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ABSTRACT

Information on the 5d level centroid shift (εc) of rare-earth ions is critical for determining the chemical shift and the Coulomb repulsion
parameter as well as predicting the luminescence and thermal response of rare-earth substituted inorganic phosphors. The magnitude of εc
depends on the binding strength between the rare-earth ion and its coordinating ligands, which is difficult to quantify a priori and makes
phosphor design particularly challenging. In this work, a tree-based ensemble learning algorithm employing extreme gradient boosting is
trained to predict εc by analyzing the optical properties of 160 Ce3+ substituted inorganic phosphors. The experimentally measured εc of
these compounds was featurized using the materials’ relative permittivity (εr), average electronegativity, average polarizability, and local
geometry. Because the number of reported εr values is limited, it was necessary to utilize a predicted relative permittivity (εr,SVR) obtained
from a support vector regressor trained on data from ∼2800 density functional theory calculations. The remaining features were compiled
from open-source databases and by analyzing the rare-earth coordination environment from each Crystallographic Information File. The
resulting ensemble model could reliably estimate εc and provide insight into the optical properties of Ce3+-activated inorganic phosphors.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012434

I. INTRODUCTION

Phosphor-converted white light-emitting diodes (pc-wLEDs)
have gained significant attention because they are less toxic than
fluorescent lamps and consume less energy than incandescent light
bulbs.1,2 In a typical pc-wLED, a rare-earth substituted inorganic
phosphor is excited by blue or near-ultraviolet light from an LED
chip. The absorbed photons are then down-converted and re-emitted
at longer wavelengths.3 The resulting combination of the higher
energy LED emission and the lower energy phosphor emission
covers the entire visible spectrum, thereby appearing as white light.
In general, the color quality of this white light is primarily controlled
by the phosphor’s optical properties, which stem from the rare-earth
ion’s parity-allowed electric dipole 5d↔ 4f transition. The magni-
tude of the d–f separation is particularly significant because it sets
the position of the absorption and emission energies. More impor-
tantly, it can be manipulated by varying the interaction between the
rare-earth 5d-orbitals and the neighboring anion ligands.

Ce3+ substituted materials are among the most widely explored
rare-earth containing phosphors due to their unique luminescent
properties such as broad and highly efficient emission. Typically,
the energy gap between the 4f orbitals and the centroid position of
the five 5d orbitals for a free Ce3+ ion in vacuum occurs deep in
the ultraviolet region of the electromagnetic spectrum (∼6.35 eV;
51 200 cm−1). The 5d levels can be stabilized (decreased) in energy
relative to the free ion ground state by surrounding the cation with
anions, called the nephelauxetic effect. This change can be quanti-
fied as the 5d centroid shift (εc).

4 Additional energy stabilization
can also be achieved by varying the different degrees of covalency
and geometry of the cation–anion interaction, known as crystal
field splitting (εcfs).

5–7 The optical properties of a phosphor can be
reasonably assessed with the knowledge of the centroid shift and
crystal field splitting of the 5d energy levels.

Studies have revealed the coordination number, polyhedron
size, and degree of polyhedron distortion around the Ce3+ ion
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control the crystal field splitting of the 4fn−15d-levels, whereas the
anion type is generally irrelavent.8–12 This is in contrast to the cen-
troid shift, which is suggested to be closely associated with the
anion ligands. The instantaneous position of Ce3+ electrons polar-
ize the anion ligands, which results in a self-induced potential that
reduces the inter-electron Coulomb repulsion between the Ce3+

electrons and causes the centroid energy of the 5d levels to lower.13

The centroid shift is further influenced by the covalency of the
bonding within the crystal structure.14 Indeed, a significant degree
of covalency appears to induce a more substantial nephelauxetic
effect, and thus, a large value of εc. For example, the bonds in
nitrides and oxynitrides generally exhibit stronger covalency than
oxides.15 As a result, nitride and oxynitride compounds cause a
more significant downward shift of the 5d energy levels than oxide
hosts, correlating to a more substantial centroid shift εc.

