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Abstract
In this paper, we investigate the sample size requirement for exact recovery of a
high-order tensor of low rank from a subset of its entries. We show that a gradient
descent algorithmwith initial value obtained from a spectral method can, in particular,
reconstruct a d × d × d tensor of multilinear ranks (r , r , r)with high probability from
as few as O(r7/2d3/2 log7/2 d + r7d log6 d) entries. In the case when the ranks r =
O(1), our sample size requirementmatches those for nuclear normminimization (Yuan
and Zhang in Found Comput Math 1031–1068, 2016), or alternating least squares
assuming orthogonal decomposability (Jain andOh inAdvances inNeural Information
Processing Systems, pp 1431–1439, 2014). Unlike these earlier approaches, however,
our method is efficient to compute, is easy to implement, and does not impose extra
structures on the tensor. Numerical results are presented to further demonstrate the
merits of the proposed approach.
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1 Introduction

Let T ∈ Rd1×···×dk be a kth-order tensor. The goal of tensor completion is to recover
T based on a subset of its entries {T (ω) : ω ∈ "} for some " ⊂ [d1] × · · · × [dk]
where [d] = {1, 2, . . . , d}. The problem of tensor completion has attracted a lot of
attention in recent years due to its wide range of applications. See, e.g., Li and Li [19],
Sidiropoulos and Nion [29], Tomioka et al. [30], Gandy et al. [13], Cohen and Collins
[7], Liu et al. [20], Anandkumar et al. [2], Mu et al. [23], Semerci et al. [28], Yuan and
Zhang [33] and references therein. In particular, the second-order (matrix) case has
been extensively studied. See, e.g., Candèes andRecht [5],Keshavan et al. [17], Candès
and Tao [6], Gross [14], Recht [26] among many others. One of the main revelations
from these studies is that, although the matrix completion problem is in general NP-
hard, it is possible to develop tractable algorithms to achieve exact recovery with high
probability. Naturally, one asks if the same can be said for higher-order tensors. This
seemingly innocent task of generalizing from second- to higher-order tensors turns
out to be rather delicate.

The challenges in dealing with higher-order tensors come from both computational
and theoretical fronts. On the one hand, many of the standard operations for matrices
become prohibitively expensive to compute for higher-order tensors. A notable exam-
ple is the computation of tensor spectral norm. For second-order tensors, or matrices,
the spectral norm is merely its largest singular value and can be computed with little
effort. Yet, this is no longer the case for higher-order tensors where computing the
spectral norm is NP-hard in general (see, e.g., [15]). On the other hand, many of the
mathematical tools, either algebraic such as characterization of the subdifferential of
the nuclear norm or probabilistic such as concentration inequalities, essential to the
analysis of matrix completion, are still under development for higher-order tensors.
There is a fast-growing literature to address both issues, and much progress has been
made in both fronts in the past several years.

When it comes to higher-order tensor completion, an especially appealing idea
is to first unfold a tensor into a matrix and then treat it using techniques for matrix
completion. Notable examples include Tomioka et al. [30], Gandy et al. [13], Liu
et al. [20], Mu et al. [23] among others. As shown recently by Yuan and Zhang
[33], these approaches, although easy to implement, may require an unnecessarily
large amount of entries to be observed to ensure exact recovery. As an alternative,
Yuan and Zhang [33] established a sample size requirement for recovering a third-
order tensor via nuclear norm minimization and showed that a d × d × d tensor with
multilinear ranks (r , r , r) can be recovered exactly with high probability with as few
as O((r1/2d3/2+r2d)(log d)2) entries observed. Perhaps more surprisingly, Yuan and
Zhang [34] later showed that the dependence on d (e.g., the factor d3/2) remains the
same for higher-order tensors, and we can reconstruct a kth-order cubic tensor with
as few as O((r (k−1)/2d3/2 + rk−1d)(log d)2) entries for any k ≥ 3 when minimizing
a more specialized nuclear norm devised to take into account the incoherence. These
sample size requirements drastically improve those based on unfoldingwhich typically
require a sample size of the order r &k/2'd(k/2)polylog(d) (see, e.g., [23]). Although
both nuclear norm minimization approaches are based on convex optimization, they
are also NP-hard to compute in general. Many approximate algorithms have also been
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proposed in recent years with little theoretical justification. See, e.g., Kressner et al.
[18], Rauhut and Stojanac [24], and Rauhut et al. [25]. It remains unknown whether
there exist polynomial time algorithms that can recover a low-rank tensor exactly
with similar sample size requirements. The goal of the present article is to fill in the
gap between these two strands of research by developing a computationally efficient
approach with a tight sample size requirement for completing a third-order tensor.

In particular, we show that there are polynomial time algorithms that can reconstruct
a d1 × d2 × d3 tensor with multilinear ranks (r1, r2, r3) from as few as

O
(
r1r2r3(rd1d2d3)1/2 log7/2 d + (r1r2r3)2rd log6 d

)

entries where r = max{r1, r2, r3} and d = max{d1, d2, d3}. This sample size require-
ment matches those for tensor nuclear norm minimization in terms of its dependence
on the dimensions d1, d2 and d3 although it is inferior in terms of its dependence
on the ranks r1, r2 and r3. This makes our approach especially attractive in practice
because we are primarily interested in high-dimension (large d) and low-rank (small r )
instances. In particular, when r = O(1), our algorithms can recover a tensor exactly
based on O(d3/2 log7/2 d) observed entries, which is nearly identical to that based
on nuclear norm minimization. It is also worth noting that the sample size require-
ment we obtained is comparable to those for orthogonally decomposable tensors [16].
Unlike matrices, orthogonal decomposability is a rather restrictive assumption for
higher-order tensors and our results suggest it may not be necessary after all.

It is known that the problem of tensor completion can be cast as optimization over a
direct product of Grassmannians (see, e.g., [18]). The high-level idea behind our devel-
opment is similar to those used earlier by Keshavan et al. [17] for matrix completion:
If we can start with an initial value sufficiently close to the truth, then a small number
of observed entries can ensure the convergence of typical optimization algorithms on
Grassmannians such as gradient descent to the truth. Yet, the implementation of this
strategy is much more delicate and poses significant new challenges when moving
from matrices to tensors.

At the core of our method is the initialization of the linear subspaces in which the
fibers of a tensor reside. In the matrix case, a natural way to do so is by singular value
decomposition, a tool that is no longer available for higher-order tensors. An obvious
solution is the so-called high-order singular value decomposition that unfolds tensors
into matrices and then applies the usual singular value decomposition. This, however,
requires an unnecessarily large sample size. To overcome this problem, we propose
an alternative approach to estimating the singular spaces of the matrix unfoldings of a
tensor. Our method is based on a carefully constructed estimate of the second moment
of appropriate unfolding of a tensor, which can be viewed as a matrix version U-
statistics. We show that the eigenspace of the proposed estimate concentrates around
the true singular spaces of the matrix unfolding more sharply than the usual singular
value decomposition-based approaches and therefore leads to consistent estimate with
tighter sample size requirement.

The fact that there exist polynomial time algorithms to estimate a tensor consistently,
not exactly, with O(d3/2polylog(r , log d)) observed entries was first recognized by
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Barak and Moitra [3]. Their approach is based on sum-of-square relaxations of tensor
nuclear norm. Although polynomial time solvable in principle, their method requires
solving a semidefinite program of size d3 ×d3 and is not amenable to practical imple-
mentation. In contrast, our approach is essentially based on the spectral decomposition
of a d × d matrix and can be computed fairly efficiently. Very recently, in indepen-
dent work and under further restrictions on the tensor ranks, Montanari and Sun [22]
showed that a spectral method different from ours can also achieve consistency with
O(d3/2polylog(r , log d))observed entries. The rate of concentration for their estimate,
however, is slower than ours, and as a result, it is unclear if it provides a sufficiently
accurate initial value for the exact recovery with the said sample size.

Once a good initial value is obtained, we consider reconstructing a tensor by opti-
mizing on a direct product of Grassmannians locally. To this end, we consider a simple
gradient descent algorithm adapted for our purposes. The main architecture of our
argument is similar to those taken by Keshavan et al. [17] for matrix completion. We
argue that the objective function, in a suitable neighbor around the truth and including
the initial value, behaves like a parabola. As a result, the gradient descent algorithm
necessarily converges locally to a stationary point. We then show that the true tensor is
indeed the only stationary point in the neighborhood and therefore the algorithm recov-
ers the truth. To prove these statements for higher-order tensors, however, requires a
number of new probabilistic tools for tensors, and we do so by establishing several
new concentration bounds, building upon those from Yuan and Zhang [33,34].

The rest of the paper is organized as follows: We first review necessary concepts
and properties of tensors for our purpose in the next section. Section 3 describes our
main result with the initialization and local optimization steps being treated in detail
in Sects. 4 and 5, respectively. Numerical experiments presented in Sect. 6 comple-
ment our theoretical development. We conclude with some discussions and remarks
in Sect. 7. Proofs of the main results are relegated to Sect. 8.

2 Preliminaries

To describe our treatment of low-rank tensor completion, we first review a few basic
and necessary facts and properties of tensors. In what follows, we shall denote a
tensor or matrix by a boldfaced uppercase letter, and its entries the same uppercase
letter in normal font with appropriate indices. Similarly, a vector will be denoted
by a boldfaced lowercase letter, and its entries by the same letter in normal font. For
notational simplicity, we shall focus primarily on third-order (k = 3) tensors, although
our discussion can mostly be extended to higher-order tensor in a straightforward
fashion. Subtle differences in treatment between third- and higher-order tensors will
be discussed in Sect. 7.

The goal of tensor completion is to recover a tensor from partial observations of its
entries. The problem is obviously underdetermined in general. To this end, we focus
here on tensors that are of low multilinear ranks.

For a tensor A ∈ Rd1×d2×d3 , define the matrixM1(A) ∈ Rd1×(d2d3) by the entries

M1(A)(i1, (i2 − 1)d3 + i3) = A(i1, i2, i3), ∀i1 ∈ [d1], i2 ∈ [d2], i3 ∈ [d3].
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In other words, the columns of M1(A) are the mode-1 fibers, {(A(i1, i2, i3))i1∈[d1] :
i2 ∈ [d2], i3 ∈ [d3]}, of A. We can defineM2 andM3 in the same fashion. It is clear
that M j : Rd1×d2×d3 → Rd j×(d1d2d3/d j ) is a vector space isomorphism and often
referred to as matricization or unfolding. The multilinear ranks of A are given by

r1(A) = rank(M1(A)) = dim(span{(A(i1, i2, i3))i1∈[d1] : i2 ∈ [d2], i3 ∈ [d3]}),
r2(A) = rank(M2(A)) = dim(span{(A(i1, i2, i3))i2∈[d2] : i1 ∈ [d1], i3 ∈ [d3]}),
r3(A) = rank(M3(A)) = dim(span{(A(i1, i2, i3))i3∈[d3] : i1 ∈ [d1], i2 ∈ [d2]}).

Note that, in general, r1(A) ,= r2(A) ,= r3(A).
Let U, V and W be the left singular vectors of M1(A), M2(A) and M3(A),

respectively. It is not hard to see that there exists a so-called core tensor C ∈
Rr1(A)×r2(A)×r3(A) such that

A =
r1(A)∑

j1=1

r2(A)∑

j2=1

r3(A)∑

j3=1

C( j1, j2, j3)(u j1 ⊗ v j2 ⊗ w j3), (1)

where u j , v j and w j are the j th column of U, V and W, respectively, and

x ⊗ y ⊗ z := (xi1 yi2 zi3)i1∈[d1],i2∈[d2],i3∈[d3],

is a so-called rank-one tensor. Following the notation from de Silva and Lim [10], (1)
can also be more compactly represented as a trilinear multiplication:

A = (U,V,W) · C := C ×1 U ×2 V ×3 W,

where the marginal product ×1 : Rr1×r2×r3 × Rd1×r1 → Rd1×r2×r3 is given by

A ×1 B =




r1∑

j1=1

A( j1, j2, j3)B(i1, j1)





i1∈[d1], j2∈[r2], j3∈[r3]

,

and ×2 and ×3 are similarly defined.
The collection of all tensors of dimension d1 × d2 × d3 whose multilinear ranks

are at most r = (r1, r2, r3) can be written as

A(r) =
{
(X,Y,Z) · C : X ∈ V(d1, r1),Y ∈ V(d2, r2),Z ∈ V(d3, r3),C ∈ Rr1×r2×r3

}
,

where V(d, r) is the Stiefel manifold of orthonormal r -frames in Rd . In fact, any
tensor A ∈ A(r) can be identified with a r1-dimensional linear subspace in Rd1 , a r2-
dimensional linear subspace inRd2 , a r3-dimensional linear subspace inRd3 and a core
tensor in Rr1×r2×r3 so thatA(r) is isomorphic to G(d1, r1)× G(d2, r2)× G(d3, r3)×
Rr1×r2×r3 where G(d, r) is the Grassmannian of r -dimensional linear subspaces in
Rd .
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Another common way of defining tensor ranks is through the so-called CP decom-
position which expresses a tensor as the sum of the smallest possible number of
rank-one tensors. The number of rank-one tensors in the CP decomposition of a ten-
sor is commonly referred to as its CP rank. It is not hard to see that for a tensor of
multilinear ranks (r1, r2, r3), its CP rank is necessarily between max{r1, r2, r3} and
min{r1r2, r1r3, r2r3}. We shall focus here primarily on multilinear ranks because it
allows for stable numerical computation, as well as refined theoretical analysis. In
addition, we can view a tensor of CP rank r also as a tensor with multilinear ranks no
greater than (r , r , r). This allows us to straightforwardly translate the current result
to tensors of low CP rank. However, it is worth noting this may lead to suboptimal
dependence on r .

