
BATCH: Machine Learning Inference Serving on
Serverless Platforms with Adaptive Batching

Ahsan Ali§

University of Nevada, Reno
Reno, NV

aali@nevada.unr.edu

Riccardo Pinciroli§

William and Mary
Williamsburg, VA

rpinciroli@wm.edu

Feng Yan
University of Nevada, Reno

Reno, NV
fyan@unr.edu

Evgenia Smirni
William and Mary
Williamsburg, VA

esmirni@cs.wm.edu

Abstract—Serverless computing is a new pay-per-use cloud
service paradigm that automates resource scaling for stateless
functions and can potentially facilitate bursty machine learning
serving. Batching is critical for latency performance and cost-
effectiveness of machine learning inference, but unfortunately it
is not supported by existing serverless platforms due to their
stateless design. Our experiments show that without batching,
machine learning serving cannot reap the benefits of serverless
computing. In this paper, we present BATCH, a framework
for supporting efficient machine learning serving on serverless
platforms. BATCH uses an optimizer to provide inference tail
latency guarantees and cost optimization and to enable adaptive
batching support. We prototype BATCH atop of AWS Lambda
and popular machine learning inference systems. The evaluation
verifies the accuracy of the analytic optimizer and demonstrates
performance and cost advantages over the state-of-the-art method
MArk and the state-of-the-practice tool SageMaker.

Index Terms—Machine-learning-as-a-service (MLaaS), Infer-
ence, Serving, Batching, Cloud, Serverless, Service Level Objec-
tive (SLO), Cost-effective, Optimization, Modeling, Prediction

I. INTRODUCTION

Serverless (also referred to as Function-as-a-Service (FaaS)
or cloud function services) is an emerging cloud paradigm
provided by almost all public cloud service providers, in-
cluding Amazon Lambda [1], IBM Cloud Function [2], Mi-
crosoft Azure Functions [3], and Google Cloud Functions
[4]. Serverless offers a true pay-per-use cost model and hides
instance management tasks (e.g., deployment, scaling, moni-
toring) from users. Users only need to provide the function
and its trigger event (e.g., HTTP requests, database uploads),
as well as a single control system parameter memory size
that determines the processing power, allocated memory, and
networking performance of the serverless instance. Intelligent
transportation systems [5], IoT frameworks [6–8], subscription
services [9], video/image processing [10], and machine learn-
ing tools [11–13] are already being deployed on serverless.

Machine Learning (ML) Serving. ML applications have
typically three phases: model design, model training, and
model inference (or model serving).1. In the model design
phase, the model architecture is designed manually or through
automated methods [14, 15]. Then, the crafted model with
initial parameters (weights) is trained iteratively until con-
vergence. A trained model is published in the cloud to pro-
vide inference services, such as classification and prediction.

§Both authors contributed equally to this research.
1We use the terms model serving and model inference interchangeably

Among the three phases, model serving has a great potential
to benefit from serverless because the arrival intensity of
classification/prediction requests is dynamic and their serving
has strict latency requirements.

Serverless vs. IaaS for ML Serving. Serverless com-
puting simplifies the deployment process of ML Serving as
application developers only need to provide the source-code
of their functions without worrying about virtual machine
(VM) resource management, such as (auto)scaling and load
balancing. Despite the great capabilities of serverless, existing
works show that in public clouds, the serverless paradigm
for ML serving is more expensive compared to IaaS [16, 17].
Recent works have shown that it is possible to use serverless
to improve the high cost for ML serving [16, 18] but ignore
one important feature of serving workloads in practice: bursti-
ness [19,20]. Bursty workloads are characterized by time peri-
ods of low arrival intensities that are interleaved with periods
of high arrival intensities. Such behavior makes the VM-based
approach very expensive: over-provisioning is necessary to ac-
commodate sudden workload surges (otherwise, the overhead
of launching new VMs, which can be a few minutes long, may
significantly affect user-perceived latencies). The scaling speed
of serverless can solve the sudden workload surge problem.
In addition, during low arrival intensity periods, serverless
contributes to significant cost savings, thanks to its pay-per-use
cost model.

