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ABSTRACT: Surface operators in the 6d (2,0) theory at large N have a holographic de-
scription in terms of M2 branes probing the AdS7; x S* M-theory background. The most
symmetric, 1/2-BPS, operator is defined over a planar or spherical surface, and it pre-
serves a 2d superconformal group. This includes, in particular, an SO(2,2) subgroup of
2d conformal transformations, so that the surface operator may be viewed as a conformal
defect in the 6d theory. The dual M2 brane has an AdSs3 induced geometry, reflecting
the 2d conformal symmetry. Here we use the holographic description to extract the defect
CFT data associated to the surface operator. The spectrum of transverse fluctuations of
the M2 brane is found to be in one-to-one correspondence with a protected multiplet of
operator insertions on the surface, which includes the displacement operator. We com-
pute the one-loop determinants of fluctuations of the M2 brane, and extract the conformal
anomaly coefficient of the spherical surface to order N°. We also briefly discuss the RG
flow from the non-supersymmetric to the 1/2-BPS defect operator, and its consistency with
a “b-theorem” for the defect CFT. Starting with the M2 brane action, we then use AdSs
Witten diagrams to compute the 4-point functions of the elementary bosonic insertions on
the surface operator, and extract some of the defect CFT data from the OPE. The 4-point
function is shown to satisfy superconformal Ward identities, and we discuss a related sub-
sector of “twisted” scalar insertions, whose correlation functions are constrained by the
residual superconformal symmetry.
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1 Introduction and summary

Non-local operators are an important class of observables in conformal field theories in
various dimensions. When they are defined over planar or spherical submanifolds, they
may preserve a subgroup of the conformal symmetry of the “bulk” CFT, and are often
referred to as conformal defects. Using the AdS/CFT duality, one may develop a strong-
coupling perturbation theory approach to the computation of their expectation values and
correlation functions of local operators inserted on them. The most familiar example is
that of a fundamental string ending along a curve on the boundary of AdSs within type I1B
string theory, dual to the Wilson loop operator in ' = 4 SYM theory [1]. When the curve is
a circle or infinite straight line, the Wilson loop is 1/2-BPS and it preserves a 1d conformal
symmetry,! corresponding to a string worldsheet with AdSy induced geometry [2]. The
strong coupling expansion for the expectation value of the Wilson line and correlation

!The full symmetry group is OSp(4*|4) D SL(2,R) x SO(3) x SO(5).



functions of operators inserted along it is then controlled by the fluctuations [3] of the
fundamental superstring near the static configuration (see, e.g., [4, 5] and refs. therein).

One can generalize this to other branes in different AdS background ending along
different dimensional submanifolds on the boundary (for example, D3-brane and D5-branes
probes in AdSs describing line operators, surfaces and domain walls, see, e.g., [6, 7]). In
the most symmetric cases these branes have the world-volume metric of AdS,1 x S* with
appropriate p and k.

In this paper we study the simplest such example within M-theory: an M2-brane probe
ending along a surface on the boundary of AdS7. The most symmetric configuration, which
preserves half the supersymmetries of the bulk theory, is when the 3d world-volume of the
M2-brane ends on a plane (or sphere) at the boundary. As the M-theory in the AdS7 x
S* vacuum is a dual description of the (2,0) conformal theory, this configuration should
be representing a supersymmetric surface defect operator in this 6d CFT (for a recent
discussion and refs. see [8]). Our aim is to study this system beyond the classical brane
limit by calculating its one loop fluctuation determinant and performing the holographic
computation of 4-point correlators of the simplest local insertions into the surface operator.
This is the direct analog of the calculation of insertions into the Wilson loops, captured by
string fluctuations [5].

Let us recall the case of insertions into Wilson loops in N/ = 4 SYM. The 1/2-BPS
Maldacena-Wilson line along the 2! direction and coupling to the scalar ®g is W =
Ty Pel d2'(iA1+%6) - We can insert any adjoint valued operators into the loop, the most
natural being the remaining five scalars ®, and the combination of field strength and
scalar D; = Fy; = iFy; + D;$g. The latter, known as the displacement operator, represents
small geometric deformations of the line. In the defect CFT (dCFT), the scalars ®, have
dimension one and the displacement dimension two. This translates in AdS to fluctuation
modes of the AdSs worldsheet with m? = 0 and m? = 2. Their 4-point functions were
studied in [5] by expanding the string action to quartic order and performing AdS, Witten-
diagram calculations on the worldsheet. This allowed to deduce the spectrum of some of
the operators appearing in their OPE, providing further details on the strong coupling Wil-
son loop dCFT. For instance, the scaling dimension of the singlet scalar insertion which is
dual in AdS; to a two-particle “bound state” of string fluctuations along S® was found to
be A=2-— % + .... Recently, this result was confirmed by integrability techniques in [9],
which also obtained several more orders in the strong coupling expansion.

For the case at hand, the (2,0) supersymmetric 6d CFT describing multiple M5-branes
may be thought of as a SU(IN) generalization of a free (2,0) tensor multiplet containing
the By,,-field with self-dual strength H,,,;, 5 real scalars &' and 4 symplectic Majorana
fermions. In this abelian theory the locally-supersymmetric surface operator analogous to



the Wilson loop operator of [1] may be defined as [8, 10]?

V = exp </d25[i %fwaﬂXma”Xn Bun(X) + \/m%(X)D 1.1
—>exp</d2f[i312(X)+‘p5(X)]>’ h

where @5 is one of the 5 scalars of the (2,0) tensor multiplet, X (x) are the 6d coordinates
describing the surface and we specified to the case when the defect is a plane in the (1,2)
directions.® The surface operator breaks the OSp(8*|4) supersymmetry of the 6d theory to
[OSp(4*|2)]? with the bosonic subgroup SO(2,2) x SO(4) x SO(4) = [SO(2,1) x SU(2) x
SU(2)]2. Here SO(2,2) corresponds to the 2d conformal symmetry, one SO(4) to rotations
in the transverse directions to the surface, and the second SO(4) C SO(5) is the remaining
R-symmetry that rotates the four scalars that do not couple to the operator. As natural
in defect CFT, one can consider correlation functions of operators inserted on the defect
surface: the basic short multiplet includes four transverse scalars ®, (a = 1,--- ,4) with
dimension A = 2, four displacement operators* D; = Hyo; = iHio; + 0;®5 (i = 1,--- ,4)
with A = 3 and eight fermions with A =5/2.

In the dual description this 1/2-BPS surface operator is represented by a probe M2-
brane with worldvolume ending on a plane at the R® boundary, stretched along z of
AdS7 and localized at a point in S*. The M2-brane probe is described by a k-symmetric
generalization of the Dirac-Nambu action (see, e.g., [14, 15]). The induced 3-geometry in
the static gauge is then AdSs and as in [3, 16] one finds that the transverse fluctuations
of the M2-brane surface are represented by: 4 scalars y® (S* fluctuations) with m? = 0,
4 scalars x* (AdS; fluctuations transverse to the 3-surface) with m? = 3 and 8 fermions
with m? = % The correlators of these “transverse” membrane fluctuations (and more gen-
erally their composites) should then define a 2d dCFT associated to the surface defect. Via
AdS3/CFT; correspondence the dual boundary operators should have dimensions A = 2,3
and % matching those of the scalars, displacement operator and fermions on the defect.®

Below we compute the correlators of the bosonic fluctuations X7 = (x?,5?) as defined
by the M2-brane action in the inverse effective membrane tension Ty = a®T = %N expan-
sion (a is the radius of AdS7). They should define the large N limit of the corresponding
6d correlators of the operators O; = (Hja;, ®,) inserted on the planar (7 = (!, ?)) defect

(O@F1) - O(Fn)) = (X (1) -~ X(Zn (1.2)

)>AdS3 ’

2The introduction of a surface operator with coupling to B-field [1, 2, 11] is natural by analogy with
strings ending on D3-branes case, i.e. in the picture where the dynamics of M5-branes is described in terms
of M2-branes [12] ending on strings coupled to B-field.

3Due to conformal invariance one can consider the defect with either planar or spherical (52) geometry.

4The displacement operator describes transverse deformations of the defect (see for instance [13] for a
general discussion). For a defect with co-dimension 6 — p, the displacement operator D! may be defined via
D" = 6P (2 )D* where T is the “bulk” stress tensor (the stress tensor of the 6d CFT), with A = 6.
For the surface defect (p = 2) the dimension of the displacement D(i = 1,--- ,4) is then A = 3. In general,
for CFT, with a co-dimension d — p defect, A(D?) = p + 1.

°In general, in AdS,;1/CFT, case we have A(A—p) = m? for scalars and A = m+p/2 for the fermions.
In the string (Wilson loop) case p = 1, while here p = 2.