In addition to being of low rank, another essential property that T needs to satisfy
so that we can possibly recover it from a uniformly sampled subset of its entries is the
incoherence of linear subspaces spanned by its fibers (see, e.g., [5]). More specifically,
let X be a r -dimensional linear subspace in Rd and PX : Rd → Rd be its projection
matrix. We can define the coherence for X as

µ(X ) = d
r

max
1≤i≤d

‖PX ei‖2 ,

where ei is the i th canonical basis of an Euclidean space, that is, it is a vector whose
i th entry is one and all other entries are zero. Note that

µ(X ) = max1≤i≤d ‖PX ei‖2
d−1
∑d

i=1 ‖PX ei‖2
,

for

d∑

i=1

‖PX ei‖2 = trace(PX ) = r .

Now for a tensor A ∈ Rd1×d2×d3 , denote by U(A) the linear space spanned by its
mode-1 fibers, V(A) mode-2 fibers, and W(A) mode-3 fibers. With slight abuse of
notation, we define the coherence of A as

µ(A) = max {µ(U(A)), µ(V(A)), µ(W(A))} .

Incoherence as defined here is a natural requirement for tensor recovery. It ensures
that each fiber contains similar amount of information about the whole tensor and
therefore allows for its recovery even if no entry of a particular fiber is observed. In
particular, for any rank-(r1, r2, r3) tensor A ∈ Rd1×d2×d3 ,

max
ω∈[d1]×[d2]×[d3]

|A(ω)| ≤
√

r1r2r3
d1d2d3

· [µ(A)]3/2‖A‖F,
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so, in a certain sense, the simultaneous incoherence rules out situations where some
entries might be dominating and missing them could prevent us from reconstructing
the original tensor.

In what follows, we shall also encounter various tensor norms. Recall that the vector
space inner product between two tensors X,Y ∈ Rd1×d2×d3 is defined as

〈X,Y〉 =
∑

ω∈[d1]×[d2]×[d3]
X(ω)Y (ω).

The corresponding norm, referred to as Frobenius norm, for a tensor A ∈ Rd1×d2×d3

is given by

‖A‖F := 〈A,A〉1/2.

We can also define the spectral norm of A as

‖A‖ := sup
u j∈Rd j :‖u1‖=‖u2‖=‖u3‖=1

〈A,u1 ⊗ u2 ⊗ u3〉,

where, with slight abuse of notation, we write ‖ · ‖ both as the spectral norm for a
tensor and as the usual #2 norm for a vector for brevity. The nuclear norm is the dual
of spectral norm:

‖A‖$ = sup
X∈Rd1×d2×d3 ,‖X‖≤1

〈A,X〉.

Another norm of interest is the max norm or the entrywise sup norm of A:

‖A‖max := max
ω∈[d1]×[d2]×[d3]

|A(ω)| .

The following relationships among these norms are immediate and stated here for
completeness. We shall make use of them without mentioning throughout the rest of
our discussion.

Lemma 1 For any A ∈ Rd1×d2×d3 ,

‖A‖max ≤ ‖A‖ ≤ ‖A‖F ≤
√
r1(A)r2(A)r3(A)‖A‖,

and

‖A‖$ ≤ min
{√

r1(A)r2(A),
√
r1(A)r3(A),

√
r2(A)r3(A)

}
‖A‖F.

The proof of Lemma 1 is included in Appendix A for completeness. We are now
in a position to describe our approach to tensor completion.
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3 Tensor Completion

Assume that T has multilinear ranks r := (r1, r2, r3) and coherence at most µ0; we
want to recoverT based on

(
ωi , T (ωi )

)
for i = 1, 2, . . . , nwhereωi are independently

and uniformly drawn from [d1]× [d2]× [d3]. This sampling scheme is often referred
to the Bernoulli model, or sampling with replacement (see, e.g., [14,26]). Another
commonly considered scheme is the so-called uniform sampling without replacement
where we observe T (ω) for ω ∈ " and " is a uniformly sampled subset of [d1] ×
[d2] × [d3] with size |"| = n. It is known that both sampling schemes are closely
related in that, given a uniformly sampled subset " of size n, one can always create a
sample ωi ∈ ", i = 1, . . . , n so that ωi s follow the Bernoulli model. This connection
ensures that any method that works for Bernoulli model necessarily works for uniform
sampling without replacement as well. From a technical point of view, it has been
demonstrated that working with the Bernoulli model leads to considerably simpler
arguments for a number of matrix or tensor completion approaches. See, e.g., Gross
[14], Recht [26], Yuan and Zhang [33], among others. For these reasons, we shall
focus on the Bernoulli model in the current work.

A natural way to solve this problem is through the following optimization:

min
A∈A(r)

1
2

‖P"(A − T)‖2F ,

where the linear operator P" : Rd1×d2×d3 → Rd1×d2×d3 is given by

P"X =
n∑

i=1

PωiX,

and PωX is a d1 × d2 × d3 tensor whose ω entry is X(ω) and other entries are zero.
Equivalently, we can reconstruct T = (U,V,W) · G by T̂ := (Û, V̂, Ŵ) · Ĝ where
the tuple (Û, V̂, Ŵ, Ĝ) solves

min
X∈V(d1,r1),Y∈V(d2,r2),Z∈V(d3,r3),C∈Rr1×r2×r3

1
2

‖P"((X,Y,Z) · C − T)‖2F . (2)

Recall thatX⊗Y⊗Z is a sixth-order tensor of dimension d1 ×d2 ×d3 ×r1 ×r2 ×r3.
With slight abuse of notation, for anyω ∈ [d1]×[d2]×[d3], denote by (X⊗Y⊗Z)(ω)
a third-order tensorwith the first three indices ofX⊗Y⊗Zfixed atω. By the first-order
optimality condition, we get

n∑

i=1

〈(X ⊗ Y ⊗ Z)(ωi ),C〉 (X ⊗ Y ⊗ Z)(ωi ) =
n∑

i=1

T (ωi )(X ⊗ Y ⊗ Z)(ωi ),
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so that

vec(C) =
(

n∑

i=1

vec((X ⊗ Y ⊗ Z)(ωi ))vec((X ⊗ Y ⊗ Z)(ωi ))
2
)−1

×
(

n∑

i=1

T (ωi )vec((X ⊗ Y ⊗ Z)(ωi ))

)

. (3)

Here, we assumed implicitly that n ≥ r1r2r3. In general, there may be multiple mini-
mizers to (2) and we can replace the inverse by the Moore–Penrose pseudoinverse to
yield a solution. Plugging it back to (2) suggests that (Û, V̂, Ŵ) is the solution to

max
X∈V(d1,r1),Y∈V(d2,r2),Z∈V(d3,r3)

F(X,Y,Z),

where

F(X,Y,Z) =
(

n∑

i=1

T (ωi )vec((X ⊗ Y ⊗ Z)(ωi ))

)2

×
(

n∑

i=1

vec((X ⊗ Y ⊗ Z)(ωi ))vec((X ⊗ Y ⊗ Z)(ωi ))
2
)−1

×
(

n∑

i=1

T (ωi )vec((X ⊗ Y ⊗ Z)(ωi ))

)

.

Let X̃ = XQ1, Ỹ = YQ2 and Z̃ = ZQ3, where Q j ∈ O(r j ) and O(r) is the set of
r × r orthonormal matrices. It is easy to verify that

F(X,Y,Z) = F(X̃, Ỹ, Z̃)

so that it suffices to optimize F(X,Y,Z) over

(X,Y,Z) ∈ (V(d1, r1)/O(r1)) × (V(d2, r2)/O(r2)) × (V(d3, r3)/O(r3)).

Recall that V(d, r)/O(r) ∼= G(d, r), the Grassmannian of r -dimensional linear sub-
space in Rd . Optimizing F can then be cast as an optimization problem over a direct
product of Grassmannian manifolds, a problem that has been well studied in the lit-
erature. See, e.g., Absil et al. [1]. In particular, (quasi-)Newton (see, e.g., [12,27]),
gradient descent (see, e.g., [17]) and conjugate gradient (see, e.g., [18]) methods have
all been proposed previously to solve optimization problems similar to the one we
consider here.

There are two prerequisites for any of these methods to be successful. The highly
nonconvex nature of the optimization problem dictates that even if any of the afore-
mentioned iterative algorithms converges, it could only converge to a local optimum.
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Therefore, a good initial value is critical. This unfortunately is an especially chal-
lenging task for tensors. For example, if we consider random initial values, then
a prohibitively large number, in fact exponential in d, of seeds would be required
to ensure the existence of a good starting point. Alternatively, in the second-order
or matrix case, Keshavan et al. [17] suggests a singular value decomposition-based
approach for initialization. Themethod, however, cannot be directly applied for higher-
order tensors as similar type of spectral decomposition becomes NP-hard to compute
[15]. To address this challenge, we propose here a new spectral method that is efficient
to compute and at the same time is guaranteed to produce an initial value sufficiently
close to the optimal value.

With the initial value coming from a neighborhood near the truth, any of the afore-
mentioned methods could then be applied in principle. In order for them to converge
to the truth, we need to make sure that the objective function F behaves well in
the neighborhood. In particular, we shall show that, when n is sufficiently large, F
behaves like a parabola in a neighborhood around the truth and therefore ensures the
local convergence of algorithms such as gradient descent.

We shall address both aspects, initialization and local convergence, separately in
the next two sections. In summary, we can obtain a sample size requirement for exact
recovery of T via polynomial time algorithms. As in the matrix case, the sample size
requirement depends on notions of condition number of T. Recall that the condi-
tion number for a matrix A is given by κ(A) = σmax(A)/σmin(A) where σmax and
σmin are the largest and smallest nonzero singular values of A, respectively. We can
straightforwardly generalize the concept to a third-order tensor A as:

κ(A) = max {σmax(M1(A)), σmax(M2(A)), σmax(M3(A))}
min {σmin(M1(A)), σmin(M2(A)), σmin(M3(A))}

.

Our main result can then be summarized as follows:

Theorem 1 Assume that T ∈ Rd1×d2×d3 is a rank-(r1, r2, r3) tensor whose coherence
is bounded byµ(T) ≤ µ0 and condition number is bounded by κ(T) ≤ κ0. Then there
exists a polynomial time algorithm that recovers T exactly based on {

(
ωi , T (ωi )

)
:

1 ≤ i ≤ n}, with probability at least 1 − d−α if ωi s are independently and uniformly
sampled from [d1] × [d2] × [d3] and

n ≥ C
{
α3µ3

0κ
4
0r1r2r3(rd1d2d3)

1/2 log7/2 d + α6µ6
0κ

8
0 (r1r2r3)

2rd log6 d
}
, (4)

for a universal constant C > 0, and an arbitrary constant α ≥ 1, where d =
max{d1, d2, d3} and r = max{r1, r2, r3}.

In particular, we shall show that the following algorithm indeed achieves the sample
size requirement given by Theorem 1.

The next two sections will be devoted to the analysis of the second-order spectral
algorithm and gradient descent algorithm, respectively. These results, together with
the polynomial time complexity of both algorithms, immediately imply the validity
of Algorithm 1 and hence Theorem 1.
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Algorithm 1 Tensor completion
Run the second-order spectral algorithm (Algorithm 2) to initialized U, and similarly V andW. Denote
these initial values as (U(0),V(0),W(0)).

2: Run the gradient descent algorithm (Algorithm 3) with initial value (U(0),V(0),W(0)). Denote the
output by T̂.
Return T.

4 Second-Order Method for Estimating Singular Spaces

We now describe a spectral algorithm that produces good initial values for U and V
andW based on P"T. To fix ideas, we focus on estimatingU.V andW can be treated
in an identical fashion. Denote

T̂ = d1d2d3
n

P"T.

It is clear thatE(T̂) = T so thatM1(T̂) is an unbiased estimate ofM1(T). Recall that
U is the left singular vectors ofM1(T); it is therefore natural to consider estimatingU
by the leading singular vectors ofM1(T̂). The main limitation of this naïve approach
is its inability to take advantage of the fact that M1(T̂) may be unbalanced in that
d1 4 d2d3, and the quality of an estimate of U is driven largely by the greater
dimension (d2d3) although we are only interested in estimating the singular space in
a lower-dimensional (d1) space.