Serverless for ML Serving: Opportunities and Chal-
lenges. Another important factor that heavily impacts both
cost and performance of ML serving inference is batching
[16,21]. With batching, several inference requests are bundled
together and served concurrently by the ML application. As
requests arrive, they are served in a non-work-conserving way,
i.e., they wait in the queue till enough requests form a batch.
In contrast to batch workloads in other domains that are
typically treated as background tasks [22–25], batching for
ML inference serving is done online, as a foreground process.
Batching dramatically improves inference throughput as the in-
put data dimension determines the parallelization optimization
opportunities when executing each operator according to the
computational graph [26,27]. Provided that the monetary cost
of serverless on public cloud is based on invocations, a few
large batched requests are cheaper than many small individual
requests. Therefore, judicious parameterization of batching can
potentially improve performance while reducing cost.

SC20, November 9-19, 2020, Is Everywhere We Are
978-1-7281-9998-6/20/$31.00 ©2020 IEEE

Due to the stateless property of serverless design, i.e.,
no data (state) is kept between two invocations, batching
is not supported as a native feature within the serverless
paradigm. An additional challenge is that batching introduces
two configuration parameters: batch size (i.e., the maximum
number of requests to form a batch) and timeout (i.e., the
maximum time it allows to wait for requests to form the batch).
These parameters need to be adjusted on the fly according to
the arrival intensity of inference requests to meet inference
latency SLOs. The performance and cost effectiveness of
batching depends strongly on the judicious choice of the above
parameters. No single parameter choice can work optimally for
all workload conditions.

Our Contribution. Here, we address the above challenges
by developing an autonomous framework named BATCH [28].
The first key component of BATCH is a dispatching buffer
that enables batching support for ML serving on serverless
clouds. BATCH supports automated adaptive batching and
its associated parameter tuning to provide tail latency per-
formance guarantees and cost optimization while maintaining
low system overhead. We develop a lightweight profiler that
feeds a performance optimizer. The performance optimizer is
driven by a new analytical methodology considers the salient
characteristics of bursty workloads, serverless computing, and
ML serving to estimate inference latencies and monetary cost.

We prototype BATCH atop of AWS Lambda and evalu-
ate its effectiveness using different ML serving frameworks
(TensorFlow Serving and MXNet Model Server) and image
classification applications (MoBiNet, Inception-v4, ResNet-
18, ResNet-50, and ResNet-v2) driven both by synthetic and
real workloads [29,30]. Results show that the estimation accu-
racy of the analytical model is consistently high (average error
is lower than 9%) independent of the considered system con-
figurations (i.e., framework, application, memory size, batch
size, and timeout). Controlling the configuration parameters on
the fly, BATCH outperforms SageMaker [31] (the state-of-the-
practice), MArk [16] (the state-of-the-art), and vanilla Lambda
from both cost and performance viewpoints. More importantly,
BATCH supports a full serverless paradigm for online ML
serving, enabling fully automated and efficient SLO-aware ML
serving deployment on public clouds.

II. MOTIVATION AND CHALLENGES

We discuss the potential advantages of using serverless for
ML serving and summarize its open challenges.

A. ML Serving Workload is Bursty

Workload burstiness is omnipresent in non-laboratory set-
tings [32–35]. Past work has showed that if burstiness is not
incorporated into performance models, the quality of their
prediction plummets [36, 37].

Fig. 1(a) plots the arrival intensity of cars passing through
the New York State (NYS) Thruway during three business
days in the fourth quarter of 2018 [29]. This trace represents
a typical workload of an image recognition application that
detects the plate of vehicles that pass under a checkpoint

 0

 5

 10

 15

 20

06:00 12:00 18:00A
rr

iv
a
l
In

te
n
si

ty
 [

r/
s]

time

Oct. 08
Oct. 09

Nov. 16

(a) NYS Thruway

 0

 50

 100

 150

06:00 12:00 18:00A
rr

iv
a
l
In

te
n
si

ty
 [

r/
s]

time

Feb. 14
Feb. 15

May 25

(b) Twitter

Fig. 1: Real-world traces from [29] and [30].