16–22

Considering both the ligand polarization and covalency
models, εc can be estimated following Eq. (1) based on the polariz-
ability of N coordinating anion ligands at distance Ri from the
rare-earth, in this case, Ce3+,8,9

εc ¼ 1:79� 1013αsp

XN

i¼1

1

(Ri � fΔR)6
, (1)

where αsp is the spectroscopic polarizability of the anion, ΔR is the
ionic radius difference between Ce3+ and the cation for which it
substitutes, and f is the correction parameter that accounts for the
relaxation of the neighboring anions induced by the rare-earth sub-
stitution. αsp is a phenomenological parameter that is not only
related to the average polarizability of the N nearest anionic neigh-
bors around Ce3+ but also represents the covalency within the
structure. Unfortunately, quantitatively assessing αsp remains chal-
lenging. Thus, it is not always straightforward to predict centroid
shift values using this equation.

Relative permittivity (εr), also called the dielectric constant,
provides information on polarizability and covalency that can be
explicitly measured or calculated,23,24 making it an obtainable
proxy for αsp.

6 In general, εr varies significantly depending on the
material, temperature, frequency of applied field, and other param-
eters. Nevertheless, it provides information on the type of bonding
in a compound. Materials with a small εr tend to have more ionic-
like interactions, such as fluorides, whereas materials with a large
εr tend to be more covalent-like interactions, such as nitrides and
sulfides. The value of the relative permittivity can be experimentally
obtained from the comparison of the capacity of an air-filled capac-
itor with that of the same capacitor containing the dielectric sub-
stance under specified temperature and frequency. However, these
measurements are relatively uncommon, and thus the number of
experimentally measured values is small. Fortunately, εr is an
intrinsic material property that can also be estimated using density
functional theory (DFT), allowing for the potential of high-
throughput implementation.25 There are still considerable chal-
lenges in computationally determining εr; most notably, calculating
εr using DFT is computationally expensive. DFT can also not easily
account for atomic disorder, like site sharing, which is common in
inorganic phosphor hosts, and it is currently restricted to smaller
unit cells containing typically fewer than one hundred atoms.
These limitations have permitted εr to be calculated for only a few

thousand ordered crystalline compounds, or <10% of the reported
inorganic solids. Luckily, the implementation of machine learning
provides an avenue to vastly expand the number of εr values avail-
able with minimal computational cost.

Machine learning has become a valuable tool for the develop-
ment of optical materials like inorganic scintillators, inorganic
phosphors, and inorganic photovoltaics, among other property-
specific problems.26–32 Embedding machine learning into the phys-
ical and chemical sciences not only accelerates the discovery of new
materials but also provides insightful knowledge on composition–
structure–property relationships. For example, a model based on
chemical compositions and electronic structure calculations was
recently developed to predict the Coulomb repulsion energy and
chemical shift for lanthanide ions in a compound. In combination
with the key experimentally measured parameters and the physical-
based empirical models, the machine learning model can predict
the 4f ground state and 5d1 excited state electronic configurations
of the lanthanide dopant relative to the band edges of the host
material, which enables the fast screening for potential candidates
in a high-throughput manner.31

In this work, we employ a combination of compositional and
structural descriptors to build a machine learning regression model
that first predicts relative permittivity. This model is trained using
∼2800 εr,DFT values extracted from the Materials Project, and
allows us to expand our database of εr,SVR values to ∼280 000
compositions that are compiled in Pearson’s Crystal Database
(PCD). We then use a tree-based ensemble learning method imple-
menting extreme gradient boosting (XGB) to predict the centroid
shift (εc,XGB) for Ce3+-activated inorganic phosphors using a
descriptor set including the machine-learning derived relative per-
mittivity as well as average cation electronegativity, average anion
polarizability, structure condensation, and Ce3+ coordination envi-
ronment. Our successful development of a machine learning
method to approximate the centroid shift is a key step to interpret
and predict the luminescence properties of inorganic phosphors.
Moreover, the centroid shift data combined with luminescence
spectroscopy can provide insights into the chemical shift of
4f-electron binding energy.33

