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1 Introduction and summary

Conformal field theories with a boundary have been studied for a long time [1-5] and

have a variety of physical applications, from statistical physics and condensed matter to

string theory and holography (for a recent review, see [6]).

A renewed interest in the

subject has also taken place in light of the progress in conformal bootstrap methods [7—11].

Recently, boundary conformal field theories have also been proposed to play a role as



holographic duals of certain single sided black hole microstates [12, 13]. In this paper,
we study a special type of boundary conformal field theory (BCFT) which is obtained
by taking free fields in a (d + 1)-dimensional bulk and adding interactions localized on
a d-dimensional boundary. Free field theories with localized boundary interactions have
been considered before in several different contexts including applications to dissipative
quantum mechanics, open string theory and edge states in quantum hall effect [14-19].
More recently, several examples of BCFT with non-interacting bulk fields were considered
in [20, 21]. A particularly interesting model, with possible applications to graphene, is
obtained by taking a free Maxwell field in four dimensions coupled to fermions localized
on a three-dimensional boundary (or “brane”) [20-31].

In the present paper, we focus on the case of scalar field theory with O(NV) invariant
boundary interactions. In particular, we investigate the critical properties of the model
defined by N real scalar fields ¢! with the standard quartic interaction restricted to the
boundary

1
S = / dd“aziﬁuqblc?“qbl—k / ddx%(¢l¢1)2. (1.1)

With (generalized) Neumann boundary conditions 9,6 ~ g¢?, the quartic interaction is
marginal in d = 2 and relevant in d < 2, and hence one may have a non-trivial IR fixed
point. As we show below, working in the framework of the e-expansion one indeed finds
a weakly coupled Wilson-Fisher fixed point in d = 2 — ¢, with real and positive coupling
constant (here and below, we shall always assume that relevant quadratic terms have been
tuned to criticality). This model was analyzed before in [32, 33] with an additional ¢°
coupling in the bulk. Here we will not turn on this bulk coupling. As in the well-known
case of the standard critical O(N) models, one may also develop a large N expansion for
any d by introducing a Hubbard-Stratonovich field, which in the present case is localized
on the d-dimensional boundary. This yields a large N BCFT which appears to be unitary
in 1/N perturbation theory in the range 1 < d < 4. We perform explicit calculations of
various physical quantities in this BCFT, and show that the large N expansion precisely
matches onto the e-expansion in the quartic model in d = 2 — e¢. On the other hand, in
d = 1+ € we show that it matches onto the UV fixed point of a non-local non-linear O(NV)
sigma model with the sphere constraint localized on the boundary. The action of this sigma
model is given by

S = / dd“x%a“qﬁla“qﬁl + / dlz o <¢f¢f — ;) , (1.2)

where t is the boundary coupling constant for which we compute the beta function to order
t°. The large N expansion can be formally continued above the upper critical dimension
d = 2, where it remains perturbatively unitary for d < 4. In d = 4 — ¢, we provide strong
evidence that the large N expansion matches onto the IR fixed point of a metastable (for
sufficiently large N and small €) mixed “c¢” theory

1 1
S = /dd+1x2(8uqﬁl)2 + /dda:<2(80)2 + %aqﬁlqﬁl + jja*) . (1.3)
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Figure 1. O(N) BCFT in 1 <d < 4.

The instability arises because at the fixed point the quartic self-interaction of the o field is
negative, as we will show below by explicitly computing the beta functions of the model.
Correspondingly, one finds real instanton solutions localized on the boundary, which are
expected to produce imaginary parts in the scaling dimensions of boundary operators and
other observables, as is well-known for the standard ¢* theory with negative coupling. A
summary of the various descriptions of the boundary O(N) BCFTs in 1 < d < 4 is given in
figure 1. The picture we find is a close analogue of the one found for the standard critical
O(NN) models as a function of d. The large N expansion in those models can be developed
for any d and it is perturbatively unitary in 2 < d < 6. It matches onto the UV fixed points
of the non-linear sigma model near d = 2, and onto the Wilson-Fisher fixed point of the
¢* theory near d = 4. As one approaches d = 6, one finds instead a cubic O(IN) symmetric
theory [34, 35] that has perturbative fixed points in d = 6 — €; non-perturbatively, these
are unstable due to instanton effects, which produce small imaginary parts of physical
observables [36].

The fact that the BCFTs we study contain fields which are non-interacting in the bulk
has interesting consequences. In particular, it implies that the boundary operator spectrum
has several operators with protected scaling dimensions, as we elaborate on in section 2.
The simplest protected boundary operator is just the one induced by the free bulk field ¢/,
and has protected dimension A = (d — 1)/2. While our prime example in this paper are
the scalar O(V) models, similar properties are expected to hold in other similar models
with free fields in the bulk.

Recall that a flat boundary in d + 1 Euclidean dimensions breaks the conformal sym-
metry from SO(d+2,1) to SO(d+1, 1), which is the conformal group on the d dimensional
boundary. In particular, translational invariance perpendicular to the boundary is broken,
which results in a delta-function localized source for the divergence of stress-tensor

9, T" = D(x)d(y). (1.4)

In most of the paper we assume flat space with a flat boundary, and we will use x for the
d coordinates on the boundary and y for the transverse direction with = = (x,y). The
above equation is to be understood as an operator equation and it defines the displacement
operator denoted by D(x). This relation also fixes the dimension of displacement operator
to be same as that of stress tensor, A = d + 1. Since the stress tensor is conserved in the
bulk, the displacement operator remains protected even in the presence of interactions and
its scaling dimension is not renormalized. This holds in any BCFT. If the bulk theory is
free, as in the models we study in this paper, then we also have a set of higher spin currents
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Figure 2. AdS/ BCFT setup for O(N) BCFT.

(see e.g. [37] for a review) which in the scalar field theory take the schematic form

S

JHrHzts = Z cska{p.l....pk¢auk+1...,us}¢‘ (15)
k=0

If the bulk fields are free, the divergence of these currents vanishes in the bulk. Then,
as we explain in section 2.1 below, one expects an equation similar to (1.4) with a delta-
function localized source, defining a set of spinning operators on the boundary with spin
ranging from 0 to s — 2, which we call higher spin displacement operators.! Since the
higher-spin currents are conserved in the bulk, we expect that the scaling dimensions of
these higher-spin displacement operators should be non-renormalized, despite the presence
of interactions at the boundary. We obtain several perturbative checks of this expectation
in section 4. It would be nice to further study the consequences of having such protected
operators in the spectrum, and also study the analogous operators in other examples of
BCFT with free fields in the bulk.

In light of our O(XN) BCFT results, it would be interesting to extend the higher-spin
versions of AdS/CFT (see [37, 39] for reviews) to the case of AdS/BCFT [40]. Type A
Vasiliev theory in AdSg41 space [41-43] is conjectured to be dual to a d dimensional O(N)
model, free or interacting depending on the boundary conditions of a bulk scalar field [44].
Similarly, the O(N) BCFT we study should be dual to Vasiliev theory on hAdS4,1, where
we have half of AdS4,1 space ending on a AdSy; brane as shown in figure 2. In such a
setup, boundary conditions of AdS,4y1 fields on the AdS; brane should be determined by
the boundary conditions of O(N) BCFT, while as usual, the boundary condition on the
asymptotic AdSg.1 boundary will be determined by whether the O(/N) model is free or
interacting in the bulk of the BCFT (in this paper, we turn off interactions in the bulk, but
one could more generally allow for a bulk coupling constant in addition to the boundary
one, and study the RG flow of both couplings).

From the point of view of perturbative calculations of purely boundary observables
in the models we study, one essentially computes boundary Feynman diagrams where the
scalar fields has a 1/|p| propagator, which is induced by the free kinetic term in the bulk
(recall that we focus on Neumann boundary conditions). This may be thought of as a

!These operators were also considered in the context of replica twist defect in [38] but they are not
protected in that case.



particular kind of non-local scalar field theory in d dimensions. A natural generalization is
to consider more general non-local propagator parametrized by an arbitrary power s, with
a propagator 1/|p|® in momentum space. This corresponds to a non-local kinetic term

/ddxddy¢[(x)¢1(y) (1.6)

|J; _ y|d+s :

proportional to

as can be checked by a Fourier transform to momentum space. Adding O(N) invariant
quartic interactions to such a non-local model, one finds fixed points which are expected to
describe second order phase transition in a system of N-component unit spins interacting
with a long range Hamiltonian

_ Si - 8;
H= —JZW. (1.7)
2y

Critical exponents for the long range interactions fall in three categories [45-54]: 1) For
s < d/2, critical exponents are the same as the ones for Gaussian fixed point, 2) for
d/2 < s < s, there is a non trivial long range fixed point and critical exponents can be
calculated and 3) for s > s, the critical exponents take the same value as the corresponding
short range fixed point. The value of s, is such that the conformal dimension of ¢ is
continuous at the long range to short range crossover. In the long range fixed point, ¢ has
no anomalous dimension and its scaling dimension is fixed to be (d — s)/2 (an argument
for this is that ¢ can be formally thought of as a free field satisfying Laplace equation in
a higher dimensional bulk, where p = 2 — s is the co-dimension). On the other hand, at
the short range fixed point, ¢ has an anomalous dimension and its scaling dimension is
Asp = (d—242v5")/2. This fixes s, = 2 — 293,

The crossover from mean field theory to long-range fixed point is relatively under con-
trol and perturbation theory can be developed since the usual ¢* interaction is weakly
coupled. An alternative scaling theory was proposed in [53, 54|, which is weakly coupled
near short range to long range crossover and can be used to do perturbation theory. How-
ever, in d = 1, there is no short range fixed point, since there is no phase transition in d = 1
O(N) model, except at zero temperature. At zero temperature, all correlation functions
are constant, and hence the anomalous dimension of ¢ is commonly assigned an exact value
,ng = 1/2 which makes AgR = 0 and s, = 1. In the long range model, there is a phase
transition for 0 < s < 1 as was shown by Dyson in [55] and further studied in [56-59]. So
s = 1 is the upper critical value for the long range universality class in d = 1, which is
what we would have naively expected by extrapolating the crossover region from higher
dimensions. Hence for d = 1, the picture in figure 3 is modified to figure 4. Below we will
study a non-local non-linear sigma model which becomes weakly coupled in s = d — € for
all d, and is a natural generalization of the boundary model (1.2). Precisely in d = 1, it
is weakly coupled near the upper critical value of s for the long range model, and is well
suited to do perturbation theory in the vicinity of s = 1. Unlike the usual local non-linear
sigma model, the 8 function for this model is proportional to N — 1 instead of NV — 2, hence
the description is only valid for NV > 1. This is in agreement with what was found long ago
in [56]. Combining results from non-linear sigma model and the quartic model, we give
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Figure 4. Continuum picture for one dimensional O(N) model for various s.

some Padé estimates for critical exponents in the d = 1 long range O(N) model. They are
in good agreement with the Monte Carlo results of [51] for the values of s given there. It
would be interesting to bootstrap this model using techniques similar to the one used for
d = 3 long range Ising in [60], and compare the results with our estimates.

This paper is organized as follows: in section 2, we discuss some general aspects of free
field theories with interactions localized on the boundary. In section 3, we introduce the
boundary O(/N) models in 1 < d < 4 and its various descriptions as a function of dimension,
and present various calculations of physical quantities at the fixed points. We explicitly
construct a set of spinning operators induced on the boundary by bulk higher spin currents
and provide evidence for the vanishing of their anomalous dimension in section 4. We end
by describing long range generalizations of our models and give some estimates for d = 1
long range O(N) model in section 5. Appendices contain some other interesting examples
of BCFT with free fields in the bulk and some technical details.

Note added. After completion of this paper, we became aware of [61] which has some
overlap with parts of our work.

2 Free fields with boundary interactions: some general remarks

The models we consider in this paper have an action of the following general form
S = /ddﬂm‘ Liree + /ddm Lint. (2.1)

To be concrete, let us consider the case of scalar fields, so that Lgee = (8#@2 /2, but most
of what we discuss below should have a generalization to the case of other fields. The usual
variational principle gives the equation of motion 9,0"¢ = 0, and we have to satisfy either
Dirichlet or generalized Neumann boundary condition

(5£int
00
We will be focusing on generalized Neumann in this paper, which allows for the possibility

of interesting critical behavior for the boundary O(N) models in 1 < d < 4.

#(x,0) =0, or Oyo(x,0)— =0. (2.2)



In a CFT with a boundary, in addition to the usual bulk OPE, we also have the
boundary OPE where we expand the bulk field ¢ into a set of boundary primary operators
BY A
X,y) = —2 _D?%0*)0(x 2.3
o) = 30 LS D00 (2.3
(@]
The differential operator DA(y252) can be fixed using conformal invariance as we now
review [5]. We know by conformal invariance that
B 5 C -

X, O(x')) = - ¢0 -, Ox)O(x)) = —9 . 2.4
OO = g s 00NN = —2or. (24)

Using B = COBg, this is satisfied if (here and elsewhere the symbol (x),, refers to the
Pochhammer symbol and is defined by (x),, = T'(z +m)/T'(x))
1 1 o~ (A (=)™

Ag 252 _ —
D2(y"0") A A m! (x — x!)2A+2m (2.5)

m=0

which implies

DA =Y WlL!(A+ 11_ 5, <—iy252> (2.6)

Applying the bulk equation of motion 9,0"¢ = 0 to this OPE, one finds

m=0

_ B &1 1 C@m42-A+A)Emt+1-A+A)
- 5 (2y)A‘Amz::om! <A+1—‘§)m<1 4(m+1)(m+1+A—g) >
« <—iy2(§2>mé(x). (2.7)

The only allowed operators will be the ones for which the above coefficient vanishes for
all integer m, because different descendants with different m are independent. Plugging
in A = (d—1)/2, it is easy to see that the coefficient vanishes only for A = (d — 1)/2
and A = (d + 1)/2, so these are the only two operators allowed in the boundary OPE
of a free scalar field. In the case where there are no interactions at the boundary, one
has either one or the other of these operators, corresponding to Neumann and Dirichlet
boundary conditions respectively. For the generalized Neumann boundary conditions in
the presence of boundary interactions, as we show below one has both of these operators
present in the boundary spectrum. Their dimensions are protected and add to d, satisfying
a kind of “shadow relation”. Intuitively, the reason for this is clear from the structure of the
generalized Neumann boundary condition in (2.2). The operator of dimension A = (d—1)/2



is just ¢ restricted to the boundary, while the one of dimension A = (d+1)/2 is the operator
§£in

0 :
by the boundary condition.

