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Abstract— In this paper, we propose an autonomous gait
analysis system consisting of a mobile robot and custom-
engineered instrumented insoles. The robot is equipped with
an on-board RGB-D sensor, the insoles feature inertial sensors
and force sensitive resistors. This system is motivated by
the need for a robot companion to engage older adults in
walking exercises. Support vector regression (SVR) models
were developed to extract accurate estimates of fundamental
kinematic gait parameters (i.e., stride length, velocity, foot
clearance, and step length), from data collected with the robot’s
on-board RGB-D sensor and with the instrumented insoles
during straight walking and turning tasks. The accuracy of
each model was validated against ground-truth data measured
by an optical motion capture system with N=10 subjects. Results
suggest that the combined use of wearable and robot’s sensors
yields more accurate gait estimates than either sub-system
used independently. Additionally, SVR models are robust to
inter-subject variability and type of walking task (i.e., straight
walking vs. turning), thereby making it unnecessary to collect
subject-specific or task-specific training data for the models.
These findings indicate the potential of the synergistic use of
autonomous mobile robots and wearable sensors for accurate
out-of-the-lab gait analysis.

Index Terms— Wearable Technology, Instrumented Footwear,
Gait Analysis, Assistive Robotics, SportSole

I. INTRODUCTION

An active lifestyle can mitigate physical and cognitive
decline in the elderly, thus preserving their independence
[1]. Walking programs are routinely offered in senior centers
[2], since they may result in enhanced balance and muscle
strength as well as reduced risk of falling [3]. However, the
increasing shortage of trained caregivers due to population
aging and increased life expectancy is posing a serious threat
to the sustainability of such initiatives in the future [4].

Moreover, because alterations in walking patterns may
be markers of frailty, precursors of falls, and indicators of
neurological or musculoskeletal disorders, gait assessments
are often included within health screening for the elderly
[5]–[7]. In this light, quantitative gait analysis may yield
higher diagnostic power than traditional screening based on
clinical observation and timed mobility tests [8], nonetheless
it requires costly equipment (e.g., optical motion capture
systems, treadmills instrumented with force plates, electronic
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walkways) which limit its use to constrained laboratory
environments and elite outpatient clinics. Robotics and wear-
able technology can be leveraged to make supervised gait
exercises and quantitative gait assessments more accessible
to the rapidly increasing number of older adults.

Several research groups have proposed the use of mobile
robots equipped with either laser range sensors (LRS) [9]–
[12] or RGB-D sensors [13], [14] for autonomous gait
analysis. The rationale behind these applications is that
robots may provide added mobility, thus making it pos-
sible to conduct self-administered gait exercises and gait
assessments in patients’ living environments. Compared to
RGB-D sensors, LRSs feature higher sample rates and are
more robust to variability in light conditions and user’s
clothes [9]. Yet, typical two-dimensional (2D) LRSs can only
sense planar information at a fixed height [15], which makes
them unsuitable for the estimation of 3D stride-to-stride foot
parameters, such as foot clearance. On the other hand, RGB-
D sensors can generate 3D representations of the whole body,
from which joint angles can be extracted [16]. However, the
accuracy of on-board RGB-D sensors depends on the relative
distance between the subject and the robot [13], [17], [18],
and common software packages for skeletal tracking based
on RGB-D sensors are prone to errors and misdetections.
Furthermore, significant occlusions and leg overlapping can
occur during turning motions, which are hard to compensate
and often result in degraded tracking performance of LRS
[19], [20], RGB-D [21], and similar sensors [22]. For these
reasons, despite recent efforts, neither LRS-based nor RGB-
D-based systems can guarantee a level of accuracy that is
suitable for quantitative gait analysis.

Wearable sensors have also been proposed in recent years
as alternatives to laboratory equipment for ubiquitous and
affordable gait analysis. Among those, in-shoe devices are
promising since they are affordable, easy to don/doff, and
allow for minimally obtrusive measurements of different
tasks (e.g., ground-level walking, running, stairs negotia-
tion, etc.) over extended time [23]. This type of devices
has been validated in studies with healthy [24], [25] and
clinical [26]–[30] populations. Unlike camera-based sensors,
in-shoe devices can capture kinetic parameters (e.g., center
of pressure) and their high sampling rate and ideal sensor
location make them more accurate in estimating gait events
(such as initial contact and toe-off), from which temporal
parameters are extracted [31]. However, in-shoe devices
typically cannot measure inter-limb spatial parameters such
as step length, which is associated with fall risk [9], [18].