To specifically address this issue, we consider here a different technique for estimat-
ing singular spaces from a noisy matrix, which is more powerful when the underlying
matrix is unbalanced in that it is either very fat or very tall. More specifically, let
M ∈ Rm1×m2 be a rank r matrix. Our goal is to estimate the left singular space of M
based on n pairs of observations {(ωi ,M(ωi )) : 1 ≤ i ≤ n} where ωi s are indepen-
dently and uniformly sampled from [m1]× [m2]. Recall that U is also the eigenspace
ofMM2 which is of dimension m1 ×m1. Instead of estimatingM, we shall consider
instead estimating MM2. To this end, write Xi = (m1m2)PωiM, that is a m1 × m2
matrix whose ωi entry is (m1m2)M(ωi ), and other entries are zero. It is clear that
E (Xi ) = M. We shall then consider estimating N := MM2 by

N̂ := 1
n(n − 1)

∑

i< j

(XiX2
j + X jX2

i ) (5)

Note that Xi has only a single nonzero entry so that each summand on the right-hand
side of (5) can be computed in constant time. In total, computing N̂ has the time
complexity of Op(n2). Our first result shows that N̂ could be a very good estimate of
N even in situations when n 4 m2.

Theorem 2 Let M ∈ Rm1×m2 and Xi = (m1m2)PωiM (i = 1, 2, . . . , n), where ωi s
are independently and uniformly sampled from [m1]× [m2]. There exists an absolute
constant C > 0 such that for any α > 1, if
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n ≥ 8
3
(α + 1) logm
min{m1,m2}

, m := max{m1,m2} ≥ 2

then

‖N̂ − MM2‖

≤ C · α2 · m
3/2
1 m3/2

2 logm
n

×
[(

1+ m1

m2

)1/2
+ m1/2

1 m1/2
2

n
+
(

n
m2 logm

)1/2]

· ‖M‖2max,

with probability at least 1 − m−α , where N̂ is given by (5).

In particular, if ‖M‖max = O((m1m2)
−1/2), then ‖N̂ − MM2‖ →p 0 as soon as

n 5
(
(m1m2)

1/2+m1
)
logm. This is in contrast to estimatingM. As shown by Recht

[26],

M̂ := 1
n

n∑

i=1

Xi

is a consistent estimate of M in spectral norm if n 5 m logm. The two sample size
requirements differ when m1 4 m2 in which case N̂ is still a consistent estimate of
MM2, yet M̂ is no longer a consistent estimate of M if (m1m2)

1/2 logm2 4 n 4
m2 logm2.

Equippedwith Theorem 2, we can now address the initialization ofU (and similarly
V and W). Instead of estimating it by the singular vectors of M1(T̂), we shall do so
based on an estimate of M1(T)M1(T). With slight abuse of notation, write Xi =
(d1d2d3)M1(PωiT) and

N̂ := 1
n(n − 1)

∑

i< j

(XiX2
j + X jX2

i ).

We shall then estimate U by the leading r left singular vectors of N̂, hereafter denoted
by Û.

As we are concerned with the linear spaces spanned by the column vector of U
and Û, respectively, we can measure the estimation error by the projection distance
defined over Grassmannian:

dp(U, Û) :=
1√
2
‖UU2 − ÛÛ2‖F.

The following result is an immediate consequence of Theorem 2 and Davis–Kahan
theorem, and its proof is deferred to Appendix.
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Corollary 1 Assume that T ∈ Rd1×d2×d3 is a rank-(r1, r2, r3) tensor whose coherence
is bounded by µ(T) ≤ µ0 and condition number is bounded by κ(T) ≤ κ0. Let U be
the left singular vectors ofM1(T) and Û be defined as above, then there exist absolute
constants C1,C2 > 0 such that for any α > 1, if

n ≥ C1

(
α(d1d2d3)1/2 + d1 log d

)
,

then

dp(U, Û) ≤ C2α
2µ3

0κ
2
0r

3/2
1 r2r3

(
(d1d2d3)1/2 log d

n
+
√
d1 log d

n

)

,

with probability at least 1 − d−α .

In the light of Corollary 1, Û (and similarly V̂ and Ŵ) is a consistent estimate of U
whenever

n 5
[
r3/21 r2r3(d1d2d3)1/2 + r31r

2
2r

2
3d
]
log d.

In addition, it is worth noting that Û can be computed effectively via truncated singular
value decomposition. Since N̂ is a d1 × d1 matrix, the time complexity for doing so is
O(d2d3 + r21d1).

In order to be used as an initial value in our algorithm for optimizing F , we also
need to make sure that Û is incoherence. However, this may not always be the case.
Fortunately, because Û is close to an incoherent basisU, we can readily derive an initial
value that is both incoherent and remains close to U, an observation made earlier by
Keshavan et al. [17]. In particular, an initial value for optimizing F can be obtained
via the following algorithm.

Algorithm 2 Second-order spectral estimate of U
Compute

N̂ := 1
n(n − 1)

∑

i< j

(XiX
2
j + X jX

2
i ).

where Xi = (d1d2d3)M1(PωiT).
2: Compute the truncated SVD for N̂ and denote by Û be the top r leading left singular vectors.

Let Ũ be a d1 × r matrix whose i th row is given by

Ũ(i) = Û(i)

‖Û(i)‖ ·min{‖Û(i)‖,√µ0r}, i = 1, . . . , d1,

where Û(i) is the i th row vector of Û.
4: Return Ũ(Ũ2Ũ)−1/2.
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Following the discussion earlier, the running time of Algorithm 2 is O(n2) under
the settings of Corollary 1.

5 Exact Recovery by Optimizing Locally

Now that a good initial value sufficiently close to (U,V,W) is identified, we can then
proceed to optimize

F(X,Y,Z) = min
C∈Rr1×r2×r3

1
2
‖P"((X,Y,Z) · C − T)‖2F

locally. To this end, we argue that F indeed is well behaved in a neighborhood around
(U,V,W) so that such a local optimization is amenable to computation. For brevity,
write

J (d1, d2, d3, r1, r2, r3) := G(d1, r1) × G(d2, r2) × G(d3, r3).

We can also generalize the projection distance dp on Grassmannian to J (d1, d2,
d3, r1, r2, r3) as follows:

dp ((U,V,W), (X,Y,Z)) = dp(U,X)+ dp(V,Y)+ dp(W,Z).

We shall focus, in particular, on a neighborhood around (U,V,W) that are incoherent:

N (δ, µ) =
{
(X,Y,Z) ∈ J (d1, d2, d3, r1, r2, r3) : dp ((U,V,W), (X,Y,Z)) ≤ δ,

and max {µ(X), µ(Y), µ(Z)} ≤ µ

}

For a third-order tensor A, denote

)max(A) = max {σmax(M1(A)), σmax(M2(A)), σmax(M3(A))} ,

and

)min(A) = min {σmin(M1(A)), σmin(M2(A)), σmin(M3(A))} .

Theorem 3 Let T ∈ Rd1×d2×d3 be a rank-(r1, r2, r3) tensor such that

µ(T) ≤ µ0, )min(T) ≥ ), )max(T) ≤ ), and κ(T) ≤ κ0.

There exist absolute constants C1,C2,C3,C4,C5 > 0 such that for any α > 1 and
(X,Y,Z) ∈ N

(
C1(ακ0 log d)−1, 4µ0),

C2

(
‖G − C‖2F + )2d2p ((U,V,W), (X,Y,Z))

)
≤ d1d2d3

n
F(X,Y,Z)
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≤ C3α)
2
d2p ((U,V,W), (X,Y,Z)) log d, (6)

and

d1d2d3
n

‖grad F(X,Y,Z)‖F ≥ C4

(
)2dp ((U,V,W), (X,Y,Z))

)
, (7)

with probability at least 1 − 3d−α , provided that

n ≥ C5

{
α3µ

3/2
0 κ4

0r(r1r2r3d1d2d3)
1/2 log7/2 d + α6µ3

0κ
8
0r1r2r3r

2d log6 d
}

where C ∈ Rr1×r2×r3 is given by (3).

Theorem3 shows that the objective function F behaves like a parabola inN (δ, 4µ0)

for sufficiently small δ, and furthermore, (U,V,W) is the unique stationary point in
N (δ, 4µ0). This implies that a gradient descent type of algorithm may be employed
to optimize F within N (δ, 4µ0). In particular, to fix ideas, we shall focus here on
a simple gradient descent type of algorithms similar to the popular choice of matrix
completion algorithm proposed by Keshavan et al. [17]. As suggested by Keshavan
et al. [17], to guarantee that the coherence condition is satisfied, a penalty function is
imposed so that the objective function becomes:

F̃(X,Y,Z) := F(X,Y,Z)+ G(X,Y,Z)

where

G(X,Y,Z) := ρ

d1∑

j1=1

G0

(d1‖x j1‖2
3µ0r1

)
+ ρ

d2∑

j2=1

G0

(d2‖y j2‖2
3µ0r2

)

+ρ

d3∑

j3=1

G0

(d3‖z j3‖2
3µ0r3

)

and

G0(z) =
{
0, if z ≤ 1
e(z−1)2 − 1, if z ≥ 1.

It turns out that, with a sufficiently large ρ > 0, we can ensure low coherence at
all iterations in a gradient descent algorithm. More specifically, let B ∈ Rd×r be
an element of the tangent space at A ∈ G(d, r) and B = L!R2 be its singular
value decomposition. The geodesic starting from A in the direction B is defined
as H(A,B, t) = AR cos(!t)R2 + L sin(!t)R2 for t ≥ 0. Interested readers are
referred to Edelman et al. [11] for further details on the differential geometry of Grass-
mannians. The gradient descent algorithm on the direct product of Grassmannians is
given below:
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Algorithm 3 Gradient descent algorithm on Grassmannians (GoG)
Set up values of max _Iteration, tolerance εtol > 0, parameter γ = δ

4 , step counter k = 0 and initial
value (X(0),Y(0),Z(0)).

2: while k < max _Iteration do
Compute the negative gradient (D(k)

X ,D(k)
Y ,D(k)

Z ) = −grad F̃(X(k),Y(k),Z(k))
4: For t ≥ 0, denote the geodesics

X(k)(t) = H(X(k),D(k)
X , t)

Y(k)(t) = H(Y(k),D(k)
Y , t)

Z(k)(t) = H(Z(k),D(k)
Z , t)

Minimize t 7→ F̃(X(k)(t),Y(k)(t),Z(k)(t)) for t ≥ 0, subject to

dp
(
(X(k)(t),Y(k)(t),Z(k)(t)), (X(0),Y(0),Z(0))) ≤ γ .

6: SetX(k+1) = X(k)(tk ),Y(k+1) = Y(k)(tk ) and Z(k+1) = Z(k)(tk )where tk is the minimal solution.
Set k = k + 1.

8: if dp
(
(X(k)(t),Y(k)(t),Z(k)(t)), (X(k−1),Y(k−1),Z(k−1))) ≤ εtol then

break;
10: end if

end while
12: Return F(X(k),Y(k),Z(k)).

Our next result shows that this algorithm indeed converges to (U,V,W) when an
appropriate initial value is provided.

Theorem 4 Let T ∈ Rd1×d2×d3 be a rank-(r1, r2, r3) tensor such that

µ(T) ≤ µ0, )max(T) ≤ ), and κ(T) ≤ κ0.

Then there exist absolute constants C1,C2,C3 > 0 such that for any α > 1, if

ρ ≥ C1αn(d1d2d3)−1)
2
log d,

(X(0),Y(0),Z(0)) ∈ N
(
C2(ακ2

0 log d)
−1, 3µ0

)
,

and

n ≥ C3

{
α3µ

3/2
0 κ4

0r(r1r2r3d1d2d3)
1/2 log7/2 d + α6µ3

0κ
8
0r1r2r3r

2d log6 d
}
,

then Algorithm 3 initiated with (X(0),Y(0),Z(0)) converges to T with probability at
least 1 − d−α .

Theorem 4 shows that the gradient descent algorithm presented here indeed con-
verges to the true tensor. In the light of the explicit formulas for the gradient and
geodesic, each iteration of the algorithm has a time complexity O(r21d1 + r22d2 +
r3d3 + r1r2r3). The total computational cost of our method depends on the con-
vergence rate of the gradient descent algorithm. Our experience with the numerical
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experiments as reported in the next section seems to suggest a linear convergence rate
as often expected of similar algorithms. A more rigorous investigation of the rate of
convergence for the gradient descent algorithm is beyond the scope of the current
work, and we shall leave it for future investigation.