(this is a cubic operator in the O(/N) models we discuss below), which is related to ¢

We can gain further insight on these protected operators by considering the bulk two-
point function. Corresponding to two different OPE limits, there are two different ways to
decompose the bulk two point function (see e.g. [7, 9, 62]). We could do the usual OPE in
the bulk and then do the boundary OPE of the fields that appear in the bulk OPE, or do
the boundary OPE first and then do the usual OPE on the boundary. Correspondingly, a
bulk two-point function can be expanded into either a set of boundary conformal blocks or
a set of bulk conformal blocks, and the two expansions must be equal. Let us define the
following cross-ratios

(x1 —x2)% + (y1 — 12)? ; 1
41192 ’ 1+¢

so that £ — oo, z — 0 in the boundary OPE limit and £ — 0, z — 1 in the bulk OPE
limit. We can then express the bulk two-point function of a scalar operator of dimension

&=

(2.8)

Ap as
(O(21)0(22)) = 7(4y1y2)AOg( )
A0 R (2.9)
G(z) = A= 2% D Ak fouk (ks 1= 2) = > i foay(A; 2)
k I

where A is the product of the bulk OPE coeflicient and one point function of the operator,
and Coud = (38)26’0. The bulk and boundary blocks can be determined to be [5]
Ap+1—d Ag 1—d )

kT T% 2k, 2

A
9 g Bk

A
(B 2) = 2% R, (
(2.10)

o " oA 1—-d -
fbdy(Al;Z) = ZAZ oI (Al,Al + T;QAI +1—d; Z>.

In the case of a bulk free field ¢, the equation of motion for the bulk two-point function
(¢(x)p(x")) has two solutions corresponding to Neumann and Dirichlet boundary conditions

d+1
GN/D(.Q:,.%'/) _ r (T)dH 1 — =+ 1 —
’ (d— 1)27TTd <((X—X’)2+ (y—y)?) = ((X—X’)2+(y+y’)2)2>
_ L (%) !
a (d— 1)27‘(’%(42/12/2)% <<1 - Z) * ) (211)

In general, the bulk two-point function can then be a linear combination of these two

solutions

d—1

Doty = — L5 R
(62)0( >>—(d_l)%%l@ylw)dzl((l_z) S

where the Ay2 coefficient is related to the bulk one-point function of the ¢* operator.

To see this, note that the bulk OPE expansion of the two-point function of ¢ contains,



in addition to the identity block, a single block corresponding to the operator ¢? with
Ay = d — 1. The coefficient of the identity is just fixed by the normalization of the field
¢. Comparing with (2.9)—(2.10), we see that the second term in (2.12) indeed correspond
to the ¢? operator. The coefficient Ag2 is equal to +1 for Neumann or Dirichlet boundary
conditions, but is arbitrary for generalized Neumann case. On the boundary, there are two
possible blocks corresponding to operators with dimensions (d — 1)/2 and (d + 1)/2, as
shown above, with OPE coefficients say u?\, and ,u%). The blocks simplify for these values
of conformal dimensions and the crossing equation relating the bulk and boundary OPE
coefficients simply becomes

2

1+ 2 (1—2)F = M (1+1-2%)+ ;’i’f’l (1--2%"). (2.13)

Equating the coefficients gives

2 2 2 2
KN 2p7 M 217
—= =1, = - = Ay2. 2.14
> Ta-17 " 2 Tq-1 (2.14)
As we expect, A\y2 = 1 corresponds to Neumann and gives ,u%) = 0, while Ay = —1

corresponds to Dirichlet and gives /ﬁv = 0. The case of generic Ay has both operators
present in the boundary spectrum and corresponds to the case of interacting theory on the
boundary.

2.1 Displacement operator and its higher spin cousins

This section uses several results from [4] about curved manifolds with a boundary. We
refer the reader to [4, 62] for more detailed derivations. The action for the kind of theories
we consider can be written in curved space as

S = / dd+1x\/§<g;w@#¢18,,¢l+ %Rqﬁfqﬁf ) n / ddfcﬁ<£int + ’2’K¢f¢1> (2.15)
M oM

where the boundary (or defect) is located at z# = X#(2'), K = v K;; is the trace of the
extrinsic curvature, and the boundary metric is defined by

G
Vi = €€ Gy € = (2.16)

By the usual variational principle, we can determine the following equation of motion and

the boundary condition

V2! —TRY' =0, (99" — pK " — Lin)lom = 0. (2.17)

It can be shown [4] that for Weyl invariance, we need p = 27 = %. From the variation

of the above action with respect to the metric, we can determine the stress energy tensor,
which in flat space with a flat defect reduces to

Tho" =Ty + 60()0],650i5(— Lint (¢7) + 27 Line (¢7)8)
I I 5;w e d-—1 2\ T T (2.18)
T,u,l/ = a;@ 8l/¢ - 7(8p¢ ) - ﬂ(ap‘ay - 5,u1/a )(b ¢ .



In a similar fashion, we can derive the displacement operator which can be defined by the
variation of action with respect to the embedding coordinate X#(#%). Let n* be the normal
to the defect. We shift the boundary along the normal as §; X* (') = —n#dt and we let
0t be a function of the boundary coordinates here. Under this variation, the trace of the
extrinsic curvature changes as [4]

0K = 306tK;; K — 49N,0;6t — 49 Ry, jnidt. (2.19)

Using this, one can see that, specializing to flat space with a flat defect, the variation of
action is given by

5£int
5o

5,5 = / dix {575 (;(8y¢])2 + %(3@1)2 - ayqbl) ~Lolsl @) (220)
The first two terms in the above equation come from the bulk piece of the action. The
third term comes from the L, piece of the boundary action. Since L;, is a function of
boundary fields, which are just the bulk fields restricted to the boundary, its variation when
we move the boundary should be given by —0,Liy 6¢, which simplifies to what we wrote
above. The variation of K, as written in (2.19), has three pieces, but only one of them
survives in the flat space case, yielding the last term in (2.20). After using the boundary
condition and integration by parts, we get the displacement operator

D) =t 22— | La,60y2

—_— 1 +1\2 d—1 192 1 _

y—0

Another way to define the same operator is through its appearance in the divergence of
stress tensor, as reviewed in the introduction

9,T" =0, 0,T" = D(x)(y) (2.22)

By doing a volume integral over a Gaussian pill box located at the boundary, we can get
the following relation

TV, 0 = D(x). (2.23)

which agrees with what we get from the other definition above. Since the stress tensor
is conserved, the displacement operator must be protected on the boundary. Now, if the
bulk theory is free, as in the models we study in this paper, we will have a tower of exactly
conserved higher spin currents. These are then expected to imply a tower of spinning
protected operators on the boundary, which we may view as higher-spin “cousins” of the
displacement operator

Oy JHH Y — DHLHs=2 (x)5(y), == JURIHs=2Y| = DRLeRe=2 (), (2.24)

~10 -



From the point of view of the theory on the boundary, the operator D#1-#s-2 contains
operators of all spins between 0 and s — 2, with 0 being the case when all the u's are equal
to y while s — 2 being the case when none of the y's are equal to y. So we expect to see
protected boundary operators of dimension d + 1+ s — 2 (same as the dimension of bulk
spin s current) and a spin between 0 and s — 2. In the boundary theory, these will be
bilinears in the boundary operator? ¢ schematically of the form ¢52”8V1 Oy, - .. Oy with
dimensions d — 1 4+ 2n 4+ [ and spin [. In section 4, we will give several pieces of evidence,
within perturbation theory, for the fact that these boundary operators are protected.

3 O(N)BCFTinl<d<4

In this section, we describe perturbative fixed points of O(N) invariant field theories with
boundary localized interactions in boundary dimensions 1 < d < 4. We calculate anoma-
lous dimensions of various boundary operators and two point function of the bulk fun-
damental field at these fixed points and perform appropriate checks wherever different
perturbative expansions are expected to match.

3.1 ¢*theoryind=2—¢

Let us first consider NV scalar fields on d + 1 dimensional flat space with a d dimensional
flat boundary, and a quartic O(NN) invariant interaction localized at the boundary:3

1
S = / dd+1m§8u¢16“¢1+ / dda:%(qzblgbl)2. (3.1)

The coupling becomes marginal in d = 2, and it is relevant for d < 2, so we will study this
model in d = 2 — e. To do the calculation in momentum space, we can Fourier transform
the free propagator along the boundary directions to get

(" (—p, )" (P, v)) = 6"/ GY(p) = 6"/ » dixe” PTG () x5y, %2)
2
517 e~ Plyi—v2| 4 o—P(y1+y2) (32)

2p

which becomes 1/p on the boundary where y;,y2 — 0.

To look for a fixed point, we compute the £ function up to two loops by first evaluating
the following four point function and then requiring that it satisfies the Callan-Symanzik

*We use the same letter ¢ for the bulk field ¢(x,y) and its boundary value ¢(x). It will be clear which
one we mean from the context. This will make the expressions less messy by reducing the appearance of
“hats”.

3We thank Igor Klebanov for useful suggestions and initial collaboration on the calculations presented
in this section.
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equation:

ddk 1
:25”5“[— g+3d,) + (9+6,) N+8/ g*(N? + 6N +20
dik 1 2 dk dlK’ 1 1
X (/ - ) 3(5N + 22) / 2 . -
(2m)? |k + p||k| )¢ (2m)% |k[|k + p| K|k - k’- qf

(9+8,)°(N +8)L (51)"T (1 9)
(4m)5 7l (d — >< 2)1-3

=26"76%% [ —(9+35) +

g3 (N2 4+ 6N +20)T (41)°' T (1—5)2
(4m)? 720 (d - 1)%(p*)?~
PN +22)T (452)°T(1 - T (d— 3)T(2 - d)
 (mi T - T ()T (Y - 2) (7)1

(3.3)

where we used an integral given in appendix B and evaluated the fourth diagram at q = 0.

Expanding this in d = 2 — € and demanding that the divergent terms cancel gives
g*(N +38) B (BN +22)log2  g3(N + 8)?
2me m2e 4m2e2

After canceling the divergent parts, the remaining finite parts need to satisfy Callan-

5y = (3.4)

Symanzik equation. Noting that in 2 — € dimensions, the bare coupling has a factor of
1€ on dimensional grounds, and then applying following equation

0 0
(g 73 ) " =0 &)

gives us

g*(N +8) B 2¢3(5N + 22) log 2

ﬁ:_€g+ 2

2T T
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There is a unitary IR fixed point at

2me n 167 (5N + 22)€?log 2
N +8 (N +38)3

Gy = (3.7)

We can compute the anomalous dimensions of various operators at this fixed point. The
simplest operator that gets an anomalous dimension is the O(XN) singlet on the boundary,
¢le!. Tts anomalous dimensions up to two loops can be determined from the following
contributions to the boundary correlation function (¢!¢!(x)¢”’ (y)o™ (z))

¢’ o
N
G+l = Py + ¢lof
o Kep

+ o'¢! + $lg!

d%k 1
(2m)4 |k||k + p|

— 257K |:1 +(5¢2 — (1 +(5¢2)(g—|—5g)(N+2)/

+92(N+2)2</ (;lj:;d ykuk1+ p\>2

d%  dk’ 1 1
62(N + 2
otV +2) | (2r)? (2m)? K[k + p| K]k - k- q|]

(9+3,)(N +2)T (452)° 1 (

(4m)2 T (d — 1)(p2)'~

G2(N +2)°T (1)1 (1 - g) 69%(N +2)T (51)°T (1 - £)
»? "

(47)4m2T(d — 1)2(p2)2~ (n)dw?)/?r(d—l)r(%d)zr X

—_

5)

= 25JK |:1 + 5¢2 — (1 + 5¢2)

[S]ISW

I'(d—3)T(2-d)
(% -2)

(p2)2—d

(3.8)
where we evaluated the last diagram at q = 0 in this case as well. Again, expanding in
d = 2 — € and requiring that the divergent terms cancel gives

g(N+2) 3¢%(N+2)log2 ¢*(N +2)(N +5)

042 = — 3.9
¢ ome 2m2e + 472¢2 (3.9)
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Then applying Callan-Symanzik equation to the correlation function

0 g .
(15 + 801+ 624 =0 (3.10)
gives us the anomalous dimension

g(N+2) 12g2(N+2)log2 N+2  4(N+2)(7TN +20)log2 ,
— = €

1T T o A TN +8° (N +8)3 (311)
. A(N +2)(TN + 20) log 2 ‘
Ap=d-1t4p=1- 0 ATV +20)log2

- N+38 (N +8)3

Another interesting operator to look at on the boundary is the (¢!¢!)¢” operator

which we dub as ¢ operator. For that we compute the following one loop contributions
to the boundary correlator ((¢!¢!)¢” (x)oX (y)o" (z)p™ (w))

(z)K
G3,1 _ ¢I¢I¢J ¢L +
¢]VI
_ 2(5KL5MJ 4 gEMgLT 5LM5KJ)(1 + 0y —g(N—|-8)/ ddkd 1 )
(2m)? |k|[k + p|
T (2=d
:QMK%MJ+y”%”+JM%KU<L+%y—ﬂN+8)(521d>. (3.12)
(4m)2(p?) 2

To cancel the divergence we impose the condition that the order g term vanish at momen-
tum scale p which implies

_ IR D
ST I TR
(3.13)
A 3(d-1) 3—€ d+1
Bo="g  Te= Ty =

which agrees with our expectation since the boundary condition fixes ¢3 ~ @, so it must
have dimension Ag + 1.

We will next compute the bulk two point of ¢ at this fixed point. In the free theory, it
is still given by eq. (2.11) but this will receive corrections because of interactions starting
at order g2. The leading perturbative correction is depicted in figure 5. The computation
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ol (x, ) o7 (x', y")

Figure 5. Bulk two-point function at leading non-trivial order with ¢* interaction on the boundary.

of the corresponding Feynman diagram yields

ki +ke +p

p

— >

o7(2) 4+ ¢l(y) @ ¢’ (y2)
2
\1;1/

o1 (emPlvi—v2l 1 e=p(y1+12))

2p
N 61729 (N + 2)e~Purtu2) / d%k; d%ko 1
p? (2m)® (2m)7 k1 [|k2| k1 + k2 + P
o1 (emplyni—v2l 4 g=p(y1+v2))
2p
n §172g%(N + Q)e—dp(yl-&-yﬂf (Q%d) T (d%l)2 / d?ko 1
(47)27D(d — 1)p2 (27)? k2| k2 + p[>~@

5IJ(€*IU\?41 —y2| + e*p(y1+y2))
= o
, 32PN et (B (451 )1
3 _ .
(4m)im T (349)

(3.14)

This doesn’t have a divergence, in accordance with the fact that ¢! is a free field and does
not get anomalous dimension. We can transform it back to position space and at the fixed
point, this gives

STE(N +2

Gé‘](ﬂfl,xg) = 5IJG25(1,‘1,5L‘2) - 2 ( 5 ) 5 (315)

(N +8)2\/(x1 — x2)% + (y1 + ¥2)

This in particular gives corrections to the one point function of ¢!¢!
N (1 (N +2)
I,I

— - _ 3.16
@6 ) = o (1~ g (3.16)
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3.2 Large N description for general d

We can rewrite the quartic model introduced in the previous section in terms of a Hubbard-
Stratonovich auxiliary field that lives only at the d-dimensional boundary:

I TS TS NS SV i (00"t o*
S—/d x28#¢8“¢ +/d£ﬂ< 5 1) (3.17)

The equation of motion of o sets it equal to g¢!¢! and plugging this in gives us back the
original action. On the boundary, this is analogous to the usual O(N) model except for
the fact that the propagator for ¢ is different. We can integrate out ¢! on the boundary
to get a boundary effective action for o

2

I
e dery /D(;S e_fdd+1 13 L dlong! — [ di <o¢ & %)

— o3 Jdmdizs o(@1)o(22)(¢7 01 (21)97 87 (w2)) Yot [ dizg +0(0?)

