Journal of Complexity 57 (2020) 101443

Contents lists available at ScienceDirect

Journal of Complexity

journal homepage: www.elsevier.com/locate/jco

L)

Check for
updates

Information based complexity for high
dimensional sparse functions™ "

Cuize Han, Ming Yuan*

Department of Statistics, Columbia University, 1255 Amsterdam Avenue, New York, NY 10027,
United States of America

ARTICLE INFO ABSTRACT

Article history: We investigate optimal algorithms for optimizing and approxi-
Received 22 April 2019 mating a general high dimensional smooth and sparse function
Received in revised form 25 October 2019 from the perspective of information based complexity. Our algo-

Accepted 27 October 2019

- ; rithms and analyses reveal several interesting characteristics for
Available online 2 November 2019

these tasks. In particular, somewhat surprisingly, we show that

Keywords: the optimal sample complexity for optimization or high precision
Curse of dimensionality approximation is independent of the ambient dimension. In
Information based complexity addition, we show that the benefit of randomization could be
Randomized algorithms substantial for these problems.

Smoo'thness © 2019 Elsevier Inc. All rights reserved.
Sparsity

1. Introduction

High dimensional functions are ubiquitous in modern scientific and engineering applications.
Dealing with them in general is intractable due to the so-called “curse-of-dimensionality”. But in
practical settings, the underlying function may have additional structures which, if appropriately
accounted for, could help lift this barrier and allow for efficient algorithms to handle it. A canonical
example of such structures is sparsity where a d-variate function f can be well-described by a much
smaller number, say s (< d), albeit unknown, of variables. The special case of recovering f when it
is further assumed to be linear in terms of either the input variables or a suitably chosen basis is
commonly referred to as compressive sensing (see, e.g., [3,6]). Clearly the linearity assumption can
be too restrictive in many applications; and there has been a lot of recent interest in broader and

™ Research supported in part by NSF Grant DMS-1803450.
3 Communicated by Erich Novak.
* Corresponding author.
E-mail address: ming.yuan@columbia.edu (M. Yuan).

https://doi.org/10.1016/j.jc0.2019.101443
0885-064X/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jco.2019.101443
http://www.elsevier.com/locate/jco
http://www.elsevier.com/locate/jco
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jco.2019.101443&domain=pdf
mailto:ming.yuan@columbia.edu
https://doi.org/10.1016/j.jco.2019.101443

2 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

more flexible classes of high dimensional functions. See, e.g., [17-19] for a comprehensive survey
of recent progresses.

In particular, the present work was inspired by [5] and [29] who studied effective approaches
for approximating a high dimensional smooth function that depends on few relevant variables. To
fix ideas, we shall focus on functions that reside in Holder space H*([0, 1]¢) with « > 0. Write
o = ag + a7 where «p is an integer and 0 < «; < 1. Then #%([0, 1]¢) is defined as

#*([0, 11") = {f : [0, 11" - R || DYf(x) — DOf(y)|< max |x; — yil*!,
=

v,y €[0,11%, L+ + 1y = ap}

where [= (4, ..., l) € N? is a multi-index, and
D — aiH“'del .
oxy -+ 0x

We are especially interested in functions from #* that are also sparse. We say a function f is
supported on S C [d] if and only if there exists a function g : [0, 1]/ — R such that

f)=glxs), vxelo, 1],

where [d] = {1,...,d}, |-| stands for the cardinality of a set, and xs = (x;)ics. Denote by supp(f)
the smallest set on which f is supported. The sparsity of f can then be measured by |supp(f)|. We
are interested in the case when d is large yet |supp(f)| is small. More specifically, we assume that
f comes from

Fuds = {f € H*([0, 11%) : [supp(f)] < s}.

Our main goal is to characterize the optimal sample complexity for optimizing and approximating
functions from F, 4. In fact, we shall focus on the dependence of the complexity of optimizing and
approximating f on d with both « and s fixed and known a priori. It is worth noting that assuming
f has a bounded support, in a certain sense, is necessary because even if supp(f) is known a priori,
recovering g would suffer from the curse of dimensionality in that the sample complexity increases
exponentially with [supp(f)| and therefore even for moderate s, the task quickly becomes intractable
for practical purposes.

1.1. Information based complexity

In particular, we shall take the approach of information based complexity. The general frame-
work of information based complexity was formalized in early 1980s by [25,26,30] among others.
Earlier developments in the area focused on the dependence of the complexities on the accuracy
with the dimensionality considered fixed. Since the pioneering work of [31], more emphasis has
been put on high dimensional problems and characterizing the role of d. See [32] for a review of
history of the field and the three volume monograph by [17-19] and the references therein for
recent progresses. Existing studies of information based complexity for high dimensional problems
are often in the framework of the so-called weighted spaces, first introduced by [21]. Our work here
complements them by examining the effect of sparsity in high dimensional problems.

Suppose that an element f € F, 4 is not known but we can make point queries to an oracle
that takes an x € [0, 1]¢ as input and returns the function value f(x). The information about f we
gather from n point queries can then be represented by

L = {N: Foas = RUN() = (f(z21), f(2(f(21))), - - .. f(@(f(21), - . ., f(z0-1)))),
2z, is a random variable in [0, 1]%,
z; is a random function that maps from R —[0,1%i=2,..., n}.

Note that in general, the queries may depend on those made earlier and therefore are adaptive in
nature. The superscript of I}*" signifies the fact that the query points z;s are allowed to be random.

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 3

When they follow degenerative distributions the query scheme becomes deterministic, and we shall
denote the corresponding information set by

I8 = (N : Faas = RIN() = (F(21). f(2a(f(21))). f(@a(f(21). - ... f(za-1))):
z1€[0,1) z: R [0,1]9i=2,...,n).
An algorithm based on n point queries can be written as S, := ¢ o N for some N e I}*" (resp.

