OO
Foundations of Computational Mathematics (2019) 19:1265-1313 MPUTA
https://doi.org/10.1007/510208-018-09408-6 MATHEMATICS

——

@ CrossMark

On Polynomial Time Methods for Exact Low-Rank Tensor
Completion

Dong Xia' - Ming Yuan?

Published online: 7 January 2019
© SFoCM 2018

Abstract

In this paper, we investigate the sample size requirement for exact recovery of a
high-order tensor of low rank from a subset of its entries. We show that a gradient
descent algorithm with initial value obtained from a spectral method can, in particular,
reconstructad x d x d tensor of multilinear ranks (r, r, r) with high probability from
as few as O (r’/2d3/* log"/* d 4 r’d 1og® d) entries. In the case when the ranks r =
O (1), our sample size requirement matches those for nuclear norm minimization (Yuan
and Zhang in Found Comput Math 1031-1068, 2016), or alternating least squares
assuming orthogonal decomposability (Jain and Oh in Advances in Neural Information
Processing Systems, pp 1431-1439, 2014). Unlike these earlier approaches, however,
our method is efficient to compute, is easy to implement, and does not impose extra
structures on the tensor. Numerical results are presented to further demonstrate the
merits of the proposed approach.
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1 Introduction

Let T € R4 *d be a kth-order tensor. The goal of tensor completion is to recover
T based on a subset of its entries {7 (w) : w € Q} for some Q2 C [dy] x --- x [di]
where [d] = {1, 2, ..., d}. The problem of tensor completion has attracted a lot of
attention in recent years due to its wide range of applications. See, e.g., Li and Li [19],
Sidiropoulos and Nion [29], Tomioka et al. [30], Gandy et al. [13], Cohen and Collins
[7], Liu et al. [20], Anandkumar et al. [2], Mu et al. [23], Semerci et al. [28], Yuan and
Zhang [33] and references therein. In particular, the second-order (matrix) case has
been extensively studied. See, e.g., Candees and Recht [5], Keshavan et al. [17], Candes
and Tao [6], Gross [14], Recht [26] among many others. One of the main revelations
from these studies is that, although the matrix completion problem is in general NP-
hard, it is possible to develop tractable algorithms to achieve exact recovery with high
probability. Naturally, one asks if the same can be said for higher-order tensors. This
seemingly innocent task of generalizing from second- to higher-order tensors turns
out to be rather delicate.

The challenges in dealing with higher-order tensors come from both computational
and theoretical fronts. On the one hand, many of the standard operations for matrices
become prohibitively expensive to compute for higher-order tensors. A notable exam-
ple is the computation of tensor spectral norm. For second-order tensors, or matrices,
the spectral norm is merely its largest singular value and can be computed with little
effort. Yet, this is no longer the case for higher-order tensors where computing the
spectral norm is NP-hard in general (see, e.g., [15]). On the other hand, many of the
mathematical tools, either algebraic such as characterization of the subdifferential of
the nuclear norm or probabilistic such as concentration inequalities, essential to the
analysis of matrix completion, are still under development for higher-order tensors.
There is a fast-growing literature to address both issues, and much progress has been
made in both fronts in the past several years.

When it comes to higher-order tensor completion, an especially appealing idea
is to first unfold a tensor into a matrix and then treat it using techniques for matrix
completion. Notable examples include Tomioka et al. [30], Gandy et al. [13], Liu
et al. [20], Mu et al. [23] among others. As shown recently by Yuan and Zhang
[33], these approaches, although easy to implement, may require an unnecessarily
large amount of entries to be observed to ensure exact recovery. As an alternative,
Yuan and Zhang [33] established a sample size requirement for recovering a third-
order tensor via nuclear norm minimization and showed that a d x d x d tensor with
multilinear ranks (r, r, r) can be recovered exactly with high probability with as few
as O((r'2d3 2 +r2a) (logd )2) entries observed. Perhaps more surprisingly, Yuan and
Zhang [34] later showed that the dependence on d (e.g., the factor d°/?) remains the
same for higher-order tensors, and we can reconstruct a kth-order cubic tensor with
as few as O ((r&—D/2g3/2 4 rk_ld)(log d)?) entries for any k > 3 when minimizing
a more specialized nuclear norm devised to take into account the incoherence. These
sample size requirements drastically improve those based on unfolding which typically
require a sample size of the order r¥/21a™k/21polylog(d) (see, e.g., [23]). Although
both nuclear norm minimization approaches are based on convex optimization, they
are also NP-hard to compute in general. Many approximate algorithms have also been
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proposed in recent years with little theoretical justification. See, e.g., Kressner et al.
[18], Rauhut and Stojanac [24], and Rauhut et al. [25]. It remains unknown whether
there exist polynomial time algorithms that can recover a low-rank tensor exactly
with similar sample size requirements. The goal of the present article is to fill in the
gap between these two strands of research by developing a computationally efficient
approach with a tight sample size requirement for completing a third-order tensor.

In particular, we show that there are polynomial time algorithms that can reconstruct
ad| x dy x d3 tensor with multilinear ranks (r1, ro, r3) from as few as

0 (r1r2r3 (rdidads) 2 1og"? d + (rirars)?rd log® d)

entries where r = max{ry, ra, r3} and d = max{dy, da, d3}. This sample size require-
ment matches those for tensor nuclear norm minimization in terms of its dependence
on the dimensions di, d» and d3 although it is inferior in terms of its dependence
on the ranks rp, r» and r3. This makes our approach especially attractive in practice
because we are primarily interested in high-dimension (large d) and low-rank (small )
instances. In particular, when r = O (1), our algorithms can recover a tensor exactly
based on O(d3/>1log’/? d) observed entries, which is nearly identical to that based
on nuclear norm minimization. It is also worth noting that the sample size require-
ment we obtained is comparable to those for orthogonally decomposable tensors [16].
Unlike matrices, orthogonal decomposability is a rather restrictive assumption for
higher-order tensors and our results suggest it may not be necessary after all.

It is known that the problem of tensor completion can be cast as optimization over a
direct product of Grassmannians (see, e.g., [ 18]). The high-level idea behind our devel-
opment is similar to those used earlier by Keshavan et al. [17] for matrix completion:
If we can start with an initial value sufficiently close to the truth, then a small number
of observed entries can ensure the convergence of typical optimization algorithms on
Grassmannians such as gradient descent to the truth. Yet, the implementation of this
strategy is much more delicate and poses significant new challenges when moving
from matrices to tensors.

At the core of our method is the initialization of the linear subspaces in which the
fibers of a tensor reside. In the matrix case, a natural way to do so is by singular value
decomposition, a tool that is no longer available for higher-order tensors. An obvious
solution is the so-called high-order singular value decomposition that unfolds tensors
into matrices and then applies the usual singular value decomposition. This, however,
requires an unnecessarily large sample size. To overcome this problem, we propose
an alternative approach to estimating the singular spaces of the matrix unfoldings of a
tensor. Our method is based on a carefully constructed estimate of the second moment
of appropriate unfolding of a tensor, which can be viewed as a matrix version U-
statistics. We show that the eigenspace of the proposed estimate concentrates around
the true singular spaces of the matrix unfolding more sharply than the usual singular
value decomposition-based approaches and therefore leads to consistent estimate with
tighter sample size requirement.

The fact that there exist polynomial time algorithms to estimate a tensor consistently,
not exactly, with O (d>/?polylog(r, logd)) observed entries was first recognized by
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Barak and Moitra [3]. Their approach is based on sum-of-square relaxations of tensor
nuclear norm. Although polynomial time solvable in principle, their method requires
solving a semidefinite program of size d> x d° and is not amenable to practical imple-
mentation. In contrast, our approach is essentially based on the spectral decomposition
of a d x d matrix and can be computed fairly efficiently. Very recently, in indepen-
dent work and under further restrictions on the tensor ranks, Montanari and Sun [22]
showed that a spectral method different from ours can also achieve consistency with
O (d3/?polylog(r, log d)) observed entries. The rate of concentration for their estimate,
however, is slower than ours, and as a result, it is unclear if it provides a sufficiently
accurate initial value for the exact recovery with the said sample size.

Once a good initial value is obtained, we consider reconstructing a tensor by opti-
mizing on a direct product of Grassmannians locally. To this end, we consider a simple
gradient descent algorithm adapted for our purposes. The main architecture of our
argument is similar to those taken by Keshavan et al. [17] for matrix completion. We
argue that the objective function, in a suitable neighbor around the truth and including
the initial value, behaves like a parabola. As a result, the gradient descent algorithm
necessarily converges locally to a stationary point. We then show that the true tensor is
indeed the only stationary point in the neighborhood and therefore the algorithm recov-
ers the truth. To prove these statements for higher-order tensors, however, requires a
number of new probabilistic tools for tensors, and we do so by establishing several
new concentration bounds, building upon those from Yuan and Zhang [33,34].

The rest of the paper is organized as follows: We first review necessary concepts
and properties of tensors for our purpose in the next section. Section 3 describes our
main result with the initialization and local optimization steps being treated in detail
in Sects.4 and 5, respectively. Numerical experiments presented in Sect.6 comple-
ment our theoretical development. We conclude with some discussions and remarks
in Sect. 7. Proofs of the main results are relegated to Sect. 8.

2 Preliminaries

To describe our treatment of low-rank tensor completion, we first review a few basic
and necessary facts and properties of tensors. In what follows, we shall denote a
tensor or matrix by a boldfaced uppercase letter, and its entries the same uppercase
letter in normal font with appropriate indices. Similarly, a vector will be denoted
by a boldfaced lowercase letter, and its entries by the same letter in normal font. For
notational simplicity, we shall focus primarily on third-order (k = 3) tensors, although
our discussion can mostly be extended to higher-order tensor in a straightforward
fashion. Subtle differences in treatment between third- and higher-order tensors will
be discussed in Sect. 7.

The goal of tensor completion is to recover a tensor from partial observations of its
entries. The problem is obviously underdetermined in general. To this end, we focus
here on tensors that are of low multilinear ranks.

For a tensor A € R%1*42%45_ define the matrix M (A) € R4 *(©243) by the entries

Mi(A) (i1, (i2 — 1)d3 +i3) = A(i1, i2,i3), Vii €[di], iz € [da], i3 € [d3].
EoC T
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In other words, the columns of M (A) are the mode-1 fibers, {(A(i1, i2, i3))i,e[4,] :
ir» € [da], i3 € [d3]}, of A. We can define M and M3 in the same fashion. It is clear
that M; : Réxdxds . Rdjx(didads/d)) jg 3 vector space isomorphism and often
referred to as matricization or unfolding. The multilinear ranks of A are given by

r1(A) = rank(M(A)) = dim(span{(A (i1, i2, i3))i e[ay] : i2 € [d2], i3 € [d3]}),
r2(A) = rank(M»(A)) = dim(span{(A(iy, i2, i3))ire[dr] : i1 € [d1], i3 € [d3]}),
r3(A) = rank(M3(A)) = dim(span{(A(i1, i2, i3))ise[as] : 11 € [d1], P2 € [da]}).

