). In this way the user can investigate the trace of data not only in
the current workflow version, but also in previous workflow versions,
and determine how the changes in the workflow affected the results of
his/her hypotheses (Ludascher et al., 2006). Since storing such infor-
mation is a repetitive task, performing it manually would add a heavy
workload to the researcher and be also error prone. A desirable work-
flow engine should also be an open source and an independent tool,
since its maintenance and evolution would benefit the framework and
the end user.

In addition, the inputs and outputs of each component involved in a
desirable workflow need to be graphically explicit to ensure that
different modeling simulations correspond to different inputs and out-
puts and that they are clear and visible for the researcher.

It can be seen from Table 1 that each of the existing hydrological
modeling tools/systems offers only some of the desirable features, but
not all of them. Also, some of the existing systems in Table 1 have their
features only focused on certain specific categories, e.g., OpenMI has
more features in the categories of the “models” and “workflow tools”,
while FEWS has more features in the “model” category.

In general, while most of the existing systems only offer the basic
functionality in providing connectivity among models, they do not
support the other important functionalities including remote data
retrieval, transformations, and traceability required for actual workflow
execution. Without those important functionalities supported from the
framework system, the models cannot be easily connected to each other
in a workflow with compatible time scale, space scale, units and/or
gridding geometry, which has to be taken care of by users themselves.

As most of these systems do not provide support to access external
data-sources, consequently, the researcher has to manually download,
administer, transform, and feed the data into models, adding more
workload to the researcher and increasing the risks of injecting errors.
And none of the existing systems have a strategy to add any data-source
oriented plug-ins.

In addition, the existing systems do not provide any functionality to
fuse datasets, yet such capability of easily fusing different datasets is
fundamentally important in this data rich era. This is because, often-
times, there are different techniques to measure or simulate the same
data variables, where each of them has its own strengths and weak-
nesses. The researcher then has to either develop his/her own code to
fuse information from different data sources or use just one data source
at a time.
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Fig. 1. The top-level design and overall architecture of msm system.

While most existing systems provide visualization tools for viewing
the results and conducting data analysis, they have no graphical tools for
controlling the workflow sequences. This means that the user needs to
deal with text or XML-based workflow, which is not only tedious but also
error-prone. Thus, it is desirable to have user oriented graphical inputs
and outputs, allowing the user to graphically design the workflow
(Davidson and Freire, 2008; Wang et al., 2009).

From Table 1, it can also be seen that most of the existing systems
require recompiling the sources when new models are added. This re-
duces the flexibility of the system because the researcher may become
dependent on the central administration organization to have his/her
model connected. In some cases, the user is attempting to connect a
model developed by a third party. By requiring code changes and
recompiling, the user needs to contact the model authors and have them
changing the code, compiling, testing and releasing another version
before the model can get integrated into the system. In the case of
CSDMS, for example, the framework team keeps the central control of
the source code of all the models connected. This may make it easier for
a researcher who just needs to use the models which are already con-
nected to the system. However, if the researcher wants to connect his/
her own models and run simulations with his/her own data, the process
becomes complex.

3. The msm design
3.1. Overdll architecture

We present our design and development of a novel Open-data Open-
model framework as an integrated solution to provide researchers and
practitioners with a sophisticated workflow-controlled modeling envi-
ronment that ensures traceability and reproducibility for hypothesis
tests in hydrological studies. From a top-level design point of view, our
framework system msm is composed by a core (referred to as msm core),
an interface with Workflow engine, Data Agents, and Model Agents

(Fig. 1). Basically, msm interacts with the selected Workflow engine
through the workflow interface, interacts with data sources through
Data Agents, and interacts with models through Model Agents.

In the overall architecture of our framework in Fig. 1, the msm core
controls all the other components and reaches external plugged-in
models and connected remote data sources by the corresponding
model and data agents, respectively. The msm core is connected to the
workflow engine to provide end-users with all workflow control func-
tionality. The msm core includes a data persistency service that can be
used by all the msm components. In particular, an instance of the
framework system is administered by an individual researcher who
configures and runs it, not by any centralized entity. Thus, the msm
framework allows the user/researcher not only to easily access external
data from diverse sources but also to easily and efficiently execute,
couple, and evaluate/intercompare various and complex models. The
former is achieved via the Open Data architecture, while the latter is
achieved via the Open Modeling architecture. The Open Data architec-
ture adopts a common internal data model and representation to facil-
itate the integration of various external data sources into the msm
framework using Data Agents. These Data Agents hide the heterogeneity
of the external data sources and provide a common interface to the msm
core. The Open Modeling architecture allows different models or mod-
ules to be easily integrated into the msm framework via Model Agents.
The msm architectural design offers a general many-to-many connec-
tivity between all individual models and external data sources, instead
of specific one-to-one pair-wise connectivity. In other words, assume
there are M heterogeneous data sources and N diverse models that need
to be fully coupled and integrated in a modeling system. To accomplish
this task, existing model frameworks would typically require MN + N(N-
1) pair-wise agents, but the msm framework only requires (M + N)
agents due to its architecture design. The number of (M + N) agents
represents the lowest linear complexity for such a model integration
task.

In our msm framework the modeling processes are dynamically
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Fig. 2. Data agents developed in our msm.

defined by the user through a workflow engine. Workflow provides the
user with a capacity of defining the sequence of activities to be per-
formed. Activities are user-defined standalone tasks by which a user can
easily build up any workflow sequence for his/her modeling process.
Each activity has to be pluggable with others, and should not impose any
implicit restrictions to the workflow sequence. To this end, activities
have been defined with the following properties:

(1) Each workflow activity has a well-defined responsibility. Each
activity is independent.