I,‘f“), and a function ¢ that maps from R" to R for optimization, and from R" to C([0, 1]¢) for
approximation. The accuracy of an algorithm S, at f can be measured by:

A(Sn, f; OPT) = [S,(f) — min f ()
for optimization, and

A(Sn, f; APP) == [ISa(f) — fllcqo,119)

for approximation. Note that there is no loss of generality to consider only finding the minimum of
the function for the problem of optimization because the function class 7, 4 is symmetric, that is
f € Fuasif and only if —f € F, 4. Of special interest are the optimal algorithms that can achieve
a given level of accuracy with the smallest number of point queries, or the so-called information
based complexity. Denote by

n%(F, 45, OPT) = min{n € N : 35, = ¢ o N for some ¢ : R — R and N € 9
such that A(S,, f; OPT) <&, Vf € Fyasl),

and

n®(Fu.q.5, APP) = min{n € N : 35, = ¢ o N for some ¢ : R" — C([0, 1]*) and N € I
such that A(S,,f; APP) <&, Vf € Fyds)-

Similarly, for randomized algorithms, we write for a given probability of tolerance § € (0, 1),

N2 Fo.ds, OPT; 8) = min{n € N: 35S, = ¢ o N for some ¢ : R® - R and N € [[*"
such that P{A(S,,f; OPT) < e} > 1—6, Vf € Fyas}

and

NN Fo.ds, APP; §) = min{n € N : 35, = ¢ o N for some ¢ : R" — C({[0, 11% and N € I
such that P{A(S,,f; APP) < e} > 1—38, VYf € Fyas}

The main purpose of the present article is to determine the asymptotic behavior of these quantities
as the ambient dimension d increases and accuracy ¢ approaches zero, and contrast the two types
of information.

In what follows, we shall consider an arbitrarily fixed § € (0, 1), and write in what follows
age = O(bge)orag, < bge if age < c - by, for some constant ¢ > 0 that may depend on s, «
or §, but is independent of d and ¢. Similarly we write ag . = 2(bg.) or ag, > by, if by = O(aq.),
and a4, < by, if ag, = O(bg.) and a4, = $2(bg.). Oftentimes, the rate of convergence of these
quantities remain the same for any fixed 6 € (0, 1), we shall then omit the argument 6 in n}*" for
brevity.

1.2. Summary of results

In a pioneering work, [5] developed deterministic algorithms for approximating functions from
Fa.ds- Their results were further improved by [29]. Similar strategy has more recently been adopted
for optimization by [4]. Their results, for example Corollary 4.3 of [29] and Theorem 4.2 of [4],
immediately imply that

4 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

Theorem 1 ([4,29]). For any s € N,
n%(F, 45, OPT) = 0(e~*/* log d),
and
n%Y(Fy .45, APP) = O(¢ /% log d).

It is of great interest to investigate whether these algorithms are optimal. We show that, while
they are generally suboptimal for optimization when s = 1, these algorithms are nearly if not
optimal among all deterministic algorithms when there is more than one relevant variable (s > 1).
More specifically, we prove that

Theorem 2. Foranys €N,

n9e(F, a5, OPT) = Q2(e75/% 4 =~V Jog d),

&

and

N (Fy a5, APP) = (e + e~/ logd).
Moreover, if s = 1,

(7, 45, OPT) < e~ 1/,

We also study randomized algorithms and show that they allow for improved complexity
bounds. In particular, we show that

Theorem 3. For any fixed « > 0,s € Nand § € (0, 1),
N Fy.a.s, OPT; §) < =%/,

&

and
N (Fo.ds: APP; 8) = 0 (7% + logd) .

If, in addition, ¢ = O((log d)~*/*), then we also have
N F, a5, APP; 8) < e/,

The fact that the ambient dimension d is absent from the rates for n*"(F, 45, OPT) and
ni2"(Fo,d,s, APP) at least for sufficiently small & suggests that, perhaps surprisingly, when optimizing
or approximating a high dimensional yet sparse function, there is no dependence on the ambient
dimension d!

Theorems 2 and 3 together indicate that randomization is beneficial when there are more than
one relevant variables. This is to be contrasted with classes of smooth functions without sparsity
constraints such as #*([0, 1]¢) for which it is well known that randomization only provides marginal
if any improvement over the more restrictive deterministic schemes. See, e.g., Sections 1.2 and 2.2
of [16].

Furthermore, our findings and the algorithms we developed are generally applicable to classes
of high dimensional functions with intrinsic sparsity, beyond F, 4. For illustration, we shall also
discuss the implications of our results on several commonly encountered examples including
additive models, finite order functions, and functions with mixed derivatives. Our work contributes
to a fast growing literature in diverse areas on effective treatment for high dimensional problems
by pinpointing the fundamental role of sparsity in mitigating the curse of dimensionality.

The rest of the paper is organized as follows. In the next two sections, we shall investigate the
optimal sample complexity for optimizing and approximating respectively functions from F, 4.
To demonstrate the generality of our treatment and how the techniques could be broadly applied
to other classes of high dimensional and sparse functions, we discuss how our results could be
extended to and algorithms adapted for several popular examples in Section 4. We conclude with
a brief summary discussion in Section 5.

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 5
2. Optimal algorithms for optimization

We first consider optimizing a high dimensional sparse function. As noted before, we shall focus
on finding the minimum without loss of generality.