Note that, in general, r{ (A) # r2(A) # r3(A).
Let U, V and W be the left singular vectors of M(A), M3(A) and M3(A),

respectively. It is not hard to see that there exists a so-called core tensor C €
R A)xr2(A)xr3(A) gych that

ri(A) r2(A) r3(A)

A= 3" Cljr i)W, @V, @W), ey

n=1 =1 j3=1

where u;, v; and w; are the jth column of U, V and W, respectively, and

XQY ®Z:= (X, YirZiy)ii eldi 1, irelda],izeld3] >

is a so-called rank-one tensor. Following the notation from de Silva and Lim [10], (1)
can also be more compactly represented as a trilinear multiplication:

A=UV,W) .- C=Cx;Ux,Vx3W,

where the marginal product x| : R71X72%73 x RAX71 s RAXr2X73 s ojven by

1
AxiB= ()" AG, jo, j3) B, j1) :
Ji=1 ineldi]. joelrl. jslrs]
and x», and x3 are similarly defined.
The collection of all tensors of dimension d| x d» X d3 whose multilinear ranks
are at most r = (r, rp, r3) can be written as

Ar) ={(X.Y,Z2)-C:X e V(d,r).Y € V(da, ), Z € V(d3,r3),C e RNT*"2X3}

where V(d, r) is the Stiefel manifold of orthonormal r-frames in R?. In fact, any
tensor A € A(r) can be identified with a r;-dimensional linear subspace in R4, ars-
dimensional linear subspace in R%2, a r3-dimensional linear subspace in R% and a core
tensor in R"1>"2%73 go that A(r) is isomorphic to G(d, r1) x G(da, r2) x G(d3, r3) X
R *72%713 where G(d, r) is the Grassmannian of r-dimensional linear subspaces in
R4,
EOE';W
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Another common way of defining tensor ranks is through the so-called CP decom-
position which expresses a tensor as the sum of the smallest possible number of
rank-one tensors. The number of rank-one tensors in the CP decomposition of a ten-
sor is commonly referred to as its CP rank. It is not hard to see that for a tensor of
multilinear ranks (rq, r2, r3), its CP rank is necessarily between max{ry, r», r3} and
min{riro, r1r3, r2r3}. We shall focus here primarily on multilinear ranks because it
allows for stable numerical computation, as well as refined theoretical analysis. In
addition, we can view a tensor of CP rank r also as a tensor with multilinear ranks no
greater than (r, r, r). This allows us to straightforwardly translate the current result
to tensors of low CP rank. However, it is worth noting this may lead to suboptimal
dependence on r.

In addition to being of low rank, another essential property that T needs to satisfy
so that we can possibly recover it from a uniformly sampled subset of its entries is the
incoherence of linear subspaces spanned by its fibers (see, e.g., [5]). More specifically,
let X be a r-dimensional linear subspace in R? and Py : RY — R be its projection
matrix. We can define the coherence for A" as

d
w(X) = — max |Pye|?,
v l<i<d

where e; is the ith canonical basis of an Euclidean space, that is, it is a vector whose
ith entry is one and all other entries are zero. Note that

max;<;<g4 ||Pve;?
pX) = —=7 -
d Zi:1 IP el

for

d

> IPxei||* = trace(Py) = r.
i=1

Now for a tensor A € R?U1*%%43denote by U/(A) the linear space spanned by its
mode-1 fibers, V(A) mode-2 fibers, and WW(A) mode-3 fibers. With slight abuse of
notation, we define the coherence of A as

w(A) = max {uU(A)), n(V(A)), nOV(A))}.

Incoherence as defined here is a natural requirement for tensor recovery. It ensures
that each fiber contains similar amount of information about the whole tensor and
therefore allows for its recovery even if no entry of a particular fiber is observed. In
particular, for any rank-(ry, r», r3) tensor A € RA1xdyxd3

rrars

P2 A g,
didods (AT [Allr

max |A(w)] <
weldi]x[d2]x[d3]

FoC'T
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S0, in a certain sense, the simultaneous incoherence rules out situations where some
entries might be dominating and missing them could prevent us from reconstructing
the original tensor.

In what follows, we shall also encounter various tensor norms. Recall that the vector
space inner product between two tensors X, Y € R%*%*% ig defined as

X.Y)= > XY©).

weld;]x[da]x[d3]

The corresponding norm, referred to as Frobenius norm, for a tensor A € Ré1xdaxds
is given by

IAllF = (A, A)'2.
We can also define the spectral norm of A as

Al == sup (A, u; @ u @ uz),

d.
u; €RY:flug f|=(luzf|=luz[|=1

where, with slight abuse of notation, we write || - || both as the spectral norm for a
tensor and as the usual £, norm for a vector for brevity. The nuclear norm is the dual
of spectral norm:

Al = sup (A, X).

XeRd1xd2xd3 |X|| <1

Another norm of interest is the max norm or the entrywise sup norm of A:

IA Imax := |A(w)] .

max
weld]x[d2]x[d3]
The following relationships among these norms are immediate and stated here for
completeness. We shall make use of them without mentioning throughout the rest of

our discussion.

Lemma1 Forany A € R xdyxds

[Allmax = Al < [[AllF = Vri(A)r2(A)r3(A)[|A]l,

and

Al < min {1 A)r28), Vi A3 A), V2@ @) | 1A

The proof of Lemma 1 is included in Appendix A for completeness. We are now

in a position to describe our approach to tensor completion.
EOE';W
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3 Tensor Completion

Assume that T has multilinear ranks r := (r, r2, r3) and coherence at most (g; we
want to recover T based on (a),-, T(a),-)) fori = 1,2, ..., nwhere w; are independently
and uniformly drawn from [d1] X [d>] X [d3]. This sampling scheme is often referred
to the Bernoulli model, or sampling with replacement (see, e.g., [14,26]). Another
commonly considered scheme is the so-called uniform sampling without replacement
where we observe T (w) for w € 2 and Q2 is a uniformly sampled subset of [d]] x
[d2] x [d3] with size |2] = n. It is known that both sampling schemes are closely
related in that, given a uniformly sampled subset 2 of size n, one can always create a
sample w; € Q,i =1, ..., n so that w;s follow the Bernoulli model. This connection
ensures that any method that works for Bernoulli model necessarily works for uniform
sampling without replacement as well. From a technical point of view, it has been
demonstrated that working with the Bernoulli model leads to considerably simpler
arguments for a number of matrix or tensor completion approaches. See, e.g., Gross
[14], Recht [26], Yuan and Zhang [33], among others. For these reasons, we shall
focus on the Bernoulli model in the current work.
A natural way to solve this problem is through the following optimization:

— |Pa(A —-T)|5,
A‘;}i‘% || o I3

where the linear operator Pg : R41*2xds _ Rdixd2xd3 i given by
n
PoX = Z Pu X

and P,X is adj x dy x d3 tensor whose w entry is X (o) ¢ and other entrles are zero.
Equlvalentfl\y, ‘we can reconstruct T=U,V,W): G by T: (U V W) G where
the tuple (U, V, W, G) solves

min IIPQ((X Y.Z) C— T)IIF (2)
XeV(di,r1),YeV(da,r),ZeV(ds,r3),CeRI X2 %73 2

Recall that X ® Y ® Z is a sixth-order tensor of dimension dy X dy X d3 X ri X rp X r3.
With slight abuse of notation, for any w € [d1] X [d2] X [d3], denote by (X®Y R Z) (w)
athird-order tensor with the first three indices of X® Y ® Z fixed at w. By the first-order
optimality condition, we get

D AXQYRL) (). C)X®YRZ)(w) =) Tw)X®Y®Z)(w),
i=1 i=1
FoE'ﬂ
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so that

n -1
vec(C) = <Z vec(XR®Y®Z)(w;))vec(X®Y ® Z)(a),-))T>

i=1

x (Z T(wi)vec(X®Y ® Z)(a),-))) : )

i=1

Here, we assumed implicitly that n > r;r,r3. In general, there may be multiple mini-
mizers to (2) and we can replace the inverse by the Moore—Penrose pseudoinverse to
yield a solution. Plugging it back to (2) suggests that (U, V, W) is the solution to

max FX, Y, 7)),
XeV(dy,r1),YeV(da,r),2eV(d3,r3)

where

n T
F(X.Y,Z) = (Z T(w)vee(X®Y ® Z) (wo))

i=1

n -1
x (Z vee(X ® Y ® Z)(wi)vee(X @Y @ Z)(me)

i=1

x (Z T(i)vee(X®Y ® Z)<wl->)> :

i=1

Let X = XQy, Y = YQ; and Z = ZQs, where Q; € O(r;) and O(r) is the set of
r x r orthonormal matrices. It is easy to verify that

FX,Y,Z)=FX,Y,Z)
so that it suffices to optimize F (X, Y, Z) over
X,Y,Z) € (V(d1,r1)/0(r1)) x V(d2,12)/O(r2)) x V(d3,73)/O(r3)).

Recall that V(d, r)/O(r) = G, r), the Grassmannian of r-dimensional linear sub-
space in R?. Optimizing F can then be cast as an optimization problem over a direct
product of Grassmannian manifolds, a problem that has been well studied in the lit-
erature. See, e.g., Absil et al. [1]. In particular, (quasi-)Newton (see, e.g., [12,27]),
gradient descent (see, e.g., [17]) and conjugate gradient (see, e.g., [18]) methods have
all been proposed previously to solve optimization problems similar to the one we
consider here.

There are two prerequisites for any of these methods to be successful. The highly
nonconvex nature of the optimization problem dictates that even if any of the afore-
mentioned iterative algorithms converges, it could only converge to a local optimum.

EOE';W
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Therefore, a good initial value is critical. This unfortunately is an especially chal-
lenging task for tensors. For example, if we consider random initial values, then
a prohibitively large number, in fact exponential in d, of seeds would be required
to ensure the existence of a good starting point. Alternatively, in the second-order
or matrix case, Keshavan et al. [17] suggests a singular value decomposition-based
approach for initialization. The method, however, cannot be directly applied for higher-
order tensors as similar type of spectral decomposition becomes NP-hard to compute
[15]. To address this challenge, we propose here a new spectral method that is efficient
to compute and at the same time is guaranteed to produce an initial value sufficiently
close to the optimal value.

With the initial value coming from a neighborhood near the truth, any of the afore-
mentioned methods could then be applied in principle. In order for them to converge
to the truth, we need to make sure that the objective function F' behaves well in
the neighborhood. In particular, we shall show that, when # is sufficiently large, F
behaves like a parabola in a neighborhood around the truth and therefore ensures the
local convergence of algorithms such as gradient descent.