A novel feature of the present M2-brane in AdS; xS% case compared to the string in
AdS;5 x S° case in [5] is the presence of the WZ term in the action that contributes non-
trivially to the 4-point correlator of the scalars y*. This term ~ To f 4 eABCDEY  dYsNdYo N
dYpNdYg — % [ d3z "X eabed Y* Mybﬁyycﬁ,\yd+0(y5) originates from the coupling of the
M2-brane to the potential C3 of the magnetic 4-form flux of the AdS7 x S* background [17].5
Being intimately related to the underlying supersymmetry, the contribution of this term
is important for the resulting 4-point function satisfying the constraints imposed by the
residual superconformal symmetry. In contrast to the Wilson loop in N' = 4 SYM case
where one can also directly compute a weak-coupling limit of the corresponding correlators
on the gauge theory side, it is not clear how to do this in the (2,0) 6d theory that currently
lacks an intrinsic definition.” It would be interesting to make contact with the results of
this paper by bootstrap methods, as was done in [20] for the case of the Wilson line dCFT.®

The contents of this paper are as follows. Owur starting point in section 2 is the
expansion of the M2-brane action in AdS7; x S* near the minimal 3-surface ending on a
2-plane or a 2-sphere at the boundary (and localized at a point in S*). The value of the
classical M2-brane action on this surface is proportional to the volume of AdS3 . In the case
of spherical boundary, the volume of AdSjs is logarithmically divergent with the IR cutoff
R. This is in contrast to the string in the AdS5 case, where the classical value of the string
action proportional to the volume of AdS; is finite (after subtraction), and matches the
strong-coupling limit of the expectation value of the circular Wilson loop. Here instead the
coefficient of log R term may be interpreted as one of the conformal anomaly coefficients
in the defect CFT.?

In section 3 we compute the 1-loop correction to the logarithm of the partition function
of the M2-brane ending on a spherical surface. This gives a correction of order N° to the
leading result coming from the classical action of the surface, which is of order Ty = %N . In
a choice of normalization that will be explained below, we find for the anomaly coefficient
of the spherical surface b = 12N — 9+ O(N~1). These first two terms match the prediction
b= 3(N —1)(4 + N~1) following from [27, 28]. In section 3.2 we also comment on the
holographic description of the non-supersymmetric surface defect operator which does not
couple to the scalar fields, following the analogy with the standard Wilson loop case in [29-
32]. In this case the M2-brane surface should be delocalized in S%, i.e. the scalars y®
should satisfy the Neumann boundary condition. Adding a boundary perturbation to
the M2-brane action leads to a 2d RG flow between the UV (non-supersymmetric) and IR

A similar term is present, e.g., in the D3-brane probe action in AdSs x S® [18].

"One can still mimic such computation by starting with the abelian 6d tensor multiplet theory and
consider correlators of the fields with the defect (1.1). In particular, ref. [19] computed the 2-point function
of the displacement operator by considering the second order in the “wavy surface” approximation. Its
form (D*(&)D? (&) ~ ﬁ is dictated by the associated dimension A = 3.

8 Among possible generalizations one may consider a BPS configuration of a M5 brane probe intersecting
M5 branes over a line and wrapped on S* C S* so that the resulting M5 brane world volume geometry
is AdSs x S* (cf. [21-25]). This should correspond to the case when the surface defect is in a large
representation of SU(N).

9Similar logarithmic UV divergence appears in the log of expectation value of the surface operator (1.1)
in the abelian (2,0) theory [8, 10]. For the dual M2-probe discussion see also [26].



(supersymmetric) fixed points with the resulting values of the boundary conformal anomaly
coefficients consistent with the b-theorem for 2d defects [33-35].

In section 4 we compute the 4-point correlation functions for the scalar fluctuations
y® and x’ near the BPS surface, in the leading tree-level approximation. We find the
expressions following from the Dirac-Nambu part of the action for the general dimension p
of the brane, with the p = 1 case reproducing the string-theory results of [5]. We observe
that the (yyyy) 4-point function satisfies simple superconformal Ward identities that, as
turns out, essentially determine its form. We also discuss the Mellin representation for the
resulting AdSs correlators. In section 4.3 we perform an OPE analysis of the correlator
(yyyy) extracting the leading 1/N terms in the anomalous dimensions of composite yd™y
operators appearing in different channels.

In section 5 we discuss constraints on correlators imposed by a residual superconformal
symmetry. In section 5.1 we follow the analogy with the SYM case [36] and consider a
special twisted combination Y = t*(&) y*(Z) of scalar operator y* whose correlators are
constrained by residual supersymmetry. The 4-point correlator of the twisted fields has a
very simple form given in section 5.2 and surprisingly has a very similar structure to that
of the strong-coupling limit of the reduced correlator of 1/2-BPS scalar operators in the
N =4 SYM theory. In section 5.3 we show that the form of the (yyyy) correlator found
in section 4.1 is essentially constrained by the superconformal symmetry and crossing up
to an overall constant factor. A similar observation in the case of the scalar correlators on
the BPS Wilson loop in N'=4 SYM is made in appendix B.

2 Membrane action in AdS;x S*

We are interested in studying the fluctuations of an M2-brane in the AdS7 x S* background
which is the near horizon geometry of N M5-branes

1
ds® = a® [dszAdS7 + r2dsi4} , ad = 87TN€§;, r=3, (2.1)
8 2
Fy = n%a3Qy, / Q=1, vol(S%) = —. (2.2)
S4

Here a is the radius of AdS7, and ds, as and ds_, are the line elements on unit radius
AdS7 and S*. € in (2.2) denotes the normalized volume form of S%, ¢, is defined via
2k7; = (2m)%¢) and Fy = dC3. We use Euclidean signature throughout.

The (bosonic part of) the k-symmetric action of an M2-brane probe [14] contains two
terms: the standard Dirac-Nambu type term S; (the volume of the 3-surface in induced
metric) and a WZ-type term Sy of coupling to the 3-form Cj

S =5+ : Si =T | d&x\/dethy,  hu=0,X"0,X"Gun(X) (2.3)
1
Sy = —iTy / Bz 5eWCMNK(X) 0, XMa, XN, x* | (2.4)
where the fundamental M2-brane tension 75 is
1
_ 2/3(6,.2 \—1/3 _
Ty = (2m)*(2k3,) 7P = R (2.5)



The world-volume on an M2 brane ending on the plane (or sphere) at the 6-boundary of
AdS; has the classical solution with AdSs; induced metric.! In the case of the planar
surface, this AdSs subspace is spanned by the plane and the z coordinate in (2.1).

The effective membrane tension (i.e. the analog of the familiar fundamental string
2

tension Ty = %5 = % in the AdSs x S° case) is then given by the product of the

2T

fundamental M2-brane tension T3 and the cube of the AdS radius, i.e. (see, e.g., [38, 39])!!

2
Ty =a®Th = =N. (2.6)
s

We proceed now to expand the probe brane action about this classical solution. For
generality, let us consider a p-brane in AdS;11 with world volume ending along a p-plane at
the boundary and also stretched along z of AdS;;. Following [5] where the case of p =1
and d = 4 was discussed, let us choose the following “AdS,i-adapted” parametrization of
AdSg41 (with radius 1)

+ l}(2)2 dx'dx’ 1
2 1 2 2 2
d8d+1 = mdslﬂ'l + m 5 d5p+1 = ?(dz + ddeXv) s (27)
where the indices of the boundary coordinates of AdS441 are split into v = 1,--- ,p and
i =1,---,d— p. The minimal surface ending on a p-plane at the boundary is
. 1
x'=2a", z=z, x'=0, dszﬂ = 2—2((122 +da'dz?) = gy (x)datdx”, (2.8)

so that the corresponding induced metric is AdS, 1. Choosing a static gauge in the p-brane
action in AdSz41 X S™ we get for the Sy part of its action in (2.3)

(14 1x2)2 0,x19,x’ 0,,y?0,y®
S APy [det 4 Y i pa v ]ET/dP“ L,
= \/ T SRR T el
(2.9)

where y® are coordinates of S™ and r is its radius in units of the radius of AdS,41 (which
is absorbed into the dimensionless effective tension T)).

10The existence of such static M2 brane solution is related to the fact that M2 brane intersecting with a
stack of M5 branes over a plane is a 1/2-BPS configuration. This can be easily seen, e.g., from the absence

of force on a static M2 brane in this case [37] (C3 here is purely magnetic).
"'In the notation of [38, 39] 2ml3 = £3,.



Expanding (2.9) in powers of the fluctuations x* and y* we get
L = Lo+ Lax + Loxoy + Lay + ...,
1 S o 1
Ly = 3 (9" 0,x"0,x" + (p+ 1) x'x"] + ig“"(%yaayy“ , (2.10)
1 S 1 L S
Ly = é(g‘wﬁuxlayxl)2 — Z(g’waﬂx’@y){]) (97" 0px" 0x?)
1 .. | S
+ przxZ g0, x? 0y x? + g(p + 1)%xx? xIx7 | (2.11)

1 S 1 . ,
Lox 2y = Z(QW%X’ Lx") (g7 0py  Oky®) — 5(9“”8MX’ Ly*) (9°70,x" Oky®)

1 ..
+ (0= Dx'x" g" 0y uy” (2.12)
1 1
Lay = = 59"y" 6" 0uy" Oy + 2 (9" 0" 0y”)?
1
= (6" 0" 0,") (9" 0py " Oxy") - (2.13)

The string in AdSs x S® case considered in [5] corresponds top =1, d=4, n=5, r =1
while in the present M2-brane in AdS7 x S* case we have p =2, d =6, n =4, r = % In
the latter case we get 4 transverse AdS7 fluctuation fields x* having m? = 3 and 4 massless
S4 fields y® propagating in induced AdS3 geometry. One may also include the fermionic
terms coming from the corresponding AdS7 x S* supermembrane action as discussed in [16]
getting (after fixing k-symmetry gauge) eight 3d fermions with m = 3/2.

To find the explicit expression for the WZ term (2.4) in the M2-brane action let us
note that the normalized volume form 4 of a unit-radius S* in (2.2) may be expressed in
terms of a unit 5-vector Y4 as'?