II. EXPERIMENTAL

A. Relative permittivity data extraction and model
construction

The machine learning model to predict εc first requires εr,SVR
as a descriptor. εr,DFT of 4867 compounds were therefore extracted
from the Materials Project database.25 The Materials Project calcu-
lates εr,DFT using a high-throughput framework based on Density
Functional Perturbation Theory (DFPT).34–36 In some cases, nega-
tive values of εr,DFT are present in the database; these were removed
from the final training data set. The number of compositions was
further reduced to 2991 after cross-referencing with PCD37 to
ensure that all the phases used for machine learning are also
experimentally reported, i.e., hypothetical crystal structures
were removed. The data distribution plot is provided in the supple-
mentary material (Fig. S1). About 5% of the data possess an
εr,DFT > 20 and these tend to be transition metal-containing com-
positions. The multiple oxidation states and narrow (or zero)
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bandgap makes these compositions unsuitable as phosphor hosts.
Thus, these compounds were also removed by fixing the learning
window to 0 < εr,DFT < 20. Compounds with elements from group 18
(noble gases) and Z > 83 (except for U and Th) were also excluded.
These criteria reduced the final training set to 2832 compounds.

The descriptors used in this study included 17 distinct compo-
sitional variables describing elemental properties such as position
on the periodic table, electronic structure, and physical properties
as well as their associated math expressions (difference, average,
largest value, smallest value, and standard deviation). Additionally,
13 structural descriptors related to variables, including crystal
system, space group, and unit cell volume, among others,
were incorporated in the machine learning algorithm. The full list
of descriptors and mathematical expressions is available in the
supplementary material (Table S1). In total, 98 descriptors were
used to build the model.

The 2832 × 98 data matrix was split into a random train and
test subsets with a 9:1 ratio. The training set was then standardized
to have a mean of 0 and a variance of 1, and the test set was trans-
formed using the same scalar as the training set. The machine learn-
ing model was constructed using a support vector regression (SVR)
algorithm with the radial basis function (RBF) kernel.38 A grid
search, which exhaustively evaluates all parameter combinations, was
performed on the training set with a 10-fold cross-validation method
to choose the best hyper-parameter settings. The searching space was
defined as cost (C) values ranging in the log space [0, 0.25, 0.5, 0.75,
1, 1.25, 1.5, 1.75, 2], and epsilon values in the real space [0.001, 0.01,
0.1, 1], where cost is the regularization term and epsilon specifies the
epsilon-tube within which no penalty is associated in the training
loss function. The scikit-learn python implementations of these
learning algorithms were used.39

B. Centroid shift data extraction and model
construction

The development of the machine learning model to predict
the centroid shift of Ce3+-activated phosphors involved extracting
219 experimentally reported host compositions and the associated
εc values from the literature.5,7–11,40 Before training, data were
examined according to two primary criteria. First, phosphors hosts
that do not have a reliable crystal structure reported were omitted.
The second criterion is that Ce3+ must have a single, chemically
obvious substitution site or a site that was specifically studied and
reported in the paper if the compound contains multiple substitu-
tion sites. The final number of training labels was reduced to 160
phosphors. Eight features, including relative permittivity, which
was predicted using the first εr,SVR model, weighted average cation
electronegativity, weighted average anion polarizability, and local
environment related descriptors, were employed to characterize
these phosphors. A train-test splitting ratio of 9:1 was also used to
randomly split the data into two subsets.