Because of the smoothness of functions from #*([0, 1]¢), we can restrict our attention to their
values on a lattice <Y where # ={0,1/L,...,1—-1/L, 1}. If f| ,,a is known, a piecewise polynomial
interpolation f can be constructed based on its restriction f| .« with error of the order L™*:

sup If = fllcgo 12y = OLL™).
fere(o.11)

See, e.g., [24]. The difference between minxe[o,”df(x) and min, g ¢ f(x) is therefore also of the
order O(L™®). Taking L =< &~ /* yields an estimate of the optimum min, o 1 f(x) with accuracy
¢. The sample complexity of such an algorithm is (L + 1)¢ = 0(e~%*), which is also known to be
optimal in that no other algorithms can achieve the same level of accuracy with a sample complexity
o(e~%%), In other words,

ns(H¥([0, 119), OPT) < s~ 9/,

See, e.g., [11,16]. These algorithms, however, are suboptimal for functions from 7, 4 because they
do not exploit the sparsity of these functions. In fact, because f is sparse, it is plausible that we
could compute min, o 14 f(X) with the same accuracy without the need to make queries at every
point on the lattice.

2.1. Deterministic algorithms

To gain insights into the complexity of optimization for functions from 7, 4, it is instructive to
begin with the simple case when s = 1. In other words, there is only one relevant variable. In this
case, it is not hard to see, for any f € Fy 4.1,

min g(x) = min f(x)
x€[0,1] xe[0,1]4

where g(x) = f(x- 1) and 1 is the vector of ones of conformable dimension. Therefore, it suffices to
make point queries at (i/L) - 1 for 0 < i < L and compute the minimum of a piecewise polynomial
approximation to g. This immediately implies

n%(Fpd1, OPT) < L+ 1< 7V,

On the other hand, if the relevant variable is known a priori, the problem reduces to minimizing a
univariate function with Hélder smoothness so that

8 (Fy 4.1, OPT) > nl*(3%([0, 1]), OPT).
It is well known that
n(34([0, 1]), OPT) < ¢~ /2,

See, e.g., Section 1.2 of [16]. In summary, we get

Proposition 1. The information based complexity of optimization for F, 41 satisfies
n(Fy 4.1, OPT) < =1/,

The most interesting observation from this simple exercise is the fact that the complexity of
optimizing a d-variable and 1-sparse function is independent of the ambient dimension d, meaning
that optimizing a high dimensional 1-sparse function is as difficult as optimizing a univariate
function!

The general case, however, turns out to be more complicated. Recently, building upon earlier
developments by [5], [29] and [4] developed a deterministic algorithm that computes the optimum

6 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443
of any function f € F, 4 with accuracy & from O(¢ /% logd) point queries. Their result indicates
that

n%(F, 45, OPT) = 0(¢~*/* log d). (1)
Naturally we are interested in whether or not we can devise algorithms with complexity indepen-
dent of d, as in the case when s = 1. It turns out not to be the case for deterministic algorithms
when s > 1.
Theorem 4. For any fixed s > 2,

n4eY(£, a5, OPT) = 2(e75/% + =~V Jog d). (2)

£

Proof. Note that

n%(7, a5, OPT) > n(2([0, 1]), OPT) =< &/,
See, e.g., [16]. It suffices to show that

%Y Fy.q.5, OPT) = 2(e ¢~/ log d).

To this end, assume that there exists a deterministic algorithm, possibly adaptive, that can compute
min, o 10 f(x) over all f € F, 45 with accuracy ¢ and n point queries. When f = 0, the algorithm
queries at a sequence of points (possibly adaptively), denoted by % := {z1, z5(0), ..., z;(0, ..., 0)}

or {zq,...,z,} for short, and the oracle returns values O for all queries. Therefore the algorithm
produces an estimate of min, 10 f(x) within [—e, +¢] whenever f(z) = 0 fori = 1,...,n.
This means that, for any function f € F, 4 such that f(z) = 0 fori = 1,...,n, we must have
min, o 14 f(x) > —2e.
Now write
S 2\k+1 s
—a-|[i_,(1—x; xel[—1,1
i) — |~ Tl =) [1.1]
0 otherwise

where the constant a > 0 is chosen so that @ € H*([0, 1]°). Define
D,(x) = (2L)™* - ®(2L(x — w)).
It is not hard to see that @, € H*([0, 1]°), minyejo, 1 Po(x) = —a(2L)™%, and @, vanishes outside
Dy = [] (@ = 1/@L), 0+ 1/(2L)).
1<i<s
Now for any S C [d] such that |S| = s and @ € {1/(2L), 3/(2L), ..., 1 — 1/2L)}! = #5!, denote
by fs.» a function mapping from [0, 1]¢ to R such that

fs.o®) = ®,(xs), V¥xel[0, 1]

—1/a

Note that by taking L = ce for a small enough constant ¢ > 0, we can ensure that

min fs ,(x) = —a(2L)™% < —2e.
X
The validity of the algorithm dictates that
{zi5, ..., Zas) N Dy # 0, (3)

for all |S| < s and w € . We now show this implies the desired claim.

Consider first the case when s = 2. Let Q : [0, 1]Y — #? be a map such that x, € Dg(x),, Where
x¢ and O(x); are the kth coordinate of x € [0, 119 and O(x) € ¢ respectively. Condition (3) shows
that the set {Q(z1), ..., Q(z,;)} forms a covering array CAN(n, 2, d, L) of size n and strength 2. As
shown by [9], we have n = £2(Llog d). The claim then follows with the particular choice of L.

Now consider the case when s > 2. For any & € .#*2, write

A . % T
Y = {X_[S_z] X e 2, (X1, . ,Xs_z) € Dg,}

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 7

In light of (3), we know
(xs :x€ ZYND, # 0

for any S C [d — s + 2] such that |S| = 2 and w € 2. By the argument for the case when s = 2,
we get

| 2| = $2(Llogd).
Hence

1212) 1Zal = 20 logd) = (7 log),
e P2
which concludes the proof. O

Note that the lower bound (2) does not match the upper bound (1). It remains unclear whether
or not there exist deterministic algorithms with lower complexity than those developed by [4]. On
the other hand, it is entirely plausible that the lower bound given by Theorem 4 can be further
improved but it nonetheless shows that at least when d is large, or ¢ is large, the information based
complexity of deterministic algorithms must depend on d. Interestingly, though, this is not the case
when we consider more general randomized algorithms where we can show that the complexity
of optimizing a function from 7, 4 is always O(e~%/*).