QO eapcppY Y AAYC AdYP AdY YAYA=1, A=1,---,5. (2.14)

1
6472
Using the expression (2.6) for the effective M2-brane tension the WZ term in (2.4) takes
the form
N
Sy = —iTy / Cy = —iTy / Fy = _?iT d*z eapopp M YA9,YP0,YC0,YPo, Y.
™
(2.15)
Like in the case of a similar WZ term in the D3-brane case [18] a manifestly SO(5) invariant
form of the WZ term is non-local — given by an integral over a 4-surface that has the world-
volume as its boundary. The normalization of (2.15) is checked by observing that if the
4-surface is S the integral in (2.15) becomes —27iN, i.e. e™52 = 1.13

dt1
ear1Y (AdY)?, vol(S?%) = I%?Lfl) Qq appears in
2
the expression for the Hopf index of the map S¢ — S¢. The associated topological current is J» =
me/\”l"'“deABr”BdYAﬁmYBl .. -QMYBd7 fsd JO = N=integer.
13Being topological this WZ term should not be renormalized and should be derivable as in [18, 40, 41]
from the 1-loop fermionic determinant in the dual 6d theory in the presence of a defect represented by the

"?In general, one has [, Qa = 1, Q4 = m

surface operator.



Setting

5 1_4%92 1y Ay A
yr= I Vo=t vAyA =1, (2.16)
1+ 32y 1+ 42y

where we rescaled y* by r to conform with (2.9), we find that the expansion of (2.15) in

powers of y¢ starts with the y* term (as r = % we have 3271? = 27)

iN

Sy —
2 2

& " eanea y 9y 0uy Ory? + O(y°) . (2.17)
The explicit normalization of the kinetic term for y® in (2.9) is (using (2.6))

N
=2 / B /G 9" 0y Dy + ... | (2.18)

3 One-loop partition function: defect conformal anomaly

In this section we calculate the fluctuation determinants about the AdS3 classical M2-brane
solution. The more complicated problem of deriving the 1-loop quadratic fluctuation for 2
parallel planes was discussed in [16]. The fluctuation spectrum presented in the preceding
section indeed matches their spectrum in the limit of large separation. The discussion is
parallel to the one in the string case in [3, 42].

To recall, our spectrum has 4 bosons with m? = 3 plus 4 bosons with m = 0 and 8
fermions with m = 3/2.'* The resulting partition function Z is then given by

Fi loop = —log Z = é[ll log det(—V? + 3) + 4log det(—V?) — 8log det Ayl (3.1)
To evaluate the determinants we may follow the approach used in the AdSs x S° string
case in [3, 43], i.e. use the results for heat kernels of operators in AdS space from [44].

Cubic UV divergence cancels out due to the equal number of bosons and fermions.
The linear divergences of log det(—V? + X) in 3d is proportional to by = tr(%R(‘?) — X) so
here botor = —6 = R®) and thus, as in string case, is proportional to the Euler number
(assuming boundary terms are taken into account, cf. footnote 30 in [3]). In any case, such
divergences are absent in an analytic regularization like {-function one and may be ignored.

The meaningful part of (3.1) is its logarithmically divergent piece, where we can rely
on the results in section 3 of [45] (see also [46]), which studied the determinant of higher

4The bosonic and fermionic operator are essentially universal for the straight line or two parallel line
configurations: what changes is just the induced geometry. The same was in the case of a string in AdSs x S°:
there one had [3, 42]: 2 bosons with m? = 2/a?; 1 boson with m? = 4/a® + R®: 5 massless S° bosons; 8
fermions with m = 1/a or squared operator —V? -+ iR@) +1/a”. In the straight-line or circular line surface
the induced geometry was AdS2 so R® = —2/a2. It is remarkable that the structure of the partition
function in the string and M2 cases is very similar. This has to do, in particular, with the universal form
of the Nambu-type term in the p-brane action and also the fact that in a natural k-symmetry gauge the
fermionic kinetic term comes from the supergravity covariant derivative projected to the world volume that
contains the F-flux term that gets contribution from the sphere magnetic part that is not sensitive to the
details of surface in the AdS space.



spin theory on AdS3. For a scalar of mass m (A(A —2) = m?), the contribution to F is!®

1
127

(A)

Foo = %logdet(—vz +m?) = ———(A — 1)’ vol(AdS3) . (3:2)

For spin 1/2 fermion with A = p/2 +m =1+ m we get

@) _ 1 o2 1 2\ _ _ 1AL oy X
Fis = 5 logdet< V©+ 4R+m ) = 127r(A 1)|AA—-2)+ 1 vol(AdS3). (3.3)
Introducing R as the AdS3 IR cutoff regularizing the AdSs volume (e.g. the radius of the

boundary S?) we have (for the unit-radius AdSz)!®

vol(AdS3) = —27wlogR. (3.4)
As a result, we get for (3.1)
F1toop = 4F§> ) + 4R~ — 8F{07? = 3log R, (3.5)

3.1 Interpretation of the result

Equation (3.5) is the 1-loop correction to the tree level contribution given by the value of
the M2-brane action which is just the M2-brane tension (2.6) times the regularized volume
of the induced AdSs metric (cf. [2])

Firee = Tovol(AdS3) = —27Ty log R . (3.6)

The coefficient of log R in equation (3.6) and in (3.5) has the interpretation of a conformal
anomaly coefficient in the defect CFT. Surface operators have three anomaly coefficients,!”
each multiplying a particular conformally invariant integral on the surface related to its
topology, extrinsic curvature and background Weyl tensor (see [49] for details). Since our
calculation is focused on the single surface geometry of the sphere (the plane has trivial
anomaly), our result captures one particular combination of the anomaly coefficients which
we denote as b. Thus F can be expressed as

1
Fz—gblogR, b=—-3(-2rT2+3)+...=12N -9+ ..., (3.7)

where dots stand for possible higher-loop 1/Ts ~ 1/N terms.

The leading order at large N of the other two anomaly coefficients were calculated
holographically by Graham and Witten [50] by considering M2-branes ending on arbitrary
surfaces. They can also be inferred in other ways: the coefficient related to extrinsic

15The general formulas for the AdS441 spectral density for bosonic totally symmetric rank-s and fermionic
in the [s,1/2,--1/2] representation in general boundary dimension d (see [44]) are presented in [46] (see
egs. (3.20) and (3.22)). For d = 2, they happen to coincide as a function of s.

%Tn general, the regularized volume of global AdS,1 space with SP as its boundary for even p is,

discarding power-law divergences (see, e.g., [47]): vol(AdSp+1) = 21“((71"7)1;/2 logR.
+32

17 A fourth can be defined for nontrivial coupling to the scalar fields, see [8]. By adjusting the scalar cou-
pling, the total anomaly of some BPS surface operators, different from the sphere studied here, vanishes [48].



curvature is proportional to the normalization of the displacement operator, as mentioned
in section 4 below eq. (4.6). The remaining one was conjectured to also be fixed by the same
normalization constant in theories with enough supersymmetry [51] (based on [52, 53]) as
is indeed verified in [54].

Going back to our expression for the coefficient b in (3.7), we observe that it happens
to be consistent with the result for the corresponding anomaly coefficient found in [27, 28]
from the entanglement entropy for the “bubbling” M5-M2 geometry with M2-branes cor-
responding to a 1/2-BPS surface defect operator in (2,0) theory in a su(N) representation
with the Young tableau with a large number of boxes.'® In the notation of [27] we have

b=24(p,\) +3(\,\), (3.8)

where p is the Weyl vector of su(/N) and A is the highest weight of a particular su(N)
representation. If we formally assume that this expression should be valid not just for large
representations but also for the ones with finite number of boxes then in the present case of
a single M2-brane corresponding to the surface operator in the fundamental representation
one finds (p, A) = X2, (A, A) = &=L and thus

b=3(N-1)4+NH=12N-9-3N"1. (3.9)

Remarkably, this is in agreement with (3.7) and suggests that the perturbative expansion
in (3.7) may terminate after the 2-loop % term.'® It would be very interesting to compute
this term directly from the 2-loop supermembrane Witten diagrams in AdSs.°

3.2 Non-supersymmetric surface defect and 2d RG flow

The above discussion applied to the case of the dual description of the 1/2-BPS surface
operator which (at least in the abelian case) should be represented by an analog of the
Wilson-Maldacena exponent (1.1) with one of the 5 scalars of the (2,0) tensor multiplet
coupled to the induced metric as in [8, 10]. This breaks SO(5) R-symmetry to SO(4) and
corresponds, in the M2-theory in AdS7 x S%, to an expansion near a point of §* with 4 §*
massless scalars subject to the Dirichlet boundary condition in AdSs.

By analogy with the Wilson loop case [29-32] we may also consider the dual descrip-
tion of non-supersymmetric surface operator without scalar coupling [11] preserving SO(5)
symmetry. In this case the classical M2-brane minimal surface is the same AdSs but one
is to impose the Neumann boundary condition on S* fluctuations (and average over an
expansion point in the sphere) to preserve the SO(5) symmetry.

'8 An exact expression for another anomaly coefficient is derived in [55] from the computation of the
associated superconformal index.

19T one assumes that the series in (3.7) terminates at 1/N order then the coefficient of this term can be
of course fixed by requiring that the full expression should vanish for N = 1.