The tree-based extreme gradient boosting (XGB) algorithm
was selected to train the centroid shift model owing to its effective-
ness in obtaining satisfactory results with small data sets while con-
trolling overfitting.41 The model was gradient boosted for 50
rounds with a learning rate of 0.15 and a maximal tree depth of 3.
These actions were carried out using the scikit-learn API.39

III. RESULTS AND DISCUSSION

A. Modeling relative permittivity

The objective of SVR is to find a multi-dimentional function, f
(x), that deviates from the training label by a value no greater than
epsilon (ε) for each training sample and is simultaneously as flat as
possible. The x in f(x) is a set of feature vectors that represent the
compounds and the solution of f(x) is the predicted centroid shift
value. A regularization parameter, C, also called cost, is introduced
to control the compromise between model accuracy and flatness.
As C increases, the strength of the regularization increases and
then the tolerance for data outside of ε increases. As C approaches
0, the tolerance approaches 0 and the equation collapses into the
simplified one. The two parameters, C and ε, must first be opti-
mized to maximize the model performance. Conducting a grid
search for the free parameters, provided in the supplementary
material (Fig. S2), shows that values of C = 101.75 (≈56.23) and
ε = 0.1 give the best model performance based on the model statis-
tics, i.e., coefficient of determination (r2) and mean absolute error
(MAE).

The εr was trained using these parameters and 2832 training
labels collected from the Materials Project. Figure 1 shows the
training data distribution. Over half of the compositions have a
DFT-calculated relative permittivity (εr,DFT) below 5, and ≈95%
have an εr,DFT ≤ 12.5. The SVR model was evaluated with a test set,
which was obtained from randomly selecting 10% of the data
before training and completed unseen by the model. As shown in
Fig. 2, the histograms at the top and right show that both the
DFT-calculated relative permittivity (εr,DFT) and the machine
learning predicted values (εr,SVR) in the test set represent the distri-
bution of the entire training labels well. Acceptable agreement is
obtained between εr,DFT and εr,SVR with the coefficient of

FIG. 1. Data distribution of 2832 training samples that were calculated with
DFT. The bars represent the total counts in each bin, and the curve represents
the cumulative percentage.
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determination (r2), and mean absolute error (MAE) being 0.93 and
0.65, respectively. 246 out of 284 (87%) compounds in the test set
were predicted with an error of less than 25%. There is a slight but
noticeable underestimation for 12.5 < εr≤ 20, which is most likely
due to the limited number of training samples in this region.
Nevertheless, this model is useful to estimate εr,SVR for over
270 000 compounds compiled in PCD.

B. Connecting relative permittivity to the centroid shift
prediction

To build the centroid shift model, 219 experimentally mea-
sured centroid shift (εc) data were collected from the literature for
Ce3+-activated inorganic phosphors. Data reduction was then per-
formed. For example, although εc data are available for BaCaBO3F
and Sr2SiO4, they were excluded because there is no clear informa-
tion on the Ce3+ substitution site or the associated optical proper-
ties stemming from substitution on each site. Indeed, the obtained
value of εc for these systems could stem from Ce3+ occupying
several crystallographic sites. This ambiguity can cause issues in
machine learning; thus, these data were removed. Data sanitization
reduced the final training set to 160 data, including 53 (oxy)
halides, 85 oxides, 5 sulfides, 2 selenides, and 15 nitrides. All of
these phosphors contain a single substitution site, or if multiple
crystallographic sites are present, the rare-earth site occupancy was
specifically investigated and reported in the literature. The data are
provided in the supplementary material (Table S2).

Analyzing these data by plotting εc against the type of anions
present in the composition [Fig. 3(a)] demonstrates that the cen-
troid shift tends to follow some trends. Fluorides have the smallest
εc as dictated by the ionic bonding of these phases, whereas sul-
fides, selenides, and nitrides possess a relatively larger εc values
resulting from their more covalent bonding. Although a crude esti-
mation of εc can be made based on the anions present in the host
compounds, εc may still vary greatly for compounds that are com-
posed of the same type of anion. This variation is particularly
noticeable for oxides and nitrides. One possible explanation is that
the susceptibility of O2− and N3− to the electronegativity of the sur-
rounding cations is larger than anions such as F−. In other words,
the anion polarizability and covalency are affected more strongly by
the cations in oxides and nitrides, leading to greater variability in
the properties. This observation is a bit unfortunate because these
compound types are among the most common classes of inorganic
phosphor hosts, yet, they have the biggest range of centroid shifts.