More importantly, their accuracy is negatively affected by
drift in the embedded inertial sensors, which negatively
affects position and orientation estimates, especially during
extended-time measurements [24].

To address these limitations, the concurrent use of wear-
able sensors and robot on-board sensors has been studied for
human motion tracking in large environments [32], semantic
mapping [33] or robot-human following [34]. The system
proposed in [34], for example, is capable of measuring pelvis
orientation and velocity, as well as inter-leg distance, using
the integration of LRS and a wearable sensor. However,
only a paucity of studies has proposed the use of advanced
machine learning methods to fuse data from wearable and
mobile robot sensors with the goal of increasing the accuracy
of the estimated gait parameters.

In this paper, we propose a novel mobile gait measurement
system consisting of an autonomous mobile robot equipped
with an RGB-D sensor and custom-engineered instrumented
insoles. We hypothesized that the synergistic use of in-shoe
inertial and piezo-resistive sensors and robot on-board RGB-
D sensor would improve the accuracy of either subsystem, if
used individually. Our fusion approach uses the raw estimates
of gait parameters obtained from instrumented insoles and
from the robot as well as inertial features and subjects’
anthropometric characteristics as inputs to learning-based
regression models (SVR) to improve accuracy. The system
was validated by conducting straight walking and turning
tests with a convenience group of healthy adults, while
their gait was simultaneously measured by the proposed
autonomous system and by reference equipment. For each
gait parameter considered (i.e., stride and step length, foot
clearance, and walking speed), estimates were computed
under four conditions: (i) robot-only, (ii) insoles-only, (iii)
insoles-and-robot with least absolute shrinkage and selection
operator (LASSO), and (iv) insoles-and-robot with SVR.
LASSO models were included in the analysis to verify that
the complexity of SVR models is well-justified by their
superior accuracy relative to linear models. Accuracy was
compared across the four conditions by determining the root-
mean-square errors (RMSE) with respect to the ground-truth
values using leave-one-out cross-validation [35]. The experi-
mental results validate the hypothesis that the synergistic use
of the robot sensors and the insoles improves the accuracy
of either subsystem used alone, and also demonstrate that
the SVR method achieves better accuracy than LASSO. The
contributions of this work are:

– a mobile gait measurement system consisting of a mo-
bile robot and custom-engineered instrumented insoles,

– a data fusion approach using machine learning models
for accurate estimation of kinematic gait parameters,
and their validation against gold-standard equipment in
walking and turning tasks,

– methods for feature selection and hyperparameters tun-
ing in the proposed machine learning models.

The rest of the paper is organized as follows. In Section
II, the architecture of the mobile gait measurement system

Kinect v2 
VICON
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Reference paths

Fig. 1. The proposed system consists of custom-made instrumented insoles
(SportSole) and a mobile robot with an on-board Kinect v2 sensor. The
optical motion-capture system (VICON) provides ground-truth data for
validation purposes and is not part of the proposed system.

and its synchronization protocol are illustrated. Section III
describes the experimental protocol. Gait analysis models are
described in Section IV. Results are presented in Section V
and discussed in Section VI. Finally, the paper is concluded
in Section VII.

II. SYSTEM DESCRIPTION

As shown in Fig. 1, the mobile gait measurement sys-
tem consists of instrumented footwear previously developed
by our group (SportSole system, [36]–[38]) and a mobile
robot equipped with Kinect v2. The instrumented footwear
includes two insole modules and a data logger. Each insole
module consists of a multi-cell piezo-resistive sensor and an
IMU, both sandwiched between layers of abrasion-resistant
foam, and a logic unit housed in a custom plastic enclosure
that is secured to the postero-lateral side of the user’s shoes
with a plastic clip. The overall thickness of the instrumented
insole (4.5 mm) is comparable to that of a regular insole, and
the total weight of the logic unit is less than 50 g. Thus, the
insole is minimally obtrusive for the user. Data measured by
each insole is sent wirelessly (UDP over WLAN, 500 Hz)
to a single-board Linux computer running the data logger
software. For this application, the single-board computer is
secured to the robot’s frame along with a portable Wi-Fi
router, which served as an access point.