(3.18)

where
(¢'¢" (x1)¢7 ¢ (x2))0 = 2N [Gy(x1 — x2))? (3.19)

with

[Go(x1 — x9)]2 = / dk, / dlky e'Mathe)Gaxa) / 4P _ip-(xa—x2) /
(2m)® ) (2m)d kiks (2m)4 QIp q

dd ipr(x1—X 2 -

(3.20)

where

G, =  2m(4m)zD(d — 1). (3.21)

2-d d—1)2
L (59 (%)
This gives the quadratic part of the boundary effective action for sigma to be

dp o(p)o(— N _ 1
S5 :/(27r1;d (p) 2( p) <@(p)d 2_29>' (322)

From here, it is clear that for d < 2, the second term in the quadratic action can be dropped
in the IR limit, while for d > 2, it can be dropped in the UV limit. This only leaves the
induced kinetic term in the quadratic action and leads to the following two point function
for o

Co, 9 2-d
(o(P)o(-p)) = ()= (3.23)
which gives in position space

Co

(ola)olxa)) = = Umir (-1

(3.24)
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which implies that the conformal dimension of sigma operator to this order is 1. The power
law correlation suggests the existence of an IR fixed point in d < 2 and a UV fixed point
ind> 2.

We can also compute the anomalous dimension of o to order 1/N. In general, it should
be computed using the two loop correction to the o propagator, but in this case, since ¢
does not get an anomalous dimension, we can use the 1/N corrections to the following
correlator

5l C,o17 [ dip, 1
N (2m)4 |p1[?|p1 — q|~2
636” dp / dpy 1
N 2m)d ) (27) [p1[2p1 — p2llp2 — ql[p2]?@—2)

_5U<1_ 2logq C,  4logg G’ r(d,;)r(32d)>
N(r)sT(d)  N@md(d-2)y/ar (d-3)

_ g7 91 los(@?/1?) 2!ym
2N L(59)r(%)

22d L /a0 (3=4) 1 (4) T (4=2
r(d—3)r(5H)r(5Y)°
Applying Callan-Symanzik equation to it gives the anomalous dimension
. 922d—1 /=T (3=4) T(4\T (4=2 d
Aa:1+%:1+]1v< \/773 ( Qd)1(2)2(d22) - Qjﬁdfl ) (3.26)
ra-$r(gHrgd)”  TEITE)
This can be expanded in d =2 — ¢
2
A, —1- 0 28 log2 (3.27)
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This precisely agrees with the dimension of ¢? operator in the € expansion at large N in
eq. (3.11). This can also be expanded in d =1+ ¢

62

Ae=1-% (3.28)

and we will show that it agrees with the result obtained from non-linear sigma model in
eq. (3.57) in the next subsection. Expanding in d =4 — ¢

62

A, =1-—— 3.29
N (3.29)

which agrees with mixed ¢ theory described below in subsection 3.4.
The bulk propagator for ¢ now involves following contributions

(' (=p,y1)8” (0, y2))

P—q
SETTN
LY L T Y
= ¢'(y1) '(y2) + ') : ¢” (y2)
(3.30)
61 (e7Plvr—v2l 4 e=P(y1+12)) C~U(5Uep(y1+y2)/ diq 1
= +
| Nipl* Cm gl ((p— )=
517 (eplyr—v2l 4 e=p(y1+u2)) §178m T'(d — 1)eP (y1+y2)
— + R
1 Nlpl(d =1 (422) T (339) T (434
We can Fourier transform it back to position space to get
Gé,‘](:vl, ZL‘Q) = 5IJG2(1'1, 3}2) (3.31)

N 4617 T(d — 1) 1

d—1 d—1 -
Nrz (d =1 (F2) T (59 T (F) (hn +32)* + (1 — x2)2) =
The 1/N correction can be expanded in d = 2 — e and it matches with what we got in
the previous subsection from the ¢ expansion. It can also be expanded in d = 4 — ¢ and it
agrees with what we get from e expansion in subsection 3.4.
3.3 Non-linear sigma model in d =1+¢

Next model we will consider is related to the usual O(/N) non-linear sigma model, so let
us first review the calculation of beta function for the usual case to set the notation. We

1 1
S = / déx (2@@13%1 +o <¢f¢f — t2) ) (3.32)

where the Lagrange multiplier o imposes the constraint that ¢!¢! = t% We can choose

define the model as

the following parametrization that solves the constraint

=9, I=1,... ,N-1, "= \/1—t2¢1¢1—E—§¢I¢I+O(t3)_ (3.33)

—_
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In terms of these variables, the action becomes

15 ,,1\2 2
5= / d's ( ! Ol + %>_/ ddx<;3uw’aﬂw1+t2<¢[6u¢1>2+0“4)>
(3.34)

We can then calculate the [ function by requiring that the correlation functions obey
Callan-Symanzik equation

( Qm -t )> G" =0 (3.35)

and the original O(N) symmetry forces the anomalous dimensions for all the ¢! to be the
same. We can apply this to the two point function

p p p
WE (Pt (—p)) = oK ——=— b 4 K L=yl
SKL 42 5KL/ Ak p? 4 k2 (3.36)
) emt R
_ SKL - 26KL (1 - %) - 125KL g (- %)
PP amim)itr (0% (4m)E(m2)

where we have introduced an IR cutoff m2. The last term vanishes as m — 0 for all d > 0.
The other two terms in d = 2 + € give

SKL 2 2
WK @) == (1 - g X ) (3.37)
This satisfies Callan-Symanzik equation with
t2
T6(t) = (3.38)
We next consider the one point function of ¢
N 1 t a,)a t3 a,/a b, b
GV O)= § — S O) — S (" 0 90)
_ 3 —
% t(N21)Gg(O,O) + t(]\;l)/ddeo(x,x)(auGo(O,x))2
3 _1)2 _
ot (N -1) 8+ 2(N 1))(G0(0,0))2
1 #(N-1) [ d% 1 t3(N=1)2 —=2(N-1)) k1 2
Tt 2 /(27T)dk2+m2_ 8 </(27r)dk2+m2>
1 HN-1), @2 (N -1)(N-3) 12\ 2
1T s 8T 8(47)?2 <1°g 2)
(3.39)
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where in the last line, we plugged in d = 24¢€. We can now apply Callan-Symanzik equation
to it and we find 3 )
€ t>(N — 2

=-t—— =

where the first term is present because in 2 + ¢ dimensions, ¢ has engineering dimensions

(3.40)

—e/2. The sign of § function suggests a UV fixed point in 2 + € dimensions at

2me
N -2
The anomalous dimensions of the field ¢ at the fixed point v4 = 2(N7672) agrees with the

=t =

(3.41)

known results. The anomalous dimensions of the Lagrange multiplier field ¢ which is the
analogue of the field ¢ in the large N analysis, can be found by the following relation

2(N -2
Agzd+5'(t*):d+E_M
2 4

We will now consider a variant of the non-linear sigma model where the sphere con-

=2+ O(e?). (3.42)

straint is only imposed on the d-dimensional boundary:
1
S = /W“ oo " + /ﬂm%fw—ﬂ>. (3.43)
As in the case of the local models, the auxiliary field o is related to the Hubbard-
Stratonovich field introduced in the large N treatment. The fact that A, = 1 + O(1/N),
as shown in the previous section, suggests that the lower critical dimension is d = 1, and
we should look for UV fixed points of the above model in d = 1 + € boundary dimensions.
As in previous sections, the bulk propagator induces a 1/|p| propagator on the bound-
ary, which in the position space looks like a non-local kinetic term

T d+1 I I
dery - _ (di) /dd dd W /dd.fC o <¢I¢I o t]'2> (344)

5 |

We can now solve the constraint on the boundary in terms of the variables ¥® as before

to get
() o g vayty)  T(H) 0 a V()b (y)
dery—— Tr% /d d%y | |d+1 — ﬂ_% 4/d3:dy |x—y|d+1 + ...

(3.45)
where we dropped a constant unimportant shift, as well as corrections at higher orders in
t2. So, for the purpose of computing boundary correlation functions, this action gives a
propagator for the ¢® field that goes like 1/|p|, and we can use this to develop perturbation
theory with the interaction term from above expression. Let us first try to compute the
diagram that would give us the anomalous dimension of the field ¥*. We will show that it
vanishes in accord with the expectation since ¢! is a free field in the bulk. The two point
function of the field ¥ goes like

T (4t
<,¢a(l,)wb(y)> = 6abG0(-T,y) - ((i21 )t25ab/dd2 dd GO(x w|)G0(y’|UH)~1GO(Z7W)
5 zZ— W
(3.46)
_ L (%)ﬁaab g5 gy Y = DGo(z, w)Goly, w)Go(z, 2)
T |z — w|d+! ’
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The term in the second line vanishes when we do the integral over z. We can now go to
momentum space to get

LR
ol o2 ) (2m)d g

The integral can be evaluated in dimensional regularization by adding a small mass and

@ (—p)¢" (p)) (3.47)

then expanding in mass in d = 1 + € to get

g2 (DI (DT (YD () oF (444 )

W (—p)y’(p)) =

Tol  1nl2 ¥z 4
ol Ipl 20+17 57T (4) (3.48)
2
sov g2 (24 1og 1)
=~ L omd).
PG )

Since there is no 1/¢ pole, this implies that the field ) does not get an anomalous dimen-
sion. We next go on to compute the beta function for the coupling ¢. For that, we will
apply the Callan-Symanzik equation to the one point function of the field ¢~ (0) as before

o QL QQ L

1 3 a,a t3 a,a b b
=3 §<T/J ¥*(0)) — §<¢ *(0)y °(0))

1 t(N-1) (L) 4(N=—1)3 Go(0,w)Go(0, 2)Go(z, w)
=L D G00,0) - 752) S [t gt S0 SO

BN =1 +2(N - 1) Go(0,0)?

g ;
1 t(N-1) [ d¥% 1 (N-1D [ dk 1 del |k —1|
t / ol / <27r>d\k|2/ @n? 1]

t 2
_t3((N—1)2+2(N—1))/ % 1 [ d 1
(

3 omyi k] ] ey i) (3.49)

The integrals in the second and fourth term are straightforward. However, the integral in
the third term is a bit subtle. Let us introduce an IR regulator mass, and perform the
integral over 1 first, which gives in d dimensions

/ddl gy I ET (ST (1) oh (54 -5)
(

=— . 3.50
2m)% /12 + m2 9d+1, 2T (4) (3:50)

Fortunately, it is possible to do the integral over k now, and doing that and then taking
d =1+ €, gives, to leading order in €

/ddk 1/ d k=1 1 £+4(’y+logm2—log4ﬂ') 1 (=2 o)
2m)d|k2 ) (2m)d I  8x2\ € € 472 \ € ‘

(3.51)
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The other two integrals can be evaluated by usual means, and overall it gives

1 V-1
@y =7 +

1 +logm? —log 4 N —1)
1, ytlogm g7r>+( )

€ 2 A2
(3.52)

t3(N —1)? <1 el +logm? — log47r>

82 €2 €

We can now introduce the counterterms to cancel the divergences by redefining t — to =
t + d; to get

1 & 02  (t+06)(N—-1)/1 ~+logm? —logdn (N — 1)t

N t 9 t

0 —_— - —_— — —_— —

(@700 t 2 27 (6 * 2 T e
B(N-1)2/1 ~y+logm? —logdn

The counterterm is fixed by the requirement that it should cancel all the divergent terms
which gives the original bare coupling in terms of renormalized coupling

B N-1D# (N-1f 3(N-1)>2
to = =21+ : 3.54
0= H < T e T 8m2e? (3:54)
This gives the 8 function
B(t)_ft_t?’(N—l) (N 1) (3.55)
S 2 27 272 '

Notice that the S function here is proportional to N — 1 as opposed to N — 2 in the usual
local case. This tells us that the N = 1 case has to be treated separately, similar to what
happens for N = 2 case in the usual O(/N) model in two dimensions [63, 64]. This beta
function gives a fixed point at

t2 = — (3.56)

This gives the dimension of the field o

Ag=d+p(t)=1- (3.57)

(N -1

in exact agreement with the prediction of the large N expansion.

3.4 Mixed o¢ theory in d =4 —¢€

The large N analysis described in subsection 3.2 applies for general d, and in particular it
can be formally pushed to d > 2. In d = 2 4 ¢, one finds formal UV fixed points of the
quartic model (3.1). The fact that at large N the dimension of o is near 1 suggests that
it becomes a free propagating field in d = 4 boundary dimensions. Then, in close analogy
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with the situation for local O(N) models [34], one expects that a UV completion of the
formal UV fixed point of the quartic model in d > 2 is provided by the following model

S = / i) 596" + / d%(;(&;) el + 92 4). (3.58)

where o propagates only on the boundary. The couplings g1 and g2 are classically marginal
in d = 4, and we can look for perturbative IR fixed points in d = 4 — €.

The leading correction to ¢ propagator is given by the one-loop diagram

(3.59)

We then take a derivative with p? at p?> = 2 and set the divergent part to 0. This gives

NgiT (390 (%)* Ngt
24m)iT(d — )r(p2) 2" Be(dm)? (3.60)

6o = —

Next, we can compute the corrections to the vertex g;

¢! ¢!

(3.61)
o o

dk 1

3

- —

(=91) / o)k —qktpli2 %
I

i—d 591

which in d =4 — € gives

=5z (3.62)
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Similarly, the one loop correction to gs is given by the following diagrams (we are evaluating
these at all external momenta = y?)