2.2. Randomized algorithms

We note first that the lower bound for randomized algorithms follows easily: it is not hard to
see that
nE(Foas, OPT) = nf"(H*([0, 1F), OPT) < £/, (4)

&

See, e.g., Section 2.2 of [16] for further discussion on the complexity of optimization over classical
Hoélder class #*. To attain the complexity bound on the rightmost hand side for s > 2, however,
requires a more sophisticated algorithm similar in spirit to that of [4].

Consider a hashing function h : [d] — [s] that maps the d coordinates into s groups. Denote by
Qn : [0, 1 — [0, 1]¢ a map such that the jth coordinate of Q4(z) is Zp(j). It is not hard to see that
f o Qn € H*([0, 17°) for any hashing function h. Therefore, we can compute the minimum of f o Qj
by minimizing a piecewise polynomial interpolation of queries on the s-dimensional lattice .#*. In
addition,

min f(x) = min f o Qu(x)

xe[0,1]4 xe[0,1F

whenever h partitions supp(f):
[h(supp(f))| = Isupp(f)I, (5)

that is, each relevant variable of f is mapped to a different value. This means that we can achieve
the sample complexity of O(¢~*/%) as long as h partitions supp(f).

The challenge is that supp(f) is not known a priori so that finding a hashing function that
partitions supp(f) is not trivial. A general strategy is to entertain a collection of hashing functions
2 so that there exists an element h € J# that obeys (5). If this is the case, then it is clear that

}fnin mp — min f(x) min m, — min min f o Qy(x)
et

xe[0,174 hes? he € x€[0,1]°
< max [mp, — min f o Qu(x)| = O(L™%),
he s x€[0,1]°

where my, is the minimum of f o Q;, computed by minimizing a piecewise polynomial interpolation
of queries on the s-dimensional lattice .#° as discussed before. The sample complexity for this
approach is (L + 1) - |5#| = O(e™5/% - |.27]).

8 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

A sufficient condition for (5) to hold for at least one element of .77 is that # forms a so-called
perfect hashing family, meaning that for not only supp(f) but any subset S of [d] of size s there exists
an h € s# such that |h(S)| = s. It is known (see, e.g., [7]) that for J# to be a perfect hashing family,
it is necessary that |#| = 2(logd) so that the best sample complexity that can be attained using
perfect hashing family is necessarily £2(¢%/* logd).

The key observation is that we only need one element of J# to partition supp(f), a fixed albeit
unknown subset of [d]. Therefore an imperfect hashing family may suffice. Indeed, if we assign each
coordinate into s groups uniformly, then the chance that it partitions supp(f) is s!/s°. If we do so
independently for [logd/log(1 — s!/s°)] times, we can ensure that with probability at least 1 — §,
supp(f) is partitioned at least once. We take # to be a family of such uniform hashing functions.
Once the hashing family /7 is constructed, we can then proceed to compute min, ¢ f(x) via
Algorithm 1.

Algorithm 1 Optimizing High Dimensional Sparse Functions

Input: d,se N, ke NU{0},x €(0,1],e >0, 5 € (0, 1).
Output: An approximate value of min, f(x) with error bounded by e¢.
Construct [log§/log(1 — s!/s°)] independent and uniform hashing functions from [d] to [s].
Denote by s# the collection of random hashing functions.
2: Set L = [ce~/%7 for a small constant ¢ > 0.

for h € o7 do
4: Query the oracle to evaluate f o Q, over .#*.

Construct a polynomial interpolation fh for the s-variate function f o Q.

6: Compute the minimum offh, denoted by my,.

end for
8: Compute the minimum of my over all h € s#, denoted by m.

return m.

Together with (4), we get

Theorem 5. For any fixed « > 0,s e Nand § € (0, 1),
N Fy.a.s. OPT; 8) < g7/,
Moreover the optimal rate of sample complexity given above can be achieved by Algorithm 1.

It is worth emphasizing again that the complexity of optimizing high dimensional sparse
functions, as shown above, is completely free of the ambient dimension, and hence entirely immune
of the usual curse-of-dimensionality.

3. Optimal algorithms for approximation
Now we turn our attention to the problem of approximation.
3.1. Deterministic algorithms

As noted before, it suffices to restrict our attention to recovery of function values on the full
grid .#%. If f| d is known, a piecewise polynomial interpolation f can be constructed based on its
restriction f| .« with error of the order L™:

IF = Fllcqonn SL™ ¥f € #([0, 11%).

Taking L =< &~V yields an e-approximation of f. Therefore, in the following discussion, we
shall focus on the sample complexity of recovering f| . It is not hard to see that the piecewise
polynomial approximation f constructed from interpolating f| ..« satisfies

supp(f | a) = supp(f).

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 9

Obviously, supp(f| 4a) < supp(f). In the case when supp(f|a) < supp(f), treating coordinates
in supp(f) \ supp(f|,d) as if they are irrelevant does not affect our ability to construct a good
approximation to f at the desired accuracy. Therefore, without loss of generality, we shall assume
in the rest of the section that supp(f| a) = supp(f).

Similar to the case of optimization, [29] proposed deterministic algorithms that compute approx-
imation of any function f € F, 4 with accuracy & from O(¢~*/% log d) point queries by sampling on

the lattice .#°. Their result indicates that

n%(F, a5, APP) = O(¢ /" log d). (6)
This again is very close to, if not, optimal. Note that

n%Y(Fy.a5, APP) > n%(F, 45, OPT).