The robot subsystem consists of an RGB-D sensor (Kinect
v2), a laptop computer, and a P3-DX robot. The Kinect v2
is attached to the robot at the height of 0.7 meters from
the ground, facing backward (i.e., toward the subject), to
keep track of the movement of the subject’s ankle joints.
We used the Kinect SDK 2.0 [39] to extract 3D position
coordinates of the subject’s ankle joints from depth image
data captured at 30 Hz. Custom code running in the laptop
computer transforms the ankle position measurements from
the Kinect frame to the robot frame, and logs the data for
subsequent offline gait parameters calculation.

The P3-DX robot is a differential-drive robot with two
driving wheels in the front and one caster wheel at the
back. The robot follows a predefined path (i.e., straight line,
counterclockwise, or clockwise paths) by using the path
following control law presented in [40]. The control law
takes the desired speed of the robot as an input, which is
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Fig. 2. Experimental protocol. The sequence of each task was randomized.
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Fig. 3. Reference paths for the CW and CCW tasks (blue oval shape) and
for the SW task (red straight line). Starting points for each tasks are marked
as A, B, and C, respectively.

prescribed such that it is higher in the straight portion of
the path but lower while the robot is cornering because the
subject needs to track an arc of larger radius than that of the
robot to follow the reference paths (Fig. 1). The controller
relies on wheel odometry to obtain the robot pose feedback.
This solution is deemed appropriate, since the expected drift
is minimal due to the short duration of the walking trials
(explained in the next section) and the predefined path and
speed of the robot.

Reference Broadcast Time Synchronization [41] was used
to synchronize all the devices in the system. To this end, the
data logger broadcasts its internal timestamp to all the nodes
in the network at 1 Hz, and this reference is used to adjust
the internal timestamps of all devices.

III. EXPERIMENTAL PROTOCOL

N=10 healthy male adults (age 24.3 ± 3.5 years, weight
68.6±7.4 kg, height 1.73±0.04 m and US shoe size 8.9±0.6)
volunteered for this experiment, designed as an initial proof-
of-concept validation of the mobile gait measurement system.

Prior to testing, each subject chose an appropriate insole
size among the four sizes available, and then fit the instru-
mented insoles in his shoes. Reflective markers were placed
on the subject’s shoes, close to the hallux, the calcaneus, and
the heads of the first, second, and fifth metatarsal. An optical
motion capture system (VICON Vero v2.2, Oxford, U.K.)
with eight cameras was used to track the markers during
data collection (Fig. 1). The centroid of the markers attached
to each shoe was used to estimate foot displacement. After
the system setup, participants were instructed to complete
a familiarization session. During this session, subjects were
asked to follow the robot, while keeping a distance of 1.5m
to 2.5m from the robot. After the familiarization session,
subjects were instructed to follow the robot to complete a
clockwise curved walking (CW) task, a counterclockwise
curved walking (CCW) task, and 10 repetitions of straight
walking (SW) task (Fig. 2). The sequence of these tasks was
randomized.

For each walking task, the corresponding prescribed path
for the subject was marked on the floor (Fig. 1). CW and

CCW tasks were carried out on an oval track, shown in
Fig. 3, starting from point A and B, respectively. For SW
task, subjects were asked to walk from point C (located
approximately 2 meters outside the oval path) to point D.
Only the last 5m of the straight-line path were included in
the analysis.

Before each task, subjects were asked to stand still for 5
seconds while the system was initialized. The IMU embed-
ded in the insoles, as well as the robot’s gyroscope, were
zeroed at this time, and never reset during each walking
task. Gait parameters were simultaneously recorded by the
mobile gait measurement system and by the optical motion-
capture system. A custom-made wireless board working at
500 Hz was used to synchronize the optical motion-capture
system and the mobile gait analysis system, by relaying a
TTL-compatible sync output from the reference system to
the data logger [36].