6 Numerical Experiments

To complement our theoretical developments, we also conducted several sets of
numerical experiments to investigate the performance of the proposed approach. In
particular, we focus on recovering a cubic tensor T ∈ Rd×d×d with multilinear ranks
r1 = r2 = r3 = r from n randomly sampled entries. To fix ideas, we focus on complet-
ing orthogonal decomposable tensors in this section, i.e., the core tensorG ∈ Rr×r×r

is diagonal. Note that even though our theoretical analysis requires n ! r7/2d3/2, our
simulation results seem to suggest that our approach can be successful for as few as
O(

√
rd3/2) observed entries. To this end, we shall consider sample size n = α

√
rd3/2

for some α > 0.
More specifically, we consider T = d

∑r
k=1 uk ⊗ vk ⊗ wk ∈ Rd×d×d with d =

50, 100 and r = 2, 3, 4, 5. The orthonormal vectors {uk, k = 1, . . . , r}, {vk, k =
1, . . . , r}, {wk, k = 1, . . . , r} are obtained from the eigenspace of randomly generated
standard Gaussian matrices which guarantee the incoherence conditions based on the
delocalization property of eigenvectors of Gaussian randommatrices. For each choice
of r and α = n√

rd3/2
, the gradient descent algorithm from Sect. 5 with initialization

described inSect. 4 is applied in 50 simulation runs.Weclaim that the underlying tensor
is successfully recovered if the returned tensor T̂ satisfies that ‖T̂−T‖F/‖T‖F ≤ 10−7.
The reconstruction rates are given in Figs. 1 and 2. It suggests that approximately when
n ≥ 7

√
rd3/2, the algorithm reconstructed the true tensor with near certainty.

As mentioned before, in addition to the gradient descent algorithm described in
Sect. 5, several other algorithms can also be applied to optimize F(X,Y,Z) locally.
A notable example is the geometrical conjugate gradient descent algorithm on Rie-
mannian manifolds proposed by Kressner et al. [18]. Although we have focused on
the analysis of the gradient descent algorithm, we believe similar results could also be
established for these other algorithms as well. In essence, the success of these methods
is determined by the quality of the initialization, which the method from Sect. 4 could
be readily applied. We leave the more rigorous theoretical analysis for future work;
we conducted a set of numerical experiments to illustrate the similarity between these
optimization algorithms while highlighting the crucial role of initialization.

We considered a similar setup as before with d = 50, r = 5 and d = 100, r = 3.
We shall refer to our method as GoG and the geometrical conjugate gradient descent
algorithmasGeoCG, for brevity.Note that theGeoCGalgorithmwas proposedwithout
considering the theoretical requirement on the sample size and the algorithm is initiated
with a random guess. We first tested both algorithms with a reliable initialization
as proposed in Sect. 4. That is, we started with Û, V̂, Ŵ obtained from the spectral
algorithm and let Ĉ ∈ Rr×r×r be the minimizer of (2). Then, the GeoCG(Spectral)
algorithm is initialized from the starting point Â(0) = (Û, V̂, Ŵ) · Ĉ. For each α =
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Fig. 1 Average reconstruction rate of the proposed approach when d = 50 and r = 2, 3, 4, 5. For each r
and α, the algorithm is repeated for 50 times
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Fig. 2 Average reconstruction rate of the proposed approach when d = 100 and r = 2, 3, 4, 5. For each r
and α, the algorithm is repeated for 50 times
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Fig. 3 Comparison between GoG and GeoCG algorithms when d = 50 and r = 5. The successful rates
of GeoCG algorithm depend on the initialization. Here GeoCG(Spectral) means that the GeoCG algo-
rithm is initialized with the spectral methods as GoG algorithm. The black and cyan curves show that
GoG and GeoCG algorithms perform similarly when both are initialized with spectral methods. Here
GeoCG(Spectral+NoiseX ) means that GeoCG algorithm is initialized with spectral methods plus random
perturbation. If X is larger, the perturbation is larger and the initialization is further away from the truth, in
which case the reconstruction rate decreases

n√
rd3/2

, the GeoCG algorithm is repeated for 50 times. The reconstruction rates are
as shown in the Cyan curves in Figs. 3 and 4. It is clear that both algorithms perform
well and are comparable.

To illustrate that successful recovery hinges upon the appropriate initialization, we
now consider applying GeoCG algorithm with a randomly perturbed spectral initial-
ization. More specifically, the GeoCG algorithm is initialized with Â(0) + σZ where
Z ∈ Rd×d×d is a random tensor with i.i.d. standard normal entries and σ > 0 repre-
sents the noise level. Figures 3 and 4 show that the reconstruction rate decreases when
σ gets larger.

These observations confirm the insights from our theoretical development: That the
objective function F is well behaved locally and therefore with appropriate initializa-
tion can lead to successful recovery of low-rank tensors.

7 Discussion

In this paper, we proved that with n ≥ Cµ3
0r1r2r3(rd1d2d3)

1/2 log7/2(d) uniformly
sampled entries, a tensor T of multilinear ranks (r1, r2, r3) can be recovered with high
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Fig. 4 Comparison between GoG and GeoCG algorithm when d = 100 and r = 3. The successful rates of
GeoCG algorithm depend on the initialization

probabilitywith a polynomial time algorithm. In doing so,we argue that the underlying
optimization problem iswell behaved in a neighborhood around the truth and therefore,
the sample size requirement is largely driven by our ability to initialize the algorithm
appropriately. To this end, a new spectral method based on estimating the second
moment of tensor unfoldings is proposed. In the low-rank case, e.g., r = O(1), this
sample size requirement is essentially of the same order as d3/2, up to a polynomial of
log d term. This matches the sample size requirement for nuclear norm minimization
which is NP-hard to compute in general. An argument put forth by Barak and Moitra
[3] suggests that such a dependence on the dimension may be optimal for polynomial
time algorithms unless a more efficient algorithm exists for the 3-SAT problem.

Even though our framework is established for third-order tensors, it can be nat-
urally extended to higher-order tensors. Indeed, to complete a kth-order tensor
T ∈ Rd×d×...×d with multilinear ranks (r , r , . . . , r), we can apply similar type of
algorithms for optimizing over product of Grassmannians. In order to ensure exact
recovery, we can start with similar initializationwherewe unfold the tensor to d×dk−1

matrices. Following an identical argument, it can be derived in the same fashion that
the sample size requirement for exact recovery now becomes

n ≥ Cdk/2polylog(r , log d)

for some constant C > 0. Unlike the third-order case, the dependence on the dimen-
sionality (dk/2) is worse than the nuclear norm minimization (d3/2) for k > 3. See
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Yuan and Zhang [34]. In general, it remains unclear whether the requirement of dk/2

is the best attainable for polynomial time algorithms for k > 3.
In the current work, we are concerned with the reconstruction of a tensor when

its entries are observed exactly. In many applications, however, these observations
are often made with error. The presence of measurement errors changes the nature
of the problem as it in general rules out the possibility of exact recovery. Instead,
the focus is on how well we can estimate or approximate the tensor based on the
noisy observations. The two problems, albeit closely connected, pose fundamentally
different challenges. In particular, it is essential in exact recovery that we match all
observed entries, but doing so in the presence of measurement error typically leads
to suboptimal estimates. In general, exact recovery is more stringent than seeking an
approximation. While it is essential to exact recovery that the tensor is of low rank,
oftentimes a good approximation can still be obtained even if the underlying tensor is
only approximately low rank.

8 Proofs

Throughout the proofs, we shall use C and similarly C1,C2, etc., to denote generic
numerical positive constants that may take different values at each appearance.

8.1 Proof of Theorem 1

In view of Theorem 4, the proof of Theorem 1 is immediate if (X(0),Y(0),Z(0)) ∈
N
(
C(ακ2

0 log d)
−1, 3µ0). Clearly, under the conditions on n given in Theorem 1, the

top singular vectors (Û, V̂, Ŵ) satisfy that

dp
(
(Û, V̂, Ŵ), (U,V,W)

)
≤ C(ακ2

0 log d)
−1

with probability at least 1 − 3d−α . The fact that (X(0),Y(0),Z(0)) ∈ N
(
C(ακ2

0
log d)−1, 3µ0) then follows immediately from Remark 6.2 of Keshavan et al. [17].

8.2 Proof of Theorem 2

Using a standard decoupling technique for U-statistics, we get

P(‖N̂ − N‖ > t) ≤ 15P(15‖Ñ − N‖ > t)

for any t > 0, where

Ñ := 1
2n(n − 1)

∑

i ,= j

(XiY2
j + Y jX2

i ),
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and {Yi : 1 ≤ i ≤ n} is an independent copy of {Xi : 1 ≤ i ≤ n}. We shall then
focus, in what follows, on bounding P(‖Ñ − N‖ > t). See, e.g., Theorem 1 of de la
Peña and Montgomery-Smith [9] or Theorem 3.4.1 of de la Pena and Giné [8].

Observe that

Ñ = 1
2n(n − 1)

(S1nS2
2n + S2nS2

1n) − 1
2n(n − 1)

n∑

i=1

(XiY2
i + YiX2

i ),

where

S1k =
k∑

i=1

Xi , and S2k =
k∑

i=1

Yi .

An application of Chernoff bound yields that, with probability at least 1 − m−α ,

‖S1n‖#∞ ≤ (3α + 7)m1m2‖M‖max

(
n
m2

+ logm
)

for any α > 0, where

‖S1n‖#∞ := max
1≤ j≤m2

∑

1≤i≤m1

∣∣(S1n)i j
∣∣ .

See, e.g., proof of Theorem 2 in Yuan and Zhang [34]. Denote this event by E1. On the
other hand, as shown by Recht [26] (Theorem 4), with probability at least 1 − m−α ,

∥∥∥∥
1
n
S1n − M

∥∥∥∥ ≤
√
8(α + 1)m1m2m logm

3n
‖M‖max.

Denote this event by E2. Write E = E1 ∩ E2. It is not hard to see that for any t ≥ 0,

P
{∥∥∥Ñ − N

∥∥∥ > t
}

≤ P
{∥∥∥Ñ − N

∥∥∥ > t
⋂

E
}
+ 3m−α

We shall now proceed to bound the first probability on the right-hand side.
Write

Ñ − N = 1
2n(n − 1)

[
(S1n − nM) (S2n − nM)2 + (S2n − nM) (S1n − nM)2

]

+ 1
2(n − 1)

[
M (S2n − nM)2 + (S2n − nM)M2

]

+ 1
2(n − 1)

[
M (S1n − nM)2 + (S1n − nM)M2

]

− 1
2n(n − 1)

n∑

i=1

(XiY2
i + YiX2

i − 2MM2)
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=: A1 + A2 + A3 + A4.

We bound each of the four terms on the rightmost side separately. For brevity, write

-1k = S1k − kM, and -2k = S2k − kM.

We begin with

A1 =
1

2n(n − 1)

(
-1n-

2
2n + -2n-

2
1n

)
.

By Markov inequality, for any λ > 0,

P
{
‖A1‖ > t

⋂
E
}

≤ P
{
tr exp (λA1) > exp(λt)

⋂
E
}

≤ e−λtE (tr exp [λA1] 1E ) .

Repeated use of Golden–Thompson inequality yields

E (tr exp [λA1] 1E ) = E
(
E
{
tr exp [λA1] 1E

∣∣∣∣S1n
})

≤ E
(
E
{
tr exp
[

λ

2n(n − 1)
(-1n-

2
2,n−1 + -2,n−1-

2
1n)

]
1E

∣∣∣∣S1n
}

×
∥∥∥∥E
{
exp
[

λ

2n(n − 1)
(-1n(Yn − M)2 + (Yn − M)-2

1n)

]
1E

∣∣∣∣S1n
}∥∥∥∥

)

≤ · · · · · ·

≤ mE
(∥∥∥∥E
{
exp
[

λ

2n(n − 1)
(-1n(Yn − M)2 + (Yn − M)-2

1n)

]
1E

∣∣∣∣S1n
}∥∥∥∥

n)

By triangular inequality,

∥∥∥∥
λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]∥∥∥∥

≤ λ

n(n − 1)

(
‖-1nY2

n ‖ + ‖-1nM2‖
)
.

Under the event E1 with the upper bound of ‖S1n‖#∞ ,

‖-1nY2
n ‖ ≤ ‖S1nY2

n ‖ + n‖MY2
n ‖

≤ (3α + 7)m2
1m

2
2‖M‖2max

(
n
m2

+ logm
)
+ nm1m2‖M‖max‖M‖.

On the other hand, under the event E2,

‖-1nM2‖ ≤ ‖-1n‖‖M‖ ≤
√
8
3
n(α + 1)m1m2m logm‖M‖max‖M‖
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Recall that

n ·min{m1,m2} ≥ 8
3
(α + 1) logm.

Then
∥∥∥∥

λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]∥∥∥∥

≤ λ

n(n − 1)

(
(3α + 7)m2

1m
2
2‖M‖2max

(
n
m2

+ logm
)
+ 2nm1m2‖M‖max‖M‖

)
.