20For comparison, let us recall the expressions for the conformal anomaly coefficients of the “bulk” theory
— the (2,0) theory describing N coincident M5 branes (see, e.g., [56] for a review): a = — 1 (16N® —

IN-T7) = —50c (N-1)[(2N+1)*+3], c = —505 AN’ —3N—1) = — 5 (N—1)(2N +1)°. The leading N*
terms follow [57] from the classical supergravity action, the order N terms originate from the R* corrections
in 11d action [39] and order N° terms are from the 1-loop 11d supergravity corrections [58, 59]. The exact

expressions follow also from non-perturbative approaches based on supersymmetry constraints [60, 61].
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As in the case of the surface for the circular Wilson loop in AdSs x S® the 1-loop con-
tributions of the 4 massive AdS7 scalars and 8 fermions in (3.1) remain the same as in (3.5)
while to find the contribution of the 4 massless S* fluctuations with alternative b.c. (i.e.
with A = A_ =0+ O(%)) we may use, e.g., the relation [47, 62, 63] between the AdS;
bulk field and S boundary conformal field partition functions: Z (A*)/Z (A+) = Z . n¢. For

a scalar in AdSz41 one has Ay = % +v, v= \/‘1—2 + m?2 so that the boundary conformal
(source) field with canonical dimension A_ = d— A has the kinetic term [ d%x o(—V?)"¢.

In the present case d = 2, Ay =2, A_ =0, v = 1 so that the induced boundary
CFT, has the standard kinetic operator —V? on S2, i.e. the difference of the scalar free
energies is

1 1
F(()A—) _ F(()A+) — 3 log det’(—VQ) _ _g logR—+.... (3.10)

where R plays the role of a UV cutoff in 2d. The positivity of the difference is in agreement
with the expected “defect b-theorem” [33, 34], viewing, by analogy with the circular Wilson
loop case [30, 31], the non-BPS surface operator as the UV limit deformed by the relevant
operator Y5 ~ ®5 to flow to the BPS surface operator, i.e. b, — b = +1 > 0.

As a result, taking into account the multiplicity 4 of S* scalars in (3.1), we conclude
that in the non-supersymmetric (non-BPS) defect case we should get instead of the b = bgysy
in (3.7)%

bnon—susy = bsusy +4 =12N —5+ ... . (3.11)

One may attempt to understand the RG flow between the non-supersymmetric and su-
persymmetric cases by using the same approach as in the string theory description of the
circular Wilson loop [30, 31]. Starting with the (super)membrane action?? (2.3), (2.4) one
may perturb it by a 2d boundary term (here we concentrate only on the S* fluctuations,
see (2.16), (2.18))

1 —
S1 = 2T2/d333 (V99" 0y Ouy® +...) — ’@T2/d2x V92 Vs,

(3.12)
Vs=\1-YYo=1-2yaa+....
Here /g, = Z% .0 and r is a new coupling which will run between the UV and IR fixed

points (see section 4.2 in [31] for details). kY5 term should correspond to a similar scalar
®5 term in the exponent in the surface operator (cf. (1.1)) with coefficient running between
0 and 1. The variation of (3.12) implies that y* should satisfy the massless wave equation
in AdS3 with the metric ds? = Z%(dz2 + dZdZ) subject to the Robin boundary condition
(Op =nt0y, n* =(-2,0,0))

(3n - 4&) y®

=0, Oy = —20, . (3.13)

z—0

21Compared to the non-supersymmetric circular Wilson loop case in [31] here the S* zero mode contri-
bution ~ 4log N appears only in the finite part of F', i.e. is not relevant for the 1-loop conformal anomaly.

220ne may expect that the standard first-derivative supermembrane action in AdS7 x S* is not renor-
malized (i.e. tension is not renormalized): it contains fermionic and bosonic WZ terms that can not be
renormalized, and they are related by k-symmetry to the rest of the terms (this is analogous, e.g., to
non-renormalization of 11d supergravity action). Loop corrections may induce higher-derivative terms but
presumably they should not be relevant for the discussion below.
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The parameter 0 < xk < oo thus interpolates between the Neumann (x = 0) and Dirichlet
(k — o00) boundary conditions corresponding to y* = z2-v® + O(22) = v* 4+ O(2?) and
Yo = 28t u® + O(2%) = 22 u® + O(2?) respectively. s will be running with UV scale A of
the 3d theory. Integrating y® out we get at leading 1-loop order the following boundary
divergence (ignoring power divergent terms)

1 2
Il =4 x §logdet(—v2) = —4AzlogA+ ..., As= /d2fw/92 A4, (3.14)
00 ™

where Ajs is the relevant Seeley coefficient (see, e.g., eq. (5.32) in [64] where the Robin
parameter S is equal to 4k here). Adding (3.14) to the bare action (3.12) and taking into
account that s has canonical dimension 2 we conclude that the renormalized x should run
according to (cf. [31])

d 8 4
A P B I P (3.15)

Br = /‘@ 7T N

Here we used (2.6). As a result, we get the UV fixed point at k = 0 and also a possible
IR fixed point at kK = —%N . Assuming the latter can be trusted in the large N expansion
it should represent the Dirichlet limit of the Robin b.c. (3.13). Since the derivative of the
B-function gives anomalous dimension at a fixed point the total dimension (2 + ') of the
perturbing operator Y5 =1 — 2y%y® + ... in (3.12) is then

Kyy =0 AUV:2—2+(’)<;]>:O<;]>;

1 1 1

Since y® corresponds to A = 2, the value of Ay =4 + ... is consistent with the leading-

(3.16)

order dimension of the composite y®y® operator. To go beyond the leading order one would
need to include higher order terms in the 3d action (2.13).

4 Defect 4-point correlation functions at large IN from M2-brane action

Here we follow the same strategy as in the case of the correlators on the BPS Wilson line
in [5] and compute the tree-level (large N) 4-point functions of the bosonic fields X! =
(x*,y®) (representing the displacement operator and the 4 scalars other than the one coupled
to the surface operator in the 6d theory) directly from the M2-brane action (2.9)-(2.13).

Let us first discuss the normalization of the two-point functions. Given a scalar action
T

So= / P [0 X0,X +mPX?), (4.1)

in AdS,1 with the metric ds? = Z%(d%—kdfdf) (cf. (2.8)) the bulk-to-boundary propagator

will be normalized as in [65] (here z = (2, %)), i.e.3
A
Ggolz, &) = Ca [22 T = f,)g] ) Ca = 77T%F(A py m*=A(A—-p). (4.2)

r(a)

*3Note that in [5, 32] a different normalization was used: Ca — CaA = —p—20 .
272 0(A—B41)
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and the two-point function of the corresponding boundary operator O(Z) will be defined as

Cx

(O(@1) O(72) ) = (X (31) X(Z2)) = R

Cx =T, (2A —p)Ca. (4.3)
|12

2

In the case of the scalars x’ and y® in (2.10) with masses m2 = p + 1 and m? = 0 corre-

sponding to Ay = p+ 1 and A, = p respectively we thus find

i Cy 2
(x (xl)xj( )>_5]‘x12|2p+27 Cx_2(1+p> Cy,
4.4)
e C D(p+1) (
a b ab Y
=" — , C,=T,—/———.
(y*(71) y'(%2)) |.,L.12’2p Yy P ﬂgF(g)

In particular, in the case of the string in AdS5 x S5 (T = ‘[) we find Cx = 6C,, Cy = VA

272
(in agreement with direct identification of x* with displacement operator and y* with “trans-
verse” scalars and strong-coupling limit of exact prediction in [66, 67]). In the present case

of p=2, Ty = % we find?*

16N 4N
? = 4Cy7 Cy = —

Cx = (4.5)
Since the x’ fluctuations are dual to the displacement operator D, from the above results
we can read off the normalization Cp of the D? two-point function on the surface defect in
the (2,0) theory
o Cp 16N
(D*(z1)D(72) ) = 69 =~ Cp=—5 +O(N"). (4.6)
T7o 2

The normalization constant Cp also determines the anomaly coefficient associated to ex-
trinsic curvature of the surface [68].

4.1 The (yyyy) correlator

Let us first compute the 4-point boundary correlator of the four S* fluctuations

G(Z5,t:) = (y(Z1; t1) y(T2; t2) y(235 t3) Y (T4 ta)) (4.7)

where we have multiplied each y®(Z;) with an auxiliary constant 4-vector t{ to remove the
SO(4) R-symmetry indices
y(&5t) = t9y*(7) . (4.8)

Here Z stands for 2 boundary coordinates of AdSs. It is convenient to extract a kinematic
factor so that the correlation function can be expressed in terms of the cross ratios

t12t34 o
ﬂg(va;ava)’ (4.9)
L1234

G =

#Note that here we start with (2.10), i.e. assume that the scalars y* are normalized in the same way as

x* (after the rescaling y* by r = %, cf. (2.1)). If the corresponding scalar operator on the defect is identified
with unrescaled y* we get C, — 1°Cy = 55 while Cx is the same. See also [54].
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where t;; = t; - tj, and

72 22 72 72
U = 12734 214723

= = = XX V:—Q ) :(1_X)(1_X)a
T13%24 T13%24 (4.10)
t13t t14t
_ tistos 3 _ 1423:(1_04)(1_&)'
t12t34 t12ti’)4

The holographic computation of the correlator leads to a 1/N expansion

g = gdisc + gtree +... (4'11)

where the leading order contribution is given by the disconnected diagrams

16N2 , U?
Gaisc = i <1 +oU” + TV2> . (4.12)

Note that this scales as (C,)? in agreement with (4.4), (4.5). The order N tree-level con-
tributions to the 4-point function can be divided into two parts: G; from the Dirac-Nambu
type action (2.9), (2.13) which is parity-even, and G from WZ type action (2.15), (2.17)
which is parity odd

gtree = gl + g2 . (4~13)

The first contribution can be straightforwardly computed from the action, and after some
simplification reads (after using (2.6))

G1=———1 U < [(U —1—V)D3333 — UDs3392 + D2222}
to [(1 — U = V)D3333 — D3oza + D2222} (4.14)

+7 [(V —1—U)Ds333 — D323 + D2222D .