IV. SVR MODELS AND FUSION ALGORITHM

In this section, we present a novel 2-step fusion approach
to improve the estimates of stride-to-stride gait parameters
obtained with the proposed mobile gait measurement system.
The first step is to obtain raw stride-to-stride gait parameter
estimations from both subsystems (i.e., the robot’s on-board
Kinect sensor and the insoles). The second step consists in
using the raw estimations from the two subsystems, as well
as inertial features from insoles and subjects’ anthropometric
characteristics, as inputs to SVR models, to improve the
accuracy of gait estimations. For each gait parameter, the
accuracy of the proposed SVR model was compared to that
of a simple linear model (LASSO).

A. Support Vector Regression (SVR)

Machine learning models are expected to be more effective
than linear models in reducing estimation errors in complex
datasets, due to their vast expressive power [42]. For this
reason, we apply SVR models to combine the robot data
with instrumented insoles data. SVR models estimate the i-
th gait parameter p̂i as

p̂i = f(Xi, β) = βTΦ(Xi) (1)

where Φ(X) is the kernel function, mapping the set of input
features at the i-th stride, Xi, to a high-dimensional feature
space. Candidate features include the i-th raw gait parameters
estimated by the instrumented insoles pIi and robot pRi
(described in Section C below), plus inertial features and
subjects’ anthropometric characteristics (described in Section
D). The weights vector β is determined by numerically
solving the constrained convex optimization problem:

min
||β||

2

2

+ C

Ns∑
i=1

(ξi + ξ?i ) (2)

subject to:
prefi − βTΦ(Xi) ≤ ε+ ξ?i , i = 1, ..., Ns

βTΦ(Xi)− prefi ≤ ε+ ξi, i = 1, ..., Ns

ξi, ξ
?
i ≥ 0, i = 1, ..., Ns

(3)

where C is a regularization parameter that determines the
importance of fitting errors relative to model complexity. Ns



is the total number of strides, prefi is the i-th reference gait
parameter, ε is the tolerance, such that errors of magnitude
ε or less are neglected. The slack variables ξi and ξ?i bound
regression errors that are tolerated.

B. Multivariate Linear Regression with LASSO

The LASSO is a shrinkage method that minimizes the
residual sum of squares while controlling the L1-norm of the
weights vector β. Compared to least-squares linear regres-
sion, LASSO can zero out some coefficients in β. Therefore,
LASSO can be used for feature selection and to mitigate
the risk of overfitting the data. The LASSO model can be
described as

β̂ = min
β

1

2

Ns∑
i=1

(prefi − β0 −
m∑
j=1

Xijβj)
2 + λ

m∑
j=1

|βj | (4)

where λ is a nonnegative regularization parameter, m is the
number of features, and Xij is the j-th feature measured at
the i-th stride. The value of λ is chosen based on 10-fold
cross-validation and the “one-standard-error” rule [43].

C. Pre-processing of Raw Gait Data

The definition of the spatial gait parameters used in this
paper is illustrated in Fig. 4, which follows the standard
definition in [44].

The calculation of the raw gait parameters using the
robot subsystem consists of three steps: footstep clustering,
footstep triplet grouping, and final calculation. First, the
data points collected by the Kinect sensor during foot-flat
phases are clustered into individual footsteps, using both the
spatial and the temporal distances between sampled points.
Then, in order for a footstep cluster to be considered as
valid, the following checks are performed: 1) the number
of data points within the footstep is larger than a threshold
nth; 2) the duration of the corresponding foot-flat phase is
less than a threshold t1; 3) the temporal separation between
the current and the previous foot-flat phase is larger than
a threshold t2. Next, footstep clusters are grouped into a
sequence of triplets of successive footsteps, with each triplet
being one of the two types – left-right-left or right-left-right.
The final calculation is performed in accordance with the gait
parameter definition shown in Fig. 4. In our implementation,
we selected nth = 10, t1 = 1 s and t2 = 0.8 s. These
values were tuned empirically during preliminary tests with
one subject, similar to [37]. Additionally, stride velocity
was defined as the ratio between the stride length and the
corresponding stride time. Foot clearance was defined as
the maximal foot height during swing phase relative to the
minimal foot height during stance phase.