(2) No any hidden activity exists in any workflow. All workflow ac-
tivities must be explicitly specified and controlled by the user.

(3) There is no any additional communication channel for an activity
other than its inputs and outputs (loose coupling) to be connected
with other activities, which are controlled only by the workflow
engine.

(4) The activities are self-sufficient. As soon as the inputs are ready,
the activities are ready to be executed. That is, no other tasks
need to be performed prior to or at the same time of their
execution.

(5) The activities are stateless. The memory is a responsibility of the
persistency data management components with which the ac-
tivity can use. Therefore, once any activity finishes its execution
and returns the outputs, it must release any acquired resource or
data that could be used by a subsequent execution.

To satisfy the above properties in our msm framework, we introduce
a general data abstract called msmDataSet to ensure the type compati-
bility of any workflow activity input/output connections. This msmDa-
taSet is a data representation composed by a list of time-steps, and a 2-
dimensional image per time-step; it is the only data abstract type (apart
from basic int, boolean and string types) that an activity can accept for
its inputs and generate for its outputs. Our framework currently supports
four types of activities in a workflow:

(1) Data retrieval: The framework automatically generates a graph-
ical activity (a box in the workflow) for the corresponding data
agent (provided and pre-configured by msm or added by the
user).

(2) Data transformation: These are activities provided by the
framework directly, and performed by the core by executing an
internal algorithm (Data fusion, time/space re-scale, change of
units, etc.).

(3) Model execution: The framework automatically generates a
graphical activity (a box in the workflow) for the corresponding
model agent (provided by the user or pre-configured).

(4) Data visualization: Even though the workflow engine can provide
many of the visualization tools, it requires the core to prepare the
data to be reported.

The responsibility of the workflow control is to determine the
sequence of activities, and the inputs/outputs for each activity. In all

cases, the workflow will request the msm core to perform the activity for
the given inputs and will send back the corresponding outputs. Once the
activity is done, the workflow can use its outputs as inputs for the sub-
sequent activity. Most of the time, for example, the first activity defined
in the workflow will be a retrieval of data from a data source. The
workflow control requests the core to execute such a task. The core will
call the data Agent to execute the task. The data Agent will retrieve the
data and store them using services offered by the core.

One of our design criteria is to have a general and flexible open
system architecture so that our framework can be easily integrated with
different open source workflow engines. This way, our msm framework
can take the advantage of existing (and future) workflow engines that
the scientific communities use or prefer, and at the same time, can also
avoid any reinventing of the wheels. In our current implementation of
msm, we select VisTrails (Bavoil et al., 2005) as the workflow engine.
This is because VisTrails provides a nice and convenient graphical
workflow interface, in addition to its unique capabilities, such as,
provenance and data visualization, which serve well to the goals of our
msm framework. The other components in the msm framework shown in
Fig. 1 are described below.

(1) Data Agents: They are dynamically loaded components that are
connected to external data sources through the Internet, and store
retrieved information in msm using services provided by the core.

They are loaded at run time, and msm comes with developed data

agents for some popular data sources. The framework automati-

cally generates a Workflow Activity template per each Data

Agent.

Model Agents: They are dynamically loaded components that are

able to run external models. The framework automatically gen-

erates a Workflow Activity template per each Model Agent. A

Model Agent performs the following three main steps:

o Preparing inputs: The Agent receives the inputs from the
workflow (i.e., msmDataSets) and transforms them into the
input files with the format needed by the model.

o Executing model: The Agent will call the model executable file.

o Storing outputs: The Agent reads the output files generated by
the model and transforms them into msmDataSets. Then, the
Agent uses the framework to store them.

Core data management: This is a layer inside the msm core that

provides persistency for the msmDatasets, allowing other com-

ponents to write datasets and read datasets created during pre-
vious workflow activities. This component has a cache to improve
its performance.

(2

—

3

-

3.2. Open data

Our framework addresses the challenges of accessing multiple and
heterogeneous external data sources via its Open Data architecture,
which adopts a common internal data model and representation. In this
architecture, data sources are integrated into the system using Data
Agents that handle all source-specific implementations and remote data
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from msm_ core.msm...... import GenericDataAgent
class MyAgent (GenericDataAgent):

def obtain_ data (self, inputs, parameters):

def create_full_dataset (self, values, dataset_name, units, left, right,

top, bottom, time_ini, time_end, timestep):

access protocols (e.g., OPeNDAP, Web services), metadata standards,
and source-specific implementations, thus abstracting the data sources’
heterogeneity and providing a common interface to the msm core
system.

The Open Data architecture not only allows integrating external data
sources in an abstract and extensible manner, but also allows end users
to load data agents dynamically at runtime, without having to stop
current operations or recompiling the entire system. In this way, end
users can develop their custom data agents for immediate use by the
workflow engine.

The framework’s internal data model integrates a relational repre-
sentation of the system’s metadata and a non-relational representation
to store the actual data received from external sources and/or the results
produced from model computation. The data model allows persisting
data sets associated with gridded data as well as time series data (all
currently represented by the msmDataSet structure).

We have developed and integrated two data agents into the frame-
work (see Fig. 2), which already covers a broad range of data sources
and data access protocols: NASA (OPeNDAP-GDS) and USGS (REST Web
services) for bringing in data from both gridded (netCDF) and point time
series (WaterML) services using the major cataloging services (e.g.,
NASA GES DISC).