[18]. The three days have distinct arrival intensities that are
non-trivial to accurately predict. Distinct traffic peaks are also
observed in a Twitter trace [30] that represents a typical arrival
of tweets processed for sentiment analysis that has been used
for ML serving elsewhere [16]. Fig. 1(b) shows the arrival
intensity of three distinct days in the first semester of 2017.
Observation #1. ML inference application often have bursty
arrivals. Burstiness must be incorporated into the design of
any framework for performance optimization.

B. Why Serverless for ML Serving

There are two types of approaches to cope with sudden
workload surges: resource over-provisioning and autoscaling.
For bursty workloads, resource over-provisioning is not cost-
effective as the difference between high and low intensities
can be dramatic and lots of paid computing resource is left
idle for extensive periods.

Autoscaling is the current industry solution: Amazon’s
SageMaker [31] facilitates ML tasks and supports AWS au-
toscaling [38]. With SageMaker, users can define scaling
metrics such as when and how much to scale.

We examine Sagemaker’s scaling in Fig. 2. Here, arrivals
are driven by the Twitter trace illustrated in Fig. 1(b) (May 25,
2017) and the inference application is Inception-v4. The figure
shows that SageMaker’s scaling is very slow, as it requires
several minutes before responding to an arrival intensity surge,
which is not acceptable as requests’ performance during this
period suffers, see the latency results of Fig. 2(a). SageMaker
being SLO-oblivious cannot ensure quality of service.

Serverless is potentially a good solution for solving the
resource allocation problem, thanks to its automated and swift
resource scaling capabilities. Take AWS’s serverless platform
Lambda (also referred in this paper as Vanilla Lambda) for
example: Fig. 2(b) demonstrates the number of instances
launched overtime, we can see that the number of instances
closely follows the bursty arrival intensity shown in Fig. 1(b).
SageMaker stays almost flat due to its long reaction window.

Another advantage of serverless compared to IaaS (e.g.,
SageMaker) is its true pay-per-use cost model as Lambda
charges based on the number of invocations, which can
potentially reduce cost, especially during time periods with
few arrival. Here, we use the term cost to refer to the
monetary cost per request, i.e., total cost over the number
of executed requests. The total cost is calculated as in [39]

 0

 2

 4

 6

 8

 10

 0 700 1400

La
te

n
cy

 [
se

c]

Time [min]

Lambda Sagemaker

(a) Latency

 20

 40

 60

 80

 100

 0 700 1400
 3

 6

 9

 12

 15

C
o
n
cu

rr
e
n
t

fu
cn

ti
o
n
s

In
sta

n
ce

 co
u
n
t

Time [min]

Lambda Sagemaker

(b) Instance count

 0

 0.35

 0.7

A
v
g
.
C

o
st

 [
$

/r
]

(1
0

-4
)

Lambda Sagemaker

(c) Cost

Fig. 2: Performance of inference using Inception-v4 deployed on SageMaker (with instance type c5.4xlarge) and Lambda. The
number of instances used by Sagemaker varies between 5 to 11 based on the workload intensity.

without considering the free tier (i.e., free invocations and
compute time available every month):

CLambda = (S ·M · I) ·K1 + I ·K2, (1)

where S is the length of the function call (referred as batch
service time here), M is the memory allocated for the function,
I is the number of calls to the function that decreases when
requests are batched together, K1 (i.e., 1.66667 ·10−5 $/GB-s)
is the cost of the memory, and K2 (i.e., 2 ·10−7 $) is the cost
of each call to the function. This is different from the AWS
EC2 cost, i.e., CEC2 = K ·H, that only accounts for the cost
per hour of an instance (K) and the number of power-on hours
of the instance (H).
Observation #2. Compared to IaaS solutions (autoscaling),
serverless computing is very agile, which is critical for per-
formance during time periods of bursty workload conditions.
In addition, the quick scale down and pay-per-use cost model
contributes to the cost-effectiveness of serverless.