We shall address both aspects, initialization and local convergence, separately in
the next two sections. In summary, we can obtain a sample size requirement for exact
recovery of T via polynomial time algorithms. As in the matrix case, the sample size
requirement depends on notions of condition number of T. Recall that the condi-
tion number for a matrix A is given by « (A) = omax(A)/0omin(A) Where omax and
omin are the largest and smallest nonzero singular values of A, respectively. We can
straightforwardly generalize the concept to a third-order tensor A as:

max {omax (M1(A)), Omax (M2(A)), Omax (M3(A))}

A) = .
K = i Omin M1 (A)), omin (M (A)), omin(Ma (A)]

Our main result can then be summarized as follows:

Theorem 1 Assume that T € RO *2%d3 jg 4 rank-(ry, rp, r3) tensor whose coherence
is bounded by w(T) < wo and condition number is bounded by « (T) < kg. Then there
exists a polynomial time algorithm that recovers T exactly based on {(a),', T(a)i)) :
1 < i < n}, with probability at least 1 — d™% if w;s are independently and uniformly
sampled from [d1] x [d>] x [d3] and

n>C {a3u(3)l<gr1r2r3(rd1d2d3)1/2 10g7/2 d+ aﬁugxg(rlrzm)zrd log6d} , 4

for a universal constant C > 0, and an arbitrary constant « > 1, where d =
max{di, dy, d3} and r = max{ry, r2, r3}.

In particular, we shall show that the following algorithm indeed achieves the sample
size requirement given by Theorem 1.

The next two sections will be devoted to the analysis of the second-order spectral
algorithm and gradient descent algorithm, respectively. These results, together with
the polynomial time complexity of both algorithms, immediately imply the validity
of Algorithm 1 and hence Theorem 1.

Elol:;ﬂ
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Algorithm 1 Tensor completion
Run the second-order spectral algorithm (Algorithm 2) to initialized U, and similarly V and W. Denote
these initial values as (U(O), V(O), W(O)).

2: Run the gradient descent algorithm (Algorithm 3) with initial value WO, vO WOy penote the
output by T.
Return T.

4 Second-Order Method for Estimating Singular Spaces

We now describe a spectral algorithm that produces good initial values for U and V
and W based on PqT. To fix ideas, we focus on estimating U. V and W can be treated
in an identical fashion. Denote

It is clear that ]E(T) = T so that M, (T) is an unbiased estimate of M| (T). Recall that
U is the left singular vectors of M (T); it is therefore natural to consider estimating U
by the leading singular vectors of M ("f). The main limitation of this naive approach
is its inability to take advantage of the fact that M (T) may be unbalanced in that
d1 < dad3, and the quality of an estimate of U is driven largely by the greater
dimension (d»d3) although we are only interested in estimating the singular space in
a lower-dimensional (d) space.

To specifically address this issue, we consider here a different technique for estimat-
ing singular spaces from a noisy matrix, which is more powerful when the underlying
matrix is unbalanced in that it is either very fat or very tall. More specifically, let
M e R™1*™2 pe a rank r matrix. Our goal is to estimate the left singular space of M
based on n pairs of observations {(w;, M(w;)) : 1 < i < n} where w;s are indepen-
dently and uniformly sampled from [m1] x [m2]. Recall that U is also the eigenspace
of MM " which is of dimension m x m. Instead of estimating M, we shall consider
instead estimating MM ". To this end, write X; = (mm2)P,;M, thatis am| x mp
matrix whose w; entry is (mm>)M(w;), and other entries are zero. It is clear that
E (X;) = M. We shall then consider estimating N := MM by

N T+ X.XT
N:= T XX + XX Q)

i<j

Note that X; has only a single nonzero entry so that each summand on the right-hand
side of (5) can be computed in constant time. In total, computing N has the time
complexity of O, (n?). Our first result shows that N could be a very good estimate of
N even in situations when n << my.

Theorem2 Let M € R™*™2 and X; = (mm2)Py,, M (i = 1,2, ...,n), where w;s

are independently and uniformly sampled from [m1] x [m2]. There exists an absolute
constant C > 0 such that for any o > 1, if

FoL g
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. §(a+l)logm

> -————, m:=max{m, my} > 2
3 min{my, m;}

then

IN-MM|

3/2 32
m; “my " logm
<C.o? 12 = g

n
12 1)2
x| (142 l/2+ml/ my +(—2 1/2 - IM2
ma n my logm max>

with probability at least 1 — m™%, where N is given by (5).

In particular, if |M||pax = O ((mim>)~ /%), then ||ﬁ —MMT| —p 0 as soon as
n> ((m ima)i2+ ml) log m. This is in contrast to estimating M. As shown by Recht
[26],

is a consistent estimate of M in spectral norm if n >> m logm. The two sample size
requirements differ when m| < m in which case N is still a consistent estimate of
MM', yet M is no longer a consistent estimate of M if (m1m2)1/ 2 logmy; €K n K
nmoy log my.

Equipped with Theorem 2, we can now address the initialization of U (and similarly
V and W). Instead of estimating it by the singular vectors of M (T), we shall do so
based on an estimate of M (T)M(T). With slight abuse of notation, write X; =
(d1drd3) M (P, T) and

. 1 T T
=D Z(X,»Xj +X;X).

i<j

We shall then estimate U by the leading r left singular vectors of N, hereafter denoted
by U.

As we are concerned with the linear spaces spanned by the column vector of U
and U, respectively, we can measure the estimation error by the projection distance
defined over Grassmannian:

17 - 1 T 2 adl
dp(U, ) ._TZHUU — 00 .

The following result is an immediate consequence of Theorem 2 and Davis—Kahan
theorem, and its proof is deferred to Appendix.

Elol:;ﬂ
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Corollary 1 Assume that T € RO*2%4 s g rank-(ry, ra, r3) tensor whose coherence
is bounded by n(T) < wo and condition number is bounded by k (T) < ko. Let U be
the left singular vectors of M (T) and U be defined as above, then there exist absolute
constants C1, Co > 0 such that for any o > 1, if

n=>Ci (t)t(dldzd\z)l/2 +d; logd) ,

then

~ dydrd3)' ? logd dy logd
dp(U,U) < C2a2u(3)/c§rl/2 rar3 (did> 331 o8 + 1;>g ,

with probability at least 1 —d~“.

In the light of Corollary 1, U (and similarly V and W) is a consistent estimate of U
whenever

n> [r13/ 2rars(didads) /2 + 1312 r32d] logd.

In addition, it is worth noting that U canbe computed effectively via truncated singular
value decomposition. Since Nisad; x di matrix, the time complexity for doing so is
O(drds + ridy).

In order to be used as an initial value in our algorithm for optimizing F, we also
need to make sure that U is incoherence. However, this may not always be the case.
Fortunately, because U is close to an incoherent basis U, we can readily derive an initial
value that is both incoherent and remains close to U, an observation made earlier by
Keshavan et al. [17]. In particular, an initial value for optimizing F can be obtained
via the following algorithm.

Algorithm 2 Second-order spectral estimate of U
Compute

J. 1 T T
- Z(X,-Xj +X;X;h.
i<j

where X; = (d1dyd3) M (Py; T)
2: Compute the truncated SVD for N and denote by U be the top r leading left singular vectors.
Let U be adj x r matrix whose ith row is given by

. oo _
o= 10O -min{|UD ), Vror), i=1.....dy.

where Q(i )~is the ith row vector of U.
4: Return U(UT0)~1/2,

FoE'ﬂ
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Following the discussion earlier, the running time of Algorithm 2 is O(n?) under
the settings of Corollary 1.

5 Exact Recovery by Optimizing Locally

Now that a good initial value sufficiently close to (U, V, W) is identified, we can then
proceed to optimize

1
FX,Y,Z)= min §||7>gz((X,Y,Z)-C—T)||I2F

CeR' Xr2xr3
locally. To this end, we argue that F indeed is well behaved in a neighborhood around

(U, V, W) so that such a local optimization is amenable to computation. For brevity,
write

Jd,do,d3,r1,12,13) 1= G(d1, r1) x G(d2, 2) x G(d3, r3).

We can also generalize the projection distance d}, on Grassmannian to J(d1, d2,
d3, r1,12,73) as follows:

dy (U, V, W), (X, Y, Z)) = dp(U, X) + dp(V. Y) + dp(W. Z).

We shall focus, in particular, on a neighborhood around (U, V, W) that are incoherent:
CAMES {(X, Y.Z) € J(di,dr,d3,r1,72,73) : dp (U, V, W), (X,Y,Z)) <6,
and max {u(X), u(Y), u(Z)} < M}

For a third-order tensor A, denote

Amax (A) = max {omax (M1 (A)), Omax (M2(A)), Omax(M3(A))},
and

Amin(A) = min {omin(M(A)), Omin (M2(A)), Omin(M3(A))}.
Theorem 3 Let T € R4 *%%% be g rank-(ry, ra, r3) tensor such that

w(D) < o, Amin(D) =2 A, Amax(T) <A, and «(T) < ko.

There exist absolute constants C1, Ca, C3, C4, Cs > 0 such that for any o > 1 and
X.Y,Z) € N(Ci(akologd) ™", 4p),

didrd
€2 (IG = CI + A%7 (U.V. W), (X. Y. 2)) = =22 F(X. Y. 2)
Elol:;ﬂ
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< C3aR°d2 (U, V. W), (X, Y, Z)) logd, (6)

and

didrd
22 grad FX, Y, 2l = Co (A%, (U V. W), X, Y.Z)). (D)

with probability at least 1 — 3d™%, provided that

32

n> Cs {a3'u0 12

7/2

Kér(rl ror3didadz) ' “log'' < d + 056/L(3)/c§r1r2r3r2d log6 d}

where C € R"*"2%73 s given by (3).

Theorem 3 shows that the objective function F behaves like a parabolain N (8, 4110)
for sufficiently small §, and furthermore, (U, V, W) is the unique stationary point in
N(8, 4110). This implies that a gradient descent type of algorithm may be employed
to optimize F within A(8, 4u0). In particular, to fix ideas, we shall focus here on
a simple gradient descent type of algorithms similar to the popular choice of matrix
completion algorithm proposed by Keshavan et al. [17]. As suggested by Keshavan
et al. [17], to guarantee that the coherence condition is satisfied, a penalty function is
imposed so that the objective function becomes:

FX,Y,2):=FX,Y,Z)+GX.,Y,Z)

where
dy 2 dy 2
di|Ix;, || da2|lyj, |l
GX.Y.2):=p Y Go( 5 20) +0 ) Go( 52 )
z:l 3por 2_:1 3pora
J1 2=
dslzj|1?
+0 Y Go( 52 )
Zl 3uors
J3
and

G 0, ifz <1
S D T

It turns out that, with a sufficiently large p > 0, we can ensure low coherence at
all iterations in a gradient descent algorithm. More specifically, let B € R?*" be
an element of the tangent space at A € G(d,r) and B = LORT be its singular
value decomposition. The geodesic starting from A in the direction B is defined
as H(A,B, 1) = ARcos(®)RT + Lsin(®1)R" for ¢+ > 0. Interested readers are
referred to Edelman et al. [11] for further details on the differential geometry of Grass-
mannians. The gradient descent algorithm on the direct product of Grassmannians is
given below:
FoE'ﬂ
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Algorithm 3 Gradient descent algorithm on Grassmannians (GoG)

Set up values of max _Iteration, tolerance gy, > 0, parameter y = %, step counter k = 0 and initial
value (X(@, YO, Z(0),
2: while £ < max _Iteration do
Compute the negative gradient (D;é(), Dg{), D(Zk)) = —grad F(X(k), Y(k), Z(k))
4: For t > 0, denote the geodesics
X® ) = HX® DY, 1)
YO ) = Hy®, DY 1

290 =nez®,pyn
Minimize 1 — FX® 1), Y® (1), Z&) (1)) for 1 > 0, subject to
dp(XP 1), YO (1), 20 (1)), X@, YO, 2O0)) < y.