Hence, immediately from Theorem 4, we get

Proposition 2. For any s > 2,
n(Fy a5, APP) = Q2(75/ 4 e~/ [og d).

The question is now, naturally, what happens with randomized algorithms.
3.2. Randomized algorithms

Our algorithm for approximation follows from an idea similar to that for optimization. The key
difference between optimization and approximation is that for the former, there is no need to
identify which variables are relevant; whereas for the latter, it is essential to do so. We start with
the construction of a hashing family # that contains at least one hashing function that partitions
supp(f), and querying at Upc ,»Qx(#°). An extra step is needed to identify supp(f) before we finally
construct an approximation to f.

To do so, we need to first identify the hashing function, denoted by h,, from ./# that partitions
supp(f). There may be multiple elements from # that partition supp(f), in which case we can make
an arbitrary choice among them. For a given hashing function h : [d] — [s] write, with slight abuse
of notation, Q, : #* — % as a map such that the jth coordinate of Q,(z) is Zp). First consider the
case when |h(supp(f| ,d))| = |supp(f| &«)|, meaning that all coordinates in supp(f| .«) are mapped
to a different value. In this case,

Isupp(f o Qu)l = |supp(f|a)l-
On the other hand, if |h(supp(f| ,d))| < |supp(f| d)|, then it is necessarily true that

[supp(f o Qu)| < [supp(f|ea)l.

Since our scheme retrieves function f o Q, for all h € 2#, we can simply choose h, to be the hashing
function that maximizes |supp(f o Qy)|. The fact that there exists a h € s# that partitions supp(f)
ensures that such an h, necessarily satisfies (5).

Next we need to figure out which coordinate in h; (i) is relevant where h=!(i) denotes the
preimage of a hashing function h, that is

h=1(i) = {j € [d] : h(j) = i}.

Because h, partitions supp(f|), there is a single relevant coordinate in h;!(i) for each i €
supp(f o Qp,). Identifying the relevant coordinate in h; (i) can be done via group testing. More
specifically, denote by range(z, i, f o Qp,) the range of f o Qp, with all but the ith coordinates fixed
at a value z € .#I"PU°Q.)I=1 For brevity, we shall assume that |supp(f o Qs,)| = s without loss
of generality. Otherwise, we can simply set all coordinates in U,—¢5upp(foqh*)h’](i) to zero, and ignore
them in what follows. Write

Z, i = argmaxrange(z, i, f o Qg,).
zeps—1

10 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

Foranyz € 5 !, letl, : ¥ — %° map a € ¢ to a vector of length s whose ith coordinate is fixed
at value a and the remaining coordinates at value z. Denote by

z:i = argmax(f o Qu, oI, ,)(a),
ae ¥

and

z_; = argmin(f o Qy, oL, ,)a).
! ac ¥ '

To identify which coordinate in h; (i) is relevant, we shall now query at x € 2% where

v {(Qh* ol (0)) ifj¢h.'(i)
G =

{zF., 27 otherwise.

#,17 ki

A simple binary-splitting algorithm as described by Algorithm 2 can be applied with A = h_ (i),
Z_A = Z_i» 24 = z}; and z_ = z__; to identify which one from h;(i) is relevant. The number of
queries is bounded by [log, |h; (i 1. Repeating this to all i € supp(f o Qx,) leads to a total of at
most
N
> “Mlog, |h;'(i)[1 < s[log, d]

i=1

queries.

Algorithm 2 Binary Splitting Algorithm

Input: Set A C [d] that contains a relevant variable, z_4 € RY7MI that contains value for
coordinates outside .4, and {z,, z_} that specifies possible values for coordinates in A to take.
Output: The coordinate in .4 that changes function value.
Query at X € R? where x° , =z_4 and x? = z_ for all i € A.
2: while |A|> 1 do
Arbitrarily partition A = A; U A; so that | A4;]|= [|A]/2].
4 Queryatx' €e R?wherex! , =z 4 andx) =z_foralli e A; andx) =z, forallie A\ A;.

if f(x1) # f(x°) then
6: Set A, = Aq;
else
8: Set A, = A,.
end if
10: Run Binary Splitting Algorithm with A,, xO_A* and {z,,z_}.
end while
12: return A.

Finally, after all relevant variables are identified, we can reconstruct f| ..« based on the queries
from the first step and then form a piecewise polynomial approximation to f via interpolation. See
Algorithm 3 for details. The total number of point queries made by Algorithm 3 is upper bounded
by

7%/ - Tlog 8 /log(1 — s!/5°)] + s[log, d1.
Therefore,
Theorem 6. For any fixed « > 0,s e Nand § € (0, 1),
N (Fo.ds: APP; 8) = 0 (7% + logd) .

Moreover the optimal rate of sample complexity given above can be achieved by Algorithm 3.

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 11

Algorithm 3 Approximation of High Dimensional Sparse Functions

Input: d,se N, ke NU{0},ax €(0,1],e > 0,5 € (0, 1).
Output: An approximation of f with error bounded by e.
Construct [logd/log(1 — s!/s°)] independent and uniform hashing functions from [d] to [s].
Denote by .»# the collection of random hashing functions.
2: Set L = [¢~1/].
for h € o7 do
4: Query the oracle to evaluate f over Qy(.Z*).
Compute the support of f o Qp.
6: Compute s;, := [supp(f o Qp)|-
end for
8: Identify an arbitrary h, € argmaxc s Sh.
Initialize the set of relevant variables A = .
10: for i € supp(f o Q) do
Run Binary Splitting Algorithm with h_!(i), z,_; and {z;fi} to identify relevant variables
jen ().
12: Update A = AU {j}.
end for
14: Construct a piecewise polynomial approximation of f o Qy,, denoted by g.

return Approximation f such that

fx)=8(x4), V¥xelo,1]°

It is of interest to note that, similar to optimization, when it comes to high precision approxi-
mation (& < (logd)~%/%), the complexity given in Theorem 6 becomes

N (Fo.as, APP) = O(e /),
and is free of the ambient dimension. Because

" (Fu a5, APP) > n2"(1%([0, 11°), APP) = 2(s~*/%),
we conclude that, in this case,

N F, 4.5, APP) < £75/%,

&

On the other hand, for low precision approximation (¢ > (logd)~%/*), Theorem 6 indicates that
" (Fe.a.5, APP) = O(log d),

which is driven entirely by the ambient dimension, and independent of the accuracy ¢ or smooth-
ness index a. Whether or not this is optimal, however, remains unclear.