. , k+p
G0 = ’* + lk+P+q + ®
’ d ‘Ll_(_/ A “\ /
3(—g2)? ddk 1 i dk 1
N o) N/ DiHk -k tplk+pra

4—d
= d ia t 24 Z _592 (3-63)

which implies

3951 (43¢ +391 I'(%5%)  3¢3 +6¢iN
4—d 4—d N

2(dm)3(u2) " (4m)i(u2)2 1677

Using these counterterms, we can calculate the S function. The Callan-Symanzik equation

Sgy = (3.64)

for a correlation function with m external ¢ lines and n external ¢ lines is

0 0 0
( ot /31 + [327 +mye + nw) G™" =0. (3.65)
Hon 092

Applying this to G1? gives
¢ (N-32)g}

€ 0
=—= — (=0 204 + 0, —— .
b= g1+ g (0o G20 +80)) = S+ e, (3.66)
Applying Callan-Symanzik equation to G*° gives
0 9 1295 4 2491 N + g7gaN
=— — (=0 =(46,)) = — . .
b= o+ pg (00 + 5 (40,)) = g+ o (3.67)

It is possible to find two unitary fixed point at N > Ngit = 4544 with coupling
constants given by
o 8(4m)2e . 12288N72e
(1) = v =5 (92)x= :
N —32 (N —32)(£+/1024 + N(N — 4544) — (N + 32))

(3.68)

Since we find two fixed points here, we should look at their IR stability by looking at the
eigenvalues of the following matrix for the positive and negative sign root

—e | B(N=32) ¢ xy2
p; 7+ 16(4m)? (97) 0
M;; = , M= \ , (3.69)
99, 48N(gi)>+gtgs N _ | 24g5+N(gi)?
2(4m)? 4(4m)2

For IR stability, we want both the eigenvalues of this matrix to be positive, and that only
happens when we choose the negative root (g3)_ (sign of gi does not actually affect the
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eigenvalues). So the fixed point with (g5)— is the IR stable fixed point and should be the
one that matches the large IV fixed point near four dimensions. Note that the value of g5
is negative for both the fixed points, indicating that this fixed point is non-perturbatively
unstable, in the sense that the vacuum is not stable. For sufficiently large N, we may
regard it as a metastable BCFT, similarly to the local O(/N) models in 4 < d < 6 [36].

We can also compute the anomalous dimensions at the fixed point. The field ¢ does
not get any anomalous dimensions, while the anomalous dimension of the field o can be
computed from J,

. w o eN
e=——logZ, = ———— .7
LAY et 2(N — 32) (8:70)
which gives
A 16
Ap =1+ _632 (3.71)
in precise agreement with the large N prediction, expanded near d = 4.
The correction to bulk propagator of the field ¢ is given by
k+p
-
p Sk
(@' (=p,91)¢” (p,y2)) = ¢"(u1) o' (1) + ¢ (y) ———=——— 0’ (1)
617 (eplyr—v2| 4 e=P(y1+u2)) 5Ug%e—p(y1+yz) / d% 1
- | pl? (2m)4 (p + k) k
B 61 (emplvi—v2l 4 e=P(u1+u2)) 61 g2e~purtv2)p (3;11) r (% — 1) r (%) (p?)dlz;5
3
p| (47)% /7T (d — 3)
(3.72)
We can again Fourier transform back to position space to get
8617 €
Gé‘](ml, 372) = (SIJGg(:L'l, .%'2) — . (3.73)

3m2(N — 32)((x1 = x2)? + (31 + 42)%)?
At large N, this agrees with the result obtained from large N expansion expanded in
d=4—¢e.
3.4.1 Boundary instanton
The mixed o¢ theory described in eq. (3.58) can be written on the boundary as
2r (44 ¢! (2)¢! (y) 1 9 g2
Sbdry = —/——=—— /d ddy—"" 27 /ddaz < 00)? + Zool ! + 04) 3.74
L ey e~ y[H 207075 1) B
Since the coupling g is negative at the fixed point, the vacuum ¢ = ¢! = 0 can only be
metastable and must tunnel to large absolute values of o. Indeed for negative gs, there is

a real instanton solution responsible for this tunneling found in [65-67] in the context of
usual ¢* interaction in four dimensions

—18 A
I _ _
¢ =0 o=/ ) (3.75)
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This instanton solution is expected to give non-perturbatively small imaginary parts to
critical exponents [68]. This is because the fluctuations of o about the instanton background
include a negative mode which yields an imaginary contribution to the partition function.

We can perform a conformal mapping of the boundary to S*, which will result in a o2

conformal coupling term in the action, and the solution just changes by a Weyl factor

—12 AN1+x?
o=\ H(AQ(;_L)Q. (3.76)

For A = 1 and a = 0, it just becomes a constant VEV on the sphere, and the action

evaluated on the solution turns out to be

1672
Sinst — _ 3.77
bdry 9 ( )
This can be evaluated at the fixed point and then we can take the large N limit to compare

with the result from large N calculation

inst 1672 (N —32)(\/1024 + N(N — 4544) + (N + 32)) o N>1 N

dery = 7 = + O(G ) [ .

(g3)— 768N e 384¢
(3.78)
The same result can be derived in the large N theory by writing eq. (3.17) as an action

on the boundary
I T
d d 2 ¢ ¢

5= / da ’dﬂ / da (3.79)

We can conformally map it to a sphere

or (41 I ¢!
S = d(2>/ ’ ddy\/i\/igﬁ (z,y) d+1 d's g(@% (3:80)

2l (=)
We will again look for the classical solution with a constant ¢ on the sphere and compute
the instanton action by integrating out ¢!
d+1
2 (%57) 1

N
inst
) )

v + %5(){ - y)). (3.81)

In general, the chordal distance on the sphere can be decomposed into spherical harmonics
as follows [36]

00 d I(n

These spherical harmonics form a complete set of eigenfunctions with the following eigen-
value equation

/ ddy\/g<y>WYn,m<y> = kn(A)Y, (). (3.83)
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Using this, the required determinant becomes

sinst ¢ L4 (d+1\ o  @n+d-1T(n+d-1)
Sbery (@ ZD log< Sr(i%)kn< 5 >+2>, D, = )
(3.84)

where D,, is the degeneracy of the eigenvalue k, with all the degenerate states labeled by

m above. The constant value of ¢ which extremizes this action can be found by solving

aspst Z _ NoI'(1-d)I (=52) (3.85)
- I( +(d+1 /2 - 3—d+o :
do n F(Z—i—(d 02 2 ar (=572)
So apart from the usual vacuum o = 0, we also have other saddles
c=d—3—2n (3.86)

for positive integer n. The saddle point value of o is effectively the mass of field ¢’ at large
N. We want it to be positive for stability of ¢! = 0 vacuum. Hence for d < 3, o = 0 is the
only allowed saddle, while for 3 < d < 4, the n = 0 saddle in eq. (3.86) is also allowed. So
we expect the n = 0 instanton configuration to match the classical solution found above in
4 — e dimensions. Instanton action for this configuration is

d—3 inst
Sg:zlsrty( ) dery(o) = /(; do 858b;ry- (3.87)

This clearly vanishes in d = 3. We can perform this integral in d = 4 — € and compare with
the result of the € expansion in the previous section. We find

N

in _ 0
desrty( ) - dery(o) = @ + O(E ) (388)

which precisely matches the e expansion result (3.78).

4 Higher-spin displacement operators

As discussed in section 2.1, a spin s conserved current in the bulk induces a tower of
protected operators on the boundary with dimension d+ 1+ s—2 and spin ranging between
0 and s — 2. They are bilinears in the boundary operator ¢ and have the schematic form
~ ¢52”61,1 Oy, ... 0y, ¢ with n > 1. They appear in the conformal block decomposition of
the four point function of the boundary field ¢. The scalar ones with boundary spin 0 also
appear in the boundary channel conformal block decomposition of two point function of
the bulk scalar ¢’¢!. In the following subsections, we will see that these operators have
protected dimensions in perturbation theory using their appearance in both these conformal
block decompositions. Then we will go on to calculate the anomalous dimensions of the
first few of these operators using Feynman diagrams and verify that they vanish.
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4.1 ¢* theory in d=2—¢
4.1.1 Decomposition of boundary four-point function

Let us compute the four-point function of the leading boundary operator ¢! in the quartic
theory of subsection 3.1. In the free theory, the four-point function just comes from the
Wick contractions

. 51J5KL 5IK5JL 5IL5JK
T(x1)0” (x2) " (x3) " (x =C? - - - - - — |.
(& (1)07 (x2) " (x3)0™ (xa)o ¢¢<(X%2)A(X§4)A i (X%3)A(Xg4)A ’ (X%4)A(X§3)A(él>1)

In the s-channel, 12 — 34, the leading term just comes from the identity operator, while
the other two come from the double trace operators of dimensions 2A + 2n + 1 [69]

1 (1) 1

A+4n
A AT A AT A A Za —oAtoni Yr—aAqon (U 0) (4.2)
(xT3)2(x3)%  (x7)2(x35)2  (xT)2(x3y)2 In ’ " R
where
. . 2
([ (A= 4+1) (A
Ar_9At2n, = p " - & - y (4.3)
It (1+9),(2A+n—d+1a@A+2m+1-1) (2A+n+1-4)
and 2 2 2 2
_ Xi2X34 _ X14%93 (4.4)
U=, V= 5o .
X13%24 X13%24
In our case A = 221 and g,;(u,v) is the d dimensional conformal block for four-point

function. At first order in the coupling, we have the following connected contribution to

the four-point function

(0" (x1)¢” (x2)0™ (x3) " (x4))1
— _9g(sTI§KL | §IK§IL | sILsJK d° CA% 4.5
=l " i )/ o (X%O)A(X%O)A(Xgo)A(XZO)A‘ 9

To make life simpler, we are going to evaluate this integral in d = 2 so that A=1 /2. In

that case, the integral can be computed in terms of the D function
(0" (x1)9” (x2)0™ (x3)0" (xa)1
29 C4 1
_ _7(5IJ5KL + §IK§IL 51L5JK) - ¢;¢> Tu2D
T (x19%3,)2

This particular D function can be expressed in terms of the H function, which can then

(u,v) (4.6)

11
1202

D=

)

D=

be expanded in a power series in w and 1 — v [70-72]

11
(u,v) = —m?logu G <2,2,1,1;u,1 v)

1111
227272

e i4m Lim+n)?
s F((2+ )T (5 +m+ )fmnum(l—v)”, @

m!)2 n! T(1 4 2m +n)

m,n=0

fon =20(L+m) +2¢(1 +2m +n) — 2¢ (;—i-m) — 29 (;—i-m—i-n).
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The G function appearing above can also be expanded in to powers

(o)

‘w1l — ) = (6 —a)m(d = B)m (a)m+n(ﬁ)m+num )
G(a, By, 63u,1 —v) m%;O o TE - (1—v) (4.8)

and in particular,

11 > F(l—i—m)QF(l—i—m—i—n)Q
Gz, =L, Lul-v|= 2 2 ™1 — )"
<2’2’ o “) 2. 2l T+ 2mn) " L)

m,n=0
_ i r(3+m)"
B 0772(m!)2 (14 2m)

m=

1 1
u™ oFy <2+m,2+m,1+2m,1v>.

(4.9)

The logu term appearing above in the four-point function directly gives the anomalous
dimensions as we now discuss. On general grounds, we can decompose the four point
function as follows

(61 c0)o” () ()6 1)) = 175%0G5 +
SIK§IL _ SILSIK
2
where S, T, A refer to singlet, traceless symmetric and anti-symmetric representations of

5IK5JL+5IL5JK 5IJ5KL
5 TN )QT
(4.10)
Ga

O(N). For each of these representations, we can have a decomposition into conformal
blocks

2 N
G= %}"(u,v), Fl(u,v) = Zaﬂlufgﬂl(u,v). (4.11)
(%7935, Tl
From our discussion above, we have
Fs(u,v) =1+ IZ a% W2 g0y — TWD%%%%(%U)
n
l:even
4gCA’2 _
Fr(u,v) = Z a% n,lu%—i_ngn{%,l - ﬂ¢¢u%D%7%7%7%(u, v) (4.12)
ln

l:even
1
.FA(U,,U) = Z a’?4 n,lu§+ng7'2,l

I,n

l:odd
where 70 = 1 + 2n and

(1 1 2
O Lt Lo 2 (D'(2), (2) 1]
Snl = NIl T NTARET N I+ 1) (n)n (204 D)i(n + 1),

Leading corrections to F can also be expressed in terms of anomalous dimensions and

(4.13)

corrections to OPE coefficients: using 7,,; = 7',? + An and ap; = agl + day,,; we have

o0
1 Lo . Lo .
OF (u,v) = u2 E u" E <2ag,l'yn7l logu + day,,; + 2a2’17n718n> gr0,1(u, v). (4.14)
n=0

l:even
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It is clear that the operators in the anti-symmetric representation do not get anomalous
dimension or corrections to OPE coefficient to leading order in g. For the singlet represen-
tation, comparing the terms proportional to logu, we have the following equation which
implicitly determines the anomalous dimensions

2mg( N+2

1o s 5 j+m)
Z unias n,lfYn,lng,l(uav Z 7_‘_2 2 F 1+ 2m) u™

I,n=0
l:even

(4.15)
1 1
><2F1(§—|—m,§—|—m,1+2m,1—v).
A similar equation can be obtained for symmetric traceless case. For small values of u,

in two dimensions and for even spins, the conformal block on the lLh.s. has the following
expansion [70] to leading order in u

1
gr0,1(u,v) = (1 —v) 2F1< +n+1, - +n+l 1+2n+20,1— )—l—O(u). (4.16)

Also, for [ = 0, we have the following expansion to all orders in u

. +m+n) L(1+2n)°
g4:01 O_Z ) m'(m—{—Qn) (2m—|—2n)

1 1
><2F1<2+m—|—n,+m+n,1+2m+2n,1—v>. (4.17)

2

We can use these expansions to compare coefficients of different powers of u in eq. (4.15).
At zeroth order in u, this implies

1 2gm(N +2)C2
> 508 0860 Py (@) = =2 Fy () (4.18)
l:even
where Fpg(x) is defined by
F5($)52F1(,6,5,2B,33), r=1-w (419)
and it obeys an orthogonality relation
L g Fy(z)Fyr_p(z) = 0,60 (4.20)
271 =0 ’
Using this and C’¢¢ =1/2m, we get
N g(N + 2
A6, = 5 2N T2) o ) (4.21)

For [ = 0, it agrees with the anomalous dimension of the boundary operator ¢? found in
eq. (3.11). It vanishes for all other spins, which is perhaps not so surprising given that
in the usual O(N) model, the anomalous dimensions of leading twist bilinear operators
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(weakly broken higher spin currents) start at O(e?) in 4 — ¢ dimensions. Similarly for the
symmetric traceless case

. g
T = Gor= (4.22)

At next order in u, equation (4.15) implies

op)
Lo s I o s 2gm(N +2)Cg,
Z 5‘13 1,171, % Fg+z($) + @‘15 0,07070Fg (z) = 39N Fg (z) (4.23)
l:even
which just gives
1 .
> 5‘1(39 1,1719,1$ng+1(33) =0 (4.24)
l:even
which implies
5, =0 (4.25)

for all values of [. For [ = 0, this is just the displacement operator. We could use this result
to go to next subleading twist and so on, since we know the conformal block for [ = 0 to
all orders in u. In general, it follows that if the anomalous dimensions of operators with
all spins vanish from level 1 through level n — 1, then at level n, we have the following

equation
1 R 1 I'(s+n
Z ia% i@ Fop1y(e) + 2@% ooV&Mﬂg(@
l:even ’ (426)
_ 207N +2)C3, T (5+n)"
- N 220z 2n) s @)
which gives
43, =0. (4.27)

In this way we can extend this result to all values of twist. Note that it was important
that the leading twist anomalous dimensions vanish for all spins other than [ = 0. These
subleading twist operators with free dimension d — 14 2n +1,n > 1 and spin [ are exactly
the operators we called higher-spin “cousins” of displacement and we have just shown that
their anomalous dimension vanishes to leading order in g. Similar reasoning goes through
for the symmetric traceless case.