Here Da, a,A50, are functions of cross-ratios, and are related to the D-functions defined by

5 4 A,
R dz dP¥ z i
IDNVNINY I C1) :/ o 11 <Z2+(ffi)2> : (4.15)
via
4
2 [T T(A) (F])7 21 B4 (a,) 7 BB 1
=== 7D = D , I A .
T Ja) D= T g ga s TS50

(4.16)

The three-derivative contact Witten diagram corresponding to the WZ vertex (2.17)

has already been computed in [69], and with the normalization of the WZ term in (2.17)
we have

Gy = —— U2<X — )_()(Oé — O_é)D3333 . (4.17)
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Note that the combination (4.13) of the two contributions (4.14) and (4.17) is very
special, in that the resulting correlator satisfies differential relations which resemble super-
conformal Ward identities (see, e.g., [70] for examples in SCFTy with d > 2)

1
<_2Xax +aaa>g(X7X§ava) =0.

a=1/x
(4.18)

Here it is understood that we first act with the differential operators on the correlator,

1
=0, <—2Xa>z + aa@)g(Xa X; o, @)

a=1/x

and then set the R-symmetry cross ratios to specific values. One can easily check that the
disconnected correlator Ggise in (4.12) also satisfies the identities above. We will show in
section 5 below that (4.18) are indeed Ward identities following from the superconformal
symmetry [OSp(4*|2)]2.

We note that the same differential identities are satisfied by the correlators on the
1/2-BPS Wilson loop in the string theory case (see appendix B). The major difference,
however, is that in the 1d Wilson loop case there is only a single conformal cross ratio ¥,
and both « and & can be twisted with respect to x. Here the parity odd term (4.17) has
broken the symmetry of interchanging x and y in the correlator: only the simultaneous
interchange of x <> X, @ <> & remains a symmetry of the 4-point function. Therefore, we
have two differential identities which separately pair up x with a and y with &, and the
chirality of these relations parallels the factorized structure of the superconformal group
OSp(4*|2) x OSp(4*|2). The same structure of the superconformal Ward identities was
observed in [69] for PSU(1, 1]2) x PSU(1,1|2).

4.2 The (xxxx) and (xxyy) correlators and Mellin representation

The calculation for the (xxxx) and (xxyy) correlators is almost identical to that of the
parity-even part of the (yyyy) correlator as they are not affected by the WZ term at tree
level, and only the Dirac-Nambu term (2.9) contributes. We first present the results for
generic defect dimension p and then specify to p = 2. For the string (Wilson loop) case of
p =1 the expressions below agree with the results of [5].

Using the action in (2.9)-(2.13) we find for the 4-point function of the transverse
AdSg4y; fluctuations

N . . T,(1+p)* T4 (1+p) [
(X (1) (&2)x" (Z5)x' (£4)) = — p(wgpri(l +(p) ) 5]5“[(2+p)(4+5P)Dp+1,p+1,p+17p+1
2

—4(2+p)(1 +2p)f§4Dp+1,p+Lp+2,p+2 —4(1 +p)2(f%4f§3 +f%3f§4 _f%2f§4)Dp+2,p+2,p+2,p+2
+5% 67" [(2+p) (445p) Dpi1.p+1,p41p+1—4(24p) (142p) 3%, Dp i1 propi1 pro
—4(14p)*(F],05+ 715 T34 —5%3534)Dp+2,p+2,p+2,p+2]
+5" 5" [(2-1—])) (445p) Dpt1,p+1,p+1.p+1 —4(2+p)(1 +2p)f%3Dp+1,p+27p+2,p+l
A1 Ry~ BB Dprapiapiagea) ) (4.19)

where we have already used the relation Ay = p + 1, and the D-function identities (sum-
marized in, e.g., appendix D of [71]) to simplify the expression. For our present case,
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p=2 Ty = %, this correlator may be written explicitly in terms of the D-functions of
cross ratios as (cf. (4.14))

(x*(&1)x7 (F2)x" (5)x! (£4))
_ 182N
7T4f?2£§4

U3 (5ij5k’l [63[)3333 - 50D3344 + 15(U -V - 1)D4444:|
Lo i} i (4.20)
+ 6ikoT [631)3333 — 50Dsy34 + 15(1 — U — V)D4444}
+ o'l oIk [63[)3333 — 50D3u43 + 15(V — 1 — U)D4444D .

Similarly, the (xxyy) correlator for generic p reads

T 42— 1F4<1+p)

() @ ) =~ B0 () Dript

2 2 =2 2
—2p(3+p)¥34 Dp+1,p+1,p+1,p+1 +2(1+p) [*5512Dp+2,p+2,p,p+x13Dp+2,p+1,p+1,p
2 9 2
+ 274 Dp+2,p+1,pp+1 + T3 Dpt1 pr2p+1,p + To4 Dpt1,p+2,ppt+1
— 272, 0% + T 15y — TogT5,) D (4.21)
14:b23 T L1324 T L1234 ) Hp+2,p+2,p+1p+1 | | :

where we have used that Ay = p+ 1 and A, = p. For the p = 2 the correlator may be
written in terms of functions of cross ratios as (after using again the D-function identities)

96N 5 gab

(4@ (F2)y (F)y" (70)) = — ¢ == UP[5(U = 1 = V) Dasgs — 13Dsgas + 8Dagna]
T 70575
(4.22)
For comparison, let us also record the parity-even part of the (yyyy) correlator with
general p and r following from (2.13) (generalizing the p = 2, r = % expression
n (4.9), (4.13), (4.14))
T, p°T (p)
Gl(a_c'-,t-) — &= \F
1 1 7T2p1—\4(g)
B34, 24, 4; -
X [t12t34G%2’3 (¢ X) + t13624G1 2 (X, X)) + t1atasGy ’23(X7X)] s (4.23)
. 2
12;34 -2
Gy = _r*g(Dp,p,p,p 2$12Dp+1,p+1,p,p) ( oo — 812 Dpt1,p1+1,p,p)
- 4]92(33%49323 + 53'133?24 9512333 )Dpt 1 p+1p41,p41
2
13;24 —2
Gy = _T*Q(Dp,pm,p 2xlstJrl,moJrl p) TP (5D pppp — 8L13Dp+1,p,p4+1,p)
- 410 ($14$23 + 90129034 - 95135”%4) p+1p+1lp+lp+l
. 2
14;23 —2
Gy = _r*Q(Dp,pvp,p 2$14Dp+1,p,p,p+1) +p (5D pppp — 8T14Dp+1,pp,p+1)
- 4172(9?%2534 + C5139?7‘24 95143723) p+1p+1lp+1lp+1
G1 in (4.23) is related to Gy defined in (4.13) as in (4.9), i.e
t12t34 o
Gl(l‘i,ti) = 2p2p g1 (XyX; «, a) . (424)
L12L34

~16 —



Note that the WZ term in (2.15), (2.17) is specific to p = 2 case so that its contribution to
the 4-point correlator (4.17) does not admit a generalization to an arbitrary p.

We can develop a better intuition about the above expressions for the correlators
using the Mellin representation [72, 73]. It is straightforward to translate the D-functions
into the Mellin space (see, e.g., appendix A of [74] for explicit expressions), and we find

(s+t+u=>, A4A,)

(X (#1)x (T)x" (#3)x (T4)) _ma (4.25)
T12 T34
o0 dsdt sV t=2p-2 2p+2—s
_ ijkl 2
FL(UV) / UV M T <2 >
2p+2—t 2p+2—
T2 <p+2> 2 <p+2“) . stttu=4p+4,
EANICAVRESVIEN IR K (1.26)
L1934
0 dsdt s - 2p-1 2p—s 2p+2—s
F. = — i0iab(s 1) T r(=———
)= [ Uiy s 1 (2o ()
T2 (QZ’J;H> 2 <2“21_“> St u=4p+2

where the Mellin amplitudes are given by
T,I (32 +4)

3n% Y (3p+4)TH(2+1)

M(t,u)=—-33p+4)tu+2(2p+1)(3p+4)(t+u) —4p(p+1)(4p+5)
=% _30tu+100(t +u) — 312,

T, p°T(22+1)

167 3 T4(2+1)

M (t,u) = —(3p+2)(3p+4)tu-+p(3p+2)(4p+5) (t +u) — 16p* — 28p> — 5p® + 14p+8
P52 _80tu+208(t +u) — 464.

MM (5 4) = [5’7 SF M (t,u) + 6% 6 M (5,u) + 6" 67 M (s, t)} , (4.27)

MiTiab (s ) = S5 M (t,u), (4.28)

Similarly, the parity-even part of the (yyyy) correlator (4.23) admits the following Mellin

representation
1 0 dsdt
G1(Z;, t; :/ M s, bt
ot = | Gmip et
2 2 — 2p—t 2p —
w2 (X252 (2PN o (2P ZUN Ly (4.29)
2 2 2
P
Ml(S,t;ti) = ;E;( )) [t12t34M”(t,u)—|—t13t24M"(s,u)—i—t14t23M"(s,t)} , (4.30)
T2

1 4
M"(t,u) = 3(2 + 3p)tu — 6 <2p - r> (t+u)+4p (4]32 —3p— r2>

p:2,r:%
% 6tu—6(t+u) — 12 (4.31)
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As expected, the contact interactions with up to four derivatives (cf. (2.10)—(2.13)) give
amplitudes that are quadratic polynomials in the Mellin-Mandelstam variables.