3.2.1. Develop an agent for a data source

To enable users to easily develop new data agents so as to add new
data sources into the msm framework for their scientific explorations, we
have designed a Generic Data Agent class. It offers the generic obtain -
data method. Individual data agents inherit from the Generic Data Agent
and override the generic obtain_data method, which enables the use of a
specific data retrieval protocol from the workflow. The data agent also
uses services from the Generic Data Agent for the creation and edition of
the output datasets, simplifying the development of new Data Agents.

All Data Agents share the following basic responsibilities: (1)
Securely contact the data-offering server; (2) Download the data files to
the local machine if they do not already exist; and (3) Read the data from
the downloaded files based on their format(s) and create a new Dataset.
If, at some point during the downloading process the connection is
interrupted, the simulation workflow will stop. In such a case, the user
can restart the workflow, and msm will continue to download the data
from where it last stopped from the data source since there will be a local
copy of the data downloaded so far. The user is free to delete these
locally downloaded data or maps at any time.

To write the data agent, the user has to create a text file including a
class in Python as outlined below:

After that, the user can add, in the obtain data function, all the
necessary codes to download the data and create the dataset object.
When the information is extracted and is ready to be stored in a Dataset
object, the user can call, for example, the function create full dataset of
the Generic Data Agent, which will ensure the proper building of the
Dataset object, and the persistence of it.

3.2.2. Register data agents into msm framework

The data agents are added to the system by copying the folder with
the Agent’s code into the upload folder of the framework. The folder
needs to be named exactly as the class representing the Agent. Also, the
file containing the class needs to be named exactly as the class. The
folder may contain more folders and more Python code files.

The system needs to be refreshed to generate the graphical repre-
sentation of the Agent in the Open Data list. After that, the Agent will be
visible in the graphical interface on the panel, and can be considered
successfully registered.

3.3. Open model

To take the full advantages of the framework, such as the M2M’
automated data retrieval from popular data sources (e.g., NASA data
centers and USGS), graphical workflow, process provenance, data
transformations and rescaling, data fusion, and data visualizations, re-
searchers/users need to connect their model agents into the msm
framework. There are two steps required to accomplish this: (1) Develop
agents for their models and (2) Register the agents into the framework.

3.3.1. Develop an agent for a model

To enable users to easily develop their model agents so as to add their
scientific models into the msm framework for their scientific explora-
tions, we have designed a Generic Agent class. The Generic Agent de-
clares the generic run model method. Individual model agents inherit
from the Generic Agent and override the generic run model method,
which enables the invocation of a specific user model from the work-
flow. The model agent uses services offered by the Generic Agent class to
read the inputs from and write the outputs into the msm core database,
which simplifies the integration of a user’s model into the framework.
This model agent is independent of the language used in writing the
model. That is, the language used by the model can be in C, C++,
Fortran, Python, Java, etc.

To facilitate the model agent development by individual users, we
have also developed an Agent Development Kit® that contains only the
basic API necessary to write and test an Agent, without the entire msm
core and the workflow. This makes it easier to set up the development
environment to start writing and testing a Model Agent.

The responsibility of the model agent is to provide the steps to: (1)
Read the inputs from the msm core and save the data into files from
which the model can read; (2) Run the model; and (3) Read the model’s
output files and save the information into the msm core. This is imple-
mented by overriding the run_model function.

To write the model agent, the user has to create a text file including a

7 M2M: Machine-to-Machine.
8 The ADK (Agent Development Kit) is a set of libraries that contains the
interfaces and utilities required to write, compile and test an Agent.
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class MyAgent (GenericAgent):

from msm_ core.msm...... import GenericAgent

def run_model (self, inputs, parameters):

def get_time_ series (self, dataset_id, time_ini, time_end, row, col):

top, bottom, side, base)

dataset_id = self.create_ dataset (variable_name, left, right,

def save_timestep (dataset_id, timestamp, matrix)

class in Python as outlined below:

After that, the user can add, in the run model function, all the
necessary codes to prepare the inputs, execute the model and store the
outputs. To read variables from the database, the user can call, for
example, the function get time series of the GenericAgent, which will
return an array with the values of the time series for the dataset
requested.

To write variables (i.e., model outputs) into the database, the user
can call the following provided functions:

The create dataset function serves to initialize a msmDataSet and
provides the dataset id. The save_timestep function saves a timestep in-
side the dataset. Both are provided by the GenericAgent.

The user also needs to implement the function getlnputs. The msm
system will use such functions to create appropriate ports in the work-
flow activities.

3.3.2. Register agents into msm framework

The model agents are added to the system by copying the folder with
the Agent’s code to the upload folder of the framework. The folder needs
to be named exactly as the class representing the Agent. Also, the file
containing the class needs to be named exactly as the class. The folder
may contain more folders and more Python code files. Also, the folder
must contain the executable files required to run the model.

The workflow needs to be refreshed to generate the graphical rep-
resentation of the Agent. After that, the Agent will be visible in the
graphical interface, and can be considered successfully registered.