The same general trend was also observed in the plot of εr,SVR
against the type of anions. Because the experimentally measured or
DFT calculated relative permittivity for these 160 compositions is
unknown, the εr,SVR model was used for this comparison. As
shown in Fig. 3(b), εr,SVR in general shows a trend as
I− > Br− > Cl− > F− in halides, and sulfides, selenides, and nitrides
possess a larger εr,SVR than oxides. These trends agree well with
those in εc, as expected. There is a slightly larger spread in this
plot, however, meaning that using εr,SVR solely to predict εc is
subject to error. For example, although LaPO4:Ce

3+ and GdAlO3:
Ce3+ have a very close εr,SVR (4.23 and 4.25, respectively), they

FIG. 2. Predicted relative permittivity (εr,SVR) vs DFT-calculated relative permit-
tivity (εr,DFT) is shown for a 10% holdout test set. The ideal line is shown as the
dashed gray line and the fit line is shown as the solid yellow line. The curves at
the top and right show the histograms of the data.

FIG. 3. (a) The centroid shift (εc) and (b) the machine learning obtained relative
permittivity (εr,SVR) for Ce

3+ inorganic compounds displayed against the type of
anions. The darker regions represent a higher density of data points.
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show a large discrepancy in εc (εc = 1.07 eV for LaPO4:Ce
3+ and

εc = 1.70 eV for GdAlO3:Ce
3+).7,42,43 The failure stems from the fact

that a simple descriptor like εr,SVR is not sufficient to account for
all of the impacting factors of the centroid shift, such as the size
effect. For instance, permittivity can be expressed as a sum of con-
tributions from the different atoms in a compound, and a large
cation, such as Cs+, takes a large volume of the lattice, but it may
not contribute much to the permittivity. However, its large size
most likely leads to a smaller εc, according to Eq. (1).

C. Machine learning the centroid shift

The ability to predict the centroid shift is clearly multi-
dimensional. An ensemble learning method was therefore con-
structed to predict εc accurately with features chosen based on
numerical equations for centroid shift and the crystal structures.
The features and the corresponding notations used in this work are
provided in Table I, and includes εr,SVR, average cation electronega-
tivity defined in Eq. (2),

χav ¼
P

niziχiP
nizi

, (2)

where ni is the stoichiometric index of cation i with charge zi and
χi is the Pauling electronegativity.44 The average anion polarizabil-
ity is calculated from Eq. (3),

αav ¼
P

meαeP
me

, (3)

where me is the stoichiometric index of anion e, and αe is the polar-
izability. In addition, ΔR is the difference between the ionic radius
compiled by Shannon of Ce3+ and the cation (RM) for which Ce3+

substitutes.45 The final descriptor is condensation (cond.), which is
the ratio between the number of anions and the number of cations
contained in the chemical formula.

The model was subsequently trained using a tree-based XGB
algorithm with 10% of the data held out for model evaluation. To
account for randomness in the test data selection, ten different test
sets were examined, which yielded an average r2 of 0.90. Figure 4(a)
shows the results from one of these test sets. The detailed statistics
are provided in the supplementary material (Table S3). The statis-
tics of the test set prediction show compelling agreement between

εc,exp and εc,XGB with a root-mean-squared error (RMSE) of
0.18 eV and a mean absolute error (MAE) of 0.13 eV. These results
indicate that the feature set does a reasonable job determining a
Ce3+ phosphor’s centroid shift.

Analyzing the feature importance in this model can provide
insight into the crystal-chemical properties that control the centroid
shift. Different feature importance matrices are accessible from the
XGB model. The principle of developing a tree is that a new split
on a node will be added only if the split results in a more accurate
prediction. The gain can quantify the improvement in accuracy due
to the split of a specific feature at a node. The gain in feature
importance is the total gain across all splits in which the feature is
used, implying the relative contribution of the corresponding
feature to the model. As shown in the top panel of Fig. 4(b), the
average anion polarizability (αav) has a significantly higher absolute
gain than all other features demonstrating it is the most important
feature for predicting εc. Moreover, relative permittivity and
average cation electronegativity (χav) also show a non-negligible
influence on the model performance, while the remaining five fea-
tures have a minimal total gain. Although the remaining five fea-
tures have low gain, removing them from the model and
re-training leads to considerably worse performance. All of the
descriptors are essential to obtain εc,XGB.