Therefore, for any

λ ≤ n(n − 1)
(
(3α + 7)m2

1m
2
2‖M‖2max

(
n
m2

+ logm
)
+ 2nm1m2‖M‖max‖M‖

)−1

,

we get

E
{
exp
[

λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]]
1E

∣∣∣∣S1n
}

: Im1 + E
{[

λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]]2
1E

∣∣∣∣S1n

}

= Im1 + E
{[

λ

2n(n − 1)

(
-1nY2

n + Yn-
2
1n

)]2
1E

∣∣∣∣S1n

}

−
[

λ2

4n2(n − 1)2
(
-1nM2 +M-2

1n
)21E
∣∣∣∣S1n
]

: Im1 + E
{[

λ

2n(n − 1)

(
-1nY2

n + Yn-
2
1n

)]2
1E

∣∣∣∣S1n

}

: Im1 +
λ2m1m2‖M‖2max

4n2(n − 1)2

[
(m1 + 2)-1n-

2
1n + tr(-1n-

2
1n)Im1

]
1E

where in the first inequality, we used the facts that

exp(A) : Id + A+ A2

for any A ∈ Rd×d such that ‖A‖ ≤ 1, and

E
{[

λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]]
1E

∣∣∣∣S1n
}
= 0.

Recall that

tr(-1n-
2
1n) ≤ m1‖-1n-

2
1n‖.
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This implies that

∥∥∥∥E
{
exp
[

λ

2n(n − 1)

[
-1n(Yn − M)2 + (Yn − M)-2

1n

]]
1E

∣∣∣∣S1n
}∥∥∥∥

≤ 1+ λ2‖M‖2maxm
2
1m2

2n2(n − 1)2
‖-1n-

2
1n‖1E

≤ 1+ 8(α + 1)λ2‖M‖4maxm
3
1m

2
2m logm

3n(n − 1)2
,

where the last inequality follows from the definition of E2. Thus,

E tr exp [λA11E ] ≤ m · exp
[

λ2
16(α + 1)‖M‖4maxm

3
1m

2
2m logm

3(n − 1)2

]

.

Taking

λ = min
{

3(n − 1)2t

64(α + 1)‖M‖4maxm
3
1m

2
2m logm

,

n(n − 1)

(6α + 14)m2
1m

2
2‖M‖2max (n/m2 + logm)

,
n(n − 1)

4nm1m2‖M‖max‖M‖

}

yields

P
{
‖A1‖ > t

⋂
E
}

≤ exp
(

−min
{

3(n − 1)2t2

128(α + 1)‖M‖4maxm
3
1m

2
2m logm

,

n(n − 1)t

(12α + 28)m2
1m

2
2‖M‖2max (n/m2 + logm)

,
n(n − 1)t

8nm1m2‖M‖max‖M‖

})

We now proceed to bound A2 and A3. Both terms can be treated in an identical
fashion, and we shall consider only A2 here to fix ideas. As before, it can be derived
that

P
{
‖A2‖ > t

⋂
E
}

≤ m · exp(−λt)

×
∥∥∥∥E
{
exp
[

λ

2(n − 1)
(M(Yn − M)2 + (Yn − M)M2)

]
1E

}∥∥∥∥
n

.

By taking

λ ≤ n − 1
‖M‖2 + m1m2‖M‖‖M‖max

,
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we can ensure

∥∥∥∥
λ

2(n − 1)
(M(Yn − M)2 + (Yn − M)M2)

∥∥∥∥

≤ λ

n − 1

(
‖M‖2 + m1m2‖M‖‖M‖max

)
≤ 1.

If this is the case, we can derive as before that

∥∥∥∥E
{
exp
[

λ

2(n − 1)
(M(Yn − M)2 + (Yn − M)M2)

]
1E

}∥∥∥∥

≤ 1+
∥∥∥∥∥E
{[

λ

2(n − 1)
(M(Yn − M)2 + (Yn − M)M2)

]2
1E

}∥∥∥∥∥

≤ 1+
∥∥∥∥∥E
{[

λ

2(n − 1)
(MY2

n + YnM2)
]2

1E

}∥∥∥∥∥

≤ 1+ λ2m2
1m2‖M‖2max‖M‖2
2(n − 1)2

.

In particular, taking

λ = min

{
n − 1
2‖M‖2 ,

n − 1
2m1m2‖M‖‖M‖max

,
(n − 1)2t

nm2
1m2‖M‖2max‖M‖2

}

yields

P
{
‖A2‖ > t

⋂
E
}

≤ exp

(

−min

{
(n − 1)t
4‖M‖2 ,

(n − 1)t
2m1m2‖M‖‖M‖max

,
(n − 1)2t2

2nm2
1m2‖M‖2max‖M‖2

})

.

Finally, we treat A4. Observe that

‖XiY2
i + YiX2

i − 2MM2‖ ≤ 2‖XiY2
i ‖ + 2‖M‖2

≤ 2m2
1m

2
2‖M‖2max + 2‖M‖2

≤ 4m2
1m

2
2‖M‖2max,

where the last inequality follows from the fact that ‖M‖ ≤ ‖M‖F ≤ √
m1m2‖M‖max.

On the other hand,

E
(
XiY2

i + YiX2
i − 2MM2

)2
: E
(
XiY2

i + YiX2
i

)2
: 2(m1 + 1)m2

1m
3
2‖M‖4maxI.
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An application of matrix Bernstein inequality (e.g., Theorem 6.1 of [31]) yields

P {‖A4‖ > t ∩ E} ≤ P {‖A4‖ > t}

≤ m1 exp

(

− n2(n − 1)2t2/2

2n(m1 + 1)m2
1m

3
2‖M‖4max + 4m2

1m
2
2‖M‖2maxt/3

)

.

Putting the probability bounds for A1, A2, A3, A4 together, we have

P{‖Ñ − N‖ > t/15} ≤
4∑

k=1

P{‖Ak‖ > t/60 ∩ E} + P{Ec} ≤ 7m−α

by taking

t = C · α2 · m
3/2
1 m3/2

2 logm
n

×
[(

1+ m1

m2

)1/2
+ m1/2

1 m1/2
2

n
+
(

n
m2 logm

)1/2]

· ‖M‖2max,

for some C ≥ 1680. This immediately implies that

P
{
‖N̂ − N‖ ≥ t

}
≤ 105m−α.

The proof is then concluded by replacing α with α + logm 105 and adjusting the
constant C accordingly.

8.3 Proof of Theorem 3

Let PU, PV and PW be the projection matrices onto the column spaces of U, V and
W, respectively. Denote by QT : Rd1×d2×d3 → Rd1×d2×d3 a linear operator such that
for any A ∈ Rd1×d2×d3 ,

QTA := (PU,PV,PW) · A+ (P⊥
U ,PV,PW) · A+ (PU,P⊥

V ,PW) · A
+ (PU,PV,P⊥

W) · A,

where P⊥
U = I − PU, and P⊥

V and P⊥
W are defined similarly. We shall also write

Q⊥
T = I − QT where I is the identity map.

Basic facts aboutGrassmannians Before proceeding,we shall first review somebasic
facts about the Grassmannians necessary for our proof. For further details, interested
readers are referred to Edelman et al. [11] (Section 2). To fix ideas, we shall focus
on U ∈ G(d1, r1). The tangent space of G(d1, r1) at U, denoted by TU ⊂ Rd1×r1 ,
can be identified with the property U2DU = 0. The geodesic path from U to another
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point X ∈ G(d1, r1) with respect to the canonical Riemann metric can be explicitly
expressed as:

X(t) = URU cos(!Ut)R2
U + LU sin(!Ut)R2

U , 0 ≤ t ≤ 1

for some DU ∈ TU and DU = LU!UR2
U is its thin singular value decomposition.

We can identify X(0) = U and X(1) = X. The diagonal element of !U lies in
[−π/2,π/2] and can be viewed as the principle angle between U and X.

It is easy to check

dp(U,X) = ‖ sin!U‖F and ‖"X‖F = ‖U − X‖F = 2‖ sin(!U/2)‖F.

Note that for any θ ∈ [0,π/2],

θ

2
≤

√
2 sin(θ/2) ≤ sin θ ≤ 2 sin(θ/2) ≤ θ .

This implies that

dp(U,X) ≤ ‖-X‖F ≤
√
2dp(U,X).

Moreover,

‖U2"X‖F = ‖ cos(!U) − I‖F = 4‖ sin2(!U/2)‖F ≤ 2‖ sin!U‖2F = 2d2p (U,X).

With slight abuse of notation, write DX = dX(t)
dt

∣∣
t=1 ∈ TX. DX can be more explicitly

expressed as

DX = −URU!U sin!UR2
U + LU!U cos!UR2

U .

It is clear that

‖DX‖2F = ‖!U sin!U‖2F + ‖!U cos!U‖2F = ‖!U‖2F,

so that

dp(U,X) ≤ ‖DX‖F ≤ 2dp(U,X).

A couple of other useful relations can also be derived:

‖DX − "X‖2F = ‖!U‖2F + 4‖ sin(!U/2)‖2F − 2〈!U, sin!U〉
≤ ‖!U − 2 sin(!U/2)‖2F ≤ d4p (U,X),

and

‖U2DX‖F = ‖!U sin!U‖F ≤ 2‖ sin!U‖2F = 2d2p (U,X).
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Lower bound of F(X,Y,Z) in Eq. (6). Note that

F(X,Y,Z) = 1
2

∥∥P"

(
T̂ − T

)∥∥2
F ≥ 1

4

∥∥P"QT(T̂ − T)
∥∥2
F − 1

2

∥∥P"Q⊥
T (T̂)
∥∥2
F, (8)

where

T̂ = (X,Y,Z) · C

and C is given by (3). To derive the lower bound in the first statement, we shall
lower-bound ‖P"QT(T̂ − T)‖2F and upper-bound ‖P"Q⊥

T (T̂)‖2F.
By Lemma 5 of Yuan and Zhang [33], if n ≥ C1αµ

2
0r

2d log d, then

P
{∥∥∥∥QT

(
I − d1d2d3

n
P"

)
QT

∥∥∥∥ ≥ 1
2

}
≤ d−α,

where the operator norm is induced by the Frobenius norm, or the vectorized #2 norm.
Denote this event by E1. We shall now proceed under E1. On event E1,

‖P"QT(T̂ − T)‖2F ≥
〈
P"QT(T̂ − T),QT(T̂ − T)

〉
≥ n

2d1d2d3
‖QT(T̂ − T)‖2F.

Recall that

QT(T̂ − T) = (U,V,W) · (G − C)+ ("X,V,W) · C+ (U,"Y,W) · C
+ (U,V,"Z) · C, (9)

where

"X := X − U, "Y := Y − V, and "Z := Z − W.

Therefore,

‖QT(T̂ − T)‖2F = ‖(U,V,W) · (G − C)‖2F + ‖("X,V,W) · C‖2F + ‖(U,"Y,W) · C‖2F
+ ‖(U,V,"Z) · C‖2F + 2〈(U,V,W) · (G − C), ("X,V,W) · C〉
+ 2〈(U,V,W) · (G − C), (U,"Y,W) · C〉
+ 2〈(U,V,W) · (G − C), (U,V,"Z) · C〉
+ 2〈("X,V,W) · C, (U,"Y,W) · C〉
+ 2〈("X,V,W) · C, (U,V,"Z) · C〉
+ 2〈(U,"Y,W) · C, (U,V,"Z) · C〉.

It is clear that

‖(U,V,W) · (G − C)‖2F = ‖G − C‖2F.
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We now bound each of the remaining terms on the right-hand side separately.
Note that

‖("X,V,W) · C‖2F ≥ 1
2
‖("X,V,W) ·G‖2F − ‖("X,V,W) · (C − G)‖2F

≥ 1
2
σ 2
min(M1(G))‖"X‖2F − σ 2

max(M1(C − G))‖"X‖2F

≥ 1
2
σ 2
min(M1(G))‖"X‖2F − ‖C − G‖2F‖"X‖2F

= 1
2
σ 2
min(M1(T))‖"X‖2F − ‖C − G‖2F‖"X‖2F

Similarly,

‖(U,"Y,W) · C‖2F ≥ 1
2
σ 2
min(M2(T))‖"Y‖2F − ‖C − G‖2F‖"Y‖2F,

and

‖(U,V,"Z) · C‖2F ≥ 1
2
σ 2
min(M3(T))‖"Z‖2F − ‖C − G‖2F‖"Z‖2F.

On the other hand,

|〈(U,V,W) · (G − C), ("X,V,W) · C〉|
= |〈(U,V,W) · (G − C), (PU"X,V,W) · C〉|
≤ ‖(U,V,W) · (G − C)‖F ‖(PU"X,V,W) · C‖F
≤ ‖G − C‖F‖PU"X‖F‖C‖
≤ 2‖C‖‖G − C‖Fd2p (U,X).

Observe that

‖C‖ ≤ ‖G‖ + ‖G − C‖ ≤ ‖G‖ + ‖G − C‖F = ‖T‖ + ‖G − C‖F.

We get

|〈(U,V,W) · (G − C), ("X,V,W) · C〉| ≤ 2‖T‖‖G − C‖Fd2p (U,X)
+ 2‖G − C‖2Fd2p (U,X).