3.3.3. An example of agent

To illustrate, we describe the model agent written for the VIC model
(Cherkauer and Lettenmaier, 1999; Liang et al., 1996a, 1996b; 1994;
Liang and Xie, 2003, 2001; Parada and Liang, 2004), a land surface
model that is widely used in the hydrology and water communities
(Maurer et al., 2002; Nijssen et al., 2001). The run_model function for the
VIC model agent (VicAgent), which performs all the responsibilities
described above, include:

(1) Initialization of environment;

(2) Preparation of input files: In this part, the VIC model agent
(VicAgent) uses several functions to build the configuration and
input files required by the VIC model. The VicAgent prepares one
input forcing file for each modeling cell of the study area over
which the VIC model is to be run. This forcing file includes all the

forcing variables needed to run VIC. Since VIC can be run at
different levels of complexities which require different forcing
data, the users need to be careful with the different requirements
on the forcing files for each case. It is important to mention that
when obtaining the information (e.g., forcing data) from the
database, the agent does not directly query the database. Instead,
the model agent only uses the services offered by the Generic
Agent from the msm core. Such a design in the framework’s ar-
chitecture ensures a minimum complexity for the user when he/
she writes the model agent. The VicAgent will automatically
create the parameter files (e.g., soil, vegetation, and snow)
required for the model to run in case they do not exist yet in the
working directory. Otherwise, the model will use the existing
parameter files. This allows the user to perform model calibration
manually through changing the values in the parameter files.
Execution: In this step, the VIC’s model agent builds the com-
mand that calls the VIC executable with its given global param-
eter file (for instance: prompt > vic —config file myconfig.txt
—input_dir inputs/files). The command is sent to the operating
system for its execution and the agent waits until the VIC model
run is completed at which time the output and error streams, if
any, of the VIC model are directly sent back to the console of msm
(which is visualized in the console of Vistrails).

Processing of outputs: Once the command is executed, the agent
processes the output files for each of the VIC model’s output
variables. VIC produces results in time series if it is run with a
choice of time first then space. Because of that, the agent needs to
open all of the output files (one per cell) and reads all of them for
each time-step in order to generate area-images and store them
for each time step in the output dataset in msm. To save this in the
database, the agent again uses the services offered by the Generic
Agent from the msm core.

3

=

(4

—

3.4. Data management layer

The persistence of information in msm is implemented as an in-
memory and local data caching, featuring a non-relational database
scheme that supports high throughput. Our data management facilitates
caching the retrieved data, storing previous results, and making the task
of coupling different models more efficient where only a dataset’s
identifier is passed among coupled models.

Our framework persists metadata information, msmDataSets and
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Table 2
A list of components/functions supported by the msm framework.
Group Component Description
Configuration msmlListVariables Show the list of all variables configured in msm. Allow the user to add or remove a variable by name.
msmVariable Show the information of a variable. Allow the user to add or remove sources by name.
msmSourceVariable Show the information of a source for a given variable. Allow the user to add or remove properties of the source.
Control Iterate Build control loops (both for style and while style) in workflow.
Data msmCreateDataset Create datasets. The spatial and temporal dimensions can be initialized and the values of the grids are filled with a default value.
Preprocess msmExpandDict Extract a max of 10 values from a dictionary given the keys where the dictionary is a map of variable names and their values.
msmFill Fill the empty values of a dataset with a constant value or by inverse squares interpolation.
msmGridding Change the gridding of a study area by interpolation.
msmMakeList Generate a python list using all the objects connected to the port.
msmPrepareDict Create a python dictionary from a max of 10 static keys and values.
msmSetNones Set empty values for the same cells that have empty values in a reference DataSet. This is done for each timestep.
msmWhiteNoise Add white noise to a DataSet.

1/0 Files FileToDataset Create a one-timestep DataSet by reading a text file that stores the data as an image: North in top, South in bottom, West in left.

TimeSeriesFileToDataSet ~ Create a dataset by reading a file with a timeseries.

DirToDataSet Create one dataset from each file in the directory. The resulting datasets have one timestep each.

TimeSeriesFileToDataSet ~ Create only one Dataset. Each file in the directory is used to create one timestep for the dataset.

msmOutFile Export a timestep to a text file.

DatasetToTimeSeriesFile Export all timesteps of a chosen cell in a dataset to a timeseries file.
Open Data RetrieveDataSetAgent Retrieve data given the variable name and optionally the source. If no source is given, it will pick the default source and its Data Agent.
Open Model RoutingAgent Run the routing model.

VicAgent Run the VIC model.

Statistics msmComputeCorrelation  Given two datasets with the same time period and the timestep and the same spatial dimensions (i.e., the size and the spatial resolution
of the study area), compute the correlation coefficient for the two time series for each corresponding cell. The result is returned in a
dataset with the correlation coefficient values in the same spatial dimensions as those in the inputs.

Time-Space msmAddTime Receive a starting timestamp, the duration of each timestep and a number of timesteps. It returns a final timestamp, adding the elapsed
time-steps to the starting time.

msmMKS Use the MKS framework to fuse two or many datasets. It can return the fused dataset for one given scale or many scales.
msmTimeRescale Rescale cell by cell, for a target timestep (i.e., a specified time duration of one time step) using one of four operations: Aggregation,
Average, Maximum and Minimum.
Visualization msmShowDataSet Print all the timesteps of a DataSet as images.
msmShowPlot Plot the time series represented by each of the cells of the DataSet.
msmShowTimeStep Print a single timestep as an image.

remote cached data. The metadata contains configuration information,
physical variables used by the Workflow Activities and the inventory (by
id) of msmDataSets. The msmDataSets storage in our framework contains
the time-steps, which can be the big data volume. Each time-step con-
tains a reference to the msmDataSet it belongs to, and a Document (the
data oriented structure) with a 2D image. The remote-cached data are
useful in storing raw data received from external data sources. In this
way, the data agents do not have to download the same data every time
the execution repeats; they can reuse the data even when the researcher
tests a slightly different hypothesis, allowing the system to work offline.