The calculation of the raw gait parameters using the in-
soles subsystem starts from the determination of gait events,
i.e., the timing of heel strike, foot-flat, heel-off and toe-off
events, based on the underfoot piezo-resistive sensors, form
which the stride time is also derived. Then, to obtain stride-
to-stride estimates of stride length, stride velocity and foot
clearance, Zero Velocity Update (ZUPT) [45] and Velocity
Drift Compensation (VDC) [46] techniques are adopted, as
described in our previous work [25], [28], [37], [38]. It

b a

Fig. 4. Definition of spatiotemporal gait parameters in terms of the three
heel points of a left-right-left footstep triplet: left step length (a) and left
stride length (b).

should be noted that the use of underfoot piezo-resistive
sensors to estimate temporal gait parameters (i.e., stride time
and normalized swing time) has been done in existing work
[31] and therefore it is not the main goal of validation.

D. Feature Extraction and Model Training

The list of candidate features is reported in Table I. Inertial
features computed for each stride (i.e., between consecutive
foot-flat periods of the same foot) include: norm of the foot
acceleration, as well as maximum, minimum, median, root
mean square, sum, energy1, absolute sum of change2, and
sample entropy of the vertical (az) and horizontal (axy) of
the foot acceleration projections. Stride time and normalized
swing time were also included. The anthropometric features
used in this study include height, weight, body mass index
(BMI), and shoe size.

LASSO and SVR models were trained, subject by subject,
using data from all the other subjects, while the excluded
subject’s data formed the testing dataset (leave-one-out
cross-validation). Both training and testing datasets include
strides collected in CW, CCW, and SW tasks.

E. Feature Selection and Hyperparameters Tuning

The accuracy of SVR models is heavily affected by input
features, kernel function, and hyperparameters (C and ε).
Based on our previous work [37], [38], Gaussian kernel func-
tion was selected for all SVR models. A Genetic Algorithm
(GA) was implemented using RMSE as the cost function to
find the best set of features and hyperparameters.

Due to inter-subject variability and differences in the
walking condition (CW, CCW, and SW), the traditional
k-fold cross-validation method, which relies on randomly
splitting observations into k bins, is not a suitable option
for feature selection and hyperparameters tuning using GA.
Indeed, when we applied the naive k-fold approach during
preliminary tests, we obtained clearly overfitted models. For
this reason, we implemented a nested leave-one-out cross-
validation within the main leave-one-out cross-validation
loop. This was done by splitting the training dataset of the
main leave-one-out loop into k = N − 1 folds (with N
being the total number of subjects), each corresponding to
a subject included in the training dataset. Then, the SVR
model was trained and evaluated k times, each time picking
a different subject for evaluation, and the rest for training. For

1Energy of a time series is defined as the sum over the squared values
of the time series data.

2Absolute sum of change returns the sum over the absolute values of
subsequent variations in a time series.



TABLE I
The selection ratio of each feature in SVR models. Recurrent features

(i.e., selection ratio ≥ 0.7) are marked in bold font.

Features Stride Stride Foot Step
Length Velocity Clearance Length

pI 1.0 1.0 1.0 –
pR 1.0 1.0 0 1.0
|a| 0.5 0.1 0.1 0.5
Stride Time 0 0.5 0.7 0.5
Swing% 0.7 0.1 0.8 0
RMS(az) 0.2 0.2 0.2 0.4
RMS(axy) 0.6 0.1 0.4 0.6
max(az) 0.2 0.1 0.5 0.1
max(axy) 0.4 0.1 0.5 0.5
min(az) 0.1 0.1 0.3 0.2
min(axy) 0.1 0.1 0.4 0
median(az) 0.2 0.1 0.2 0.3
median(axy) 0.2 0.1 0.1 0.9
sum(az) 0.8 0.4 0.3 0.3
sum(axy) 0.4 0.7 0.1 0.7
energy(az) 0.1 0 0.2 0.2
energy(axy) 0.1 0.4 0.4 0.7
change(az) 0.5 0.3 0.8 0.3
change(axy) 0.4 0.4 0.4 0.2
entropy(az) 0.3 0.2 0.3 0.8
entropy(axy) 0 0 0.8 0.3
Height 0 0.1 0.2 0.1
Weight 0.5 0.4 0.1 0.3
BMI 0.1 0.1 0.2 0.1
Shoe Size 0.2 0.4 0.1 0
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Fig. 5. Bland-Altman plots of step length and foot clearance under two
measurement conditions: robot-only and robot-and-insoles with SVR. The y
axes represent the difference between estimates and reference data. Limits of
agreement are specified as average error (black and red solid lines)±1.96SD
(black and red dashed lines).

a particular choice of features and hyperparameters, the GA
cost function was then calculated as the mean of k RMSE
scores.