4.1.2 Decomposition of bulk two point function

Let us now discuss the conformal block decomposition of the bulk two-point function of
the ¢!¢! operator. In the case of free theory, using the cross-ratio z defined in section 2,
we can write

(o' ! (x1, 1) 07 67 (x2,12))0 = N?(G®(0,0))? +2N(G9¢,(a:1,x2))2

B NF( 1) d—1 il Zd_l

= (i) [N+2<1_Z> 422 +47(1_Z)%
d-1

_ N (4.28)

167rd+1(4y1y2)d_1
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We can determine the coefficients of the blocks using Euclidean inversion formulae [9, 73].
On the boundary, we can define the coefficient function

R 1 1 (d41 d-1 d+1 z—-1
IA:F(dJer)/o dz 2~ )(1—z) 2 2F1<Ad AT) > >g(z) (4.29)

and its residues are related to the coefficients of conformal block expansion as

rAr (A e
ATToreA—d) T A-A,

(4.30)
Doing this procedure tells us that we have the identity block on the boundary, with coef-
ficient 2 = N, and a tower of blocks with dimensions d — 1 + 2n and coefficients

2 _ 2
:u’d—1+2n - F(27’L n 1)

I (359) 9Fy (1 — 2n, —2n; —d — 4n + 3; 1 d+1
[26n70+ (59) 2 A S n )+r<+>
T (%5 —2n) 2
3—d d+1
I(—d— 4n+3)3F2<2—2n 2n,1—2n;—d—4n—|—3,;—2n;1)]
(4.31)

where regularized Hypergeometric function is defined by

sFy(al,a2,a2;b1,02; z)

Fs(al,a2,a2;b1,b2;
sFh(al, a2, a2;b1,b2;2) = T (b2)

(4.32)

Similarly in the bulk, we have the coeflicient function

! - Ad+1-A 1
IA_/O dy y*z (1 — )", Ry <2 2,1,1—y>g(1—y) (4.33)

and then the bulk data is determined using

FHES) o

or (A—&1) T TA-Ao

Ia (4.34)

Using this, it can be seen that in the bulk channel, the two-point function contains identity,
¢ ( with dimension d — 1), and a tower of primaries ¢20%"¢? with dimensions 2d — 2 + 2n
with following OPE coefficients

=2, A-1=4,
m(—2d? — 3dn + 4d — 2n? + 5n — 2) sec (234) T'(1 —
I(—d—n+22Tn+1)I (=3¢ —n+ )T (& +2n -
2F1 (1 —n, 7d722n+3; 73d724n+7; 1)
I'(—d—n+2)'(n)
(2m(—1)" sec (37”1) ( d—mn+ 2, *d*22"+3, —n; 73d724"+7, 1—mn; 1)
_ > )
2

I'(35(3d—5)+2n) D(n+1)

d)

A2d—212n = (—=1)"NT'(1-d) (

Nt

)

(4.35)
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When we add boundary interactions to the theory, the dimensions of the operators in
the bulk channel will remain the same since the theory is free in the bulk, but the OPE
coefficients Ao can receive corrections which will depend on the interaction strength.

Note that the operators appearing in the boundary channel are scalars with dimensions
d — 1+ 2n. We will now show by an explicit perturbative calculation in the interacting
theory, that for n > 1, they don’t acquire anomalous dimensions, which is consistent with
the fact that they are induced by bulk conserved higher spin currents. At leading order,
we have

(0" 6" (x1,41)07 ¢ (x2, y2))1 = —29N(N+2)/ddX0(Gg(X1,yl;Xo,O))Q(Gg(XUa0;X27y2))2~
(4.36)

This requires computing the following integral, which can be done, for example, by using
Feynman parameters

/ddxo : = = tanh ! <2~1_Z)
(X3 + D) (x5 +95)t 2py0vT — 2 2—2

where we already set d = 2 for the integral since we are computing the leading correction

(4.37)

in d = 2 — e. This gives the two point function as

NT (4=1)? 2 4! . 21
01600000 500 = e V02(15) e ]
_ gN(NV+2)z R (2\/1 — z>.
16m3y1y2v/1 — 2 2—z
(4.38)

We can compute the anomalous dimensions of the operators appearing in boundary channel
decomposition by extracting log z from our two point function. In the boundary channel,
log z comes from the A present in the boundary conformal block. So in the following, we
only keep track of the elog z term of the leading order perturbation to the free propagator.
Then using the decomposition from above, we have at the fixed point

NT (dfl)2 00
PR 2 '
16md+1 (4y17y9)4-1 [N + nzoudl+2nfbdry(d — 14 2n;2)

N N+2
——( 81 4.39
- 64m2y1y9 ( BN 86) (4:39)

(¢ (x1,91)07 ¢” (x2,92)) 2

where there will be other order € terms which will contribute to the corrections to OPE
coefficients, but we have only kept log z terms. Noting that the boundary block for A=d-1
simplifies, this again precisely gives the value of anomalous dimension of the boundary
operator ¢? found in (3.11) and tells us that none of the other operators get anomalous
dimensions. This is consistent since the operators with n > 1 correspond to higher spin
displacements with boundary spin 0 and are equal to the boundary value of conserved
currents with all 2n indices being y, JY¥Y.
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4.1.3 Direct computation

It is possible to compute these anomalous dimensions more directly as well, by explicitly
writing down the operator induced by conserved currents on the boundary and computing
their anomalous dimensions. For the displacement, the operator is
D=T _d_l IaZI 1821 _ia Iai[ 18 Ia 1
- Tyy — (¢(z¢)+¢(z¢)) z¢ Qb"" y‘b y¢
4d 2d 2

_d—1

4d

| ) (4.40)
(61(026") + 6 (0801)) — 501006 + L (6% 6"))e (66!

where we used modified Neumann boundary condition 8y(;5[ = g(¢7¢”)¢!. We will calculate
its anomalous dimension to order g2. To this order, the last term in the above expression

will not contribute and it will start contributing at order ¢®. This is actually a primary

operator in the boundary theory as it matches up to a coefficient to a “double trace”*

1J
n,l’

operator. We will denote by O:%, the operator with dimensions 2A + 2n + 1 and spin [.

For n =1 and [ = 0, the “double trace” primary operator takes the form [74]
d—1 .
Oy = ——((07¢")e” + ¢! (8}¢7)) — di¢' 0. (4.41)
We want to show that the anomalous dimension of this operator vanishes by computing
its three point function with two other ¢. To two loop order, following are the non trivial
diagrams that will contribute, and we want to show that these do not have any logarithmic

divergence.
G2 = 4 OYIMJ
= 2g(6" 6% 4 61K 4 6107 / k15 o(k, p)
2m)d k|[k + p[
+ g2(861765L £ 2(N +6)(6TK 67 + 61E5TEY T, (4.42)

where
2 d. 9 2 p’
Oro(k,p) = 5 (K + (k + p)*) = 5. (4.43)

4The operators we discuss here are bilinears in the fundamental fields ¢! and hence should be thought of
as single trace operators. However, we will sometimes loosely use the terminology “double trace” to make
contact with some of the literature on the subject.
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It is easy to see that the first one loop diagram vanishes identically, which is why we do
not need to consider other two loop diagrams which contain this diagram as a subdiagram.
Now for the second two loop diagram, we have to perform the integral

dik  dix’ 1 3
L= 01 o(k,
' /(27r)d (2m)4 K|k + p||K||k - k- q Lo(k, p)
r a1 QF 1— d ddk 1 ~
= ( 2 d) ( 2)/ . 50100k, p) (4.44)
(4m)exl(d—1) J (2m)?[k|[k + pllq - K|

21 dsec ()T (2— )T (d—3) T ()T (2-9)
L(3- 9T (5 —1) (@m)dal(d - 1)(p?)'—

where we computed the integral at q = 0, since we are just using this diagram to calculate
the anomalous dimension. This is finite in d = 2 — ¢ which implies that to this order, the
operator O{;{) does not get anomalous dimensions.

Let us now talk about the operators induced by the bulk spin 4 current on the boundary.
If the bulk is 3 dimensional (which will be sufficient for our perturbative calculation), it
can be explicitly constructed using the generating function

e}

O () =) T (x)e et (4.45)
s=0

This generating function can be calculated by using the conditions of current conservation
and tracelessness and it turns out to be [75]
— —

- (2620, - Dy — A(e - D) (e - D))"
OIJ(:’U7 6) - ¢I($ - E) Z (2TL)'

n=0

¢ (x +€). (4.46)

This can be expanded to fourth order in €, which gives the spin 4 current

111 7 1
1J I.J I J Iqga  J
uvpo — E ﬂa(uayapaa)(b ¢’ — ga(uauap(b aa)¢ + 56(uuapaa)aa¢ 0 ¢” + (I A J)

1 5 35
+ =000 0003 ®' 007 )" — 200,000,670 00)&” + 150,000 0p0) 67
(4.47)

where the symmetrization sign means that we add all the terms related by exchange of
indices. Now, we can take all its components to be transverse to the boundary and obtain
an operator on the boundary, which with Neumann boundary condition looks like
1 1 ~
it = | 37(@)%6N)¢” = 5(070;6N9 67 + (I > )
1 17 (4.48)
+ 5(00,0'90767) + T3 (026")(0207) | + O(g?).

From the boundary point of view, this is an operator with dimensions 2A4 + 4 and spin 0.
Using recursion relations from [74], we can write down the form of a primary of the same
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dimension and spin in d dimensions

ol = (aeystoiore? + U2 G200 0267) ) - (a1) (020,007 + (1)
P AEDEZD (apghgd 4 (1)), (4.49)

12
The relative coefficients of various terms in this operator indeed match what we get from
the operator that the spin 4 current defines on the boundary. So they are the same operator
up to a constant. We can now try to compute its anomalous dimensions using the following
correlation function, which involves the same set of diagrams as the displacement operator
O{:{) case but with different factors of external momentum

(05:6(-p)¢" (—a)¢"(p + q))

dk 1 -
= 2g(61 68 L 4 1K §TL 4 §1E5TK / Os0(k, 4.50
9( ) on) Kk £ p] 2,0(k, p) (4.50)
+g2(85[J5KL +2(N+6)(5IK5JL +5IL5JK)22
where
d+2)(d+4 d+2)(d+4
Onolie.p) = TF2IED gty e g ity 4 CEED gz e

(4.51)

d+2
2

The one loop diagram again vanishes identically and the two loop diagram requires the

1
[pI*(1k[* + [k + pI*) + 4 [p["

following integral, which we again evaluate at q = 0

dik  dix’ 1 1 3
To = Kk
= | oy o e o = =240
1\ 2
S5 F(1_3)/ I’k ! Os0(k, D)
(4m)iar(d—1) J Co[k|k + plla - k2~

TG (1— 972700 (d - B) [ (dF + 8d* + 393 — 80d2 — 4d + 48)T (451)
T (m)ird - D) T (31 0)

B 16(d + 2) sec (Z2) )
@

(4.52)

and this is finite in d = 2 — e. This implies that to this order, the operator Oi‘(]) does not
get anomalous dimensions.

The next operator we consider is the spin 2 operator on the boundary induced by the
spin 4 current in the bulk. It can be obtained by taking two of the components of the
current to be in the normal direction and it gives

1 1 7
JI = — | — iagaiaqufgb*’ +3

35
wii = 15 0:0¢' 050" + 0,0;040'0"¢" — ~=0;6'0:0;0” + (1))

5 8 2
— gakﬁ(igblﬁk@j)d)‘]— géija,iqsfa,%ugdijakalqsfakalw — 6 (030101 0' 7 +- 1 )
(4.53)
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where 8@@5[ 8]-)(;5‘] = 0;010;0” + 0;¢10;¢7. This is symmetric in 4, indices and we can
project it onto a symmetric traceless part

0;50 1 5
1J 170kl - I ak J
Jyyw( T) ™~ <5ik5jl - ]d )Vkl =12 [ - g@c@(igb 0"0j¢

+ (— %agaiajgb%*f + ga,ia(,-gbfaj)w + 0,0;016" 0" ¢ — %agqsfaiajw + (I<—>J)>
+ 0 ((iagafw(pj— 40;019"0'¢7 + T J> + %a,zqsfaf(pu gaka@fakalwﬂ :
(4.54)

As is probably familiar by now, we can write the “double trace” primary with spin 2 and
dimensions 2A 4 + 4 using results from [74]

d+5

1—-d
o7% G(T) = [ 5 070,0;0" ¢” + 0i#' 050" + 0,0;010" 0" ¢’

_B1aEtd) +(d)<5 ? 9 a,zgz)faiajqﬁj +(I J)]

S k00 J>¢J+6U[(d2d SRR — dZGakaqﬁfalquMJ)
(d+3)(d+5) 09 12,5, 2(d+3) Iakal 1J
B e L )Gﬁgb@@gﬁ} (4.55)

which matches, up to an overall constant, to the operator we need. Repeating the same

procedure as other operators

<Ol 21](T)( )¢K(_q)¢L(p + q)) =
d’k 1

) 6IJ5KL +51K5JL +5IL5JK /
“ '] ok + ol

92(85[J5KL+2(N+6)(5IK5JL+5IL5JK)1-3

O1.27(k,p) (4.56)

where

(Ik” + [k + p[*) +

O~1727T(k,p):|:kikj<—2(d<il4i(;-lm 2((dd_j12)>| |2)
d+6)(d+2 d+ 2)? d+2
oy (- T g Oy g (5D
2 2
o~ - o )
(d+2)?