Similarly,

|〈(U,V,W) · (G − C), (U,"Y,W) · C〉| ≤ 2‖T‖‖G − C‖Fd2p (V,Y)
+ 2‖G − C‖2Fd2p (V,Y)
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and

|〈(U,V,W) · (G − C), (U,V,"Z) · C〉| ≤ 2‖T‖‖G − C‖Fd2p (W,Z)

+ 2‖G − C‖2Fd2p (W,Z).

Finally, we note that

|〈("X,V,W) · C, (U,"Y,W) · C〉|
= |〈(PU"X,V,W) · C, (U,PV"Y,W) · C〉|
≤ ‖C‖2‖PU"X‖F‖PV"Y‖F
≤ 4 (‖T‖ + ‖G − C‖F)2 d2p (U,X)d2p (V,Y).

And similarly,

|〈("X,V,W) · C, (U,V,"Z) · C〉| ≤ 4 (‖T‖ + ‖G − C‖F)2 d2p (U,X)d2p (W,Z),

and

|〈(U,"Y,W) · C, (U,V,"Z) · C〉| ≤ 4 (‖T‖ + ‖G − C‖F)2 d2p (V,Y)d2p (W,Z).

Putting all these bounds together, we get

‖QT(T̂ − T)‖2F ≥ ‖G − C‖2F +
(

)2
min

2
− ‖C − G‖2F

)

×
(
‖"X‖2F + ‖"Y‖2F + ‖"Z‖2F

)

− 4‖T‖‖G − C‖Fd2p ((U,V,W), (X,Y,Z))

− 4‖G − C‖2Fd2p ((U,V,W), (X,Y,Z))

− 8 (‖T‖ + ‖G − C‖F)2 d4p ((U,V,W), (X,Y,Z)),

where, with slight abuse of notation, we write

)min := min {σmin(M1(T)), σmin(M2(T)), σmin(M3(T))} .

Recall that

‖"X‖F ≥ dp(X,U), ‖"Y‖F ≥ dp(Y,V), and ‖"Z‖F ≥ dp(Z,W),

so that

‖"X‖2F + ‖"Y‖2F + ‖"Z‖2F ≥ 1
3
d2p ((U,V,W), (X,Y,Z)).
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We can further bound ‖QT(T̂ − T)‖2F by

‖QT(T̂ − T)‖2F ≥ ‖G − C‖2F

+
(

)2
min

6
− 5‖C − G‖2F − 4‖T‖‖G − C‖F

)

× d2p ((U,V,W), (X,Y,Z))

−16
(
‖T‖2 + ‖G − C‖2F

)
d4p ((U,V,W), (X,Y,Z))

Note that

)min ≥ κ−1
0 )max(T) ≥ κ−1

0 ‖T‖.

If dp
(
(U,V,W), (X,Y,Z)

)
≤ C(ακ0 log d)−1 for a sufficiently small C , we can

ensure that

‖T‖dp
(
(U,V,W), (X,Y,Z)

)
≤ )min

16
.

This implies that

‖QT(T̂ − T)‖2F ≥ 5
8
‖G − C‖2F

+
()2

min

12
− 4‖T‖‖G − C‖F

)
d2p
(
(U,V,W), (X,Y,Z)

)
.

We have thus proved that under the event E1,

‖P"QT(T̂ − T)‖2F ≥ 5n
16d1d2d3

‖G − C‖2F

+ n
2d1d2d3

()2
min

12
− 4‖T‖‖G − C‖F

)

d2p
(
(U,V,W), (X,Y,Z)

)
. (10)

Now consider upper-bounding ‖P"Q⊥
T T̂‖2F. By Chernoff bound, it is easy to see

that with probability 1 − d−α ,

max
ω∈[d1]×[d2]×[d3]

n∑

i=1

I(ωi = ω) ≤ Cα log d

for some constant C > 0. Denote this event by E2. Under this event

‖P"Q⊥
T T̂‖2F ≤ C(α log d)

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
.
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To this end, it suffices to obtain upper bounds of

∣∣∣
〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉∣∣∣ ≤ n

d1d2d3
‖Q⊥

T T̂|2F +
∣∣∣∣
〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
− n

d1d2d3
‖Q⊥

T T̂|2F
∣∣∣∣ .

For γ1, γ2 > 0, define

K(γ1, γ2) :=
{
A ∈ Rd1×d2×d3 : ‖A‖F ≤ 1, ‖A‖max ≤ γ1, ‖A‖$ ≤ γ2

}
.

Consider the following empirical process:

βn(γ1, γ2) := sup
A∈K(γ1,γ2)

∣∣∣∣
1
n

〈P"A,A〉 − 1
d1d2d3

‖A‖2F
∣∣∣∣ .

Obviously,

∣∣∣
〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉∣∣∣ ≤ n

d1d2d3
‖Q⊥

T T̂|2F + n‖Q⊥
T T̂|2Fβn

(‖Q⊥
T T̂|max

‖Q⊥
T T̂|F

,
‖Q⊥

T T̂|$
‖Q⊥

T T̂|F

)
.

We now appeal to the following lemma whose proof is given in Appendix C.

Lemma 2 Given 0 < δ−
1 < δ+1 , 0 < δ−

2 < δ+2 and t ≥ 1, let

t̄ = t + log
(
log2(δ

+
1 /δ

−
1 )+ log2(δ

+
2 /δ

−
2 )+ 3

)
.

Then there exists a universal constant C > 0 such that with probability at least 1−e−t ,
the following bound holds for all γ1 ∈ [δ−

1 , δ
+
1 ] and all γ2 ∈ [δ−

2 , δ
+
2 ]

βn(γ1, γ2) ≤ Cγ1γ2

(
√

d
nd1d2d3

log d + log3/2 d
n

)
+ 2γ1

√
t̄

nd1d2d3
+ 2γ 2

1
t̄
n

For any A ∈ Rd1×d2×d3 , we have ‖A‖max
‖A‖F ∈ [1/√d1d2d3, 1] and ‖A‖$

‖A‖F ∈ [1, d]; we
apply Lemma 2with δ−

1 = 1
d1d2d3

, δ+1 = 1, δ−
2 = 1 and δ+2 = d. By setting t = α log d

with t̄ = t+ log
(
log2(d1)+ log2(d2)+ log2(d3)+ log2(d)+3

)
≤ 6α log d, we obtain

that with probability at least 1 − d−α , for all γ1 ∈ [(d1d2d3)−1, 1] and γ2 ∈ [1, d],

βn(γ1, γ2) ≤ C1αγ1γ2

(
√

d
nd1d2d3

log d + log3/2 d
n

)

+C1
√

αγ1

√
log d

nd1d2d3
+ C1αγ 2

1
log d
n

.
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Denote this event by E3. Under E3, for any A ∈ Rd1×d2×d3 ,

‖A‖2Fβn

(‖A‖max

‖A‖F
,

‖A‖$

‖A‖F
)

≤ C1α‖A‖max‖A‖$

(
√

d
nd1d2d3

log d + log3/2 d
n

)

+ C1α‖A‖max‖A‖F
√

log d
nd1d2d3

+ C1α‖A‖2max
log d
n

.

This implies that

〈P"A,A〉 ≤ n
d1d2d3

‖A‖2F + Cα‖A‖max‖A‖$

(
√

nd
d1d2d3

log d + log3/2 d
)
. (11)

We shall now focus on E3 and obtain

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
≤ n

d1d2d3
‖Q⊥

T T̂|2F

+ Cα‖Q⊥
T T̂|max‖Q⊥

T T̂|$
(
√

nd
d1d2d3

log d + log3/2 d
)
. (12)

It remains to bound ‖Q⊥
T T̂‖max, ‖Q⊥

T T̂|$ and ‖Q⊥
T T̂‖F. Recall that

Q⊥
T T̂ = (P⊥

UX,P
⊥
VY,Z) · C+ (P⊥

UX,Y,P
⊥
WZ) · C+ (X,P⊥

VY,P
⊥
WZ) · C

+ (P⊥
UX,P

⊥
VY,P

⊥
WZ) · C.

Recall that )max(C) := max{‖Mk(C)‖, k = 1, 2, 3}. Clearly, )max(C) ≤ )max +
‖G−C‖F where, with slight abuse of notation, wewrite)max := )max(T) for brevity.
Then,

‖Q⊥
T T̂|F ≤

(
)max + ‖G − C‖F

)

×
(
‖P⊥

UX‖F‖P⊥
VY‖F + ‖P⊥

UX‖F‖P⊥
WZ‖F + ‖P⊥

WZ‖F‖P⊥
VY‖F
)

+
(
)max + ‖G − C‖F

)
‖P⊥

UX‖F‖P⊥
VY‖F‖P⊥

WZ‖F.

Observe that

‖P⊥
UX‖F = ‖P⊥

U"X‖F ≤ ‖"X‖F ≤
√
2dp(U,X)

and

dp
(
(U,V,W), (X,Y,Z)

)
≤ (Cακ0 log d)−1.
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Therefore,

‖Q⊥
T T̂|F ≤

(
)max + ‖G − C‖F

)(
2d2p
(
(U,V,W), (X,Y,Z)

)

+ 2
√
2d3p
(
(U,V,W), (X,Y,Z)

))

≤ 3
(
)max + ‖G − C‖F

)
d2p
(
(U,V,W), (X,Y,Z)

)
.

It is clear that

max
k=1,2,3

{
rank(Mk(Q⊥

T T̂))
}

≤ 4r .

By Lemma 1,

‖Q⊥
T T̂|$ ≤ 4r‖Q⊥

T T̂|F ≤ 12r
(
)max + ‖G − C‖F

)
d2p
(
(U,V,W), (X,Y,Z)

)
.

Because of the incoherence condition

max{µ("X), µ("Y), µ("Z)} ≤ 9µ0,

we get

‖Q⊥
T T̂|max ≤ 54

(
)max + ‖C − G‖F

)
µ
3/2
0

√
r1r2r3
d1d2d3

.

By putting the bounds of ‖Q⊥
T T̂|F, ‖Q⊥

T T̂|max and ‖Q⊥
T T̂|$ into (12), we conclude

that on event E3,

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
≤ 9n

d1d2d3

(
)max + ‖G − C‖F

)2d4p
(
(U,V,W), (X,Y,Z)

)

+ C1

(
αr()max + ‖G − C‖F)2µ3/2

0

√
r1r2r3
d1d2d3

(
√

nd
d1d2d3

log d + log3/2 d
))

× d2p
(
(U,V,W), (X,Y,Z)

)
(13)

for a universal constant C1 > 0. If dp
(
(U,V,W), (X,Y,Z)

)
≤ (C2ακ0 log d)−1 and

n ≥ C2

(
α4µ3

0κ
4
0r

2r1r2r3d log4 d + α2µ
3/2
0 κ2

0r(r1r2r3d1d2d3)
1/2 log5/2 d

)
.

The above upper bound can be simplified as

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
≤ n

8Cαd1d2d3 log d
‖G − C‖2F

+ n
96Cαd1d2d3 log d

)2
mind

2
p
(
(U,V,W), (X,Y,Z)

)
. (14)
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Therefore, under E2 ∩ E3,

‖P"Q⊥
T T̂‖2F ≤ n

8d1d2d3
‖G − C‖2F +

n
96d1d2d3

)2
mind

2
p ((U,V,W), (X,Y,Z)).

(15)

Combining (8), (10) and (15), we conclude that

F(X,Y,Z) ≥ n
64d1d2d3

‖G − C‖2F

+ n
d1d2d3

()2
min

192
− ‖T‖‖G − C‖F

)
d2p ((U,V,W), (X,Y,Z)),

(16)

with probability at least

P{E1 ∩ E2 ∩ E3} ≥ 1 − 3d−α.

Before concluding the proof of lower bound, we first develop a comparable upper
bound.
Upper bound of F(X,Y,Z) in Eq. (6). Let

T̃ = (X,Y,Z) ·G.

By definition of T̂,

F(X,Y,Z) = 1
2
‖P"(T̂ − T)‖2F ≤ 1

2
‖P"(T̃ − T)‖2F ≤ ‖P"QT(T̃ − T)‖2F

+ ‖P"Q⊥
T T̃‖2F

Again, by Lemma 5 of Yuan and Zhang [33], on event E1 ∩ E2,

‖P"QT(T̃ − T)‖2F ≤ C(α log d)
〈
P"QT(T̃ − T),QT(T̃ − T)

〉

≤ 3Cαn log d
2d1d2d3

‖QT(T̃ − T)‖2F.

Recall that

QT(T̃ − T) = ("X,V,W) ·G+ (U,"Y,W) ·G+ (U,V,"Z) ·G.

We have

‖QT(T̃ − T)‖2F ≤ 3

×
(
‖("X,V,W) ·G‖2F + ‖(U,"Y,W) ·G‖2F + ‖(U,V,"Z) ·G‖2F

)
.
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Note that

‖("X,V,W) ·G‖2F ≤ σ 2
max(M1(G))‖"X‖2F ≤ )2

max‖"X‖2F.