4. General sparse functions

We want to emphasize that although we have focused on the space F, 4 thus far, the phenom-
ena we observed for F, 4 occur broadly for other classes of high dimensional sparse functions as
well. In general, one can expect the sample complexity of optimizing a d-variate s-sparse function
to be of the same order as optimizing an s-variate function from a compatible class of functions,
and approximating it to be of the order of the complexity of approximating an s-variate function,
up to an additive factor of logd. Furthermore, these sample complexities can be achieved using
ideas similar to those behind Algorithms 1 and 3. In general, we can turn an optimal algorithm
for optimizing or approximating an s-variate function into an optimal algorithm for optimizing or
approximating a d-variate and s-sparse function using the following meta algorithms.

12 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

Algorithm 4 Generic Algorithm for Optimizing High Dimensional Sparse Functions

Input: A subroutine to optimize a s-variate function called OPT;.
Output: An approximate value of the optimum of f.
Construct [log§/log(1 — s!/s°)] independent and uniform hashing functions from [d] to [s],
denote the random hashing family /7.
2: for h € 7 do
Call OPT; to compute the optimum of f o Qy, denoted by my,.
4: end for
Compute the optimum of m;, over all h € 2#, denoted by m.
6: return m.

Algorithm 5 Generic Algorithm for Approximation of High Dimensional Sparse Functions

Input: A subroutine to approximate a s-variate function called APP;.
Output: An approximation of a d-variate and s-sparse function f.
Construct [logé/log(1 — s!/s°)] independent and uniform hashing functions from [d] to [s],
denote the random hashing family 7.
2: for h € 27 do
Call APPs to approximate f o Q.
4: Compute s;, := [supp(f o Qp)|-
end for
6: Identify the hashing function h, that maximizes s.
Identify relevant variables for f as in Algorithm 3.
8: Call APP; to construct an approximation of f o Q,, denoted by g.

return Approximation f such that

fx)=g(x4), Wvxelo, 11

It is not hard to see that the sample complexity of Algorithm 4 is of the same order as that
of OPT;, and the sample complexity of Algorithm 5 is of the same order as that of APPs, up to
an additive factor of O(logd). For illustration, we now consider several specific and commonly
encountered examples.

4.1. Additive models

Additive models are widely used in statistics and other related fields. See, e.g., [10]. There
has been a lot of interest in recent years in developing effective schemes to approximate a high
dimensional and sparse additive function from both statistical and computational perspectives.
See, e.g., [12,13,15,20,27,33]. Our treatment could be extended straightforwardly to determine the
optimal sample complexity in recovering a high dimensional sparse additive function which remains
unknown prior to our work.

Under the additive model, a d-variate function f can be represented by

F) =flxa)+ - +falxa). ¥xel0,1]%
To avoid ambiguity of the above decomposition, write

FX) = fo+filx) + - - + fu(xq)
where fy € R and

fi € #*([0, 1]) := {g € H*([0, 1]) : g(0) = 0}.

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 13

Obviously we can query at (0, ..., 0) to retrieve fy. On the other hand, one can query at
xe 2 ={0)" x.2 x {0},
to optimize or approximate f; forj = 1, ..., d. The optimum and approximation of f are simply the

sum of those for fs. Note that to ensure an overall accuracy of ¢, it suffices to approximate each
component function f; with error at most d~'e. As a result, the sample complexity of such a strategy
is O(d - nf3(#°([0, 11), APP; §)) = 0(d'*1/«g=1/%) for both optimization and approximation.

Now consider additive models with sparsity. Denote by

Hj = {f € #*(10, 11)Isupp(f) = {j}. (0, ..., 0) = 0}.
Then the space of d-variate additive functions can be written as {1} @ H{ @ - - - ® Hq. Write

U =Pl U Pu

sc[d],|S|<s jeS

Using the aforementioned sampling scheme for additive models with s variables in Algorithm 4
leads to

nran(add OPT; 8) 0(8—1/0()

& a,d,s’

In light of the fact that 7, 41 C }""dj‘s, we know

nran(add OPT; 8) —1/a.

& a,d,s’

Similarly, for approximation, using Algorithm 5 yields

nR(F24d CAPP; §) = 0(e~V* + logd).

£ a,d,s?

This again is optimal when ¢ = O((logd)~¢).
4.2. Functional ANOVA models

More generally, consider decomposing f into sums of component functions indexed by subsets
of [d]:

= fala) Vxel0,11%

AC[d]
Notable examples of such decompositions include the ANOVA decomposition and the anchored
decomposition both of which can be traced back at least to [23]. See also [14] and references
therein for more recent developments. We shall focus on the anchored decomposition with respect
to (0, ..., 0) although, with some modifications, our treatment can also be applied to deal with
other types of decompositions.

Write
Pif(x) = f(x1, ..., Xj—1, 0, Xj31, . . ., Xq), vx € [0, 1]°.

Then

d

f=TTa=m+z)r=> ([Ta-») {T]7]+

j=1 AC[d] \ jeA Jj¢A

so that

)= (TTa-2 | | T]7|f®.