( 2(d +6)(d + 2)
d(d+1)

(Jkl* + |k + p*) + k|*k + pf?

d(d+1)

d>+9d+16, o 12 d+3 | 4
() ™ -T2 .
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The one loop contribution vanishes, and we can use some integrals from the appendix B
to evaluate the integral appearing in the two loop diagram

d% dk’ 1 1 ~
5= | oy oy W T oI T @ g )
()T (-9 Dip; (5d3+26d%—40d—16)T (1—9) T (d—3) T (%2)
= G GG 7 2r(2d)< =
_8<d+2><d+4>sec(’f;l)P(—S)F(d+é)>+(S (d—2)sec (F) T (4-) T (d—3)
3T (53— 9) 7 2ddr (3 - 4)r (¥ +1)

(4.58)

As anticipated, this is finite in d = 2 — ¢ which implies that to this order, the operator

OIJ

1.2i5(T) also does not get anomalous dimensions.

4.2 Large N expansion

We will now do the calculation of anomalous dimensions of the same operators in the large
N model of subsection 3.2 using the Feynman diagrams. Starting with the displacement,
we have the following contributions

¢K
q
/
(014(0)0" (¢)0"(—q)) = O +
QN
¢L
q
P2 /
p1/, B
+ 0y lpl - P,
P s
P2 \
_ (51K6JL +5IL5JK) / dpr (—dp?)
2m)d Ipl\Q\pl — q|?2
203017 6K E / dpr / d%ps (—dp?)
N2 (27r)d (27r)d \p1\2!p1 — po||p2 — qu2‘2(d—2)
= 2 (6IK5JL+6IL5JK) ds 2d C,
N4 )2dF (4-1)

(4.59)

M SKL 4% (d - 3) T (52 T (454)
2N2(4r)dy/mdl (d — %) '

— 38 —



There is no log ¢ term which tells us that there is no anomalous dimension. Both the 1/N
corrections start at O(e?) in d = 2 — € which is consistent with the fact that the O(g)
contribution to this correlator vanish in the € expansion. Similar computation can be done
for the two operators induced by the spin 4 current on the boundary. For the boundary
scalar, we have

(055(0)6" (9)¢" (—q))
_ 2(d+2)(d+4) [ IK§IL | §1LIK) < / d’p, pi )
_ (K57 4 6L

3 2m)4 [p1[?|p1 — q|4~2
2012617 5K L / dpy / d’ps ]
N2 2m)d ) (2m) |pi[2|p1 — szPz — ql|p2|*@2) (4.60)
\ i
_ 2(d +2)(d+4)q (57K I +51L5JK)(1 B ; Coy >
3 N(4m)2(d+2)T (¢ -1)

315KE 3G, T (45" ()
ANV (@4 )T (%)

This also does not have any log ¢ terms indicating no anomalous dimensions. The correc-
tions here also start at O(e?) in d = 2 — . Finally, for the spin two operator, we have

wmmT<wﬂwwﬂw»=“d22f+®kyquwmwm

d 4
9 z]q d“p o 0iD]
>< —_ . . P . .
( Qz%q + / 27'(' d ‘pl |p1 _ q’d 2 < plzpljp]_ + d > )

QCN'gélJ(SKL ddpl ddp2 1 2 (SijpiL
+ 2 d d 2 2(d—2) —P1iP1iP1 + d
N (2m)® ) (2m)% |p12p1 — pallp2 — qllp2]

.
_ 4d+2)(d+4) (—qiqjq2+ 0ijq ) [(5IK5JL+5IL5JK)

d+1 d

y (1 B 2C, > 15 51 KLC,? (d — 3)y/msec (%)
N@m)s(d+ 4T (1)) 4 N*@n)d(d+4)(d-1r (d+3)

(4.61)

which also does not contain log ¢ implying that there is no anomalous dimension.

5 Long range O(N) models

It is natural to generalize the analysis of the previous sections to general non local mod-
els in d-dimensional Euclidean space, where the free propagator takes the form 1/|p|® in
momentum space, and the kinetic term in position space is

2T (B2) [ 4 0 ¢ (2)e () _d-—s
7r2F(—2)/d wdly T e Be= 5 (5.1)

For the applications discussed below, d is some fixed dimension (which can be taken to be
integer), and s is a free parameter that controls the power of the long range propagator.
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5.1 Quartic interaction

First we consider the following model with a quartic interaction

er d+S I(x I
7T ( ) ‘ ‘d+s 4
2
This coupling becomes marginal when s = d/2, so we will study this model perturbatively

d+e

ins= when g has dimensions equal to €. For s = 1 this is equivalent to the boundary

model we studied in subsection 3.1 and all the diagrams remain the same with modified

propagators. So we will not give all the details here and just sketch out the main points.
The computation of the four point function now requires the following integrals

d?k 1

(2m)4 |k + p|*[k|*

d'k 1 >2 3 d'%  dK’ 1 1
X — 4g 5N+22/
(/(27r>d|k+p|8|kls ( )| @y @) Wl + bl [k - K- qff

(9:+89°(N +8) (4)°T (s - 9)
(47)2T (5)°T(d — 5)(p?)* 2
g*(N? + 6N +20)F (452)"T (s — 9)°
(m) T (3)"T(d — 5)2 ()~
4°(5N +22)T (43°)° T (s — 4) T (d = §) T(2s — d)
(4m)T (£)°T(d — 5)T (354) T (3 — 25) (p2)2—4 |

d+e

G4:25”5KL[—(9+5Q) - (g+5g)2(N+8)/ g*(N? 4+ 6N + 20)

= 2517 5KEL [ —(g+dq) +

(5.3)

Requiring that the divergent terms cancel when s = fixes 6, and then applying Callan-

Symanzik equation on the finite piece gives the functlon

_ . 29%2(N +8)  8¢3(5N + 22)
M e Ir (@) (i (2

This gives the fixed point at

(v + 2¢(d/4) = 9(d/2)). (5:4)

(m)5T(5) , (4m)5T (§) (5N +22)(—y = 20(d/4) + ¥(d/2))
2(N +8) (N +8)?

g=gs«= (5.5)

The computation of anomalous dimensions of the operator ¢'¢! at this fixed point also
closely follows the boundary case and the result is

29.(N+2) | 12(N + 2)g3 (v + 2¢(d/4) — 9(d/2))

~ (amir(9) (4m)r (4)°
_WV+2) (N +2)(TN +20)(y +2¢(d/4) — 9(d/2)) » (5.6)
(N + 8) (N +8)3
B d (N=4)e (N +2)(TN +20)(y + 20(d/4) — 9(d/2))
O G AT (N + 8 ¢

This agrees with what was found in [45].
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5.2 Large N description

Similar to subsection 3.2 we can develop a complementary approach to study the fixed
point studied above in continuous and arbitrary s and d, but in an expansion in 1/N. For
that, we consider the following action with an auxiliary field o

zsr ¢I ¢I <J¢I¢I 02>
S = dzdly d%z - — . 7
g / v !d+s / 4g (5:7)

As usual, we will integrate out the ¢ field to get an effective quadratic action in terms of o

_ [ A% o()o(=p) (N a4, 1

where
. 2(4m)eT (3)°T(d -
7 d d—
(s—9)T (%)’
From here, it is clear that for s > g, the second term in the quadratic action can be dropped

in the IR limit, while for s < %, it can be dropped in the UV limit. This only leaves the
induced kinetic term in the quadratic action and leads to the following two point function

)’ s)

(5.9)

for o

_ 2s
CO' Co— C 2 F( )

oleow) = Fp—m TmiT (§-s)

(5.10)

which implies that the conformal dimension of sigma operator, to this order, is s. The
computation of its anomalous dimension involves same diagrams and similar integrals as
the boundary case and the result is

)’ T(d— )

I(
C T )

1( 8T (4 —5) T (354) T (3)° T(d — s)2

Ay = s+— . ] (3 > (5.11)
P(s—9) T(F) TN (d=F)T(5) T(s=9T

N

This agrees with what was found in [45, 76]. We can expand it in an e expansion with

__ d+e
5=

Do = s (=66 — T(y + 26(d/4) — (d/2)e + (). (5.12)

It agrees with the e expansion result above in eq. (5.6) when expanded at large N. We can
also expand when s = d — ¢ which gives

(et Gy ) )

Ap =5+ 5 + O(é”)). (5.13)

As we show below, this agrees with the result from the non-local non-linear sigma model
in eq. (5.18) at large N.
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5.3 Non-local non-linear sigma model

In line with subsection 3.3 we can also study this fixed point by an epsilon expansion at
the other end, s = d — € using a non-local non-linear sigma model (note that the scalar
becomes dimensionless at s = d). A variant of this model, aiming at a more general target
manifold, was considered in [77]. We restrict ourselves to O(NN), but it should be possible
to generalize our approach to other homogeneous spaces. To do that, we consider the

following action

2°T (44°) ¢! ()" (y) L
S = w‘ér(Q/dd xdly A /ddxa <¢f¢f—t2). (5.14)

The constraint can be solved using the same parametrization as the boundary case. The
one-point function required for 8 function computation now involves the following modified
integrals

3

B %<<P“<P“(0)> - %Ws@“(o)wbwb(()»

_t(N—l)/ d’k 1+(N—1)t3/ dk 1 / dl k-1
2 (2m)? |k[* 2 (2m) [k[?s ] (2m)d |l

(N -1)24+2(N—-1)) [ d%k 1 di 1
B 8 / (2m) [kl / (2m)? (1]
_ 1, N1 (1 ytlegm? 4y (5) BN (v+¢ (=5) - ¢ (%)+¢< )
A G B 21 (3)7 (1m
_t3(N—1)2< 1 +7+10gm2+¢(2)>

8 92d—2dT° (%)2 €2 T (%)2 92d—2,d

(¢N(0)) =

1
t
1
t

(5.15)

where we used techniques similar to boundary case to perform the integrals and expanded
in s = d — €. The § function can be extracted from this one-point function

¢, BN-D) BN (6 (-4 v (9 + v(d)

iy (4) (4m)T (2)* ' (10

This beta function gives a fixed point at

,_dmir(l) it bre(H-v@ru@)
* 2(N -1) 4(N —1)? ’
and the dimension of the field ¢ at this fixed point is
Ly Oty (=5) v () +¥(d)
Ay =d+ () =5 — 2?]\7—1)2 (5.18)

in agreement with the large N result.
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Figure 6. Padé result for A, for N = 2,20 and 200. We plot N(A, — s) against s because that is
easier to compare with the large N result. The Padé result approaches large N result as we go to
larger N.

5.4 Some Padé estimates for the d =1 long range O(N) model

The quartic model and the non-linear sigma model approximate the fixed point of one
dimensional long range O(/N) model near the two ends in s, i.e. s = % +5and s =d—¢
respectively. The large N model interpolates between the two ends, but we can also develop

a two-sided Padé approximant to interpolate the intermediate range of s for finite N. By
2imgais’
Ty, b0
expansion with the available perturbative series expansion. We do this for A, which is

that, we mean that we consider an ansatz Padé,,, = and equate its series
related to the critical exponent v as A, =1 —1/v (this is the dimension of ¢ in non-linear
sigma model and of ¢? in the quartic theory). From the models anlayzed in the previous
sections, we have the following series expansions for the anomalous dimension of o in d = 1

1 (N=4)(s—3)  A(N+2)(TN+20)(7 + 4log2) 1\? 1\?
Bo= 3t Nis (N +8)3 (8_2> +O<5_2)’5N1/2
(1-s)?
N-—1

A,=s— +0(1—s)3 s~1.

(5.19)

We have six possible Padé approximants corresponding to choices of m, n such that m—+n =
5. Only Padé; 3 and Padés > are well behaved at all s and NV and have a large N behaviour
close to our large N result (i.e., they go as s+ 1/N at large N). We take their average and
plot that to compare it with the large N result in figure 6.

The non-linear sigma model description clearly breaks down for the Ising case N =1,
since the [ function vanishes and the anomalous dimension diverges in that case. But the
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S 0.6 0.65453 0.7 0.8 0.875 0.9

N =1 Padé 0.488 0.494 0.506 | 0.553 0.616 0.646

N = 1 Monte Carlo [51] - 0.494(14) - - 0.5876(13) -
N = 1 Monte Carlo [78] | 0.50(2) - 0.50(4) | 0.54(5) - 0.63(7)
N=2 0.519 0.565 0.618 0.757 0.858 0. 889
N=3 0. 534 0.588 0. 643 | 0.774 0.865 0.894
N=4 0.544 0.601 0.656 | 0.781 0.868 0.896
N=5 0.552 0.610 0.664 0.785 0.870 0.897
N =10 0.572 0.630 0.681 0.792 0.872 0.898

Table 1. The numerical results for A, = 1 — 1/v from our Padé approximants and the available
Monte Carlo results for various values of s. As N grows, the results approach the prediction of the
large N expansion, which gives A, = s+ O(1/N).

dimension of o near s = 1 for the case of long range Ising was found in [56] to be

Ay, =1-21-5), s~1, N=1. (5.20)

Since there is a square root, we will switch variables to x = /1 — s and do a two sided
Padé between 0 < z < % with the following two constraints

1 V2 1 3+8(7r—|—410g2)< 1>2 < 1>3 1
Ap=-+-(a——]+ ——) +0(z——=) ,2~—

2 3(‘"“ ﬂ) 9 NG TTR) TR
Ay =1—V2z+0(z%), z~0.

(5.21)

Again, there are five possibilities and Padés i, Padé; 3 and Padéy o are all close to each
other. We take their average and tabulate the results in table 1, where we also include
the Padé estimates for higher values of N obtained as described above. For N = 1 our
estimates are close to the available Monte Carlo results found in [51, 78].
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A Other examples of BCFT with free fields in the bulk

In this Apppendix we briefly discuss some other examples of BCFTs with free fields in the
bulk and interactions localized on the boundary.
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A.1 Scalar Yukawa like interaction in d = 5 — ¢ boundary dimensions

Consider the following model of a free scalar field interacting with N bosons on the bound-
ary with an action

1 1
S = /dd“x 5(60)2 + /dd:c<2(6u¢18“¢1) + ga¢f¢1). (A1)
where I = 1,2... N. The interaction becomes marginal in d = 5, and it is weakly coupled

in d = 5 — € dimensions. As usual, ¢ does not get renormalized and has dimensions fixed
at classical value. The one loop correction to the propagator of ¢ is

d?k 1
0,2 2 2
e — (= . 5
=0 [ s i~ "
_ TR '
(4m)2 /7T (d = 3) (p2) 2"
which implies in d =5 — ¢
2
g
Zy=1-— . A3
¢ 60m3e (A:3)
The one loop correction to the vertex is
d?k 1
G1,2 — (_ 3/ Y
] et Pk —ar "
_ 4T () '
35 Qd(;ﬂ)% J
which implies
g3
L, = 0g =g — . A.
9 =90 =9 153 (A.5)
Using the relation goZ;/ 2Z¢ = uc/ QZg gives the f— function as
dg Ougoly _ €9 g
pr— —_— = — = - — . A.6
So there exists a non unitary fixed point at
15m3e
gi=——0 (A7)
The boundary field ¢ acquires an anomalous dimension
. 0 1/2 0 1/2 92
=u—>1o0g Z,/* = —logZ,/" = A.
Yo = pg logZy B(g) 9g %8 %0 90,3 (A.8)

which at the non unitary fixed point becomes 4y|s« = —€/16.