C. The State of the Art

Using serverless for ML serving has been explored in
recent works [16–18]. The above works conclude that using
serverless for ML serving is too expensive compared to IaaS-
based solutions. Our experimental results are consistent with
current literature findings, e.g., in Fig. 2(c), Lambda’s cost is
higher than SageMaker. To address the cost issue, MArk [16]
has introduced a hybrid approach of using both AWS EC2 and
serverless, where serverless is responsible for handling arrival
bursts. MArk can dramatically improve the IaaS solution but is
still insufficient in the serverless setting. First, it uses machine
learning to predict the arrival intensity, this is too expensive for
any practical use. Second, even though MArk is SLO-aware,
it needs an observation window for the decision of whether to
use serverless or not, therefore it reacts to arrival bursts after a
lag, which impacts tail latency. Fig. 3(a) shows this outcome.
With serverless, there are no such reaction delays as scaling
is automatic.
Observation #3. While state-of-the-art systems employ a
hybrid approach of using serverless and IaaS for ML serving, it
suffers from slow reaction time and consequently long latency
tails.

 0

 2

 4

 6

 0 600 1200 1800

La
te

n
cy

 [
se

c]

Time [sec]

Lambda
MArk

(a) Latency

 0

 0.5

 A
v
g

.
C

o
st

 [
$

/r
]

(1
0

-4
)

Lambda
MArk

(b) Cost

Fig. 3: 95th percentile latency and cost for Inception-v4 during
unexpected workload surge with MArk and Lambda. The
vertical dashed line marks the workload surge.

D. Serverless and Batching Configurations

One important factor that existing work ignores is batching.
By batching several requests together, the input dimension of
inference significantly increases, which provides great oppor-
tunities for parallelization. Batching results in more efficient
inference since it enables a better exploitation of modern
hardware [40]. In addition, as serverless charges users based
on the number of invocations, a few large batched requests
result in lower cost than many small individual ones.

Batching introduces two tuning parameters: batch size and
timeout [13, 16]. These two parameters need to be adjusted
based on the request arrival intensity. Changing these two
parameters also affects the optimal memory size, the only
parameter that controls the performance and cost of serverless
in public cloud, since the memory required to serve a batch
increases with the batch size. For example, the minimum
memory required to serve a batch of size 1, when the inference
application is ResNet-v2, is 1280 MB, while 1664 MB (i.e.,
30% more) memory is required for processing a batch of size
20. To demonstrate the above, we do sensitivity analysis by
adjusting the batching parameters and memory size and show
results in Fig. 4. Fig. 4 depicts the normalized (min-max)
average request service time (blue line), request throughput
(green line), and monetary cost (red line). In Fig. 4(a), the
batch size varies from 1 to 20, the memory size is set to 3008
MB, and the timeout is assumed to be long enough (i.e., 1
hour) to allow the system to form a batch with maximum
size. Although cost reduces and throughput increases when

Request Service Time Request Throughput Monetary Cost

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16 20

Batch Size

(a) Timeout = 1 hr, Memory = 3008 MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3

Timeout [s]

(b) Batch Size = 20, Memory = 3008 MB

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.5 2 2.5 3

Memory Size [GB]

(c) Batch Size = 5, Timeout = 1 hr

Fig. 4: Effect of batch size, timeout, and memory size on average request service time, request throughput, and monetary cost
of ResNet-v2 deployed on AWS Lambda. Service time, throughput, and cost are normalized (min-max).

batch size increases, request processing times suffer as earlier
requests need to wait until the entire batch is formed. Similar
considerations may be drawn when timeout varies, see Fig.
4(b). It is worth noting that for the considered configuration,
the timeout effect on the system performance decreases when
it is longer than 0.2 seconds. Long timeouts allow reaching
the maximum batch size easier, especially if the batch size is
small. Fig. 4(c) depicts the system performance as a function
of the memory size, when the batch size is 5, and the timeout is
long enough to guarantee that all requests are collected (e.g., 1
hour). Here, monetary cost is not monotonous since it depends
on both memory size and the batch service time, see Eq. (1). In
Fig. 4(c), both these parameters are varying at the same time
given that the processing time decreases with more memory.
Observation #4. The effectiveness of batching strongly de-
pends on its parameterization.

E. Challenges of ML Serving on Serverless

Despite the great potential of using serverless for ML
serving, there are several challenges that need to be addressed
to enable efficient ML serving on serverless:

No batching support: As shown in Section II-C, batching
can drastically improve the performance [21] and monetary
cost of ML serving. However, existing serverless platforms
in public clouds do not support this important feature due to
its stateless design, i.e., no data (state) can be stored between
two invocations. To solve this challenge, we extend the current
serverless design to allow for a dispatching buffer so that
requests can form a batch before processing.