6:  SetX*+D = X(k)(tk), y*+D = y®) () and zk+D) = Z(k)(tk) where f; is the minimal solution.

Setk =k + 1.
8 if dp((X® (1), YO (1), ZK) (1)), (XKD, y&k=D 7*=Dy) < ¢ | then
break;
10: end if
end while

12: Return F(X®, Y®) 7H)y,

Our next result shows that this algorithm indeed converges to (U, V, W) when an
appropriate initial value is provided.

Theorem 4 Let T € RN*2* po q rank-(ry, ra, 13) tensor such that
w(T) < o, Amax(T) < Xa and «(T) < «o.
Then there exist absolute constants C1, Ca, C3 > 0 such that for any o > 1, if

p > Cran(didads) " A logd,
XP, YO 72Oy e N(Ca(arglogd) ™", 310),

and

n>Cs {a3u3/zkgr(r1r2r3d1d2d3)1/2 10g7/2 d+ a6,u(3)/c§r1r2r3r2d log6 d} ,

then Algorithm 3 initiated with (X©, Y Z©)) converges to T with probability at
least 1 —d ™.

Theorem 4 shows that the gradient descent algorithm presented here indeed con-
verges to the true tensor. In the light of the explicit formulas for the gradient and
geodesic, each iteration of the algorithm has a time complexity O(rlzdl + r22d2 +
r3d3 + rirar3). The total computational cost of our method depends on the con-
vergence rate of the gradient descent algorithm. Our experience with the numerical

Elol:;ﬂ
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experiments as reported in the next section seems to suggest a linear convergence rate
as often expected of similar algorithms. A more rigorous investigation of the rate of
convergence for the gradient descent algorithm is beyond the scope of the current
work, and we shall leave it for future investigation.

6 Numerical Experiments

To complement our theoretical developments, we also conducted several sets of
numerical experiments to investigate the performance of the proposed approach. In
particular, we focus on recovering a cubic tensor T € RY*¢*? with multilinear ranks
r1 = rp = r3 = r from n randomly sampled entries. To fix ideas, we focus on complet-
ing orthogonal decomposable tensors in this section, i.e., the core tensor G € R™*"*"
is diagonal. Note that even though our theoretical analysis requires n > r7/2d>/?, our
simulation results seem to suggest that our approach can be successful for as few as
O (/rd?/?) observed entries. To this end, we shall consider sample size n = a/rd>/?
for some « > 0.

More specifically, we consider T = d ), ux ® vy @ Wy € Rxdxd wyith d =

50,100 and r = 2, 3,4, 5. The orthonormal vectors {ug, k = 1,...,r}, {vi,k =

,r}, {wk, k =1, ..., r}are obtained from the eigenspace of randomly generated
standard Gaussian matrices which guarantee the incoherence conditions based on the
delocalization property of eigenvectors of Gaussian random matrices. For each choice
of r and ¢ = W, the gradient descent algorithm from Sect.5 with initialization
described in Sect. 4 is applied in 50 simulation runs. We claim that the underlying tensor
is successfully recovered if the returned tensor T satisfies that ||T—T le/IIT|g < 1077,
The reconstruction rates are given in Figs. 1 and 2. It suggests that approximately when
n > 7./rd*/?, the algorithm reconstructed the true tensor with near certainty.

As mentioned before, in addition to the gradient descent algorithm described in
Sect. 5, several other algorithms can also be applied to optimize F (X, Y, Z) locally.
A notable example is the geometrical conjugate gradient descent algorithm on Rie-
mannian manifolds proposed by Kressner et al. [18]. Although we have focused on
the analysis of the gradient descent algorithm, we believe similar results could also be
established for these other algorithms as well. In essence, the success of these methods
is determined by the quality of the initialization, which the method from Sect. 4 could
be readily applied. We leave the more rigorous theoretical analysis for future work;
we conducted a set of numerical experiments to illustrate the similarity between these
optimization algorithms while highlighting the crucial role of initialization.

We considered a similar setup as before with d = 50,7 = 5 and d = 100, r = 3.
We shall refer to our method as GoG and the geometrical conjugate gradient descent
algorithm as GeoCG, for brevity. Note that the GeoCG algorithm was proposed without
considering the theoretical requirement on the sample size and the algorithm is initiated
with a random guess. We first tested both algorithms with a reliable initialization
as proposed in Sect.4. That is, we started with U, V, W obtained from the spectral
algorithm and let C € R " be the minimizer of (2). Then, the GeoCG(Spectral)
algorithm is initialized from the starting point AO = (U Vv, W) C. For each o =

FoE'ﬂ
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and «, the algorithm is repeated for 50 times
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Fig. 3 Comparison between GoG and GeoCG algorithms when d = 50 and r = 5. The successful rates
of GeoCG algorithm depend on the initialization. Here GeoCG(Spectral) means that the GeoCG algo-
rithm is initialized with the spectral methods as GoG algorithm. The black and cyan curves show that
GoG and GeoCG algorithms perform similarly when both are initialized with spectral methods. Here
GeoCG(Spectral + Noise X)) means that GeoCG algorithm is initialized with spectral methods plus random
perturbation. If X is larger, the perturbation is larger and the initialization is further away from the truth, in
which case the reconstruction rate decreases

ﬁ, the GeoCG algorithm is repeated for 50 times. The reconstruction rates are
as shown in the Cyan curves in Figs. 3 and 4. It is clear that both algorithms perform
well and are comparable.

To illustrate that successful recovery hinges upon the appropriate initialization, we
now consider applying GeoCG algorithm with a randomly perturbed spectral initial-
ization. More specifically, the GeoCG algorithm is initialized with A© + oZ where
Z € R4*4*d i5 3 random tensor with i.i.d. standard normal entries and o > 0 repre-
sents the noise level. Figures 3 and 4 show that the reconstruction rate decreases when
o gets larger.

These observations confirm the insights from our theoretical development: That the
objective function F is well behaved locally and therefore with appropriate initializa-
tion can lead to successful recovery of low-rank tensors.

7 Discussion
In this paper, we proved that with n > Cugrirars(rdidads)'/? log’/?(d) uniformly
sampled entries, a tensor T of multilinear ranks (r1, 72, 3) can be recovered with high
EOE';W
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Fig.4 Comparison between GoG and GeoCG algorithm when d = 100 and r = 3. The successful rates of
GeoCG algorithm depend on the initialization

probability with a polynomial time algorithm. In doing so, we argue that the underlying
optimization problem is well behaved in a neighborhood around the truth and therefore,
the sample size requirement is largely driven by our ability to initialize the algorithm
appropriately. To this end, a new spectral method based on estimating the second
moment of tensor unfoldings is proposed. In the low-rank case, e.g., r = O(1), this
sample size requirement is essentially of the same order as /2, up to a polynomial of
log d term. This matches the sample size requirement for nuclear norm minimization
which is NP-hard to compute in general. An argument put forth by Barak and Moitra
[3] suggests that such a dependence on the dimension may be optimal for polynomial
time algorithms unless a more efficient algorithm exists for the 3-SAT problem.

Even though our framework is established for third-order tensors, it can be nat-
urally extended to higher-order tensors. Indeed, to complete a kth-order tensor
T e RI*dx-xd with multilinear ranks (r, 7, ..., r), we can apply similar type of
algorithms for optimizing over product of Grassmannians. In order to ensure exact
recovery, we can start with similar initialization where we unfold the tensor to d x d k=1
matrices. Following an identical argument, it can be derived in the same fashion that
the sample size requirement for exact recovery now becomes

n > Cd*?*polylog(r, log d)

for some constant C > 0. Unlike the third-order case, the dependence on the dimen-

sionality (d*/?) is worse than the nuclear norm minimization (d3/?) for k > 3. See
Fol:'ﬂ
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Yuan and Zhang [34]. In general, it remains unclear whether the requirement of /2
is the best attainable for polynomial time algorithms for k > 3.

In the current work, we are concerned with the reconstruction of a tensor when
its entries are observed exactly. In many applications, however, these observations
are often made with error. The presence of measurement errors changes the nature
of the problem as it in general rules out the possibility of exact recovery. Instead,
the focus is on how well we can estimate or approximate the tensor based on the
noisy observations. The two problems, albeit closely connected, pose fundamentally
different challenges. In particular, it is essential in exact recovery that we match all
observed entries, but doing so in the presence of measurement error typically leads
to suboptimal estimates. In general, exact recovery is more stringent than seeking an
approximation. While it is essential to exact recovery that the tensor is of low rank,
oftentimes a good approximation can still be obtained even if the underlying tensor is
only approximately low rank.

8 Proofs

Throughout the proofs, we shall use C and similarly Cy, C3, etc., to denote generic
numerical positive constants that may take different values at each appearance.

8.1 Proof of Theorem 1
In view of Theorem 4, the proof of Theorem 1 is immediate if (X(O), YO, Z(O)) S

N (C (oucg log 1,3 o). Clearly, under the conditions on n given in Theorem 1, the
top singular vectors (U, V, W) satisfy that

dp<(ﬁ, V. W), (U, V, W)) < Carlogd)™!

with probability at least 1 — 3d~%. The fact that (X@, Y Z©) e NV (C(ar?
logd)™", 3110) then follows immediately from Remark 6.2 of Keshavan et al. [17].