45 —



A.2 N +1 free scalars interacting on d = 3 — ¢ boundary dimensions
Next model we consider is N + 1 free scalars in the bulk interacting only on the boundary

S = / dde(;(&I)? + ;8u¢18“¢1> + / dda:(g;agblgbl + 96203). (A.9)

where I = 1,2... N. The couplings are marginal in d = 4 and the model becomes weakly
coupled in d = 3—e. Both ¢ and ¢! are now free bulk fields and they don’t get renormalized.
The one loop correction to the g; vertex is

6" = (o) + o) [ o
(2m)4 [k + pllk —al[k] " (A.10)
_ (i t+ale) T (55 '
92d-17 (u2)%3" o
which implies
(97 + 9192)
Zg1 =g+ 5g1 =491 — Om2e . (A.ll)
The one loop correction to go vertex is similarly
d?k 1
G3,0:N_gl3+ _923/ -4
W™+ o) [ i et plic— all] ~
Na3 3\ T (3=d (A.12)
_ (Ngi +95) (%3 )_5
92d-17F (42)%3" 92
which implies
(Ngi +g3)
Zgs =92+ 09, = g2 — 5 5 (A.13)
The bare couplings are related to the renormalized couplings as
QIOZ;/QZ¢ = NE/2(91 + 591) (A.14)
920 Zg/z = NE/Q (92 + 592)
The S functions can then be computed using following relations
O O
_.ua,uglo|91792 = B(gl) ) . +B(g2) P} :
91 111,90 92 g1 (A.15)
_ 8920 8920
~HOug20lg1.90 = B(g1) +5(g2) -
gl g2 92 M,91
These give the following 8 functions
3, .2
€ g1 t 9192
Blg1) = _591 - 12721
S (A.16)
Blgs) = —Cgp— NILT 9
2 27 272

which give rise to non-unitary fixed points.
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A.3 Mixed dimensional QED in d =5 boundary dimensions

Another interesting model to consider is the following higher derivative variant of the mixed
dimensional QED discussed in [20]

1

=1

[t e T — [ a6y, + ig A (A17)
The engineering dimension of the gauge field here is (d + 1)/2 — 2, hence the coupling
is marginal in d = 5 dimensions. We will analyze this model in d = 5 — €. The higher
derivative term will give a 77;‘—43 propagator in the bulk. We can Fourier transform back
to position space in the direction perpendicular to the boundary and get the propagator

on the boundary to be Z‘;‘fs . We have the standard propagator for the fermion —i%.
The gauge field is free in the bulk, so it should not receive any anomalous dimensions. So
to compute the 8 function, we need to compute the one loop correction to the fermion
propagator and the vertex.

The one loop correction to the fermion propagator is
'k A (—ik)y"nap
GO,Q — (s 2/ —is
(zg) (27r)d 4’p — k|3k:2 4 %D}/j
_ —ig*(d =2y (339)
5y/m(4m)2

Requiring that the divergent part of the above expression vanish in d = 5 — € gives us

(A.18)

— 15¢p

392
=——". Al
¥ 80m3e (A.19)
The one loop correction to the vertex is
dip C(=i(p+ ) (—i(p + )"
6 = (g [ G2 IR LI BN o0
(2m) (P +@1)*(p + q2)%4|p|

We can evaluate the divergent part of the first term in the above expression which must
be cancelled by the counterterm which gives
3g°

0g = — . A.21
g 807m3e ( )

Using relation goZy 2Z¢ =(g+ 6g)u€/ 2 this gives a finite value for go. This implies that
the beta function actually vanishes in 5 dimensions to this order.

B Some useful integrals

In this appendix, we mention some useful integrals which we use throughout the paper.
The first one was performed in [34]

/ddk 1 1 I'(4-—a)T($-B)T(a+p-19) (B.1)
( . (B.

2m)4 [k[2ofk + P[P (4r) % |p|2act25—d T()T(B)T(d— o — B)
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The following two variants of it can be performed by using very similar methods

/ d?k ik
(2m)4 [k[**|k + p|*

S 7 R LA L T
B (4@% |p|20+26-d-2 \ 2 F(@)(B)T(24+d—a—pB) (B.
RS SRS )
Ip[? L@ (BT (2+d—a—p)
and
/ddk kip; _____ pip F(g+1-a)T(5-B)T (a+B-5)

(2m)d |k|22k + p|2f (4W)g|p‘2a+257d TC(a)D(BL(1+d—a—fB) )

(B.3)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.L. Cardy, Conformal Invariance and Surface Critical Behavior, Nucl. Phys. B 240 (1984)
514 [INSPIRE].

[2] J.L. Cardy and D.C. Lewellen, Bulk and boundary operators in conformal field theory, Phys.
Lett. B 259 (1991) 274 [NSPIRE].

[3] H.W. Diehl and S. Dietrich, Field-theoretical approach to multicritical behavior near free
surfaces, Phys. Rev. B 24 (1981) 2878 [InSPIRE].

[4] D.M. McAvity and H. Osborn, Energy momentum tensor in conformal field theories near a
boundary, Nucl. Phys. B 406 (1993) 655 [hep-th/9302068] [INSPIRE].

[5] D.M. McAvity and H. Osborn, Conformal field theories near a boundary in general
dimensions, Nucl. Phys. B 455 (1995) 522 [cond-mat/9505127] [INSPIRE].

[6] N. Andrei et al., Boundary and Defect CFT: Open Problems and Applications,
arXiv:1810.05697 [INSPIRE].

[7] P. Liendo, L. Rastelli and B.C. van Rees, The Bootstrap Program for Boundary CFTy,
JHEP 07 (2013) 113 [arXiv:1210.4258] [INSPIRE].

[8] F. Gliozzi, P. Liendo, M. Meineri and A. Rago, Boundary and Interface CFTs from the
Conformal Bootstrap, JHEP 05 (2015) 036 [arXiv:1502.07217] [INSPIRE].

[9] D. Mazéc, L. Rastelli and X. Zhou, An analytic approach to BCFT,, JHEP 12 (2019) 004
[arXiv:1812.09314] [iNSPIRE].

[10] A. Kaviraj and M.F. Paulos, The Functional Bootstrap for Boundary CFT, JHEP 04 (2020)
135 [arXiv:1812.04034] [INSPIRE].

[11] A. Bissi, T. Hansen and A. Séderberg, Analytic Bootstrap for Boundary CFT, JHEP 01
(2019) 010 [arXiv:1808.08155] [INSPIRE].

48 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(84)90241-4
https://doi.org/10.1016/0550-3213(84)90241-4
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB240%2C514%22
https://doi.org/10.1016/0370-2693(91)90828-E
https://doi.org/10.1016/0370-2693(91)90828-E
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB259%2C274%22
https://doi.org/10.1103/PhysRevB.24.2878
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB24%2C2878%22
https://doi.org/10.1016/0550-3213(93)90005-A
https://arxiv.org/abs/hep-th/9302068
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9302068
https://doi.org/10.1016/0550-3213(95)00476-9
https://arxiv.org/abs/cond-mat/9505127
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB455%2C522%22
https://arxiv.org/abs/1810.05697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.05697
https://doi.org/10.1007/JHEP07(2013)113
https://arxiv.org/abs/1210.4258
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1210.4258
https://doi.org/10.1007/JHEP05(2015)036
https://arxiv.org/abs/1502.07217
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.07217
https://doi.org/10.1007/JHEP12(2019)004
https://arxiv.org/abs/1812.09314
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.09314
https://doi.org/10.1007/JHEP04(2020)135
https://doi.org/10.1007/JHEP04(2020)135
https://arxiv.org/abs/1812.04034
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1812.04034
https://doi.org/10.1007/JHEP01(2019)010
https://doi.org/10.1007/JHEP01(2019)010
https://arxiv.org/abs/1808.08155
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.08155

[12] A. Almbheiri, A. Mousatov and M. Shyani, Escaping the Interiors of Pure Boundary-State
Black Holes, arXiv:1803.04434 [INSPIRE].

[13] M. Rozali, J. Sully, M. Van Raamsdonk, C. Waddell and D. Wakeham, Information radiation
in BCFT models of black holes, JHEP 05 (2020) 004 [arXiv:1910.12836] [INSPIRE].

[14] C.G. Callan Jr. and I.R. Klebanov, Ezact C = 1 boundary conformal field theories, Phys.
Rev. Lett. 72 (1994) 1968 [hep-th/9311092] INSPIRE].

[15] C.G. Callan, I.R. Klebanov, A.W.W. Ludwig and J.M. Maldacena, Ezact solution of a
boundary conformal field theory, Nucl. Phys. B 422 (1994) 417 [hep-th/9402113] [INSPIRE].

[16] C.G. Callan, I.R. Klebanov, J.M. Maldacena and A. Yegulalp, Magnetic fields and fractional
statistics in boundary conformal field theory, Nucl. Phys. B 443 (1995) 444
[hep-th/9503014] [INSPIRE].

[17] P. Fendley, H. Saleur and N.P. Warner, Ezact solution of a massless scalar field with a
relevant boundary interaction, Nucl. Phys. B 430 (1994) 577 [hep-th/9406125] [INSPIRE].

[18] S.L. Lukyanov, E.S. Vitchev and A.B. Zamolodchikov, Integrable model of boundary
interaction: The Paperclip, Nucl. Phys. B 683 (2004) 423 [hep-th/0312168] [INSPIRE].

[19] S.L. Lukyanov and A.B. Zamolodchikov, Integrable boundary interaction in 3D target space:
the ‘pillow-brane’ model, Nucl. Phys. B 873 (2013) 585 [arXiv:1208.5259] [INSPIRE].

[20] C.P. Herzog and K.-W. Huang, Boundary Conformal Field Theory and a Boundary Central
Charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

[21] C.P. Herzog, K.-W. Huang, I. Shamir and J. Virrueta, Superconformal Models for Graphene
and Boundary Central Charges, JHEP 09 (2018) 161 [arXiv:1807.01700] INSPIRE].

[22] E.V. Gorbar, V.P. Gusynin and V.A. Miransky, Dynamical chiral symmetry breaking on a
brane in reduced QED, Phys. Rev. D 64 (2001) 105028 [hep-ph/0105059] INSPIRE].

[23] D.T. Son, Quantum critical point in graphene approached in the limit of infinitely strong
Coulomb interaction, Phys. Rev. B 75 (2007) 235423 [cond-mat/0701501] [INSPIRE].

[24] D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80
(2009) 125005 [arXiv:0905.4752] [NSPIRE].

[25] S. Teber, Electromagnetic current correlations in reduced quantum electrodynamics, Phys.
Rev. D 86 (2012) 025005 [arXiv:1204.5664] INSPIRE].

[26] S. Teber, Two-loop fermion self-energy and propagator in reduced QED3 o, Phys. Rev. D 89
(2014) 067702 [arXiv:1402.5032] [INSPIRE].

[27] A.V. Kotikov and S. Teber, Two-loop fermion self-energy in reduced quantum
electrodynamics and application to the ultrarelativistic limit of graphene, Phys. Rev. D 89
(2014) 065038 [arXiv:1312.2430] [INSPIRE].

[28] D.T. Son, Is the Composite Fermion a Dirac Particle?, Phys. Rev. X 5 (2015) 031027
[arXiv:1502.03446] [iNSPIRE].

[29] A.V. Kotikov and S. Teber, Critical behaviour of reduced QEDy 3 and dynamical fermion gap
generation in graphene, Phys. Rev. D 94 (2016) 114010 [Erratum ibid. 99 (2019) 119902]
[arXiv:1610.00934] [iNSPIRE].

[30] W.-H. Hsiao and D.T. Son, Duality and universal transport in mized-dimension
electrodynamics, Phys. Rev. B 96 (2017) 075127 [arXiv:1705.01102] [INSPIRE].

— 49 —


https://arxiv.org/abs/1803.04434
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.04434
https://doi.org/10.1007/JHEP05(2020)004
https://arxiv.org/abs/1910.12836
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.12836
https://doi.org/10.1103/PhysRevLett.72.1968
https://doi.org/10.1103/PhysRevLett.72.1968
https://arxiv.org/abs/hep-th/9311092
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9311092
https://doi.org/10.1016/0550-3213(94)90440-5
https://arxiv.org/abs/hep-th/9402113
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9402113
https://doi.org/10.1016/0550-3213(95)00174-Q
https://arxiv.org/abs/hep-th/9503014
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503014
https://doi.org/10.1016/0550-3213(94)90160-0
https://arxiv.org/abs/hep-th/9406125
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9406125
https://doi.org/10.1016/j.nuclphysb.2004.02.010
https://arxiv.org/abs/hep-th/0312168
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0312168
https://doi.org/10.1016/j.nuclphysb.2013.05.008
https://arxiv.org/abs/1208.5259
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.5259
https://doi.org/10.1007/JHEP10(2017)189
https://arxiv.org/abs/1707.06224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06224
https://doi.org/10.1007/JHEP09(2018)161
https://arxiv.org/abs/1807.01700
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.01700
https://doi.org/10.1103/PhysRevD.64.105028
https://arxiv.org/abs/hep-ph/0105059
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F0105059
https://doi.org/10.1103/PhysRevB.75.235423
https://arxiv.org/abs/cond-mat/0701501
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CB75%2C235423%22
https://doi.org/10.1103/PhysRevD.80.125005
https://doi.org/10.1103/PhysRevD.80.125005
https://arxiv.org/abs/0905.4752
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0905.4752
https://doi.org/10.1103/PhysRevD.86.025005
https://doi.org/10.1103/PhysRevD.86.025005
https://arxiv.org/abs/1204.5664
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1204.5664
https://doi.org/10.1103/PhysRevD.89.067702
https://doi.org/10.1103/PhysRevD.89.067702
https://arxiv.org/abs/1402.5032
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.5032
https://doi.org/10.1103/PhysRevD.89.065038
https://doi.org/10.1103/PhysRevD.89.065038
https://arxiv.org/abs/1312.2430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1312.2430
https://doi.org/10.1103/PhysRevX.5.031027
https://arxiv.org/abs/1502.03446
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1502.03446
https://doi.org/10.1103/PhysRevD.94.114010
https://arxiv.org/abs/1610.00934
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.00934
https://doi.org/10.1103/PhysRevB.96.075127
https://arxiv.org/abs/1705.01102
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01102

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

L. Di Pietro, D. Gaiotto, E. Lauria and J. Wu, 3d Abelian Gauge Theories at the Boundary,
JHEP 05 (2019) 091 [arXiv:1902.09567] [INSPIRE].