SLO-oblivious: ML serving usually has strict latency SLO
requirements to provide good user experience. Past studies
have shown that if latency increases by 100 ms, revenue drops
by 1% [41]. Existing serverless platforms in public clouds
are SLO-oblivious and do not support user specified latency
requirements. We are motivated to develop a performance opti-
mizer that can support strict SLO guarantees and concurrently
optimize monetary cost.

Adaptive parameter tuning: To support user defined SLO
while minimizing monetary cost, memory size (the single
serverless parameter) and batching parameters need to be
dynamically adjusted (optimized) according to the intensity of

Service Time
Model

Profiler

Arrival
process

Performance
Optimizer

Serverless
Platform

Workload

● Batch Size
● Timeout [s]

● Memory Size [MB]

SLOsBudget

Batch
Dispatching

Buffer

BATCH
1a

3

5 6

Empirical Measurements
of Arrival Process

1b

2a 2b

4a

4b

Empirical Measurements
of Service Times

Fig. 5: Overview of BATCH.

arrival requests. There is no existing method that can optimize
the above parameters on-the-fly. We are motivated to develop
an optimization methodology that can continuously tune these
parameters to provide SLO support.

Lightweight: Given that the cost model of serverless is pay-
per-use, the aforementioned optimization methodology needs
to be lightweight. Such requirement excludes learning or
simulation based approaches. We are thus motivated to build
the optimization methodology using analytical models.

III. BATCH DESIGN

BATCH determines the best system configuration (i.e.,
memory size, maximum batch size, and timeout) to meet user-
defined SLOs while reducing the cost of processing requests
on a serverless platform. The workflow of BATCH is shown
in Fig. 5. Initially, BATCH feeds the Profiler with empirical
measurements of the workload arrival process 1a and service
times 1b . The Profiler uses the KPC-toolbox [42] to fit the
sequence of arrivals into a stochastic process 2a and uses
simple regression to capture the relationship between system
configuration and request service times 2b . Using as inputs
the fitted arrival process, request service times for different
system configurations, the monetary budget, and the user
SLO, BATCH uses an analytic model implemented within
the Performance Optimizer component to predict the distri-
bution of latencies 3 and determines the optimal serverless
configuration to reach specific performance/cost goals while

complying with a published SLO. The optimal batch size
and timeout are communicated to the Buffer 4a , while the
optimal memory size is allocated to the function deployed on
the serverless platform 4b . The Buffer uses the parameters
provided by the Performance Optimizer to group incoming
requests into batches 5 . Once the batch size is reached or
the timeout expires, the accumulated requests are sent from
the Buffer to the serverless platform for processing 6 . Further
details are provided for each component of BATCH below.

A. Profiler

To determine the workload arrival process, the Profiler
observes the inter-arrival times of incoming requests. BATCH
uses the KPC-Toolbox [42] to fit the collected arrival trace into
a Markovian Arrival Process (MAP) [43], a class of processes
that can capture burstiness. To profile the inference time on
the serverless platform, the Profiler measures the time required
to process batches of different sizes for certain amounts of
allocated memory. BATCH derives the batch service time
model using multivariable polynomial regression [44] and
assuming that inference times are deterministic. Past work has
shown that inference service times are deterministic [45], our
experiments (see Section VI-B) confirm this.

B. Buffer

Since serverless platforms do not automatically allow pro-
cessing multiple requests in a single batch, BATCH imple-
ments a Buffer to batch together requests for serving. The
performance optimizer determines the optimal batch size based
on the arrival process, service times, SLO, and budget. The
performance optimizer also defines a timeout value that is
used to avoid waiting too long for collecting enough requests.
Therefore, a batch is sent to the serverless platform as soon
as either the maximum number (batch size) of requests is
collected or timeout expires.