4. Implementation

The current version of our open data and open model msm prototype
is implemented in Python and integrated with VisTrails. At present, the
msm prototype supports various components summarized in Table 2.

The functions of the msm framework described in Table 2 are pre-
sented below.

4.1. Graphical workflow

The msm runs inside Vistrails, an open source of graphical data-
workflow that deals with control of the sequence of activities, the ver-
sions, provenance and visualization tools (see Fig. 3).

During execution, VisTrails will start to analyze the activities of the
workflow. For each one, VisTrails will track back the origin of the
required inputs. Such tracking is repeated until tasks without inputs are
found. With this analysis, VisTrails marks and detects all the required
tasks for execution. Unmarked tasks are not executed.

4.2. Retrieving data

The Open Data Agents (see Fig. 4) can be used to retrieve data and
create msmDataSets. Each Data Agent can define its own inputs and they
can produce one or more datasets. Using the already developed data
agents, msm can retrieve OPeNDAP information from NASA and access
data from USGS using web-services.

In case the data retrieval is interrupted, msm is capable of restarting
downloading the data from where the last time step downloaded was.
This is done not only to reduce the time it takes to retrieve the infor-
mation into the local machine, but to resolve the internet interruption
problems. The user is free to delete these locally downloaded maps or
datasets from his or her machine.

4.3. Provenance

The provenance is a VisTrails’ functionality from which msm benefits.
It keeps track of all of the executions from all versions of the workflow. It
helps users find and review previous executions, the graphical config-
uration and the potential errors. Each execution is identified by the
name of the version (which is labeled in the history tab) and the start-
and end-time. Fig. 5 shows a failed and a successful execution (the color
code shown in the upper right side of the screen shot), each using a
different version of the workflow. The row that shows the execution can
be expanded to show the list of components used with the execution
time, completion condition and whether it was cached or not.
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Fig. 4. An illustration of RetrieveDataSetAgent component via Data Agents.

4.4. Re-scale space and re-gridding

The re-gridding component (see Fig. 6) transforms a dataset from its
original spatial configuration to a desired target configuration. The
spatial configuration is defined by:

(1) Shape of the cells: Although the shapes of the data cells are in
squares most of the times, they can also be in rectangular or

rhomboidal shapes. In the case of the radar data, each cell is a
different tetragon.

(2) Resolution: Size of the cells.

(3) Borders starting point: Even when two grids have the same shape
and resolution, if their borders are not the same, their spatial
configurations will not be the same.

The re-gridding module first identifies the portions of the original
data cells that are located within the study area (i.e., represented by

10
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Fig. 5. An illustration of provenance example (top: failed execution; bottom: successful execution) with VisTrails. In the right pane of the above VisTrials screen shot,
there are five different small colored squares which are status indicators stored by the provenance feature of VisTrials after each execution of the workflows. The red/
blue boxes mean that there was an error at execution; the orange boxes mean that the user suspended the execution, and only yellow/green boxes mean that the
workflow was successfully executed. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

destination cells). Then, it computes the data values for these destination
cells using an areal interpolation method whenever the data cells and
the destination cells do not match with each other in terms of spatial
resolution, shapes, or borders.

4.5. Re-scale time

Using the msmTimeRescale component (see Fig. 7), the msmDataSets
can be re-scaled to the time resolution required by a model or another
input. This component can use one of the following aggregation func-
tions: average, maximum, and minimum. It also interpolates when data

11

is unavailable in a required timestep.
4.6. Fusion of DataSets

Using the MKS (Parada and Liang, 2004) framework, the msmData-
Sets can be fused when more than one source is included in an analysis
for a given physical variable (see Fig. 8). For example, if precipitation
data are available from NASA OPeNDAP and from radar, they can be
fused to form a single precipitation input to be used by a model.
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Fig. 9. Graphical components created automatically based on registered
Model Agents.

4.7. Running models

The workflow creates a graphical component for each model agent
registered in the msm framework. Fig. 9 shows that two models are
registered in the msm framework: one Model Agent for the VIC model
and the other one for the routing model (see highlighted square). The
msm framework creates graphical inputs and outputs as defined in the
Model Agents for VIC model (see Fig. 10).

4.8. Coupling models

The user can couple the components using any of the available ports
in the way he/she desires because all components in msm accept and
return msmDataSets as shown in Fig. 11, where the VIC model is coupled
to a routing model through their corresponding model agents, VicAgent
and RoutingAgent.

In this example the VicAgent outputs its baseflow and surface runoff
to be used as inputs for the Routing Model Agent. This is the way model
agents interact with each other in msm from the workflow perspective.
New Model Agents implemented by the users need to clearly specify the
datasets and units required on each port.
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Since not all models provide outputs for every single time step, some
preprocessing may be necessary for models’ appropriate interactions
with each other. One solution offered by msm is to use the msmTimeR-
escale component to modify the temporal granularity of the datasets
flowed between models. Another possibility involves the usage of the
Iterate component (see Fig. 21) to perform a full spatial simulation for a
single time step. This way, the user can create a time series with the
snapshots of each simulation. A user can also modify his/her particular
model in order to accommodate a time-step wise integration with other
models.