JjeA jgA

14 C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

where % € [0, 1]¢ such that X4 = x4 and X; = 0 for all j ¢ A. See [14] for further details. Of particular
interest here are the so-called finite order functions obeying

f= Y fax) V¥xel0, 1] (7)

Acld],|Al=r

It is not hard to see that additive models correspond to r = 1. As before, we shall assume that the
component functions fys are smooth in that f, € #*([0, 1]"), and denote by #2"°** the collection
of functions satisfying (7). Note that 7"°*? is closely related to reproducing kernel Hilbert spaces
with the so-called finite-order weights which have been studied extensively. See, e.g., Section 25.4
of [19]. Our interest here is on how to exploit the additional sparsity for finite order functions. More
specifically, write, for a fixed s > r,

wdor = {f € 17" : |supp(f)| < s}.

An effective sampling scheme for 737, is similar to that for additive models. More specifically,
because f; € H%([0, 1]"), it can be approximated with accuracy e via piecewise polynomial
interpolation of queries on a |A| dimensional lattice. For any set S C [d] such that |S| < s, we
can repeat this for each A C S such that |A| < r and compute the approximation, denoted by fs, of
fs by summing them up. The optimum of fs can then be computed by that of fs. For any given S,
the accuracy of this procedure is O(¢), and the sample complexity is O(¢~"/%). Using this sampling

scheme in conjunction with Algorithm 4 leads to
nE(Fyee OPT: 8) = 0(e~"/%),

which is optimal because F, 4, C
Algorithm 5, we get

nfAN(FIN APP: §) = O(¢ /% + log d).

€ a,ds,r’

-anova

wdsr Similarly, when using such a sampling scheme in

In the special case when r = 2, this improves a recent result by [28] who develops a so-
phisticated sampling scheme that, under additional technical assumptions, with accuracy ¢ from
0(s~%%(log d)*) point queries.

4.3. Sparse grids

As a final example, we consider optimizing or approximating functions of mixed smoothness.
More specifically, write

Ha={f : [0, 11" = Rifly0.1¢ = 0. IDYf oy < 1. ¥y oo, la < 2}
and

Vis = {f € Hq, |supp(f)] < s}.

It is not hard to see that in this case, a direct application of Algorithm 1 incurs a sample complexity
O(¢~/?), and Algorithm 3 has a sample complexity O(¢~*/? + logd). Although these rates indicate
that the curse-of-dimensionality in terms of the ambient dimension can be alleviated, they still
have an exponential dependence on s and therefore may not be practical for moderate values of s.
Fortunately, these complexities can be improved by using sparse grids in Algorithms 4 and 5 when
f has mixed smoothness.

More specifically, sparse grids interpolate not on the full grid #° but rather a subgrid with
degrees of freedom O(L(logL)*~!) that is optimized to take advantage of the mixed smoothness.
The idea can be traced back at least to [1,22,34] among others. See also [2,8] for an overview
of more recent developments, and Chapter 15 of [18] for a survey from the perspective of
information based complexity. It can be shown that the sample complexity of the sparse grid
is 0(e~1/2|log ¢|>¢~1/?) for approximating functions from #;. As a result the sample complexity
for optimizing functions from Vg via Algorithms 4 is O(e ™"/ 2|log e|>*~1/2), for approximation via
Algorithms 5 O(¢~/2|log ¢|**~"/? + log d). The fact that the dependence on s is only through the
logarithmic factor of ¢ offers tremendous practical appeal.

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443 15
5. Concluding remarks

In this paper, we studied the information based complexity for optimizing and approximating
high dimensional smooth functions with sparsity. Our results reveal several interesting effects of
the sparsity in mitigating and oftentimes eliminating the curse-of-dimensionality, and also highlight
the role of randomization in approximating high dimensional sparse functions.

In addition to the information based complexity, computational complexity is another recurring
challenge that we often need to deal with when faced high dimensional problems. It is worth noting
that the computational complexity of the algorithms presented here are at most polynomials of the
sample complexity, and generally tractable in practice. This further suggests that information based
complexity offers a useful perspective of the fundamental difficulties for high dimensional sparse
functions. For the ease of presentation, as well as technical considerations, we have made several
simplifying assumptions in our analysis. The promising insights we obtained while doing so suggest
that a more general treatment may be a worthwhile direction for future work.

Acknowledgments
The authors wish to thank two anonymous referees for their careful reading and insightful
comments that helped greatly to improve the presentation and fix numerous mistakes in earlier

drafts.