C. Performance Optimizer

The Performance Optimizer is the core component of
BATCH. It uses the arrival process and service time (both
estimated by the profiler) to predict the time required to
serve the incoming requests. Using the SLO and the available
budget (both provided by the user), the performance optimizer
determines which system configuration (i.e., memory size,
batch size, and timeout) allows minimizing the cost (latency)
while meeting SLOs on system performance (budget). To solve
this optimization problem, BATCH uses an analytical approach
that allows predicting the request latency distribution.

We opt for an analytical approach as opposed to simulation
or regression for the following reasons. Analytical models are
significantly lightweight, i.e., they do not require extensive
repetitions to obtain results within certain confidence intervals
as simulation does. Equivalently, they do not require extensive
profiling experiments that regression traditionally requires.

IV. PROBLEM FORMULATION AND SOLUTION

Since SLOs are typically defined as percentiles [46,47], the
model must determine the request latency distribution while
accounting for memory size, batch size, timeout, and arrival
intensity. Since the model is analytical, no training is required.

The challenges for developing an analytical model here are
three-fold: 1) the model needs to effectively capture burstiness
in the arrival process for a traditional infinite server [48] that
can model the serverless paradigm (i.e., there is no inherent
waiting in a queue), 2) the model needs to effectively capture
a deterministic service process which is challenging [45, 49],
and 3) needs to predict performance in the form of latency
percentiles [46, 47], this is very challenging since analytical
models typically provide just averages [45, 50]. In the fol-
lowing, we give an overview of how we overcome the above
challenges.
Problem Formulation:
BATCH optimizes system cost by solving the following:

minimize Cost

subject to Pi ≤ SLO,
(2)

where Cost, given by Eq. (1), is the price that the system
charges to process the incoming requests and Pi is the ith-
percentile latency that must be shorter than the user-defined
SLO. BATCH can minimize the request latency by solving:

minimize Pi

subject to Cost≤ Budget,
(3)

where Budget is the maximum price for serving a single
request. These optimization problems allow minimizing either
latency or cost (at the expense of the other measure, which
must comply with the given target). The optimization in Eqs.
(2) and (3) are solved via exhaustive search within a space
that is quickly built by the analytical model (see Section V).
Analytical Model:
In order to determine the optimal system configuration, (i.e.,
the memory size, the maximum batch size B, and the timeout
T) BATCH first evaluates the distribution of jobs in the Buffer
by observing the arrival process. The probability that a batch
of size k is processed by the serverless function is equal to the
probability that k ≤ B requests are into the buffer by time T .
In the following, we show how the prediction model operates
with different arrival processes.
Poisson arrival process. We start with the simplest case where
the arrival process is a Poisson distribution with rate λ and it
is represented by the following B×B matrix:

QQQ =


−λ λ

.
−λ λ

0

 . (4)

The state space of the buffer is represented by the continuous
time Markov chain (CTMC) shown in Fig. 6. Since the timeout
starts when the first request arrives at the buffer, each state i of
the CTMC represents the buffer with i+1 requests. No more

0 1 2 B-1

λ λ λ λ

Fig. 6: Buffer state space for a Poisson arrival process.

than B−1 requests are collected into the buffer. To determine
the probability that k requests besides the first one arrive into
the buffer by the timeout T , πk(T), we solve the equation [51]:

πππ(T) = πππ(0)eQQQT (5)

where πππ(T) = (π0(T),π1(T), . . . ,πk(T), . . . ,πB−1(T)) is the
batch size distribution, πππ(0) = (1,0,0, . . . ,0) is the initial state
probability vector, and eQQQT is the matrix exponential:

eQQQT =
∞

∑
i=0

QQQi · T
i

i!
. (6)

Solving Eq. (5), we obtain:

πππ(T) =

{
(λT)k

k! e−λT 0≤ k < B−1
1−∑

B−1
i=0 πi(T) k = B−1.