4.9. Adding new data agents

The msm framework can be expanded to access data from other data
sources by adding new corresponding Data Agents created by users.
After writing a data agent, the user just needs to copy the code into a
folder provided by the framework, as described in Sections 3.2.1 and
3.2.2

4.10. Visualization of results

The msm makes use of the VisTrails visualization tools to show 2D
images in time, point time-series and snapshots of variables for a given
time. Fig. 12 illustrates the time series plots generated using the
msmTimeRescale component shown in Fig. 7.

4.11. Loading local information

Fig. 13 shows that data stored locally in files can be loaded into the
msm framework using the functions built in msm. After the local data are
loaded into the msm framework, they can be accessed just by using the id
of the Dataset.

5. A modeling example

In this section, we present an end-to-end hydrological modeling
example to demonstrate how the msm framework can facilitate modeling
with complex data retrieval and processing it in an automated manner. It
starts with retrieving precipitation, wind and temperature from the
NASA OPeNDAP data sources, which follows by running the VIC model
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Fig. 10. An illustration of graphically explicit inputs/outputs in msm via VisTrials.
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Fig. 12. Anillustration of time series of temperature plots in msm via VisTrails: (1) at original hourly resolution, (2) with temporal resolution rescaled to 3 h, (3) with
temporal resolution rescaled to daily resolution, and (4) a plot with all three different temporal resolutions.

(in its water balance mode) to compute the water budget related vari-
ables, such as evapotranspiration, soil moisture and runoff. Then, the
VIC simulated runoff time series is used as an input to a routing model.
The example finishes by comparing the routed discharge based on the
VIC simulation with the USGS measured streamflow data which is
automatically read into the msm framework from the USGS website. This
is a typical hydrological modeling use case scenario which involves
retrieving the weather (forcing) data needed for running a sophisticated
model, executing it, and comparing the model simulation results with
observations. Compared to the typical modeling practice in the
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hydrology community, the main difference shown in this example is that
all of those tasks are done automatically, under the msm framework,
with machine-to-machine communication for data retrieval from
external data sources. This example also demonstrates several important
features of the msm, including using the modules of Open Data, Open
Model, MKS-based data fusion and visualization. Fig. 14 shows the study
area of the example. Fig. 15 shows the selected watershed and its river
network.
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Fig. 14. Study area and the outlet of the watershed (Blue River). Map is
generated using Google maps engine https://www.google.com/maps/d/
viewer?mid=15BL122LhCkzMGiUg4hAStCvXt7vsmXkt&11=34.37762642
783292%2C-96.63872839999999&z=9. (For interpretation of the references to
color in this figure legend, the reader is referred to the Web version of
this article.)

5.1. Configuration of the workflow

The first step is to set up the components to retrieve various types of
information from the corresponding data sources: precipitation, tem-
perature and wind from NLDAS (NASA), for example, when VIC is run in
its water balance mode. Fig. 16 shows the workflow designed for con-
ducting this modeling task, in which each component for retrieving the
forcing data is created by dragging the corresponding data agent
component from the Open Data list on the panel shown in Fig. 17 into
the working area. In addition, the VicAgent component is dragged from
the Open Model list into the working area as well as shown in Fig. 16.

For each of the three RetrieveDataSetAgent components, the config-
uration inputs showing in the right column of Fig. 16 next to the work
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Fig. 15. Watershed (Blue River) and its stream flow network. (For interpreta-
tion of the references to color in this figure legend, the reader is referred to the
Web version of this article.)

area are filled with values shown in Table 3 below:

Note that some of the fields listed in Table 3 cannot be seen Fig. 16.
To see all of them, the user just needs to scroll down using the arrow in
the right-bottom corner of the right panel shown in Fig. 16.

Next, the VIC model is set up by connecting the VicAgent component
to the appropriate input data sources as well as the output displays
shown in Fig. 16. For the model input connection, the dataset id output
ports from the RetrieveDataSetAgent components are connected to the


https://www.google.com/maps/d/viewer?mid=15BL122LhCkzMGiUg4hAStCvXt7vsmXkt&amp;ll=34.37762642783292%2C-96.63872839999999&amp;z=9
https://www.google.com/maps/d/viewer?mid=15BL122LhCkzMGiUg4hAStCvXt7vsmXkt&amp;ll=34.37762642783292%2C-96.63872839999999&amp;z=9
https://www.google.com/maps/d/viewer?mid=15BL122LhCkzMGiUg4hAStCvXt7vsmXkt&amp;ll=34.37762642783292%2C-96.63872839999999&amp;z=9

D. Salas et al.

O >
Retrieve DataSetAgent

m} >
RetrieveDataSetAgent

(H] >
RetrieveDataSetAgent

0oooo >
DirToDataSet

0]
VicAgent

S =
msmShowPlot <
] Module Info Workflow Info

>
msmShowDataSet @ O5top
i Float

Environmental Modelling and Software 126 (2020) 104622

Type: DirToDataSet

Package: edu.pitt.hydro.msm
Namespace: Files/Input

Id:3

Configure Doo:nenlahon

Inputs  Outputs  Annotations

~ 01_dataset_name o)

§+: String | Testing

@ 02_variable_name

; String | Precipitation
® 03_left

Float

@ 04right

., Float

I I
@

@ 06_bottom
; Float
@ % 07_dirname

w
s

08_empty_symbol be

Fig. 16. Workflow designed for running the VIC model.

Maps |
matplotlib |
v msm |
Files
v Open Data
NasaAgent
USGSAgent
Open Model
Operations
> Visualization
My SubWorkflows
Persistent Archive
PythonCalc
sklearn
sQL

Fig. 17. An illustration of components within Open Data.