8.2 Proof of Theorem 2
Using a standard decoupling technique for U-statistics, we get

P(IN = NJ|| > ¢) < I5P(15|N = N|| > 1)

for any ¢ > 0, where

. 1
Ni=— Y XY +Y,X),
2n(n—1);(lj+ %)
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and {Y; : 1 <i < n}is an independent copy of {X; : 1 < i < n}. We shall then

focus, in what follows, on bounding ]P’(IlN — N|| > t). See, e.g., Theorem 1 of de la

Pefia and Montgomery-Smith [9] or Theorem 3.4.1 of de la Pena and Giné [8].
Observe that

N= (S11S7, + S2uSy,) — > oY +Yix),

2n(n — 1) 2n(n — 1) P

where
k k
Su=) X; and Sy =) Y.
i=1 i=1

An application of Chernoff bound yields that, with probability at least 1 — m ™%,

n
”Slrz”lOo < Ba + Tymm3|IM||max (m—2 + logm>
for any o > 0, where

S = max Z Siniil.
l ]n”@oO 1<j<m; ’( ll‘l)lj’

T T 1<iz=m

See, e.g., proof of Theorem 2 in Yuan and Zhang [34]. Denote this event by £;. On the
other hand, as shown by Recht [26] (Theorem 4), with probability at least 1 — m ™%,

1 8(a + 1)ymymom logm
H_Sln - MH = \/ ||M||max~

3n

Denote this event by &. Write £ = £ N &,. It is not hard to see that for any ¢ > 0,
IP’{HN—NH > t} §IP’[HN—NH > tﬂg} +3me

We shall now proceed to bound the first probability on the right-hand side.
Write

- 1
NoN= s (St = nM) (S20 = nM)T + (S2, = nM) (S1 = M) |

+ M (Sy, — nM) T + (Sy, — nM) MT]

(1—1)[

T T
+m[M(Sln—nM) +(Si, —nM)M ]

—— ) XY +YVX —2mMm’

2n(n —1) “ Z( + )
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@Sprmger U_.:|0j



Foundations of Computational Mathematics (2019) 19:1265-1313 1287

= A1 +Ar+A3+ Ay
We bound each of the four terms on the rightmost side separately. For brevity, write
Ar =Sk — kM, and Ay = Sy — kM.

We begin with

1

Al = ———
2n(n — 1)

(AlnA;; + Ay A]—n) .
By Markov inequality, for any A > 0,

P { ALl >t m 5} <P {tr exp (AA1) > exp(Ar) ﬂ 8} < e ME (trexp[AA(]1g) .

Repeated use of Golden—Thompson inequality yields

o)

(ApAg g+ Az,n_lAD} 1¢

E(trexp[AA1]le) =E (]E {tr exp [AA1] 1ge

Sln}

E {exp [;(Aln(Yn -M)" + (Y, - M)AL)} 1¢
2n(n — 1)

A
< E(E tr exp [—2 ( D
n(n —

suf])
)

<mE < E {exp [ﬁ(AM(Yﬂ ~M) "+ (Y, — M)A;rn):| Ie

)
By triangular inequality,

Under the event £ with the upper bound of [|Sy, |l¢,,

(A1 (¥, = M)T + (¥, M)A, ]

2n(n — 1)

A
= (IAnY I+ 1AM,
< ooy (1Y T+ 1AM

IALY, | < [S12 Y, | +nlMY,] |

n
< Ga + ymIm3IM|%,. (m—2 + logm> + | M || max M.

On the other hand, under the event &,

8
1AM < [ALIIM]| < \/gn(a + Dmymam log m|[M||max [|M]|
EOE';W
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Recall that
. 8
n-min{m, my} > g(a + 1) logm.
Then
(A M) T+ (Y, M)A, ]
2n(n —1) "
< —2 (G + ymmAIMIR (2= +logm ) + 2nmym | MllnaIM])
“nn—-1) XN my

Therefore, for any

-1
n
A<n@n-—1) (<3a + Tymim3 | MJI2, (m—2 + logm) - 2nm1m2||M||max||M||> ,

Sln}

A T T ?
hnE Hm [ns w07 a1
Sln}
Sln:|

A 2
= Iml +E H:m (AlnY;Lr +Y11A;rn>i| 18 Sln}

A2myma | MIIg
<Oy o+ S [om £ 2 AAL AT, ] e

we get

A T T
E {exp I:m [Aln(Yn - M) + (Yn - M)Aln]:| 15

Sln}

2
_ A T T
— I +E { [—Mn = (AlnYn +Y,,A1n>} 1e

A2 T T)2
- [4n2(n e (AnME 4 MA) e

where in the first inequality, we used the facts that
exp(A) < Iy + A + A?

for any A € R?*? such that |A|| < I, and

A T T _
o [V = W07+ 0T ] e =
Recall that
w(ARAL) <milARAT L
Elol:;ﬂ
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This implies that

A T T
HE {exp [m [Am(Yn ~M)T 4 (Y, - M)Alnﬂ 1e

oo

A2 IM12
<1 $ AAl 1
| 8(or + 1)k2||M||maxm1m2m log m
3n(n —1)2 ’

where the last inequality follows from the definition of &;. Thus,

16 1M 1
Etrexp[AAilg] < m - exp |:)\. (a+ D ”maxm mzm 0gmi| .

3(n —1)2
Taking
: { 3(n— 1%t
A = min 3 )
64(a + D [M]|4  mim3m logm
nin—1) nn—1) }
(6 + 14)m3m3 |[M|2,. (n/m2 +logm) ™ 4nmima||M|max M|
yields
3 -1 2 2
]P{||A1|| >tﬂ5} §exp<—min{ (n )t
128(a + 1)||M||maxm1m2m logm’
nin — 1t nin — 1t })
(120 4 28)ym3m3|M||2,,, (n/m2 + logm)’ 8nmima||M||max [ M]

We now proceed to bound A, and A3z. Both terms can be treated in an identical
fashion, and we shall consider only A; here to fix ideas. As before, it can be derived
that

P{lAcll > ()&} <m - exp(—ir)

n
X

exp M(Y, —M)T + (Y, —MM") | 1¢
2(n — 1)

By taking

S —— n- | ,
M| 4+ mm2 M| M| max

Fo C 'ﬂ
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W€ can ensure

M(Y, = M) + (Y, —M)M")

A
2(n — 1)
A 2
< (IMIP + | M M ) < 1.

If this is the case, we can derive as before that

[# ool
E {exp

A _ T _ T
5 MO =M+ (Y, — MM >]15}

2
<1+ |E {I:;(M(Yn - M)T + (Y, — M)MT)i| 15}
2(n—1)

2
<1+ |E {[;(MY; + YnMT)} 15}

2(n — 1)
o i MG M
- 2(n —1)2

In particular, taking

. n—1 n—1 (n—1)%
A = min 35 s 2 ) 3
2IMII=° 2Zmyma [M[[[Mlmax  nm{ma||M|3 . IM]]

yields

P{lAzl > (€]

=1 (n— 1 (n — 1)
<exp|—min 7 s 3 2 2 .
4M1% " 2mymaIM|[IMlmax ~ 2nm7ma||M]|Z,,, [IM]]

max

Finally, we treat A4. Observe that

IX; Y + Y, X! —2MM" | < 2IX; Y, || +2IM]?
< 2mim3 M2, + 2IM|

max

< dmim3|M|2

max”>

where the last inequality follows from the fact that |[M|| < |M||g < /m172||[M||max-
On the other hand,

2 2
E (X,-YiT FYX] - 2MMT) <E (X,-Y,T + Yixj) < 2(my + Dm2m3M|* L.
FolCTM
. H A
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An application of matrix Bernstein inequality (e.g., Theorem 6.1 of [31]) yields

P{lA4ll >N E} < P{l|A4] > 1}

- n(n — 1)%t2)2
miex — .
=P T my + Dm2m3 M+ dm2m2 M2, /3

max max

Putting the probability bounds for Ay, A», A3, A4 together, we have

4
P{IN = N|l > t/15} < > P{[|A¢]| > t/60 N E} + PE} < Tm ™™
k=1

by taking

3/2 3/2
m7 “m;' " logm
n

12 12172 12
1+ — - |IM ,
« [( +m2> ¢ +(m210gm> } M2,

for some C > 1680. This immediately implies that

P{IN —NJ|| >} < 105m~*.

The proof is then concluded by replacing o with o + log,, 105 and adjusting the
constant C accordingly.

8.3 Proof of Theorem 3

Let Py, Py and Pw be the projection matrices onto the column spaces of U, V and
W, respectively. Denote by Q : R1x42xd _, Rdixd2xd5 g Jinear operator such that
for any A € R xdaxds

QrA := (Py, Py, Pw) - A + (Pyj, Py, Pw) - A + (Py, Py, Pw) - A
+(Py, Py, Pyy) - A,

where PIJj = [ — Py, and P{; and P‘J;V are defined similarly. We shall also write
Q7 =7 — Qr where 7 is the identity map.

Basic facts about Grassmannians  Before proceeding, we shall first review some basic
facts about the Grassmannians necessary for our proof. For further details, interested
readers are referred to Edelman et al. [11] (Section 2). To fix ideas, we shall focus
on U € G(di, r1). The tangent space of G(d;, r1) at U, denoted by Ty C R%*"1,
can be identified with the property U Dy = 0. The geodesic path from U to another
EOE';W
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point X € G(d, r1) with respect to the canonical Riemann metric can be explicitly
expressed as:

X(t) = URy cos(@Ut)RITJ + Ly sin(@Ut)RE, 0<r<l1
for some Dy € 7y and Dy = LU(BUR[TJ is its thin singular value decomposition.
We can identify X(0) = U and X(1) = X. The diagonal element of @y lies in
[—m/2, /2] and can be viewed as the principle angle between U and X.
It is easy to check

dp(U,X) = ||sin®y]lr and [Axllr = U~ X]lF = 2[sin(@y/2)]lr.
Note that for any 6 € [0, /2],
0 , , .
3= V/25sin(6/2) < sin6 < 2sin(0/2) < 6.
This implies that
dp(U,X) < [ Axlr < v2d,(U, X).
Moreover,

IUT Axlle = || cos(®y) — I[lg = 4| sin*(Ou/2)[Ir < 2| sin Oyllf = 2, (U, X).

dX(r)
dt =1

With slight abuse of notation, write Dx =
expressed as

€ 7Tx. Dx can be more explicitly

Dx = —URy@®y sin OyRy, + LyOy cos OyRy).
It is clear that
IDx | = 1@y sin ®ullf + [[©y cos Oy|E = [Oullz,
so that
dp(U, X) = [Dx|lr = 2dp (U, X).
A couple of other useful relations can also be derived:

IDx — AxlI§ = 1Ol + 4ll sin(®u/2) || — 2(@uy, sin Oy)
< [©y — 2sin(Oy/2)|If < dj(U.X).

and

IUTDx e = @y sin Oy|lr < 2|| sin @yl|f = 2d3(U, X).
FolCTM
gy
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Lower bound of F(X,Y, Z) in Eq. (6). Note that
FY.2) = 5 |Pa(T =)} = 7[PaQr - D} - 3 [PaQt @ ®)
where
T=(X.Y,2)-C
and C is given by (3). To derive the lower bound in the first statement, we shall

lower-bound ||PQQT(T -1 ||I2; and upper-bound IIPQQ% (T) ||12;.
By Lemma 5 of Yuan and Zhang [33], if n > Clau%r2d logd, then

oo 445 o

where the operator norm is induced by the Frobenius norm, or the vectorized ¢, norm.
Denote this event by £;. We shall now proceed under £;. On event &,

>l <d™“,
=5 =

n

T-T)3.
hds 1Q( )7

IP2Qr(T =D = {PeQr(T 1), Qr(T - T) = - 7

Recall that

Qr(T—T) = (U,V,W)-(G—C)+ (Ax,V,W)-C + (U, Ay, W) - C
+(U,V,Az)-C, ©)

where
Ax :=X-U, Ay:=Y-V, and Az =Z7Z - W.