Feature importance can also be evaluated based on the cover-
age matrix, which describes the relative quantity of samples related
to a feature. Here, the trend is slightly different. As shown in the
bottom panel of Fig. 4(b), the coverage matrix suggests that εr,SVR

TABLE I. The feature set used to predict the centroid shift modeled using XGB.

Variable Notation

Relative permittivity εr,SVR
Average cation electronegativity χav
Average anion polarizability αav

Ionic radius RM

Difference in radius ΔR
Average bond length Rav

Coordination number N
Condensation cond.

FIG. 4. (a) Machine learning predicted centroid shift (εc,XGB) against the experi-
mentally measured centroid shift (εc,exp). The test set plotted here represents
10% of the training set. The ideal line is shown as the dashed gray line and the
fit line is shown as the solid red line. (b) Feature importance of the XGB model
in terms of gain and coverage.
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is the most crucial feature in the coverage matrix. More than 5000
observations were associated with the split of εr,SVR in the boosting
process. αav and χav relate to ∼2500 observations, while RM is the
least important although it still influences 989 observations.
Overall, εr,SVR, χav, and αav are the three most essential features
related to the centroid shift regardless of the feature importance
matrix. Not surprisingly, the average anion polarizability is more
correlated to the centroid shift than the average cation electronega-
tivity. The local geometry of the luminescent center and condensa-
tion contribute less to the model yet, they are still necessary to
predict εc.

It is vital to quantitatively estimate the position of the
5d-excited states for rare-earth ions in host crystal structures for
designing inorganic phosphors. A phosphor with a large centroid
shift tends to have a longer wavelength emission and using this pre-
diction of centroid shift makes it possible to roughly estimate the
emission color. The ability to predict εc even with moderate quanti-
tative accuracy will allow researchers to accelerate phosphor discov-
ery by performing a top-level screening of new phosphor hosts
with desired optical properties. Moreover, the εc model can be
combined with the knowledge of crystal field splitting and the
phosphor host’s bandgap to predict the location of 5d levels with
respect to the bottom of the conduction band.40 This combination
would provide insight into the thermal quenching behavior of the
phosphor that has thus far remained largely empirical.

IV. CONCLUSIONS

Combining high-throughput DFT calculations and machine
learning techniques provides a unique framework to predict the rel-
ative permittivity of over 270 000 compounds compiled in inor-
ganic structure databases. The predicted relative permittivity was
then combined with chemical properties and local geometry of 160
Ce3+-activated phosphors to predict the centroid shift. Ensemble
learning methods were successfully employed to predict the values
of the centroid shift, which is beneficial to interpret and predict the
luminescence properties and thermal quenching behaviors for Ce3
+-doped phosphors. The results combined with the information of
crystal field splitting can also be extended into the estimation of
properties of other rare-earth doped materials, for example, the Eu2
+ inter 4f-electron Coulomb repulsion energy in compound. In
addition, the predicted εc model serves as a starting point to gener-
ate the binding energy of electrons at the top of the valence band.
This information is not only of interest for luminescence but also
for many other disciplines of science such as photo-catalytic
splitting of water, battery potentials, valence band offsets in semi-
conductor hetero-junction or in core shell particles among applica-
tions. Further tuning and improvement of these models for εc has
the potential to make a broad impact on assisting the development
of numerous functional inorganic materials.

SUPPLEMENTARY MATERIAL

See the supplementary material for the feature set of the rela-
tive permittivity model (Table S1); centroid shift training lables
(Table S2); centroid shift model statistics of ten randomly generated
test sets (Table S3); relative permittivity data distribution (Fig. S1);

and the plot of parameter optimization for cost and epsilon
(Fig. S2).
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