To reduce computational time, we narrowed down the list
of candidate hyperparameters values to the following, based
on a previous study [37]: C ∈ [1 2 5 10 50 100 200],
ε ∈ [0.1 0.2 0.5 0.8 1 1.5 2 2.5 3]. Model training and
testing were conducted on a 4 GHz Intel R© CoreTM i7-6700K
using MATLAB (The Mathworks Inc., Natick, MA). For
each gait parameter, it took less than 30 minutes to train
and approximately 0.01 seconds to test the SVR model.

V. RESULTS

Subjects’ walking speed varied from 50.2 to 101.7 cm/s
(82.2±5.1 cm/s, mean and SD), stride length varied from
77.7 to 134.0 cm (109.2±8.1 cm), foot clearance varied
from 10.4 to 17.2 cm (12.9±1.1 cm), step length varied
from 38.4 to 68.3 cm (54.5±4.2 cm).
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Fig. 6. RMSE of the estimates of stride length, velocity, foot clearance, and
step length. R, I, LASSO and SVR represent four measurement conditions:
robot-only, insoles-only, insoles-and-robot with LASSO, and insoles-and-
robot with SVR. Error bars indicate±1SE. • indicates p < 0.01; ∗ indicates
p < 0.05.

Table I shows the selection ratio3 of each feature for the
SVR models. The best hyperparameters (C, ε) determined
by the GA were (200, 0.5) for SL, SV and ST. For FC,
the optimal hyperparameters were (5, 0.1). Figure 5 shows
Bland-Altman plots of step length and foot clearance under
two measurement conditions: robot-only and robot-and-
insoles with SVR.

Fig. 6 shows the RMSE and the standard error (SE) of the
estimated gait parameters with respect to the ground truth
under the four conditions of interest. Wilcoxon signed-rank
test was applied to assess significant (α < 0.05) differences
among the conditions. Bonferroni-Holm method was used to
correct for the familywise error rate. Both LASSO and SVR
models yielded significantly smaller RMSE than the other
two conditions. Additionally, SVR outperformed LASSO in
all gait parameters. When used independently, the insoles
produced more accurate estimations of stride length, stride
velocity and foot clearance than the robot.

VI. DISCUSSION

This paper proposed the use of an autonomous mobile
robot and custom-engineered instrumented insoles to conduct
gait analysis. The study is motivated by the need for a
robot companion to engage older adults in walking exercises,
where accurate estimates of the gait parameters are necessary
not only to provide feedback to the robot’s controller but
also to assess the subject’s progress (in terms of ambulatory
function) longitudinally, across the exercise sessions. We
therefore sought to improve accuracy by developing machine

3For each gait parameter, the selection ratio of one feature is defined as
the ratio between the number of folds the feature has been selected (in the
leave-one-out cross-validation) and the total number of subjects.



learning models to combine data from the robot’s on-board
RGB-D sensor and from the insoles.

The errors in stride length, stride velocity, foot clearance,
and step length were significantly smaller when combining
data from the two subsystems (i.e., the robot and the insoles).
These estimates also outperformed the accuracy reported in
previous studies on the use of wearable sensor or robot’s
on-board RGB-D sensor to measure gait parameters (Table
II). The key benefit of the instrumented insoles lies in their
reliable estimates of temporal parameters, which can be
directly derived from embedded multi-cell piezoresistive sen-
sors at a fast sample rate (500 Hz). Besides featuring a much
slower sample rate (30Hz), Kinect can only approximate the
occurrence of gait events based on virtual marker data. Con-
versely, the key advantages of Kinect relative to the insoles
used in this study are the possibility to retrieve consistent,
drift-free spatial parameters as well as estimate inter-limb
parameters, such as step length, which are associated with
adverse outcomes of fall risk in a range of populations [9],
[18].