Let us also point out that the parity-odd part (4.17) of the (yyyy) correlator, which
only exists for p = 2 as it derives from the WZ action (2.15), does not admit a Mellin repre-
sentation. Indeed, the parity-odd contribution (4.17) gains a minus sign under y <> x while
the variables U and V' (that appear in the standard definition of the Mellin representation)
are invariant under this transformation (cf. their definition in (4.10)).

4.3 OPE analysis

In this subsection, we perform a preliminary OPE analysis to extract the CFT data for low-
lying operators from the 4-point correlator (yyyy). Because of the chiral nature of the corre-
lator, we have to use 2d conformal blocks which are not symmetrized with respect to xy and y

h h
2F1 <2727h7X> 2F1(

This conformal block corresponds to an operator with holomorphic dimension h and

_ h

Inn(X:X) = X2X

[N

,Mx>, h—heZ. (4.32)

anti-holomorphic dimension h.?®> For the same reason, we should use SU(2) R-symmetry
polynomials for SU(2)z x SU(2)r = SO(4)

RL,m(a) = Pm(l - 20‘) ) RR,m(O_C) = Pm(l - 20_‘) ) (4'33)

where m = 0,1, --- corresponds to the spin-§ representation of SU(2).

We can analyze the 4-point function in small x (or ) expansion,?® which is dominated
by operators with small & (or h). By going to higher orders in the expansion, we can sys-
tematically read off CF'T data for operators with increasing conformal twists. However, at
higher conformal twists the mixing effect of operators become important, and analyzing the
(yyyy) correlator alone gives only “averages” of anomalous dimensions over the operators
appearing in the mixing (weighted by the corresponding OPE coefficients).

We will postpone the unmixing analysis (which involves (xxxx) and (xxyy) as well)
for a future study and focus on the leading double-trace operators with h = 4 where the
mixing is absent. Since we are only interested in the leading operators in the OPE, we do
not need superconformal blocks and bosonic conformal blocks are sufficient.

It is useful to decompose the correlator (4.11) into different R-symmetry channels

Gx: X;a,@) = Rpo(@) Rpo(@) G(1,1)(x, X) + Rr1(@)Rero(&) Ga,1) (X X)

(4.34)
+ Rro(@)Rr1(@) G1,2)(x; X) + Rra(@)Rr (&) G(2,2) (X X) 5

#They are related to A and £ by min{h,h} = A — £, max{h,h} = A + L.
26The analysis of small x expansion is identical to that of the small ¥ expansion, after interchanging o
and &. Therefore, in the following we will only focus on the former.
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where R = (1,1),... in Gr(x, X) labels the representation of SU(2); x SU(2)gr that is
exchanged. Each Gr(x, X) can be decomposed into the conformal blocks

GrOX) =) C,S?%’Rgh,n(x, X)
hh

~~

disconnected

4.35
+) Cf:,%’Rgh,ﬁ(x, X) + %V,S,%’RC,(L?%’R(% +0R)9nm (G X) + - .
h,h
tree level
where fy}(:%’R are anomalous dimensions associated with log(zZz) divergences in the correla-
tor, i.e.,
Bexact = h + 7}%3 R L 7}%’1{ o, (4.36)

The (1,1) channel. From the x? coefficient in the small y expansion of the disconnected
part of the correlator in (4.12) comparing to (4.35) we find that

c.01) _ 24" (h —2)0(% +1)

) _ N?
4,h 7r7/2r(%)

: h €4z, . (4.37)

From the x?log(xx) coefficient of the tree-level correlator (4.13) we can read off
(1)»(1a1)0(0)7(171)
Tah 4h :
0 and spin 2 operators respectively. As a result,

We find contributions only from h = 4,8, which correspond to spin

1,1 24 @,y 48

’7474 = 57]\]' s 74,8 = _357]\7 . (438)

The fact that the anomalous dimensions have a finite support on spins is expected because
the tree-level correlator is computed as a finite sum of contact diagrams, and each contact
diagram has a finite support on spins [75].

The (1,2) channel. From the y? expansion coefficient in the disconnected part (4.12)

we find

24=h(f, — (k41 _
oz 2= 2TG ) o hedZy +2. (4.39)
4,h 7T7/2F(%)

From the x?log(xY) coefficient in the tree-level correlator (4.13) we can extract the cor-
responding anomalous dimension. We find that there is only one operator with h = 6
contributing and its anomalous dimension is

V4,6 5N (4.40)
The (2,1) channel. From the small x expansion of the disconnected correlator we find
again

= N?, hedZ, +2. (4.41)
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However, here there is no x?log(xx) term in the tree-level correlator. The operator with
h = 4 and h = 6 receives only a correction to the OPE coefficient

4
cen Loy, (4.42)

The first logarithmic singularity arises at x® order which corresponds to h = 6. There
are two operators responsible for this logarithmic singularity, with the anti-holomorphic
dimensions h = 4, 8.

The (2,2) channel. Here the zeroth order OPE coefficients read

o2z _ 2N -TG+1)

) h , hedl, . 4.43
- PT/2r (A1) + (4.43)

(
¢

As in the (2,1) channel here we find no x?log(xx) term in the tree-level correlator. This
is consistent with the fact that the (2,2) channel receives contribution from the 1/2-BPS
operator with h = h = 4 that has no anomalous dimension. The tree-level correlator leads
only to a correction to the OPE coefficient of this operator

4
PR - (4.44)

T
5 Superconformal symmetry of holographic correlators

In section 4.1 we observed that the (yyyy) correlator satisfies intricate differential rela-
tions (4.18) which can be interpreted as superconformal Ward identities following from the
global symmetry [D(2,1] — 3)]* = [OSp(4*|2)]%. We give a derivation of these identities in
section 5.2 by studying the supersymmetry of “twisted” operators defined below. In fact,
these superconformal Ward identities are so restrictive to essentially fix the form of the
4-point function. This is shown in section 5.3, where we “bootstrap” the (yyyy) tree-level
correlator from the Ward identities and crossing symmetry without inputting the precise
form of the AdSs “bulk” vertices in the M2 brane action, thus shortcutting the computation
in section 4.1.

5.1 Twisted operators and supersymmetry

It is possible to construct a set of “twisted” combinations of the scalar fluctuations y¢,
following a similar construction in [36].27 We start by rewriting (4.8) in spinor notations
(a =1, 2)

y(T;t) = y(v,7;8,8) = Yag a®a®, t*=plia®a®, a®=(l,a), a*=(1,a). (5.1
We switched here to complex coordinates v = 2! + iz? and p® are SO(4) gamma matrices
(p = (id,1)). Explicitly

t9(a,) = {i(a+a), a — & i(1 — [af2), 1 + [a|2}. (5.2)

*"This should not be confused with the chiral algebra twist of [60]. The construction of [60] requires
twisting a subalgebra psu(1,1|2) which does not fit into D(2,1| — 3). Moreover, it will be clear that our
twisted correlator has both y and Y dependence, rather than being chiral.
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The inner product is now simply
t%(ay,a1) t%(ag, ag) = 2|a; — ag|?. (5.3)
We define the half-twisted operator by setting a = v
V(v,v;a) = y(v,v;v,a) . (5.4)

We can also define a half-twist in the opposite chirallity by setting a = v, or twist both.
As y® is a massless (A = 2) field whose 2-point function is given by (4.4), eq. (5.3)
implies that ) behaves like

QCy (ﬁl — ﬁg)
(v1 — wva) (01 — 02)?
This operator ) twists the left-moving SU(2) of SO(4) ~ SU(2) x SU(2) R-symmetry into
the left-moving SO(2,1) of the SO(2,2) ~ SO(2,1) x SO(2,1) conformal group.

To see that, note that the doublets a® are in the fundamental of the left-moving SU(2).
We can implement then the R-symmetry transformations of y* in terms of the following

<y('01, 617 a1) y('l&,’ljg; ég)) =

(5.5)

differential operators acting on y(v, v;a, a)

1
R, = 0,, R% = ag, — 23 R = —a%0, +a. (5.6)

The action of the conformal group on a field is implemented, as usual by
P,=0,, Dy=v0,+6, K,=0v0,+26. (5.7)

Note that the dimension § for the field y is equal to 1 (the total conformal dimension is
A=5+6=2).
Now we can translate Y(v, v;a) via

Y (v,v;a) = (0y + 0a)y(v, U; a,a) . (5.8)

a=v

Hence Y transforms covariantly under the twisted generators
P,+R,, D,+R’°  K,-RS. (5.9)

Let us now examine the supersymmetry constraints on the twisted operators. The
surface defect breaks the OSp(8*|4) of the N' = (2,0) 6d theory to [OSp(4*|2)]2. The
OSp(8*|4) transformations can be parameterized by the spinor €(x) = €® + 'a#7,, where
€% corresponds to the super-Poincaré transformations and €' to the superconformal ones.
They are chiral and antichiral respectively, are in a spinor representation of the Sp(4) R-
symmetry group and satisfy the symplectic Majorana condition € = —c{2¢, where c¢ is the
charge conjugation matrix and ) the symplectic form.