H.W. Diehl and E. Eisenriegler, Walks, Polymers, and Other Tricritical Systems in the
Presence of Walls or Surfaces, Europhys. Lett. 4 (1987) 709.

E. Eisenriegler and H.W. Diehl, Surface critical behavior of tricritical systems, Phys. Rev. B
37 (1988) 5257.

L. Fei, S. Giombi and I.R. Klebanov, Critical O(N) models in 6 — e dimensions, Phys. Rev.
D 90 (2014) 025018 [arXiv:1404.1094] [INSPIRE].

L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Three loop analysis of the critical O(N)
models in 6-¢ dimensions, Phys. Rev. D 91 (2015) 045011 [arXiv:1411.1099] [InSPIRE].

S. Giombi, R. Huang, I.R. Klebanov, S.S. Pufu and G. Tarnopolsky, The O(N) Model in
4 < d < 6: Instantons and compler CFTs, Phys. Rev. D 101 (2020) 045013
[arXiv:1910.02462] [NSPIRE].

S. Giombi, Higher Spin — CFT Duality, in Theoretical Advanced Study Institute in
Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 137-214, 2017, DOI
[arXiv:1607.02967] [INSPIRE].

S. Balakrishnan, T. Faulkner, Z.U. Khandker and H. Wang, A General Proof of the Quantum
Null Energy Condition, JHEP 09 (2019) 020 [arXiv:1706.09432] [INSPIRE].

S. Giombi and X. Yin, The Higher Spin/Vector Model Duality, J. Phys. A 46 (2013) 214003
[arXiv:1208.4036] [INSPIRE].

M. Fujita, T. Takayanagi and E. Tonni, Aspects of AdS/BCFT, JHEP 11 (2011) 043
[arXiv:1108.5152] [iNSPIRE].

M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in
(3 4+ 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in
(3 4+ 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d),
Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [NSPIRE].

LR. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B
550 (2002) 213 [hep-th/0210114] [INSPIRE].

M.E. Fisher, S.-k. Ma and B.G. Nickel, Critical FExponents for Long-Range Interactions,
Phys. Rev. Lett. 29 (1972) 917 [nSPIRE].

J. Sak, Recursion Relations and Fized Points for Ferromagnets with Long-Range
Interactions, Phys. Rev. B 8 (1973) 281.

J. Sak, Low-temperature renormalization group for ferromagnets with long-range interactions,
Phys. Rev. B 15 (1977) 4344.

J. Honkonen and M. Nalimov, Crossover between field theories with short range and long
range exchange or correlations, J. Phys. A 22 (1989) 751 [INSPIRE].

J. Honkonen, Critical behavior of the long range (¢?)? model in the short range limit, J.
Phys. A 23 (1990) 825 [InSPIRE].

— 50 —


https://doi.org/10.1007/JHEP05(2019)091
https://arxiv.org/abs/1902.09567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09567
https://doi.org/10.1209/0295-5075/4/6/012
https://doi.org/10.1103/PhysRevB.37.5257
https://doi.org/10.1103/PhysRevB.37.5257
https://doi.org/10.1103/PhysRevD.90.025018
https://doi.org/10.1103/PhysRevD.90.025018
https://arxiv.org/abs/1404.1094
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1404.1094
https://doi.org/10.1103/PhysRevD.91.045011
https://arxiv.org/abs/1411.1099
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1411.1099
https://doi.org/10.1103/PhysRevD.101.045013
https://arxiv.org/abs/1910.02462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.02462
https://doi.org/10.1142/9789813149441_0003
https://arxiv.org/abs/1607.02967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.02967
https://doi.org/10.1007/JHEP09(2019)020
https://arxiv.org/abs/1706.09432
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1706.09432
https://doi.org/10.1088/1751-8113/46/21/214003
https://arxiv.org/abs/1208.4036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1208.4036
https://doi.org/10.1007/JHEP11(2011)043
https://arxiv.org/abs/1108.5152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1108.5152
https://doi.org/10.1016/0370-2693(90)91400-6
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB243%2C378%22
https://doi.org/10.1016/0370-2693(92)91457-K
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB285%2C225%22
https://doi.org/10.1016/S0370-2693(03)00872-4
https://arxiv.org/abs/hep-th/0304049
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0304049
https://doi.org/10.1016/S0370-2693(02)02980-5
https://doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0210114
https://doi.org/10.1103/PhysRevLett.29.917
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C29%2C917%22
https://doi.org/10.1103/PhysRevB.8.281
https://doi.org/10.1103/PhysRevB.15.4344
https://doi.org/10.1088/0305-4470/22/6/024
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA22%2C751%22
https://doi.org/10.1088/0305-4470/23/5/024
https://doi.org/10.1088/0305-4470/23/5/024
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA23%2C825%22

[50]

[51]

[52]

[53]

[54]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

E. Luijten and H.W.J. Blote, Boundary between Long-Range and Short-Range Critical
Behavior in Systems with Algebraic Interactions, Phys. Rev. Lett. 89 (2002) 025703.

M. Chiara Angelini, G. Parisi and F. Ricci-Tersenghi, Relations between Short Range and
Long Range Ising models, Phys. Rev. E 89 (2014) 062120 [arXiv:1401.6805].

M.F. Paulos, S. Rychkov, B.C. van Rees and B. Zan, Conformal Invariance in the
Long-Range Ising Model, Nucl. Phys. B 902 (2016) 246 [arXiv:1509.00008] [INSPIRE].

C. Behan, L. Rastelli, S. Rychkov and B. Zan, Long-range critical exponents near the
short-range crossover, Phys. Rev. Lett. 118 (2017) 241601 [arXiv:1703.03430] [INSPIRE].

C. Behan, L. Rastelli, S. Rychkov and B. Zan, A scaling theory for the long-range to
short-range crossover and an infrared duality, J. Phys. A 50 (2017) 354002
[arXiv:1703.05325] [iNSPIRE].

F.J. Dyson, Ezistence of a phase transition in a one-dimensional Ising ferromagnet,

Commun. Math. Phys. 12 (1969) 91 [INSPIRE].

J.M. Kosterlitz, Phase Transitions in Long-Range Ferromagnetic Chains, Phys. Rev. Lett. 37
(1976) 1577 [iINSPIRE].

M. Aizenman, J. Chayes, L. Chayes and C.M. Newman, Discontinuity of the magnetization
in one-dimensional 1/|x — y|? Ising and Potts models, J. Stat. Phys. 50 (1988) 1.

M. Aizenman and R. Ferndndez, Critical exponents for long-range interactions, Lett. Math.
Phys. 16 (1988) 39.

M. Aizenman, H. Duminil-Copin and V. Sidoravicius, Random Currents and Continuity of
Ising Model’s Spontaneous Magnetization, Commun. Math. Phys. 334 (2015) 719
[arXiv:1311.1937].

C. Behan, Bootstrapping the long-range Ising model in three dimensions, J. Phys. A 52
(2019) 075401 [arXiv:1810.07199] [INSPIRE].

V. Prochézka and A. Séderberg, Composite operators near the boundary, JHEP 03 (2020)
114 [arXiv:1912.07505) [INSPIRE].

M. Billo, V. Gongalves, E. Lauria and M. Meineri, Defects in conformal field theory, JHEP
04 (2016) 091 [arXiv:1601.02883] [INSPIRE].

J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in
two-dimensional systems, J. Phys. C 6 (1973) 1181 [INSPIRE].

J.M. Kosterlitz, The Critical properties of the two-dimensional xy model, J. Phys. C'7
(1974) 1046 [INSPIRE].

E. Brézin, J.-C. Le Guillou and J. Zinn-Justin, Perturbation Theory at Large Order. 2. Role
of the Vacuum Instability, Phys. Rev. D 15 (1977) 1558 [INSPIRE].

A.J. Mckane, Vacuum Instability in Scalar Field Theories, Nucl. Phys. B 152 (1979) 166
[INSPIRE].

A.J. McKane and D.J. Wallace, Instanton calculations using dimensional regularization, J.
Phys. A 11 (1978) 2285 [INSPIRE].

A.J. McKane, D.J. Wallace and O.F. de Alcantara Bonfim, Nonperturbative renormalization
using dimensional regularization: applications to the e-expansion, J. Phys. A 17 (1984) 1861
[INSPIRE].

~ 51 —


https://doi.org/10.1103/PhysRevLett.89.025703
https://doi.org/10.1103/PhysRevE.89.062120
https://arxiv.org/abs/1401.6805
https://doi.org/10.1016/j.nuclphysb.2015.10.018
https://arxiv.org/abs/1509.00008
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1509.00008
https://doi.org/10.1103/PhysRevLett.118.241601
https://arxiv.org/abs/1703.03430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.03430
https://doi.org/10.1088/1751-8121/aa8099
https://arxiv.org/abs/1703.05325
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.05325
https://doi.org/10.1007/BF01645907
https://inspirehep.net/search?p=find+J%20%22Commun.Math.Phys.%2C12%2C91%22
https://doi.org/10.1103/PhysRevLett.37.1577
https://doi.org/10.1103/PhysRevLett.37.1577
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C37%2C1577%22
https://doi.org/10.1007/BF00398169
https://doi.org/10.1007/BF00398169
https://doi.org/10.1007/s00220-014-2093-y
https://arxiv.org/abs/1311.1937
https://doi.org/10.1088/1751-8121/aafd1b
https://doi.org/10.1088/1751-8121/aafd1b
https://arxiv.org/abs/1810.07199
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.07199
https://doi.org/10.1007/JHEP03(2020)114
https://doi.org/10.1007/JHEP03(2020)114
https://arxiv.org/abs/1912.07505
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.07505
https://doi.org/10.1007/JHEP04(2016)091
https://doi.org/10.1007/JHEP04(2016)091
https://arxiv.org/abs/1601.02883
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.02883
https://doi.org/10.1088/0022-3719/6/7/010
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CC6%2C1181%22
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CC7%2C1046%22
https://doi.org/10.1103/PhysRevD.15.1558
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD15%2C1558%22
https://doi.org/10.1016/0550-3213(79)90086-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB152%2C166%22
https://doi.org/10.1088/0305-4470/11/11/013
https://doi.org/10.1088/0305-4470/11/11/013
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA11%2C2285%22
https://doi.org/10.1088/0305-4470/17/9/021
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA17%2C1861%22

[69]

[70]

[71]

[72]

73]

[74]

A. Fitzpatrick and J. Kaplan, Unitarity and the Holographic S-matriz, JHEP 10 (2012) 032
[arXiv:1112.4845] [INSPIRE].

F.A. Dolan and H. Osborn, Conformal four point functions and the operator product
expansion, Nucl. Phys. B 599 (2001) 459 [hep-th/0011040] [iINSPIRE].

F.A. Dolan and H. Osborn, Implications of N = 1 superconformal symmetry for chiral fields,
Nucl. Phys. B 593 (2001) 599 [hep-th/0006098] [INSPIRE].

S. Giombi, V. Kirilin and E. Perlmutter, Double-Trace Deformations of Conformal
Correlations, JHEP 02 (2018) 175 [arXiv:1801.01477] [INSPIRE].

M. Hogervorst, Crossing Kernels for Boundary and Crosscap CFTs, arXiv:1703.08159
[INSPIRE].

X. Bekaert, J. Erdmenger, D. Ponomarev and C. Sleight, Quartic AdS Interactions in
Higher-Spin Gravity from Conformal Field Theory, JHEP 11 (2015) 149
[arXiv:1508.04292] [INSPIRE].

S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point
Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].

S.S. Gubser, C. Jepsen, S. Parikh and B. Trundy, O(N) and O(N) and O(N), JHEP 11
(2017) 107 [arXiv:1703.04202] [INSPIRE].

S.S. Gubser, C.B. Jepsen, Z. Ji, B. Trundy and A. Yarom, Non-local non-linear o-models,
JHEP 09 (2019) 005 [arXiv:1906.10281] [iNSPIRE].

E. Luijten, Interaction range, universality and the upper critical dimension, Ph.D. Thesis,
Technische Universiteit Delft, Delft The Netherlands (1997).

~52 -


https://doi.org/10.1007/JHEP10(2012)032
https://arxiv.org/abs/1112.4845
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1112.4845
https://doi.org/10.1016/S0550-3213(01)00013-X
https://arxiv.org/abs/hep-th/0011040
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0011040
https://doi.org/10.1016/S0550-3213(00)00553-8
https://arxiv.org/abs/hep-th/0006098
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0006098
https://doi.org/10.1007/JHEP02(2018)175
https://arxiv.org/abs/1801.01477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1801.01477
https://arxiv.org/abs/1703.08159
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.08159
https://doi.org/10.1007/JHEP11(2015)149
https://arxiv.org/abs/1508.04292
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.04292
https://doi.org/10.1007/JHEP09(2010)115
https://arxiv.org/abs/0912.3462
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.3462
https://doi.org/10.1007/JHEP11(2017)107
https://doi.org/10.1007/JHEP11(2017)107
https://arxiv.org/abs/1703.04202
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1703.04202
https://doi.org/10.1007/JHEP09(2019)005
https://arxiv.org/abs/1906.10281
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.10281

	Introduction and summary
	Free fields with boundary interactions: some general remarks
	Displacement operator and its higher spin cousins

	O(N) BCFT in 1=d=4
	phi4 theory in d=2-epsilon
	Large N description for general d
	Non-linear sigma model in d=1+epsilon
	Mixed sigma phi theory in d=4-epsilon
	Boundary instanton


	Higher-spin displacement operators
	phi4 theory in d=2-epsilon
	Decomposition of boundary four-point function
	Decomposition of bulk two point function
	Direct computation

	Large N expansion

	Long range O(N) models
	Quartic interaction
	Large N description
	Non-local non-linear sigma model
	Some Padé estimates for the d=1 long range O(N) model

	Other examples of BCFT with free fields in the bulk
	Scalar Yukawa like interaction in d=5-epsilon boundary dimensions
	N+1 free scalars interacting on d=3-epsilon boundary dimensions
	Mixed dimensional QED in d=5 boundary dimensions

	Some useful integrals