Therefore,

IQT(T — D[ = (U, V,W) - (G — O)[|Z + [[(Ax, V., W) - C|% + [|(U, Ay, W) - C||
+ (U, V, Agz) - C||12: +2((U,V,W) - (G-0C), (Ax,V,W)-C)
+ 2((U,V, W) - (G-0), (U, Ay, W) -C)
+ 2((U,V,W) - (G—-0C),(U,V,Az) -C)
+ 2((Ax,V,W)-C, (U, Ay, W) - C)
+ 2((Ax,V,W)-C, (U,V,Az)-C)
+ 2((U, Ay, W)-C, (U,V,Az) - C).

It is clear that

I(U, V, W) - (G = O)l = |G — ClI3.
EOE';W
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We now bound each of the remaining terms on the right-hand side separately.
Note that

\%

1
I(Ax, V, W) - C|| S1(Ax, V, W) - Gl% - I(Ax, V,W) - (C — G)|I3

1
> S0min MG A — 0 (M1 (C — G)) | Ax

v

1
SominMI(G)AXIE — IC — GI | Ax7

1
= S0mnMIM)IAXIE ~ IC ~ G IAx I}

Similarly,
I(U, Ay, W) - C|if = %Ur%in(MﬂT))”AY”% —|IC - GIIEIlAYIIE,
and
I(U, V. Az) - Cllg = %Uéin(MS(T))IIAZII% —IC - Gl Azl
On the other hand,

(U, V,W) - (G - C), (Ax, V. W) - C)|
= [{(U,V.W) - (G — C), (PyAx. V. W) - C)|
< (U, V,W) - (G = Olg [|(PuAx, V. W) - C|
< |G — Clr|PyAx|£[C]|
<2|CllIG — Cllpd; (U, X).

Observe that
ICI = IIGI +1IG = CJl = IG] + IIG = Cllg = [T + IG — CJIF.
We get

(U, V,W) - (G- C), (Ax, V, W) - C)| <2|TIIG - CIIFdS(U, X)
+2(G — C|ld; (U, X).

Similarly,

(U, V. W) - (G = C), (U, Ay, W) - C)| < 2||T|||G — Cllpdy (V. Y)
+2[G — Cllzd; (V, Y)
Elol:;ﬂ
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and

(U, V,W)-(G—-C), U, V,Az) - C)| <2|T|IG - C||Fd§(W, Z)
+2|G - Cl[2d2(W. Z).

Finally, we note that

{(Ax. V. W) - C, (U, Ay, W) - O)|
= [((PyAx. V. W) - C, (U,PyAy. W) - C)|
< [CI*[PyAxlIrlPyAyllr
<4(IT| + G = Cllp)* dy (U, X)d3 (V. Y).

And similarly,

[{(Ax, V,W) - C, (U, V, Az) - C)| < 4(IT|| + |G — Cllr)* d; (U, X)dy (W, Z),
and

(U, Ay, W) - C, (U, V,Az) - C)| <4 (IT| + G — Cl[p)* d (V. Y)d} (W, Z).

Putting all these bounds together, we get

. AZ.
IQr(T — D[ > IG - ClIE + (% —|IC - GM%)

x (IAxIE + I1AYIE + [1AzI})

—4|IT|IG — Cllrdy (U, V, W), (X, Y, Z))

— 4G — Cljgd5 (U, V, W), (X, Y, Z))

—8(IT| + IG — Cllp)* dy (U, V. W), (X, Y, Z)),

where, with slight abuse of notation, we write
Amin := min {omin(M1(T)), omin(M2(T)), omin(M3(T))}.
Recall that
[AxIF = dp(X, U), [Ayllr = dp(Y, V), and |AzlF = dp(Z, W),

so that

1
|AXIIE + IAYIE + I AzIE = 2d5 (U, V, W), (X, Y, Z)).
EOE';W
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We can further bound ||QT(T -T) ||% by
T 2 2
1Qr(T™ - DI > |G - C
AZ
“*min _
+| =g = 5IC = Gl = 4ITIIG - Clle
x dy (U, V, W), (X, Y, Z))
16 (ITI? + G = CI}}) d((U. V. W), (X, Y. 2))

Note that
Amin > Ko Amax(T) > k5 [T

If dp((U, V., W), XY, Z)) < C(akglogd)™! for a sufficiently small C, we can
ensure that

Amin

16 °

ITldy((U, V, W), (X,Y,2Z)) <

This implies that

~ 5
1Qr(T =D = TIG - €l

2

A2 5
+ (% — 4| TG — C||F)dp((U, V.W), (X, Y, Z)).

We have thus proved that under the event &y,

~ S5n
T-T|2> ——|G—C|?
[PoQr( Mg = 16d1dnd; Il I

2

n Amin
—4|T|IG - C
+5a i o — 4ITING — Clle)

dy (U, V. W), (X, Y, 2)). (10)

Now consider upper-bounding IIPQQ{:TH%. By Chernoff bound, it is easy to see
that with probability 1 — d ™7,

ma I = < Calogd
weldi ] ldy]x d3]Z (@i = w) < Carlog

for some constant C > 0. Denote this event by &. Under this event

IPaQETI} < Clalozd) (PaQ4T, QFT).
Fol:rﬂ
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To this end, it suffices to obtain upper bounds of

n

K%Qﬁ’ Qﬁ)) = didods

-~ -~ ! n -~
14T +|(PaQiT. QFF) - —— 10113
didards

For y1, y» > 0, define

K, y) = {A e R A lIp < 1, |Allmax < 71, Al < 12}

Consider the following empirical process:

1 1
1,72 == sup |—(PoA, A) — ———IA[I].
Obviously,
~ n - ~o o 1QFTlmax  1QFTI,
PaQFT, QFT)| = < IQFT1E +nlQFTIEA, (L, 2T ).
K T didady T F TN Q4 TIE  1QF T r

We now appeal to the following lemma whose proof is given in Appendix C.

Lemma2 Given0 <8 <68;,0 <8, <85 andt > 1, let

i =1t +log (log, (8] /87) + logy (85 /85) + 3).

Then there exists a universal constant C > 0 such that with probability at least 1 —e ™,

the following bound holds for all yy €[5, 8?] and all y» € 5, , 5;‘]

Bu(y1,v2) < C ( 4, d+1°g3/2d)+2 W1
b O n
n(V1, V2) = LY1y2 ndydyds g n " nddrds " n

For any A € RU2X4, we have Iloes e [1//didads, 11 and {3l € [1, d]; we
apply Lemma 2 with§; = W,ST =146, = 1and8;r = d.Bysettingt = o logd
with? = 1 +log (logz(dl)—Hogz(dz)+10g2(d3)+10g2(d)+3) < 6a logd, we obtain

that with probability at least 1 — d~%, for all y; € [(d1drd3)~ L, 1] and v € [1,d],

log3/%d
Bn(y1, v2) < Clayn/z( ndidods logd + £ )

logd ,logd
C C .
+ Civ/ay ndidads + Gy —
EOE';W
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Denote this event by £. Under &3, for any A € Ré1xdyxds

[Allmax Al
IAllE " IAlF

log*/2d
) = CralAlmlAlL( logd + =5 )

d
A 2
LA N

logd logd
+ CroflA i ——

Cia|A A
+ Cra|[Allmax||Alle ndidods

This implies that

n nd
AA) < Allg + CallAlmax |AllL(,/ =——logd +log**d). (11
(PaA. A) = 2 IAIR + ColAllmas [ANL (| 77 logd +1og¥2d). (1)

We shall now focus on &3 and obtain

~ ~ n ~
PoOQLT. lT> < L7712
( QQT QT = d1d2d3 ||QT |F

-~ ~ nd
+ COtIIQ%TIWIIQ%TI*(,/dld—zd3 logd + log*/? d). (12)

It remains to bound ||Q%T||max, ||Q%T|,, and ||Q%/T\||F. Recall that

QiT = (PFX,PyY,Z) - C + (PEX, Y, PRZ) - C + (X, Py Y, Py Z) - C
+ (P§X, Py Y, Py Z) - C.
Recall that Ay (C) := max{||Mg(O)||, k = 1, 2, 3}. Clearly, Apax(C) < Amax +

|G — C||r where, with slight abuse of notation, we write Amax := Amax (T) for brevity.
Then,

1QFTlE < (Amax + G — Cllr)
x (IPEXIEIPY I + IPEXIEIPHZIE + P ZIE IPEY )
+ (Amax + |G = Clle) IPGX[FIIPY Y || Py Z -

Observe that
IPGXIIF = PG AxllF < |AxlIF < v2dy(U, X)
and
dp((U, V,W), (X, Y,Z)) < (Cakologd)™".

FoC'T
e,
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Therefore,

1QF Tl < (Amax + 16 — Clle) (243 (U, V. W), (X. Y, 2))

+2v243((U.V, W), (X, Y. 2)))
< 3(Amax + G = Cllg)d3 (U, V. W), (X, Y. Z)).

It is clear that

L~
max { rank (M (QFT))} < 4r.

By Lemma 1,
1QFTI. < 4r|QFTlr < 12 (Amax + |G — CllF)d2((U. V. W), (X. Y. Z)).

Because of the incoherence condition

max{u(Ax), u(Ay), n(Az)} < 9uo,

we get

L~ 3/2 [ r1rr3
1QF Tlmax < 54(Amax + IC — Gllg) g/ V didods”

By putting the bounds of ||Q%’/I‘\|F, ||Q%’/I‘\|maX and ||Q%T|* into (12), we conclude
that on event &3,

~ ~ 9n
<PQQ%T’ Q’JI:T> = didrds

d
c A G — C||p)2pl? [ 1020 "% ogd + 1032 d
+ 1(0”‘( max + || ¥ Mo d1d2d3( didrds oga + log )

x dy((U, V. W), (X, Y, 7)) (13)

(Amax + G — Cllg)*d (U, V. W), (X, Y, 2))

for a universal constant C; > 0. If dp((U, V. W), XY, Z)) < (Crakglog d)_1 and
n>QC <a4ugkgr2r1r2r3d log4 d+ azug/zxgr(rlrzmdldzdg1/2 logS/2 d).
The above upper bound can be simplified as

o~ ~ n
PoQLiT, LT><— G- C|2
< 2Qr'T. Q) = 8Cad,dyds logd” I

n 2

A2 d2((U,V,W), (X, Y,Z)). (14
+96C0ld1d2d310gd (( )( )) ( )

min%p

FolCT
H_ A
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Therefore, under £ N &3,

IG — CI2 + ——— A2, d*((U, V. W), (X, Y, Z)).