VicAgent input ports. We note that VIC requires the min and max tem-
perature as inputs, but the same variable temperature is used in this case
for simplicity.

The DirToDataSet component is used here to load the static soil pa-
rameters used by VIC. If it is not provided, VIC will use the default
values. This component reads all the files from a folder and then creates
a map of the specified study area for each file read in. Each such file
contains a 2D matrix corresponding to the modeling grids over the study
area for a time step. Since the soil parameters are static and thus they are
stored as a one time-step image. The component also has other input
ports that can be used to provide information such as the coordinates

and the desired scale. But in this case, the information of coordinates and
desired scale is received from the RetrieveDataSet component.

For the model output connections, two different functions,
msmShowDataSet and msmShowPlot are used to illustrate two types of
visualization for the model simulation results. The msmShowDataSet is
connected to the soil moisture output of the VicAgent to view VIC
generated soil moisture results as an image, while the msmShowPlot is
connected to the evapotranspiration output to view it as a time series.
More specifically, once the computation of the VIC model is finished, the
soil moisture output will be shown as an image for each time-step
whereas the evapotranspiration output will be shown as a time-series
plot.

The evapotranspiration output is being re-scaled to scale zero to
show the averaged evapotranspiration of the study area as a time-series
where the msmMKS component is used to achieve the areal average
through the rescaling operation based on the MKS algorithm.

5.2. Execution

The execution of the workflow starts when the user clicks the Execute
button shown in the 2nd top row of the VisTrails window (see Fig. 13).
The RetrieveDataSet components will attempt to automatically download
the information from the specified data sources. If the data to be
downloaded are too large, the msm component will retrieve it in chunks
of one time-step each. If the communication is lost at any time, the user
can re-run the workflow and the components will continue downloading
the data from the last time-step it was saved. Before the VIC Model
component starts, all the RetrieveDataSet components, and the DirT-
oDataSet must have been finished. They will provide the dataset ids for

Table 3

Information for each field shown in the right column of Fig. 16.
Field First Second Third
Username (Manually hidden in Fig. 16) Admin Admin Admin
Project name TESTING TESTING TESTING
Dataset name: Any name the user wants PREC_NLDAS TEMP_NLDAS W_NLDAS
Left coordinate (i.e., the left coordinate of the study area) -80 -80 —-80
Top coordinate (i.e., the top coordinate of the study area) 40 40 40
Width (in degrees for the study area) 2 2 2

Time initial (i.e., the start time of the data)

Time end (i.e., the end time of the data)

Variable name

Source-variable name (i.e., the name of the data source)

2001/01/01 00:00:00
2001/01/10 00:00:00
PRECIPITATION

Empty (Default is NLDAS)

2001/01/01 00:00:00
2001/01/10 00:00:00
TEMPERATURE

Empty (Default is NLDAS)

2001/01/01 00:00:00
2001/01/10 00:00:00
WIND

Empty (Default is NLDAS)
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Fig. 18. An illustration of different colors of a workflow during its execution. (For interpretation of the references to color in this figure legend, the reader is referred

to the Web version of this article.)

Fig. 19. Spatial distribution of the soil moisture from the VIC model simulation for eighteen different time steps.

all the forcing inputs and the model parameters. The VicAgent will then
use such dataset ids to create the inputs, run VIC and wait for it to finish.
Then, the VicAgent will read the VIC outputs and save them as datasets.
VicAgent will send the dataset ids of the outputs to the visualization
components to generate plots.

The execution of the RetrieveDataSetAgent components is completed
when all the information specified is downloaded. Only at that point, the
execution of the subsequent component VicAgent is invoked. VisTrails
has a color code for the workflow boxes shown in the working area (e.g.,
see the snapshot shown in Fig. 18) during an execution phase. For
example, VisTrails will show green for the boxes already computed,
yellow for the boxes under execution, orange for the boxes waiting for
the preceded boxes to complete, gray for the boxes that have not yet
been started or even considered for execution, red for the boxes that
failed, and blue for the boxes that cannot be executed because of failures
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in the inputs. Fig. 18 shows a few different statuses of the boxes during
the execution phase of one workflow case. It is worth mentioning that
these color indicators are different from the colors used for the work-
flows saved in the provenance as shown in Fig. 5.

5.3. Results generated by the VIC model

The VIC model with a general VicAgent generates more than 160
output variables. For this specific illustration, the VicAgent is configured
to generate only 2 outputs: soil moisture and evapotranspiration. Fig. 19
shows the VIC model simulated soil moisture plotted as an image per time
step for the study area and for eighteen consecutive time steps.

The VIC simulated evapotranspiration is averaged over the study area
for each time step and is shown in Fig. 20 as a time series. In order to
generate such time series, the VIC results for the study area were re-
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Fig. 21. Re-organized/re-designed workflow for input/output comparison with

an iterative execution.

scaled to scale zero using the MKS component to obtain the average.

In this example, we further illustrate how to change the configura-
tion during the task execution in a timestep-by-timestep fashion. For
instance, the execution described above has an overall retrieval phase in
which all the inputs are downloaded for the entire simulation period,
before the VicAgent is executed. This approach is widely used in model
applications when using historical data, and is called time first then
space. However, in the forecast applications with real-time data, a model
needs to be run one step at a time for the entire study area and then move
on to the next time step in an iterative fashion. In other words, one needs
to download the model input data from each data source for only one or
a few timesteps each time, then, run the model for that (or those) time
step(s) for the entire study area, then, download the input data again for
another time step or few time steps, and then, run the model for the new
time step or new time steps again, etc.