Compared to previous research in mobile gait measure-
ment systems using LRS, the combined models based on
SVR yielded more accurate estimates (Table II). For exam-
ple, Chalvatzaki and colleagues [11], [12] applied Hidden
Markov Models to extract stride length from lower-limb
movements detected by a robot’s on-board LRS, and obtained
round to 8.0% mean absolute error. This is likely due to
the fact that LRS can only obtain planar information of the
leg position at a fixed height [9], as opposed to foot/ankle
displacements. Because the ankle plantar-dorsiflexion angle
changes during the stance phase of the gait cycle, the position
of the foot cannot be directly inferred by tracking the shank.
Additionally, LRS might misdetect the subject’s legs with
other persons’ legs, or even tables or chair legs [13], thus
making robust detection difficult.

Most of the previous research on the Kinect relied on high
degree of freedom skeletal models to track the human body.
Although such techniques are capable of extracting foot-
level gait parameters, they often suffer from problems of
instability, especially with noisy data. Besides, the accuracy
of Kinect decreases significantly as the distance between the
robot and the subject increases [17], [18]. Furthermore, the
performance of the Kinect degrades when occlusions and leg
overlapping occur during turns of the subject. Therefore, we
implemented SVR models to reduce systematic bias from
Kinect data. As expected, SVR outperformed LASSO in
all the analyzed gait parameters. This suggests that linear
models might oversimplify the underlying relationship be-
tween actual gait parameters and raw estimates obtained
from the two subsystems. While SVR models proved to be
more effective than LASSO models, their accuracy heavily
depends on the input features, regularization coefficient, and
error margin. For these reasons, we proposed a simple yet
effective heuristic method to select input features and tune
SVR models. In general, for all the gait parameters, the most
relevant features in the SVR models were the raw estimates
pI and pR (selection ratio 1.0). For stride length, Swing%

TABLE II
The accuracy of stride length (SL), stride velocity (SV), foot clearance
(FC), and step length (ST) estimated by different systems. The last row
presents the results of our proposed SVR model and fusion algorithm.

Ref. System Task MAE%
SL SV FC ST

[29] IMU Straight 7.8% — — —
[25] IMU Straight >2.0% — >4.0% —
[49] IMU Straight >2.0% — >4.0% —
[24] IMU Curve >2.0% >2.0% >7.5% —
[14] RGB-D Straight — >3.0% — >4.0%
[13] RGB-D Straight 2.0% — — —
[9] LRS Straight — — — >8.0%
[11] LRS Straight 8.0% — — —
[34] IMU+LRS Curve — 2.0% — —
SVR IMU+RGB-D Curve 1.5% 1.4% 4.0% 3.4%

and sum(az) were also recurrent features. This suggests
that stride length correlates with the duration of the swing
phase and with the vertical acceleration of the foot at push-
off and heel-strike (intuitively, longer strides imply longer
swing periods and larger propulsive and braking forces [47],
[48]). Stride velocity can be computed as the integral of
the horizontal acceleration of the foot over time, thereby
explaining the correlation found with sum(axy). For step
length, it is worth noting that SVR models did not include
the raw estimates from the insoles because these in-foot
devices cannot measure spatial inter-limb parameters. The
modest accuracy of the Kinect sensor in measuring linear
displacements becomes apparent when such displacements
are relatively small, as in case of the foot clearance (Fig.
5). Indeed, the Kinect estimates for this parameter did not
correlate well with the ground-truth values. Interestingly, the
anthropometric features were not consistently included in
the optimal set of features. This is likely due to the limited
heterogeneity of the study sample.

VII. CONCLUSION

This paper presented the design of a mobile gait mea-
surement system consisting of an autonomous mobile robot
equipped with an RGB-D sensor and instrumented insoles.
We focused on the validation of the system as a tool
to measure clinically meaningful stride-to-stride kinematic
gait parameters during straight walking and turning. Results
confirmed our hypothesis that the combined use of robot
RGB-D sensor and in-shoe sensors increases the accuracy
of the gait estimates, and that machine learning models (i.e.,
the SVR method) are more effective than linear models (i.e.,
the LASSO method) in reducing systematic errors in the
estimates. It is worth noting that the proposed methods do
not rely on subject-specific training data, and therefore can
be applied even without the need for a reference system to
collect ground-truth data. Future work includes validating
the proposed methods in extended-time measurements with
a heterogeneous group of participants (e.g., older adults with
gait disorders). The developed system will be further used to
engage older adults in walking exercises with gait parameter
monitoring and progress assessment.
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