”PQQTT”F = 96d d d min“p

8d1drd3
15)

Combining (8), (10) and (15), we conclude that

FX.Y.2) > —— |G — C|3
64d,drd5

2

n Amm 2
TG - Clr)d; (U, V, W), X, Y, Z
+ 2z (ot = TG = Clle )43 (U, V. W), (X, Y. 2)),

(16)
with probability at least
P& N&ENEY>1—-3d7°.
Before concluding the proof of lower bound, we first develop a comparable upper
bound.
Upper bound of F(X,Y,Z) in Eq. (6). Let
T=X.Y.2)-G
By definition of T,
FX,Y,Z) = %HPQ(T - Dl < %IIPQ(T ~ DI < [PaQr(T ~ D

+ IPoQE T2

Again, by Lemma 5 of Yuan and Zhang [33], on event £ N &,

1PeQr(® -} = Clelogd) (PaQe(® ~T), Qu(T - T)
_ 3Canlogd

T —T)|3.
Sdvdds 1Qr( Mg

Recall that
Qr(T—-T) = (Ax,V,W)-G + (U, Ay, W) -G + (U, V, Az) - G.
We have

1Qr(T - Tl <3
x (I(Ax, V. W) - GIE + (U, Ay, W) - GI} + (U, V. Az) - GI)

Fo C 'ﬂ
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Note that
I(Ax, V, W) - G2 < 02, (M1(G)|Ax[IE < A2 I Ax]E.

Similar bounds hold for || (U, Ay, W) - G||% and |(U, V, Agz) - G||%. We get on event
E1N&,

Canloed 1o E(UV. W), (XY.Z).  (17)

P. T-1)|3 <
P2 Qr( )”F = didrd, max“p

On the other hand, following the same argument for bounding ||Pg Q%TH% asin (15),
we can show that

IPoQiTI} = Carlogd(PaQiT, Q1) = ger ALnd (U, V. W), (X, Y, 2)),

under the event £; N & N &3. In summary, we get on event £ N & N &3,

dydads

——FX,Y,Z) < 10CaA? (U,V, W), (X,Y,Z))logd. (18)

max p(

The bounds (16) and (18) imply that

2

A~Z.
——|G-C —mn TG — Cllp )d2((U, V. W), (X, Y, Z
GG~ ClE -+ (o — TG — Clr )3 (U, V. W). (X. Y. 2)
< FX,Y,Z) < 597 p2  2(U,V, W), (X, Y, 2)) logd
= ’ ’ — dldzd de g

which guarantees that
IG — Cllr < C(alogd)"/? Amaxdy (U, V, W), (X, Y, Z)). (19)

Recall that Apax < A and Apin > A. We conclude that on event £ N & N &3,

1
G = Clli + 35, A4 (U, V. W), (X, Y, 2))

——F(X.Y.Z) < C(alogd)A’d;((X. Y, Z), (U, V,W)).

128 8!
- dydads
Lower bound of ||grad F(X, Y, Z)||r in Eq. (7) Observe that

(grad F(X, Y, Z), (Dx. Dy, D))
1/2
(IDx12 + Dyl + [Dz[2)"

llgrad F(X,Y,Z)|r = (20)

Write

=Dx,Y.Z2)-C+(X,Dy,2)-C+(X,Y,Dz) - C.
FoE'ﬂ
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Then
(grad F(X,Y, Z), (Dx, Dy, Dz)) = (Po(T — T), H).
Denote
H, = (Dx,V,W)-C+ (U,Dy,W)-C+(U,V,Dz)-C
and

H; := Dx, Ay, W) -C+ (Dx,V,Az) - C+ Dx, Ay, Az) - C+ (Ax, Dy, W) -C
+ (U,Dy, Az) - C+ (Ax,Dy,Az) -C+ (Ax,V,Dz) - C+ (U, Ay,Dz) - C
+ (Ax,Ay,Dgz) - C.

Then, H = H; + H, and QTrH; = H;. We write
(Po(T = 1), H) = (PaQr(T = T), Hi) + (PoQf T, Hy ) + (Po(T - 1), Ha).

Since QTH; = H;, we can show that under the event &,

~ didrd
(PeQr(T - T), Hy) > %

(Qr(T—1),H).

Based on the lower bound of <QT (T -T), H1) proved in Appendix D, we conclude
that on event £, N & N &3,

~ n A2 n
P T-T),H)> > __Min d*((U,V,W), (X,Y,Z
(PaQr( ), Hy) > 8d1d2d3€1 = 128 didhds p(( ). ( )
21
where ¢ = [[(Ax, V,W) - C + (U, Ay, W) - C + (U, V, Az) - C||? with (see
Appendix D)
1o »
o > 16Amindp (U, V,W), (X,Y, 7)) (22)

on event &1 N & N £3. Moreover, by Cauchy—Schwarz inequality

(PoQiT. 11)| < (PaQiT. Q4T) " (P, 1) 2.

Observe that QrH; = H. Therefore, under the event £ N &,

(PoQrH,, QTH)!/? < IH; [[g.

2ddyd3
Elol:;ﬂ
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Recall the upper bound of |G — C||r as in (19) which implies that |G — C||r < Amin/2
if

dp((U, V, W), (X, Y, Z)) < (Cakologd)™"

for a large enough C > 0. As aresult, on the event & N & N &3,

Amin
2

= Amin(c) = Amax(c) =< 2Amax (23)

Then, on the event £ N & N &3,

Hillg < I(Ax, V., W) - C+ (U, Ay, W)-C+(U,V,Az) - C|F
+I(Ax =Dx,V,W)-C+ (U, Ay —Dy,W)-C+ (U,V,Az —Dz) - C|f

< V&1 +2Amax (IAX — Dx|lp + [Ay — Dy|lg + [|Az — Dz|§)

< Vo1 + VT18k0dp((U, V, W), (X, Y, Z)) < 2\/¢)

where we used the lower bound of ¢; in (22). Moreover, it suffices to apply bound
(13) and (19) to <PQQ%T, QJT-T> It is easy to check that as long as

dp((U, V, W), (X, Y,Z)) < (Crakologd) ™"
and
n>Cy (ot3fc§,u,(3)/2r(r1r2r3d1d2d3)1/2 log7/2d + a6/<éu(3)r2r1r2r3d log6 d)

for a sufficiently large C1,

= - 1/2 Amm
<7>QQ%T, Q%T) < | dl;;ds NG dp((U,V, W), (X,Y,Z)), (24

under the event £ N & N &3. Due to the lower bound on ¢; in (22),

KPQQTT H1 ‘ < f\/dld d3f/dld2d3 128[ dy((U. V. W), (X, Y. Z))

T — 25
32d1d2d3 1. 25)

under the event £ N & N &. It remains to control |(Pg T-T), H)|. The following
fact (Cauchy—Schwarz inequality) on &; is obvious

1/2

2 (PoHy W) (26)

FoE'ﬂ
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On event &3, by (11)

(PoHj, Hp) <

IH2 [ max IIHzll*)

2 2
+ nlH )38 ( , :
U B e 7 IH, |IF

It is clear that

IHallp < 4Amax (1A IIF + [AY[IF + [ AzIlF) (IDx I + [IDyllF + [DzlF)
< 8v2Amudy (U, V, W), (X, Y, Z)).

Meanwhile, by Appendix E,
IHallp < 4v/651dy((U. V, W), (X. Y, Z)) + 24 Amaxd? (U, V. W), (X, Y, Z)).

Moreover, by Lemma 1, |Hz ||« < 187|/Hz||r. By Remark 8.1 of Keshavan et al. [17],

max{u(Dx), u(Dy), u(Dz)} < 55u0.

Thus, [|H>||max < C]Amaxug/z 512223 for an absolute constant C; > 0. Applying

(11), on the event &3,

n nd
Hy, Hy) < 24 Ca|H Hy |, logd + log*?d
(PoHs, Ho) = - [Ha [+ Carl Hollma [Ha ({55 log d +10g” d)
gc-{m - ax p((U V.W), (X, Y,Z))
+ 01d; (U, V, W), (X, Y, 7))

didyds

32,0 [rirers | nd 32 )
A logd +1
+ or g max d1d2d3( didads ogd + log

x d3((U.V,W), (X, Y, Z)) }

If
dp((U, V, W), (X, Y, Z)) < (Craxologd) ™"

and

3/2

n> C1<063M0 7/2

Kgr(rlr2r3d1d2dg)l/2 log"<d + 016,1,L(3)K§r2r1 rar3d log6 d),

then the above bound can be simplified as

! Aﬁnn 2
+C¢1 )d=((U,V,W), (X, Y,Z)).
- d1d2d3(50002c2 2log? d Ady 51) a( ). ( )
Fol:'ﬂ
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Moreover by (24), on the event £ N & N &3,

—~ ~ 1/2 o~
(PmT ~-T),T- T) < [PoT - Dl
< |PoQr(T — DIk + [PoQF Tr

3Canlogd ~
< | (T - T
=\ 2didrds 1Q( )IE
L[t Bmin UV, W), (X, Y. Z)
dydads 1286 %

<5 /dldzd Amax(Calogd)dy((U, V, W), (X, Y, Z)),

where we used the following fact that, in the light of (9), (19), (23),
1Qr(T — DIk < IG — Cllg + 2Amaxdy (U, V, W), (X, Y, Z)).
Finally, on the event £} N & N &3, by (26),

(Po(T —T), Hy) < (Po(T —T), T — T)"/* (PoH,, Hy)'/2

5 n
S 5000 d1d2d3 (Ag‘lin + CaAmaxx/alOg d)

xd>((U, V., W), (X, Y,Z))

n

< —10, 27
< 32d1d2d3§1 27

where we used bound (22) and the fact that
dp((U, V,W), (X, Y, Z)) < (Caxologd)™".
Putting (21), (25), (27) together, we conclude that on the event £ N & N &3,

{grad F(X,Y, Z), (Dx, Dy, Dz)) = (Po(T — T), H)
n
>
~ Todidrds !
> A2 d2((U.V.W), (X, Y, Z)).
= 256didyd; ™nP

Moreover, note that

IDxlF + [Py llE + IDzllF < 2dp((U, V, W), (X, Y, Z)).
FoE'ﬂ
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By (20), we obtain

dydrd A2
28D grad FX, Y, Z)[[p > =D
n

in
<1 dp((U,V, W), (X,Y,Z)),

which concludes the proof since Amin > A.

8.4 Proof of Theorem 4

We first note that the additional penalty function we imposed on F does not change
its local behavior in that Theorem 3 still holds if we replace F with F. In the light of
Theorem 3, the first statement remains true for F simply due to our choice of p. We
now argue that the second statement also holds for F, more specifically,

dydrd .
16243 ngad FX.Y. Z)HF
n

> LAzd

> 5A p((U,V,W),(X,Y,Z)),

Observe that

lgrad F(X, Y, Z)r
(erad F(X. Y. Z). (Dx, Dy, Dy)) + (grad G(X. Y, Z), (Dx, Dy, D))
IDx5 + Dy s+ [Dzlle ‘

=

In proving Theorem 3, we showed that

did-d~ \grad F(X,Y, Z), (Dx, Dy, Dz) 1
n IDx|lr + IDyllr + IDzllF 512

It therefore suffices to show that
(grad G(X, Y, Z), (Dx, Dy, Dz)) > 0.