To achieve this, the user can use the iterative functionality developed
in msm. That is, by using the configuration with an iterative approach, it
is possible to control the tasks executed at each time step or even repeat
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Fig. 22. Sub-workflow of the ONE_TIMESTEP for the coupling of VIC model
and routing model.

a set of activities until the convergence is reached before moving for-
ward the next time step.

The readability of such workflow can be improved by using sub-
workflows. This is a VisTrails feature that allows the user to group a
set of modules to make them usable as an entire new aggregated module.
This new component can be used as a single box in other workflows. In
that way, workflows with many modules become simpler and organized
in a hierarchical way for easier understanding.

Figs. 21 and 22 illustrate the use of the iterative function we devel-
oped in conjunction with the sub-workflow feature of VisTrails, running
the VIC model coupled to a routing scheme. Specifically, Fig. 21 shows
the main workflow after grouping some of the activities into the “ONE
TIMESTEP” box and using the looping component (i.e., Iterate). The
measured streamflow is also included in this workflow through the
TimeSeriesFileToDataSet component. In this way, the VIC model simu-
lated runoff after routing from the msm framework can be compared
with the USGS measured streamflows. The iterative nature of this
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Fig. 23. Comparison of streamflows between measured and model computed for the study area.

workflow is accomplished through the Iterate component which makes
repetitive use of the task named “ONE_TIMESTEP”.

The “ONE TIMESTEP” box in Fig. 21 represents a subworkflow which
is shown in Fig. 22. This component contains all the tasks needed to be
performed at each time step. It starts by setting the looping parameters
(time per step, number of steps and initial time), then retrieves all the
inputs (subworkflow swf retrieving), then runs the VIC model (VicAgent),
and then sends the surface runoff and baseflow outputs to the routing
model (subworkflow swf routing). At the end of the execution of this
subworkflow, one can compare the model simulated streamflows (i.e.,
after the VIC and routing models) with the USGS measured ones. In
addition, the model results can also be saved as text files via the
component DatasetToTimeSeriesFile shown in Fig. 22. Such saved model
simulated results can be used for further analysis or other purposes by
the user. For instance, the VIC model results obtained here are based on
the default VIC model parameters. No calibration for the model pa-
rameters is conducted. If one wants to do model calibration and compare
the results, one can save the results for later comparison studies. The
saved results can also be plotted with different software tools at the
user’s preference. The VIC + routing model simulated results shown in
Fig. 23 are obtained by running the VIC model with default parameters
plus the routing model without conducting any parameter calibration.
Such a plot is generated by the msmShowChart component in msm.

6. Conclusions

The fields of geosciences are entering a new era of big data, in which
physically-based computational models, with easy access to and use of
increasingly available and diverse data, are fundamentally important for
scientific explorations. Our presented open data open modeling frame-
work innovatively combines open data access and open modeling
framework together and hence simultaneously addresses several critical
issues faced by the broad community: (1) direct open machine-to-
machine (M2M) access of data to models from external data sources;
(2) graphical scientific workflow environment for scientists; (3) easy
model sharing and heterogeneous/diverse model couplings without the
need to share or change model source codes; (4) no required central
administration of shared models and the modeling framework system;
(5) data fusion of datasets from different sources and/or computational
model outputs; (6) provenance management for reproducible
computing; and (7) data exploration and visualization. These seven
challenges have been repeatedly identified and highlighted by the
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geosciences communities. The unique features of the presented open
data open modeling framework make it very suitable as an integrated
solution for general geoscientists to overcome the above challenges in
their explorations.

The prototype system of our framework, msm, has successfully
demonstrated its usefulness and effectiveness in various aspects of sci-
entific modeling activities. The openness of our framework by design
indicates that when a user integrates his/her model(s) into msm, the
impact of the integration process on user’s model is none since there is
no inter-dependency between the msm framework and the model codes.
Moreover, the approach of the integration of an open scientific workflow
engine (i.e., VisTrails) into our framework provides a unique prove-
nance management among other desirable graphical workflow features,
which directly facilitates reproducibility study in model couplings and
thus is critical for users’ research and its reliability.

Our plan of future work includes continuing to add more external
data sources into the msm, such as hydro-meteorological datasets offered
by NASA, NLDAS (North American Land Data Assimilation System) and
NCALDAS which are composites of measurements from land stations
and model simulations, as well as the satellite datasets like GPM for
precipitation and SMAP for soil moisture. In addition, in the near future,
we will add more NOAA datasets, such as NAM (North American
Mesoscale Forecast System) and GFS (Global Forecast System), which
are datasets from the model forecasts. Also, there are plans to add more
computing facility choices (e.g., high performance computing, or cloud
computing) into the msm framework for users to select based on the
demand of each workflow activity. At present, we are developing new
model agents to integrate models like the Distributed Hydrology Soil
and Vegetation Model (DHSVM) and the PH-Redox Equilibrium model
in C (PHREEQC) into the msm system. Moreover, a newer version of VIC
(VIC5.0) is being integrated to msm. We are also working on developing
generic model agent tools to help the user to develop his/her own model
agent(s) with little to no coding to integrate the model(s) of the user’s
choices into msm. Our framework software, msm, is intended to be made
available to the geosciences community as an open source at its due
course. Part of this work involves making it available on the Ubuntu
Operative System, since the msm has only been fully tested on Windows
10 OS so far.
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