Similar bounds hold for ‖(U,"Y,W) ·G‖2F and ‖(U,V,"Z) ·G‖2F. We get on event
E1 ∩ E2,

‖P"QT(T̃ − T)‖2F ≤ 9Cαn log d
d1d2d3

)2
maxd

2
p ((U,V,W), (X,Y,Z)). (17)

On the other hand, following the same argument for bounding ‖P"Q⊥
T T̂‖2F as in (15),

we can show that

‖P"Q⊥
T T̃‖2F ≤ Cα log d

〈
P"Q⊥

T T̃,Q
⊥
T T̃
〉
≤ n

96d1d2d3
)2

mind
2
p ((U,V,W), (X,Y,Z)),

under the event E1 ∩ E2 ∩ E3. In summary, we get on event E1 ∩ E2 ∩ E3,

d1d2d3
n

F(X,Y,Z) ≤ 10Cα)2
maxd

2
p ((U,V,W), (X,Y,Z)) log d. (18)

The bounds (16) and (18) imply that

n
64d1d2d3

‖G − C‖2F +
n

d1d2d3

()2
min

192
− ‖T‖‖G − C‖F

)
d2p
(
(U,V,W), (X,Y,Z)

)

≤ F(X,Y,Z) ≤ 10Cαn
d1d2d3

)2
maxd

2
p
(
(U,V,W), (X,Y,Z)

)
log d

which guarantees that

‖G − C‖F ≤ C(α log d)1/2)maxdp
(
(U,V,W), (X,Y,Z)

)
. (19)

Recall that )max ≤ )̄ and )min ≥ ). We conclude that on event E1 ∩ E2 ∩ E3,

1
128

‖G − C‖2F +
1

384
)2d2p
(
(U,V,W), (X,Y,Z)

)

≤ d1d2d3
n

F(X,Y,Z) ≤ C(α log d))̄2d2p
(
(X,Y,Z), (U,V,W)

)
.

Lower bound of ‖grad F(X,Y,Z)‖F in Eq. (7) Observe that

‖grad F(X,Y,Z)‖F ≥ 〈grad F(X,Y,Z), (DX,DY,DZ)〉
(
‖DX‖2F + ‖DY‖2F + ‖DZ‖2F

)1/2 . (20)

Write

H = (DX,Y,Z) · C+ (X,DY,Z) · C+ (X,Y,DZ) · C.
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Then

〈grad F(X,Y,Z), (DX,DY,DZ)〉 =
〈
P"(T̂ − T),H

〉
.

Denote

H1 = (DX,V,W) · C+ (U,DY,W) · C+ (U,V,DZ) · C

and

H2 := (DX,"Y,W) · C+ (DX,V,"Z) · C+ (DX,"Y,"Z) · C+ ("X,DY,W) · C
+ (U,DY,"Z) · C+ ("X,DY,"Z) · C+ ("X,V,DZ) · C+ (U,"Y,DZ) · C
+ ("X,"Y,DZ) · C.

Then, H = H1 +H2 and QTH1 = H1. We write

〈
P"(T̂ − T),H

〉
=
〈
P"QT(T̂ − T),H1

〉
+
〈
P"Q⊥

T T̂,H1

〉
+
〈
P"(T̂ − T),H2

〉
.

Since QTH1 = H1, we can show that under the event E1,

〈
P"QT(T̂ − T),H1

〉
≥ d1d2d3

2n

〈
QT(T̂ − T),H1

〉
.

Based on the lower bound of
〈
QT(T̂ − T),H1

〉
proved in Appendix D, we conclude

that on event E1 ∩ E2 ∩ E3,

〈
P"QT(T̂ − T),H1

〉
≥ n

8d1d2d3
ζ1 ≥ )2

min

128
n

d1d2d3
d2p
(
(U,V,W), (X,Y,Z)

)

(21)

where ζ1 := ‖("X,V,W) · C + (U,"Y,W) · C + (U,V,"Z) · C‖2F with (see
Appendix D)

ζ1 ≥ 1
16

)2
mind

2
p
(
(U,V,W), (X,Y,Z)

)
(22)

on event E1 ∩ E2 ∩ E3. Moreover, by Cauchy–Schwarz inequality

∣∣∣
〈
P"Q⊥

T T̂,H1

〉∣∣∣ ≤
〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉1/2

〈P"H1,H1〉1/2 .

Observe that QTH1 = H1. Therefore, under the event E1 ∩ E2,

〈P"QTH1,QTH1〉1/2 ≤
√

3n
2d1d2d3

‖H1‖F.
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Recall the upper bound of ‖G−C‖F as in (19) which implies that ‖G−C‖F ≤ )min/2
if

dp
(
(U,V,W), (X,Y,Z)

)
≤ (Cακ0 log d)−1

for a large enough C > 0. As a result, on the event E1 ∩ E2 ∩ E3,

)min

2
≤ )min(C) ≤ )max(C) ≤ 2)max (23)

Then, on the event E1 ∩ E2 ∩ E3,

‖H1‖F ≤ ‖("X,V,W) · C+ (U,"Y,W) · C+ (U,V,"Z) · C‖F
+ ‖("X − DX,V,W) · C+ (U,"Y − DY,W) · C+ (U,V,"Z − DZ) · C‖F

≤
√

ζ1 + 2)max
(
‖"X − DX‖F + ‖"Y − DY‖F + ‖"Z − DZ‖F

)

≤
√

ζ1 +
√

ζ18κ0dp
(
(U,V,W), (X,Y,Z)

)
≤ 2
√

ζ1

where we used the lower bound of ζ1 in (22). Moreover, it suffices to apply bound
(13) and (19) to

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉
. It is easy to check that as long as

dp
(
(U,V,W), (X,Y,Z)

)
≤ (C1ακ0 log d)−1

and

n ≥ C1

(
α3κ2

0µ
3/2
0 r(r1r2r3d1d2d3)1/2 log7/2 d + α6κ4

0µ
3
0r

2r1r2r3d log6 d
)

for a sufficiently large C1,

〈
P"Q⊥

T T̂,Q
⊥
T T̂
〉1/2

≤
√

n
d1d2d3

)min

128
√
6
dp
(
(U,V,W), (X,Y,Z)

)
, (24)

under the event E1 ∩ E2 ∩ E3. Due to the lower bound on ζ1 in (22),

∣∣∣
〈
P"Q⊥

T T̂,H1

〉∣∣∣ ≤
√
6
√

n
d1d2d3

√
ζ1

√
n

d1d2d3

)min

128
√
6
dp
(
(U,V,W), (X,Y,Z)

)

≤ n
32d1d2d3

ζ1, (25)

under the event E1 ∩ E2 ∩ E3. It remains to control
∣∣〈P"(T̂ − T),H2

〉∣∣. The following
fact (Cauchy–Schwarz inequality) on E2 is obvious

∣∣〈P"(T̂ − T),H2
〉∣∣ ≤
〈
P"(T̂ − T), T̂ − T

〉1/2 〈P"H2,H2〉1/2 . (26)
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On event E3, by (11)

〈P"H2,H2〉 ≤ n
d1d2d3

‖H2‖2F + n‖H2‖2Fβn

(‖H2‖max

‖H2‖F
,
‖H2‖$

‖H2‖F
)
.

It is clear that

‖H2‖F ≤ 4)max
(
‖"X‖F + ‖"Y‖F + ‖"Z‖F

)(
‖DX‖F + ‖DY‖F + ‖DZ‖F

)

≤ 8
√
2)maxd2p

(
(U,V,W), (X,Y,Z)

)
.

Meanwhile, by Appendix E,

‖H2‖F ≤ 4
√
6ζ1dp
(
(U,V,W), (X,Y,Z)

)
+ 24)maxd3p

(
(U,V,W), (X,Y,Z)

)
.

Moreover, by Lemma 1, ‖H2‖$ ≤ 18r‖H2‖F. By Remark 8.1 of Keshavan et al. [17],

max{µ(DX), µ(DY), µ(DZ)} ≤ 55µ0.

Thus, ‖H2‖max ≤ C1)maxµ
3/2
0

√
r1r2r3
d1d2d3

for an absolute constant C1 > 0. Applying

(11), on the event E3,

〈P"H2,H2〉 ≤ n
d1d2d3

‖H2‖2F + Cα‖H2‖max‖H2‖$

(
√

nd
d1d2d3

log d + log3/2 d
)

≤ C ·
{

n
d1d2d3

)2
maxd

6
p
(
(U,V,W), (X,Y,Z)

)

+ n
d1d2d3

ζ1d2p
(
(U,V,W), (X,Y,Z)

)

+ αrµ3/2
0 )2

max

√
r1r2r3
d1d2d3

(
√

nd
d1d2d3

log d + log3/2 d
)

× d2p
(
(U,V,W), (X,Y,Z)

)}
.

If

dp
(
(U,V,W), (X,Y,Z)

)
≤ (C1ακ0 log d)−1

and

n ≥ C1

(
α3µ

3/2
0 κ4

0r(r1r2r3d1d2d3)
1/2 log7/2 d + α6µ3

0κ
8
0r

2r1r2r3d log6 d
)
,

then the above bound can be simplified as

〈P"H2,H2〉 ≤ n
d1d2d3

( 1

50002C2α2 log2 d

)4
min

)2
max

+ Cζ1

)
d2p
(
(U,V,W), (X,Y,Z)

)
.
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Moreover by (24), on the event E1 ∩ E2 ∩ E3,

〈
P"(T̂ − T), T̂ − T

〉1/2
≤ ‖P"(T̂ − T)‖F
≤ ‖P"QT(T̂ − T)‖F + ‖P"Q⊥

T T̂|F

≤
√
3Cαn log d
2d1d2d3

‖QT(T̂ − T)‖F

+
√

n
d1d2d3

)min

128
√
6
dp
(
(U,V,W), (X,Y,Z)

)

≤ 5
√

n
d1d2d3

)max(Cα log d)dp
(
(U,V,W), (X,Y,Z)

)
,

where we used the following fact that, in the light of (9), (19), (23),

‖QT(T̂ − T)‖F ≤ ‖G − C‖F + 2)maxdp
(
(U,V,W), (X,Y,Z)

)
.

Finally, on the event E1 ∩ E2 ∩ E3, by (26),

〈
P"(T̂ − T),H2

〉
≤
〈
P"(T̂ − T), T̂ − T

〉1/2 〈P"H2,H2〉1/2

≤ 5
5000

n
d1d2d3

(
)2

min + Cα)max
√

ζ1 log d
)

× d2p
(
(U,V,W), (X,Y,Z)

)

≤ n
32d1d2d3

ζ1, (27)

where we used bound (22) and the fact that

dp
(
(U,V,W), (X,Y,Z)

)
≤ (Cακ0 log d)−1.

Putting (21), (25), (27) together, we conclude that on the event E1 ∩ E2 ∩ E3,

〈grad F(X,Y,Z), (DX,DY,DZ)〉 =
〈
P"(T̂ − T),H

〉

≥ n
16d1d2d3

ζ1

≥ n
256d1d2d3

)2
mind

2
p
(
(U,V,W), (X,Y,Z)

)
.

Moreover, note that

‖DX‖F + ‖DY‖F + ‖DZ‖F ≤ 2dp
(
(U,V,W), (X,Y,Z)

)
.
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By (20), we obtain

d1d2d3
n

‖grad F(X,Y,Z)‖F ≥ )2
min

512
dp
(
(U,V,W), (X,Y,Z)

)
,

which concludes the proof since )min ≥ ).

8.4 Proof of Theorem 4

We first note that the additional penalty function we imposed on F does not change
its local behavior in that Theorem 3 still holds if we replace F with F̃ . In the light of
Theorem 3, the first statement remains true for F̃ simply due to our choice of ρ. We
now argue that the second statement also holds for F̃ , more specifically,

d1d2d3
n

∥∥∥grad F̃(X,Y,Z)
∥∥∥
F

≥ 1
512

)2dp
(
(U,V,W), (X,Y,Z)

)
,

Observe that

‖grad F̃(X,Y,Z)‖F

≥

〈
grad F(X,Y,Z), (DX,DY,DZ)

〉
+
〈
grad G(X,Y,Z), (DX,DY,DZ)

〉

‖DX‖F + ‖DY‖F + ‖DZ‖F
.

In proving Theorem 3, we showed that

d1d2d3
n

〈
grad F(X,Y,Z), (DX,DY,DZ)

〉

‖DX‖F + ‖DY‖F + ‖DZ‖F
≥ 1

512
)2dp
(
(U,V,W), (X,Y,Z)

)
.

It therefore suffices to show that

〈grad G(X,Y,Z), (DX,DY,DZ)〉 ≥ 0.

This follows the argument from Section 8.2 of Keshavan et al. [17] and is omitted for
brevity.