This follows the argument from Section 8.2 of Keshavan et al. [17] and is omitted for
brevity.

Now that Theorem 3 holds for ', we know that F(X, Y, Z) has a unique stationary
pointin A/(8, 4110) at (U, V, W) for 8§ < (Cakglogd)~!. Again, by a similar argument
as that from the proof of Theorem 1.2 from Keshavan et al. [17], it can be shown that all
iterates (X©, Y® 2K e A/(8/10, 4p10) and therefore Algorithm 3 is just gradient
descent with exact line search in A/(§/10, 4u0). This suggests that Algorithm 3 must
converge to the unique stationary point (U, V, W). See, e.g., Chapter 8 of Luenberger
and Ye [21].

Elo [y
@ Springer Lﬁjog
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A Proof of Lemma 1

The first claim is straightforward. It suffices to prove the second claim. Let A =
(U, V, W)-C with C € R ) xr2(A)x73(A) peing the core tensor. Clearly, |All, = [|C|l.
and ||A||g = ||C]|g. Denote by Cy, ..., C, ) € R72(8)*73(A) the mode-1 slices of C.
By convexity of nuclear norm,

ICI = IC1lls + -+ + 1Cr ) I+

As a result,

A

ICIZ < riA(ICHIZ+ -+ + 1Cr ) I12)
r1(A) (r2(A) Ars(A))(ICHIE + ... + 1Cr ) I1F)
r1(A) (r2(A) A r3(A))|IC|12.

IA

Therefore,

IClle < v/r1(A) min{r2(A), r3(A)}[IC|lE.

By the same process on mode-2 and mode-3 slices of C, we obtain

ICll« < v/r2(A) min{r; (A), r3(A)}ICllF,

and

ICll« < v/r3(A) minf{r; (A), r2(A)}[IC|IF,

which concludes the proof.

B Proof of Corollary 1

By Davis—Kahan theorem (see, e.g., Theorem 2 of [32]),

. 2 /1IN = MMT||
d,(U,U) <
p( ) O’min(N[N[T)

By choosing m| = di,my = dpdz in Theorem 2 and noticing that n > Ci(o +
1)(d1dad3) /2, then

Co? (d1drd3)3/* logd

n

di \ 172 1,2
(14 2) (2 M2
dods dads logd max
FoCT
u o

@ Springer Lﬁjog
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with probability at least 1 —d ~“. It suffices to control || M || max- Recall that u(T) < puo;
then,

1/2
3/2 rirmri3
IMllmax = 1T lmax < ITllsg/ (m> :

It is clear by definition that
ITI?/ominMM ) < «*(T) < i5.
As a result, the following bound holds with probability at least 1 — d ™%,

(d\drd3)'/* log d
33—

n

. dy \'2 .\ n 12
X — —
dods drds logd

(d1drd3)*logd N dylogd N (dl logd)1/2:|

dp (ﬁ U) < 2Ca2u8/<gr13/2r2

n n

3/2
< 2(:0(2[1,30[(02]"1/ mnr3
n

The claim then follows.

C Proof of Lemma 2

For simplicity, define a random tensor E € {0, 1}91*%%4 based on w € [d;] X [da] x
[d3] such that E(w) = 1 and all the other entries are Os. Let Eq, ..., E, be i.i.d. copies
of E. Equivalently, we write

n

Buyi,y) = sup  |— ) (AE)’—E(AE)
AeKy,y)' " 2

S|

which is the upper bound of an empirical process indexed by KC(y1, y2). Define 81, ; =
Zjél_ forj =0,1,2,..., leog% and 82 = 2k52_ fork =0,1,2,..., leog%.
For each j, k, we derive the upper bound of B,(y1, y2) with y; € [81,;,81,j+1] and
y2 € [82.k, 82.k+1]. Following the union argument, we can make the bound uniformly
true for y; € [8;, 8 Tand y» € [8;, 85 1.

Consider y; € [81,}, 61,411, 2 € [62,x» 82,k+1], and observe that

sup  [(A,E)? —E(A,E)?| < .
Ael(y1.y2)
Elol:;ﬂ
@ Springer Lﬁjog
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Moreover,

2 R L
sup Var((A, E) ) < sup E(AE)" < < .
AK(1.0) AK(1.12) didads ~ didards

Applying Bousquet’s version of Talagrand’s concentration inequality [4], with prob-
ability at least 1 — ™! forall t > 0,

1
22 L.
ndidods TV

Bun(y1, y2) < 2EBu(y1, ¥2) + 201

By the symmetrization inequality,

1 n
= &AL E)
i

EB.(y1,y72) <2E sup
Ael(y1,y2)

3

where €1, ..., &, are i.i.d Rademacher random variables. Since |(A, E)| < yj, by the
contraction inequality,

LS

n
i=1

EB.(y1.y2) <4yE sup
AeK(y1,y2)

Denote I =n~! Y| &E; € RN1*%d5 Then,

1 n
E  sup |- ZSi (A, E;)
AeK(m' i

<E sup |[[[lAlL < »nE|T].
AeK(y1,v2)

It is not difficult to show that

E|T| < C( T ogd+ logmd)
(0] .
- ndidrds & n

See, e.g., Lemma 8 of Yuan and Zhang [33]. The above bound holds as long as

n > C{uo(r1r2r3d1d2d3)l/2 log3/2 d—+ u%rlrzrgd 10g2 d}.

As a result, with probability at least 1 — e,

d log*?d t St
log d 291 221
ndidods 84T T, )+ YW oadidads TV

for y1 € [81,,81,j+1] and y» € [82 k, 62,k+1]. Now, consider all the combinations of
J and k, and we can make the upper bound uniform for all j and k with adjusting ¢ to
t,and C to 2C.

Bn(y1, y2) < CJ/l)/z(

FolCT
H_ A
@Springer L0
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D Proof of lower bound of (QT(? —-T),Hyp)
Recall that
(QT(T —-T),H) = <(U, V,.W)- (C-G)+ (Ax,V,W)-C+ (U, Ay, W) - C
4+ {U,V,Az)-C,(Dx,V,W)-C+ (U,Dy,W)-C+ (U,V,Dz) - C>.
Clearly, the right-hand side can be written as {1 + {» + {3 where
1= (Ax, V,W) - C+ (U, Ay, W) - C+ (U, V, Ag) - C|Z
& = ((U, V,W)-(C—G), Dx,V,W)-C+ (U, Dy, W) C+ (U,V,Dyz) - c)
&3 =<AX,V,W)-C+(U, Ay,W)-C+ (U,V,Az)-C,(Dx — Ax,V,W)-C
+ (U, Dy — Ay, W) - C+ (U, V. Dz — Az) - C).

Clearly,
¢1 > I(Ax, V, W) - Cl|2 + [|(U, Ay, W) - Cl|2 + [I(U, V, Az) - CJ|%

max

— 202 © (IUT AXIIEIVT Ayl + [UT AxIEIWT Azl + [V Ay [EIWT Azlle)
> A2 (©) (IAXIE + IAYIR + Az ]}) — 8%, (O (U, V. W), (X, Y. Z)
where we used the fact that
IUT Ax|lF < 2d3(U. X).

Recall from (23) that on the event £ N & N &3, we have

Amin

=< Amin(c) = Amax(c) = 2Amax~
Then

o = La d3((U, V, W), (X, Y, Z)) — 32A} . d3 (U, V, W), (X, Y, Z)).

1 min“p max“p

It also implies that on the event & N & N &3,
1 2 p 2
&= E(H(AX» V. W) Clg+ (U, Ay, W) - Cllg + [I(U, V, Agz) - CIIF)- (28)

We can control |£3] in the same fashion. Indeed,

15317 < 181IAL (O)(IDx — Ax|f + Dy — Ayl + Dz — Az
< A0 AL di (U V. W), (X, Y, Z)).
Elol:;ﬂ
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If
dp((U, V, W), (X,Y, Z)) < (Caky logd)_1
for large C > 0, then under the event £ N & N &3,

1 ¢
02 1p Maindp (U.V. W), (X.Y.2)) and [i5] <

To control ¢, recall that X"Dx =0,Y "Dy = 0and Z'Dz = 0. Then,

1221 = {(Ax, V, W) - (C = G), Dx, V, W) - C)]|
+ (U, Ay, W) - (C = G), (U, Dy, W) - C)|
+ (U, V,Az) - (C-G), (U,V,Dz) - C)|

<2IC- G”F{ (II(AX, V. W) - Clr+ U, Ay, W) - Clg + (U, V, Az) - C”F)

+ Amax(c)(”DX — Ax|lr + Dy — Ay[[r + Dz — AZIIF) }dp((U, V.W), (X, Y, Z))

<2]G — Clley/21dy (U, V, W), (X, Y, Z))
+ 4]1C = GllF Amaxd3 (U V. W), (X, Y. Z)).

Recall from (19) that under the event £ N & N &3,
IG — Cllp < CAmax(alogd)'/?dy((U, V, W), (X, Y, Z)).

Therefore, |3 < ¢1/2 in view of the lower bound of ¢;. In summary, under the event

E1N&ENEs,

LS d2((U,V,W), (X,Y,2)).

(Qr(T—T).H;) > §1 Z o7 Amindp

E Upper bound of ||H;||r

It is shown in (28) that if d,,((U, V, W), (X, Y, Z)) < (Cakglogd)™", then
1 2 2 2
> 7 I(Ax, V, W) - Clg + (U, Ay, W) - Cllg + (U, V, Az) - Cl% ).

Observe that

I(Ax. V. W) - Cl§ = [M2(C)(Ax ® W)||r = [M3(C)(Ax ® V)|
FoE'ﬂ
@Sprmger U_.jOﬂ
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which implies that

g

1 2
= < (IM2A(C)(Ax ® W5 + [M3(C)U® AVl + MOV © Az)llr)

By definition of H;, we obtain

[Hzllr < IM1(C)(Ay @ W) |[FIIDx|lr + M1 (C)(V ® Az)llrlDx|IF
+ [M2(C)(Ax @ W)[[F|IDyllF + [M2(C)(U ® Az)ll¢|Dyllr
+ IM3(C)(Ax @ V) ||EIDzllE + [M3(C)(U @ Ay)||r|DzllE
+ 24 Amaxdy (U, V, W), (X, Y, Z))

where we used the fact Amax (C) < 2Amax from (23). Clearly,

H |k < 2641 (IDxIE + IDyllE + [DzlF) + 24Amaxd3((U, V.W), (X, Y,Z))
S 4\/ 6;1 dp((U5 V’ W)’ (X7 Y7 Z)) + 24Amaxds ((U7 V7 W)7 (X5 Y’ Z))'
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