Using v, and p® for space-time and R-symmetry gamma matrices, the surface in the

(z1,2?) plane (v = 2! + iz?) imposes the condition

e(z)(1 +iyi2p°) = 0. (5.10)
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Defining ~, = %(’yl — i72) and likewise 5, we have iy12 = Y5 — Y570 Then the above
equation splits into
eo(@)(L+p°) = eg(2)(1 = p°) = 0, (5.11)

where €, = €, and €; = €y are the generators of the two D(2,1; —%) superalgebras.

In addition to the generators in (5.6) and (5.7), each algebra has another SU(2) acting
on the 2 fields (whose generators we denote by T') and supercharges @ and S. The algebra
(see e.g. [76, 77]) is

{Q)™, Q)"} = e*e"™ P,
{Qom, 8Pny = —g@Bemm D, — 2™ (e0) PR+ £ (e0? )M T (5.12)
{ngm’ Sgn} — Eaﬂeanv ’

2

where € = i0”.

The supersymmetry transformations of the y fields are
Qumy?0 = By (5.13)
For the twisted field at z # 0 we need to also include the S transformations

QY. va) = ay™as| . SIV(v,ia) = atod ™y (5.14)

Thus Y(v,v;a) is annihilated by the combinations Q7" = Q2™ — Slm™.
Let us define a fermionic field which is the action of one of the supersymmetry gener-
ators on )Y

U™ (v, 5;4) = %Q?f‘y = wnﬁaﬁ- = ol 4 yn2y (5.15)

We now examine the Ward identity for the supercharge Q)" for the correlation function of
this fermion with any number of ) fields. Since Q] annihilates ), we get

0= (Q™ U™ (v1,01;81) Y (v2, Ta; 82) - - - V(vp, T3 8p)])
= ([QMU" (v1,01381)] Y(v2, U23 82) - - Y (vp, Tps &p)) (5.16)
([{Q7, QXY (v1, 515 81)] Y(va, D23 82) -+ V(Vp, Tp3 8p) )

1
U1
where in the last step we have used again that Q;" annihilates ), leaving the anticommu-
tator of Q™ and Q?". Using (5.12), this anticommutator evaluates to

{Q™ Q> = "™ D, + 2e"™RY, (5.17)
and its action on Y(v, v;a) can be expressed as the differential operators (5.6), (5.7)

(Dy + 2RY) Y(v,7;a) = (v0, + 2ad,)y(v, , a, a)l (5.18)

a=v "’

Let us apply this relation to the 4-point function (4.7), (4.9) of the Y (v, v; a) operators.
Examining the definitions of conformal cross-ratios in (4.10), we conclude that in this case
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a=1/y, ie.

Gleft-twist (Vi, Vi; a;) = (Y (v1, 01; 1) Y (v2, U2; a2) Y (vs, U3; a3) Y (v4, Us; a4))

. 4|a1 — a2\2|a3 - a4|2

B lvg — 'U2|4‘U3 - U4|4 906X @ 0) a;=vj (5.19)

_ 4(51 — 52)(53 — 2_14)
(v1 — v2) (v3 — v4) (V1 — 2)? (U3 — V4

)QQ(X,X; 1/x,@).

Noting that the differential operator (5.18) annihilates the prefactor in the second line
above, we can translate the Ward identity (5.16), (5.18) to act on the function of cross
ratios G. Moreover, if we fix v; = 0, v3 = 1 and v4 — oo, we find from (4.10) that x = ve,
and since the twisting (5.4) fixes ag = v9, then o = 1/ag, and we reproduce precisely the
first relation in (4.18).

Note that our construction has only used the left-moving copy of D(2, 1; —%) We can
repeat the entire analysis by twisting instead the right-moving D(2, 1; —%), which leads to
the second identity in (4.18). Thanks to the factorization property, our derivation above
implies that the superconformal Ward identity

=0, (5.20)
a=1/x

1
(—2Xax + a8a> F(x; «)

applies as well to the 4-point functions of 1/2-BPS insertions on a line defect in 4d N = 2
theories preserving half of the supersymmetry. This system has the same D(2,1; —%) =
OSp(4*|2) symmetry [78]. Here x is the conformal cross ratio on a straight line, and « is
the cross ratio for the SO(3) R-symmetry.

Although we derived (4.18) for correlators of fields with conformal dimensions (8, 9) =
11
272
ties (4.18) apply to 4-point correlators of dCFT operators with general R-symmetry charges

(1,1) and R-symmetry charges (¢,q) = (5,5), the same superconformal Ward identi-
(¢,q) and (6,6) = (2¢,2q). That ¢ and ¢ do not need to be equal is a consequence of the
factorized form of the superconformal algebra [D(2,1; —%)]2. We can understand the ex-
tension to general 1/2-BPS insertions by realizing that we can construct higher-weight
1/2-BPS operators by taking products of the ones with § = 2¢g = 1 or 6 = 2 = 1. The
n-point correlators of operators with lowest weights satisfy the constraint (5.16), which
becomes (4.18) when regrouping them into four composite operators.

5.2 Twisted 4-point correlator and a curious relation to special 4-point func-
tion in N =4 SYM

We can twist both D(2,1; —3) algebras with a = v and & = v. This gives a dimension-one
non-chiral scalar operator

2C
(y(v1, 01501, 01) y(v2, V23 V2, Vg)) = ——2— (5.21)

v =l
Now take the 4-point function of such double-twisted operators

Gwist (i, Ui; a4, 8;) = G(v4, U35 03, T;) . (5.22)

~ 93 -



Using (4.14), (4.17) we find that the correlator (5.19) has a remarkably simple expression
proportional to just one D-function

Glwist = —gﬁzﬁgf@mm . (5.23)
Surprisingly, the same function arises in a totally different setting, namely, in the 4-point
function of the stress tensor multiplet of N'=4 SYM theory at strong coupling computed
from the AdSs x S° IIB supergravity.

Indeed, let us consider the 4-point function of the 1/2-BPS operator Os(Z;t) =
trty tr(®1®7)(¥) where ®! (I = 1,---,6) are the 6 real scalars of N' = 4 SYM.?® This
operator has protected conformal dimension A = 2, and transforms in the rank-2 symmet-
ric traceless representation of SO(6) R-symmetry. We contracted the indices with a null
vector t satisfying t? = 0, which automatically performs the projection to the symmetric
traceless representation. Thanks to superconformal symmetry, the 4-point function has a
“partially non-renormalized” structure [80, 81]

Gsym(Zs;ts) = (O2(Z1;t1)O2(Z2; t2) O2 (735 t3) O2(Z45 ta)) (5.24)
GsyM(Zi;ti) = Giree (T3 ti) + R(Z53 1) H(Z;) (5.25)
Here Giree(Zi;t4) is the correlator in the free SYM theory
- t79t34 2772 Ly U? 1 U U?
Gfree(l'ﬁti) = filgf§4 14+0°U"+71 W +E UU+TV+077 R (526)

where we assumed the canonical normalization (Os(Z71;t1)O2(Z2;t2)) = % Note that the
free correlator is exact in 1/c, where ¢ = $(N? — 1) is the “central charge” of the SU(NN)
SYM theory. R in (5.25) is a kinematical factor fully determined by the superconformal
symmetry

R = tiyt3 {3a5(1 — x) (1 — xa)(1 — xe)(1 — x@) , (5.27)
and H(Z;) is the reduced correlator which encodes all the dynamical information. We can
compute H(Z;) in 1/c expansion at strong coupling, using the dual bulk description of 1IB
supergravity on AdSs x S°

H(fl) = Htree(fi) + Hl—loop(fi) + ... (528)

The tree-level reduced correlator reads [82]

6 Dogoo

Hiree (@) = —— 55— - 5.29
Bl m2e 71575, 1, 0

Comparing this to the twisted correlator in (5.23)? we conclude that they match up to
an overall constant and a factor that can be interpreted as a “tetrahedron” contraction of

28We will be brief in the following about the superconformal kinematics of 1/2-BPS 4-point functions in
N =4 SYM, and refer the interested reader to section 2 of [79] for a more detailed review.

29The reader might be concerned that we are comparing results in different spacetime dimensions. How-
ever, a nice feature of D-functions defined for AdSgy1 is that the d-dependence only appears in the overall
normalization. The functional dependence on f%j is the same for all d. Moreover, for four points we can
always use a conformal transformation to restrict them on a two-dimensional plane.
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generalized free fields®’
1
T = — .
H - (5.30)

1<i<y<4 4
The observed relation®! between the twisted correlator on BPS surface defect in 6d (2,0)
theory, and the BPS correlator in strongly coupled A" = 4 SYM theory is quite curious and
we hope to shed light on its meaning in the future.

5.3 Fixing the (yyyy) correlator from the superconformal Ward identities

In this subsubsection, we provide an alternative perspective on the tree-level holographic
4-point function (yyyy). We show that the holographic correlator (4.13) can be “boot-
strapped” by imposing superconformal constraints captured by the relations (4.18), with-
out using any precise information about the coefficients of the bulk vertices. Similar tech-
niques have already been implemented in a number of maximally supersymmetric AdS
backgrounds, and lead to unique answers for tree level 4-point functions in theories with
no defects [84-87].