Now that Theorem 3 holds for F̃ , we know that F̃(X,Y,Z) has a unique stationary
point inN (δ, 4µ0) at (U,V,W) for δ ≤ (Cακ0 log d)−1.Again, by a similar argument
as that from the proof of Theorem 1.2 fromKeshavan et al. [17], it can be shown that all
iterates (X(k),Y(k),Z(k)) ∈ N (δ/10, 4µ0) and therefore Algorithm 3 is just gradient
descent with exact line search inN (δ/10, 4µ0). This suggests that Algorithm 3 must
converge to the unique stationary point (U,V,W). See, e.g., Chapter 8 of Luenberger
and Ye [21].
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A Proof of Lemma 1

The first claim is straightforward. It suffices to prove the second claim. Let A =
(U,V,W)·CwithC ∈ Rr1(A)×r2(A)×r3(A) being the core tensor.Clearly,‖A‖$ = ‖C‖$

and ‖A‖F = ‖C‖F. Denote by C1, . . . ,Cr1(A) ∈ Rr2(A)×r3(A) the mode-1 slices of C.
By convexity of nuclear norm,

‖C‖$ ≤ ‖C1‖$ + · · · + ‖Cr1(A)‖$.

As a result,

‖C‖2$ ≤ r1(A)
(
‖C1‖2$ + · · · + ‖Cr1(A)‖2$

)

≤ r1(A)
(
r2(A) ∧ r3(A)

)(
‖C1‖2F + . . .+ ‖Cr1(A)‖2F

)

= r1(A)
(
r2(A) ∧ r3(A)

)
‖C‖2F.

Therefore,

‖C‖$ ≤
√
r1(A)min{r2(A), r3(A)}‖C‖F.

By the same process on mode-2 and mode-3 slices of C, we obtain

‖C‖$ ≤
√
r2(A)min{r1(A), r3(A)}‖C‖F,

and

‖C‖$ ≤
√
r3(A)min{r1(A), r2(A)}‖C‖F,

which concludes the proof.

B Proof of Corollary 1

By Davis–Kahan theorem (see, e.g., Theorem 2 of [32]),

dp
(
Û,U
)

≤ 2
√
r1‖N̂ − MM2‖
σmin(MM2)

.

By choosing m1 = d1,m2 = d2d3 in Theorem 2 and noticing that n ≥ C1(α +
1)(d1d2d3)1/2, then

‖N̂ − MM2‖ ≤ Cα2 (d1d2d3)
3/2 log d
n

×
[(

1+ d1
d2d3

)1/2
+
(

n
d2d3 log d

)1/2]

‖M‖2max
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with probability at least 1−d−α . It suffices to control ‖M‖max. Recall thatµ(T) ≤ µ0;
then,

‖M‖max = ‖T‖max ≤ ‖T‖µ3/2
0

(
r1r2r3
d1d2d3

)1/2
.

It is clear by definition that

‖T‖2/σmin(MM2) ≤ κ2(T) ≤ κ2
0 .

As a result, the following bound holds with probability at least 1 − d−α ,

dp
(
Û,U
)

≤ 2Cα2µ3
0κ

2
0r

3/2
1 r2r3

(d1d2d3)1/2 log d
n

×
[(

1+ d1
d2d3

)1/2
+
(

n
d2d3 log d

)1/2]

≤ 2Cα2µ3
0κ

2
0r

3/2
1 r2r3

[
(d1d2d3)1/2 log d

n
+ d1 log d

n
+
(
d1 log d

n

)1/2]

.

The claim then follows.

C Proof of Lemma 2

For simplicity, define a random tensor E ∈ {0, 1}d1×d2×d3 based on ω ∈ [d1]× [d2]×
[d3] such that E(ω) = 1 and all the other entries are 0s. Let E1, . . . ,En be i.i.d. copies
of E. Equivalently, we write

βn(γ1, γ2) = sup
A∈K(γ1,γ2)

∣∣∣
1
n

n∑

i=1

〈A,Ei 〉2 − E〈A,E〉2
∣∣∣

which is the upper bound of an empirical process indexed byK(γ1, γ2). Define δ1, j =
2 jδ−

1 for j = 0, 1, 2, . . . , &'log δ+1
δ−
1
and δ2,k = 2kδ−

2 for k = 0, 1, 2, . . . , &'log δ+2
δ−
2
.

For each j, k, we derive the upper bound of βn(γ1, γ2) with γ1 ∈ [δ1, j , δ1, j+1] and
γ2 ∈ [δ2,k, δ2,k+1]. Following the union argument, we can make the bound uniformly
true for γ1 ∈ [δ−

1 , δ
+
1 ] and γ2 ∈ [δ−

2 , δ
+
2 ].

Consider γ1 ∈ [δ1, j , δ1, j+1], γ2 ∈ [δ2,k, δ2,k+1], and observe that

sup
A∈K(γ1,γ2)

∣∣〈A,E〉2 − E〈A,E〉2
∣∣ ≤ γ 2

1 .
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Moreover,

sup
A∈K(γ1,γ2)

Var
(
〈A,E〉2

)
≤ sup

A∈K(γ1,γ2)

E〈A,E〉4 ≤ γ 2
1 ‖A‖2F
d1d2d3

≤ γ 2
1

d1d2d3
.

Applying Bousquet’s version of Talagrand’s concentration inequality [4], with prob-
ability at least 1 − e−t for all t ≥ 0,

βn(γ1, γ2) ≤ 2Eβn(γ1, γ2)+ 2γ1

√
t

nd1d2d3
+ 2γ 2

1
t
n
.

By the symmetrization inequality,

Eβn(γ1, γ2) ≤ 2E sup
A∈K(γ1,γ2)

∣∣∣
1
n

n∑

i=1

εi 〈A,Ei 〉2
∣∣∣,

where ε1, . . . , εn are i.i.d Rademacher random variables. Since |〈A,E〉| ≤ γ1, by the
contraction inequality,

Eβn(γ1, γ2) ≤ 4γ1E sup
A∈K(γ1,γ2)

∣∣∣
1
n

n∑

i=1

εi 〈A,Ei 〉
∣∣∣.

Denote # = n−1∑n
i=1 εiEi ∈ Rd1×d2×d3 . Then,

E sup
A∈K(γ1,γ2)

∣∣∣
1
n

n∑

i=1

εi 〈A,Ei 〉
∣∣∣ ≤ E sup

A∈K(γ1,γ2)

‖#‖‖A‖$ ≤ γ2E‖#‖.

It is not difficult to show that

E‖#‖ ≤ C
(
√

d
nd1d2d3

log d + log3/2 d
n

)
.

See, e.g., Lemma 8 of Yuan and Zhang [33]. The above bound holds as long as

n ≥ C
{
µ0(r1r2r3d1d2d3)1/2 log3/2 d + µ2

0r1r2r3d log
2 d
}
.

As a result, with probability at least 1 − e−t ,

βn(γ1, γ2) ≤ Cγ1γ2

(
√

d
nd1d2d3

log d + log3/2 d
n

)
+ 2γ1

√
t

nd1d2d3
+ 2γ 2

1
t
n

for γ1 ∈ [δ1, j , δ1, j+1] and γ2 ∈ [δ2,k, δ2,k+1]. Now, consider all the combinations of
j and k, and we can make the upper bound uniform for all j and k with adjusting t to
t̄ , and C to 2C .
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D Proof of lower bound of 〈QT (̂T − T),H1〉

Recall that

〈QT(T̂ − T),H1〉 =
〈
(U,V,W) · (C − G)+ ("X,V,W) · C+ (U,"Y,W) · C

+ (U,V,"Z) · C, (DX,V,W) · C+ (U,DY,W) · C+ (U,V,DZ) · C
〉
.

Clearly, the right-hand side can be written as ζ1 + ζ2 + ζ3 where

ζ1 = ‖("X,V,W) · C+ (U,"Y,W) · C+ (U,V,"Z) · C‖2F
ζ2 =
〈
(U,V,W) · (C − G), (DX,V,W) · C+ (U,DY,W) · C+ (U,V,DZ) · C

〉

ζ3 =
〈
"X,V,W) · C+ (U,"Y,W) · C+ (U,V,"Z) · C, (DX − "X,V,W) · C

+ (U,DY − "Y,W) · C+ (U,V,DZ − "Z) · C
〉
.

Clearly,

ζ1 ≥ ‖("X,V,W) · C‖2F + ‖(U,"Y,W) · C‖2F + ‖(U,V,"Z) · C‖2F
− 2)2

max(C)
(
‖U2"X‖F‖V2"Y‖F + ‖U2"X‖F‖W2"Z‖F + ‖V2"Y‖F‖W2"Z‖F

)

≥ )2
min(C)

(
‖"X‖2F + ‖"Y‖2F + ‖"Z‖2F

)
− 8)2

max(C)d
4
p
(
(U,V,W), (X,Y,Z)

)

where we used the fact that

‖U2"X‖F ≤ 2d2p (U,X).

Recall from (23) that on the event E1 ∩ E2 ∩ E3, we have

)min

2
≤ )min(C) ≤ )max(C) ≤ 2)max.

Then

ζ1 ≥ 1
12

)2
mind

2
p
(
(U,V,W), (X,Y,Z)

)
− 32)2

maxd
4
p
(
(U,V,W), (X,Y,Z)

)
.

It also implies that on the event E1 ∩ E2 ∩ E3,

ζ1 ≥ 1
2

(
‖("X,V,W) · C‖2F + ‖(U,"Y,W) · C‖2F + ‖(U,V,"Z) · C‖2F

)
. (28)

We can control |ζ3| in the same fashion. Indeed,

|ζ3|2 ≤ |ζ1|)2
max(C)(‖DX − "X‖2F + ‖DY − "Y‖2F + ‖DZ − "Z‖2F)

≤ 4|ζ1|)2
maxd

4
p
(
(U,V,W), (X,Y,Z)

)
.
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If

dp
(
(U,V,W), (X,Y,Z)

)
≤ (Cακ0 log d)−1

for large C > 0, then under the event E1 ∩ E2 ∩ E3,

ζ1 ≥ 1
16

)2
mind

2
p
(
(U,V,W), (X,Y,Z)

)
and |ζ3| ≤ ζ1

4

To control ζ2, recall that X2DX = 0,Y2DY = 0 and Z2DZ = 0. Then,

|ζ2| ≤ |〈("X,V,W) · (C − G), (DX,V,W) · C〉|
+ |〈(U,"Y,W) · (C − G), (U,DY,W) · C〉|
+ |〈(U,V,"Z) · (C − G), (U,V,DZ) · C〉|

≤ 2‖C − G‖F
{(

‖("X,V,W) · C‖F + ‖U,"Y,W) · C‖F + ‖(U,V,"Z) · C‖F
)

+ )max(C)
(
‖DX − "X‖F + ‖DY − "Y‖F + ‖DZ − "Z‖F

)}
dp
(
(U,V,W), (X,Y,Z)

)

≤ 2‖G − C‖F
√

ζ1dp
(
(U,V,W), (X,Y,Z)

)

+ 4‖C − G‖F)maxd3p
(
(U,V,W), (X,Y,Z)

)
.

Recall from (19) that under the event E1 ∩ E2 ∩ E3,

‖G − C‖F ≤ C)max(α log d)1/2dp
(
(U,V,W), (X,Y,Z)

)
.

Therefore, |ζ2| ≤ ζ1/2 in view of the lower bound of ζ1. In summary, under the event
E1 ∩ E2 ∩ E3,

〈QT(T̂ − T),H1〉 ≥ 1
4
ζ1 ≥ 1

64
)2

mind
2
p
(
(U,V,W), (X,Y,Z)

)
.

E Upper bound of ‖H2‖F

It is shown in (28) that if dp
(
(U,V,W), (X,Y,Z)

)
≤ (Cακ0 log d)−1, then

ζ1 ≥ 1
2

(
‖("X,V,W) · C‖2F + ‖(U,"Y,W) · C‖2F + ‖(U,V,"Z) · C‖2F

)
.

Observe that

‖("X,V,W) · C‖2F = ‖M2(C)("X ⊗ W)‖F = ‖M3(C)("X ⊗ V)‖F
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which implies that

ζ1 ≥ 1
6

(
‖M2(C)("X ⊗ W)‖F + ‖M3(C)(U ⊗ "Y)‖F + ‖M1(C)(V ⊗ "Z)‖F

)2

By definition of H2, we obtain

‖H2‖F ≤ ‖M1(C)("Y ⊗ W)‖F‖DX‖F + ‖M1(C)(V ⊗ "Z)‖F‖DX‖F
+ ‖M2(C)("X ⊗ W)‖F‖DY‖F + ‖M2(C)(U ⊗ "Z)‖F‖DY‖F
+ ‖M3(C)("X ⊗ V)‖F‖DZ‖F + ‖M3(C)(U ⊗ "Y)‖F‖DZ‖F
+ 24)maxd3p

(
(U,V,W), (X,Y,Z)

)

where we used the fact )max(C) ≤ 2)max from (23). Clearly,

‖H2‖F ≤ 2
√
6ζ1
(
‖DX‖F + ‖DY‖F + ‖DZ‖F

)
+ 24)maxd3p

(
(U,V,W), (X,Y,Z)

)

≤ 4
√
6ζ1dp
(
(U,V,W), (X,Y,Z)

)
+ 24)maxd3p

(
(U,V,W), (X,Y,Z)

)
.
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