References

[

K.I. Babenko, Approximation by trigonometric polynomials in a certain class of periodic functions of several variables,
Dokl. Akad. Nauk 132 (5) (1960) 982-985.
[2] Hans-Joachim Bungartz, Michael Griebel, Sparse grids, Acta Numer. 13 (2004) 147-2609.
[3] Emmanuel J. Candés, Compressive sampling, in: Proceedings of the International Congress of Mathematicians, vol.
3, 2006, pp. 1433-1452, Madrid, Spain.
Albert Cohen, Ronald Devore, Guergana Petrova, Przemystaw Wojtaszczyk, Finding the minimum of a function,
Methods Appl. Anal. 20 (4) (2013) 365-382.
Ronald DeVore, Guergana Petrova, Przemyslaw Wojtaszczyk, Approximation of functions of few variables in high
dimensions, Constr. Approx. 33 (1) (2011) 125-143.
[6] David L. Donoho, Compressed sensing, IEEE Trans. Inf. Theory 52 (4) (2006) 1289-1306.
[7] Michael L. Fredman, Janos Komlés, On the size of separating systems and families of perfect hash functions, SIAM
J. Algebr. Discrete Methods 5 (1) (1984) 61-68.
[8] Jochen Garcke, Michael Griebel, Sparse Grids and Applications, Vol. 88, Springer Science & Business Media, 2012.
[9] Luisa Gargano, Janos Korner, Ugo Vaccaro, Sperner capacities, Graphs and Comb. 9 (1) (1993) 31-46.
[10] Trevor Hastie, Robert]. Tibshirani, Generalized Additive Models, CRC press, 1990.
[11] Viktor V. Ivanov, On optimum minimization algorithms in classes of differentiable functions, Dokl. Akad. Nauk 201
(3) (1971) 527-530.
[12] Vladimir Koltchinskii, Ming Yuan, Sparse recovery in large ensembles of kernel machines, in: Proceedings of COLT,
Vol. 3, 2008.
[13] Vladimir Koltchinskii, Ming Yuan, Sparsity in multiple kernel learning, Ann. Statist. 38 (6) (2010) 3660-3695.
[14] F. Kuo, 1. Sloan, Grzegorz Wasilkowski, Henryk WoZniakowski, On decompositions of multivariate functions, Math.
Comput. 79 (270) (2010) 953-966.
[15] Lukas Meier, Sara Van de Geer, Peter Biihlmann, High-dimensional additive modeling, Ann. Statist. 37 (6B) (2009)
3779-3821.
[16] Erich Novak, Deterministic and Stochastic Error Bounds in Numerical Analysis, Vol. 1349, Springer, 1988.
[17] Erich Novak, Henryk WoZniakowski, Tractability of Multivariate Problems: Linear Information, Vol. 6, European
Mathematical Society, 2008.
[18] Erich Novak, Henryk WoZniakowski, Tractability of Multivariate Problems: Volume II: Standard Information for
Functionals, European Mathematical Society Publishing House Ziirich, 2010.
[19] Erich Novak, Henryk WoZniakowski, Tractability of Multivariate Problems: Volume III: Standard Information for
Operators, European Mathematical Society Publishing House Ziirich, 2012.
[20] Garvesh Raskutti, Martin J. Wainwright, Bin Yu, Minimax-optimal rates for sparse additive models over kernel classes
via convex programming,]. Mach. Learn. Res. 13 (Feb) (2012) 389-427.
[21] Ian H. Sloan, Henryk WoZniakowski, When are quasi-Monte Carlo algorithms efficient for high dimensional integrals?,
J. Complexity 14 (1) (1998) 1-33.
[22] Sergei Abramovich Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of functions,
Dokl. Akad. Nauk 148 (5) (1963) 1042-1045.
[23] LM. Sobol, Multidimensional Quadrature Formulas and Haar Functions, Nauka, Moscow, 1969.

[4

5

http://refhub.elsevier.com/S0885-064X(19)30084-6/sb1
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb1
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb1
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb2
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb4
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb4
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb4
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb5
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb5
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb5
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb6
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb7
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb7
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb7
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb8
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb9
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb10
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb11
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb11
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb11
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb13
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb14
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb14
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb14
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb15
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb15
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb15
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb16
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb17
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb17
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb17
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb18
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb18
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb18
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb19
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb19
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb19
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb20
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb20
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb20
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb21
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb21
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb21
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb22
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb22
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb22
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb23

16

(24]
[25]

[26]
[27]

(28]
[29]

(30]
(31]

(32]
(33]

(34]

C. Han and M. Yuan / Journal of Complexity 57 (2020) 101443

V.M. Tikhomirov, Widths of sets in functional spaces and approximation theory, Usp. Mat. Nauk 15 (3) (1960)
81-120.

Joseph Frederick Traub, Grzegorz Wiodzimierz Wasilkowski, Henryk WoZniakowski, Information, uncertainty,
complexity, Addison-Wesley Publishing Company, 1983.

Joseph Frederick Traub, Henryk WoZniakowski, A General Theory of Optimal Algorithms, Academic Press, 1980.
Hemant Tyagi, Bernd Gartner, Andreas Krause, Efficient sampling for learning sparse additive models in high
dimensions, in: Advances in Neural Information Processing Systems, 2014, pp. 514-522.

Hemant Tyagi, Anastasios Kyrillidis, Bernd Gartner, Andreas Krause, Algorithms for learning sparse additive models
with interactions in high dimensions, Inf. Inference J. IMA 7 (2) (2017) 183-249.

Przemystaw Wojtaszczyk, Complexity of approximation of functions of few variables in high dimensions, J.
Complexity 27 (2) (2011) 141-150.

H. WoZniakowski, A survey of information-based complexity,]. Complexity 1 (1985) 11-44.

Henryk WoZniakowski, Tractability and strong tractability of linear multivariate problems, J. Complexity 10 (1) (1994)
96-128.

Henryk WoZniakowski, ABC on IBC,]. Complexity 52 (2019) 2-23.

Ming Yuan, Ding-Xuan Zhou, Minimax optimal rates of estimation in high dimensional additive models, Ann. Statist.
44 (6) (2016) 2564-2593.

Christoph Zenger, Sparse grids, in: Parallel Algorithms for Partial Differential Equations, 1991.

http://refhub.elsevier.com/S0885-064X(19)30084-6/sb24
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb24
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb24
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb25
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb25
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb25
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb26
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb27
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb27
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb27
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb28
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb28
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb28
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb29
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb29
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb29
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb30
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb31
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb31
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb31
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb32
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb33
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb33
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb33
http://refhub.elsevier.com/S0885-064X(19)30084-6/sb34

	Information based complexity for high dimensional sparse functions
	Introduction
	Information based complexity
	Summary of results

	Optimal algorithms for optimization
	Deterministic algorithms
	Randomized algorithms

	Optimal algorithms for approximation
	Deterministic algorithms
	Randomized algorithms

	General sparse functions
	Additive models
	Functional ANOVA models
	Sparse grids

	Concluding remarks
	Acknowledgments
	References