We start from an ansatz for a local AdS3 bulk action which consists of all possible con-
tact interactions of y® fields with up to four derivatives. The structure of the corresponding
Witten diagrams translates into the ansatz for the following tree-level 4-point function

G =G+ Gy, (5.31)

where G is the parity-even part given by a linear combination of contributions of all
possible 0-, 2-, and 4-derivative contact diagrams and G is the parity odd part coming from
the 3-derivative contact interaction. The precise combination of these Witten diagrams can
be fixed as in section 4.1 using the explicit form of the M2 brane Lagrangian (2.13), but
here we will leave them arbitrary and to be determined by symmetries.

A convenient parameterization for (g1 is given by the linear combination of all possible
D-functions that can show up at this order with the coefficients that are any possible
parity-even R-symmetry structures

G1 = Z(Mu t12t34 + p2,i tiztoa + w3 tiates) Wi, (5.32)
i

L ) 2 = 2
{Wi} = {Da222; T19D3322, T13D3232,- - ; TioT54D3333, T13%5,D3333, - }. (5.33)

3%Here we do not want to absorb 7 into the definition of the reduced correlator Hiree, because it is
important that Hiree has conformal dimension 4 to exhibit the ten-dimensional hidden conformal symme-
try [83]. Replacing the argument f?j in Hiree (ffj) with f?j + t;; gives a generating function for the reduced
correlators of higher Kaluza-Klein modes (see section 2.3 of [79] for a discussion of this point).

31Tt might also be instructive to view the relation from the Mellin perspective. For the twisted correla-
tor (5.23), we have a factorized polynomial Mellin amplitude

MtwistedN(S_Q)(t—Q)(u—Q)7 S+t+u:4,
and it has an interpretation of contact interactions with up to six derivatives. For the supergravity
case (5.29), the Mellin amplitude is the inverse of the above expression
1

supergravity ™ ) t =4.
Maspergracivy ~ (g oy —gy 0 ST
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We also require that the parity-even part G (as coming from a local bulk action) should
be crossing symmetric.

The only parity-odd 4-vertex allowed by symmetries is the one in (2.17), i.e. ~
eabcde“”’\yaﬁﬂybayy@)\yd and thus G is proportional to the 3-derivative contact Witten
diagram in AdSs discussed in [69] (cf. (4.2))

d3
Go ~ / 7?23 ewp&LGgé(x,fl)ayGég(x,fg)ﬁpGgg(x,@)Gég(q;,j;‘g) ) (5.34)

It is easy to check by integration by parts that this contribution is antisymmetric with
respect to all four points Z;. In order for G5 to be crossing symmetric, the R-symmetry
factor has to be anti-symmetric and can only be

t12t34(a — d) . (5.35)
Using the result of [69], G2 can be written as (cf. (4.17))

t19t _
Ga =A== U(x — X)( — @) Dagss, (5.36)

L1934

where A is an undetermined coefficient.
Imposing the superconformal Ward identities (4.18), we find that all the coefficients

32 The overall

pi in the ansatz (5.31) can be fixed except for an overall scaling factor.
normalization is not fixed by (4.18) because these relations are homogenous. The solution
is proportional to Giree We obtained above (4.13) (4.14), (4.17) by the direct computation
from the M2-brane action.

Thus the superconformal symmetry is effectively determining the relative coefficients
in the underlying bulk action. Note that even though we included the zero-derivative
contact interactions in the ansatz for Gy in (5.32), such contributions are absent in the
final solution fixed by superconformal symmetry. This is consistent with the fact that the
are no such terms in the M2-brane action for y* in (2.13).

We can also apply a similar bootstrap approach to the case of 1/2-BPS Wilson loop.
The corresponding 4-point function for the dimension 1 operators can be uniquely fixed by
the superconformal Ward identity, up to an overall constant which can be determined using
supersymmetric localization [5]. We will give the details of this calculation in appendix B.
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A  D-functions

For reader’s convenience, we collect some useful properties of the D-functions
in (4.15), (4.16)) (see, e.g., [71]), which can be used to obtain the explicit form of cor-
relators as functions of cross ratios U and V or x and y in (4.10).

The simplest D-function has A; = 1, and is just the scalar one-loop box digram in
four dimensions

D111 = @(x, X) , (A.1)

B0 = 2 flogulog (121 ) + 20 - 2] (42

To obtain D-functions with higher weights, we can use the following differential operators

Day4+1,80+1,85,80 = —OUDAL Ag. 0504
Dayagpg+1,80+1 = (A3 4+ Ay — X = Udy)Da, ag,05,04
DAy pot1,85+1,80 = —Ov DA, Ao A Ay s (A3)
DA, +1,00.08580+1 = (A1 + Ay — X = VOy) DAy AgAs.04 » '
DA, Apt1.85.8041 = (A2 + Uy +VOv)Da, asnsAy

DA1+1,A2,A3+17A4 = (Z — Ay + U0y + VaV)DALA%Aa,AAL

where X = %(Al + Ag + A3+ A4)
Note that the function ®(x, x) satisfies the following differential recursion relations

1 1 _ 1 _
A e L R e e s R (A4)
1 1 N 1 _ '
O I (T VR A e e e

We can therefore recursively decompose DAl,Az,As,A4 into a basis spanned by 1, logU,
log V', ®(x, x) with coefficients being rational functions of y, .

B 4-point correlator on 1/2-BPS Wilson line from superconformal in-
variance

In this appendix, we implement the techniques of section 5.3 to determine the tree-level
contribution to the 4-point function of insertions in the 1/2-BPS Wilson loop from the
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superconformal Ward identity and crossing. This reproduces the expression derived in [5]
from the fundamental string action in AdSs x S°.

Recall that the Wilson loop has an OSp(4*|4) superconformal symmetry. The inser-
tions ®* with a = 1,--- ,5 have conformal dimension 1, and transforms as a vector under
the SO(5) = Sp(4) R-symmetry. Holographically, they corresponds to the S° fluctuation
y®. Asin (4.8), we contract the R-symmetry index of ®* with a constant auxiliary vector t,

O (w;t) =t P4 (w) , (B.1)

so that its correlators depend on the coordinates w; € R! parametrizing the straight
Wilson line and on the internal “coordinates” t;.
For simplicity, we will fix the normalization of the two-point function so that

t12

(P (wrst1)P(waste)) = TP

(B.2)

where t;; = t;-tj, w;; = w; —w,;. The 4-point function can be written in terms of a function
JF of cross ratios as

t19t
A = (@ (wr: 1) B (w; to) D(ws: t3) P(was ty)) = — 12— F(xi 0, @) , (B.3)
[wi2[? w4l
where
t13t t14t
_w12w34’ _ tistos _ 3 _ b 23:(1_01)(1_@)‘ (B.4)
W13 W24 t12t34 t12t34

Note that unlike the SO(4) case of the M2-brane theory in the main text, here the R-
symmetry cross ratios «, @ should appear symmetrically in F(x;a,@) (we cannot have
det(ti;) o< tigtaa(a — &)). In other words, F(x;a, @) is a linear function of o and 7. The

4-point function also needs to satisfy the superconformal Ward identities [20] analogous
to (4.18)

=0. (B.5)

1
(_Xax + a8a> F(x; a,a)
2 a=1/x

=0, (—;Xax—f-a@a)]:(x;a,a)

a=1/x

Because F(x; a, &) is symmetric under « <+ @, the second equation is redundant. Moreover,
if we set a = & = 1/x, (B.5) implies that the twisted correlator (the analog of (5.23)) is
now topological

KT (x:1/x,1/x) =0. (B.6)
We take an ansatz for the tree-level contribution to the correlator A in (B.3) which
is essentially the same as for the parity-even part G; in (5.31), (5.32) in section 5.3. It

includes all D-functions that can appear in AdSy contact Witten diagrams with up to four
derivative vertices

{Wi} = {D1111; wiyDasi1, wizDaror,- - 5 wiswsyDagss, wizwiyDagoa ,-+-}.  (B.7)
The ansatz for A, the analog of (5.32), now has only coefficients that are linear in o and 7

A = tyatsg Z(Ml,i + poi 0+ p3 ;i T) Wi (B.8)

)
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Note that the dimension d = p dependence of the D-functions only comes as an overall
factor and does not affect the dependence on the cross ratios (as is clear, for example, from
the Mellin representation). Therefore, we can compute them for generic d, and set x = ¥,
d =1 in the end.

We now require that A should be (i) crossing symmetric, and (ii) satisfy the super-
conformal Ward identity (B.5). Remarkably, this allows us to determine all the coefficients
fri in the ansatz (B.8) up to an overall factor v (cf. (B.3))

t1ot34
Amp 1280 4 FoyA, B.9
¥ wraPwsal? Y (B:9)
2 2 2
o -2x+2 0 x(2*-2x+1) x(*+1)
A ;Oé,Oé — — 0O — T BlO
b2, 8) x—1 x—1 (x —1)2 (B.10)
(x—-1) O3+ x+2
+[ (X )—U(X—l)(2X2+X+1)—T(X2+1) log(1 — x)

(X2—2X+2)X2 (2X2—5x—|—4)x3 (X2—3x—|-4)x3
*[‘ Y A v R A G V¢ }ng'

Note that as predicted in (B.6) the twisted correlator is a constant since

FOo1/x:1/x) =vA(;1/x, 1/x) = —3v. (B.11)

This twisted correlator, however, can be independently computed using supersymmetric

localization [5],%% so that at leading order in the inverse string tension we should have
Fia1/x1/x) = ——=+0(3) (B.12)
N2\ A
This fixes the overall factor to be 1
v=—. (B.13)

VA

The resulting expression (B.9), (B.10) agrees with the one found in [5] directy from the
string action.
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