(7)

The probability that a request is processed in a batch of size
k+1 at the end of the timeout, ρk+1(T), is computed as:

ρk(T) =
(k+1)·πk(T)

∑
B−1
i=0 (i+1)·πi(T)

, (8)

where πk(T) is weighted by the number of requests in the
batch and normalized such that 0≤ ρk(T)≤ 1. When the batch
service time is deterministic as it is common in serving [45],
the CDF of the latency FR(t) = P(R≤ t), can be computed as:

FR(t) =


0 t < S1 +T 1
t−Sk

T ·ρk +∑
k−1
i=1 ρi Sk < t < Sk +T,k < B 2

t−SB
τ
·ρB +∑

B−1
i=1 ρi SB < t < SB + τ,k = B 3

∑
k
i=1 ρi Sk +T ≤ t ≤ Sk+1 4

1 t > SB + τ 5

(9)

where Sk is the the service time of a batch of size k.
Specifically for each of the above cases:

1 If B > 1, the minimum request latency is S1 +T since a
request served in a batch with size k = 1 must wait all
the timeout before being processed with time S1.

2 If the batch size k is smaller than B, then the request
latency t is between Sk and Sk +T . In this time interval,
we assume that the timeout (to be added to the processing
time Sk) is uniformly distributed (between 0 and T). If
T � Sk+1− Sk, the above assumption (uniform distribu-
tion) may lead to model inaccuracies.

3 If B−1 requests are collected besides the first one, then
the batch reaches the maximum allowed size and it is
immediately sent to the serverless platform (i.e., without
waiting for the timeout expiration). The time, τ < T , to
collect B−1 requests with a Poisson arrival process is:

τ = (B−1)/λ . (10)

4 If T < Sk+1− Sk, where 1 ≤ k < B, the request latency
cannot be in the interval (Sk + T,Sk+1). If a request is

0,1 1,1 2,1 B-1,1

λ1 λ1 λ1

0,2 1,2 2,2 B-1,2

λ2 λ2 λ2 λ2

λ1

!2 !2 !2 !2!1 !1 !1 !1

Fig. 7: Buffer state space for a MMPP(2) arrival process.

included in a batch of size k, it is processed in a time
shorter than Sk +T time units, while it takes at least Sk+1
time units if it is included in a batch of size k+ 1. For
this reason, the CDF in this time interval is flat.

5 Since the larger the batch the longer the service time, and
the maximum batch size is B, all requests are served in
a time shorter than SB + τ .

Eq. (9) accounts for the maximum batch size (B) and timeout
(T) and is used by BATCH to model the request latency CDF.
Recall that the memory affects the batch service time (Sk) as
described in Section III-A.
MMPP(2) arrival process. A Markov-modulated Poisson
Process (MMPP) [52] may be used to capture burstiness. A
MMPP generates correlated samples by alternating among m
Poisson processes, each one with rate λi for 1≤ i≤m [53]. A
MMPP(1) is a Poisson process with rate λ1. MMPPs have two
types of events: observed and hidden events [54]. The former
determines the generation of a request with rate λi, the latter
makes the MMPP change its phase with rate ωi. A MMPP(2),
is characterized by two phases (e.g., a quiet and a high-
intensity), where it stays for exponentially distributed periods
with mean rates ω1 and ω2, respectively [55]. A MMPP(2) is
defined by the 2B×2B matrix:

QQQ =


DDD000 DDD111

.
DDD000 DDD111

000

 , (11)

where:

DDD000 =

[
−(λ1 +ω1) ω1

ω2 −(λ2 +ω2)

]
,

DDD111 =

[
λ1 0
0 λ2

]
, and 000 =

[
0 0
0 0

]
,

(12)

and its CTMC is shown in Fig. 7, where each state (i, j) de-
scribes the system when there are i+1 requests into the buffer
and the arrival process is in phase j (since this is a MMPP(2),
j values are 1 or 2 only). The request latency distribution is
derived as for the Poisson arrival process with modifications.
Differently from the Poisson case, the MMPP(2) process may
be in any of its phases (i.e., 1 or 2) when the first request of
each batch arrives to the buffer. Hence, the initial state, πππ(0),
in Eq. (5) must be replaced in the case of a MMPP(2) process.
To derive the probability that the arrival process is in phase
m= {1,2} when the first request of a batch arrives to the buffer

0,1 1,1 2,1 B-1,1

λ1 λ1 λ1

0,2 1,2 2,2 B-1,2

λ2 λ2 λ2 λ2

λ1

!2 !2 !2 !2!1 !1 !1 !1

λ12 λ12 λ12 λ12

λ21 λ21 λ21
λ21

Fig. 8: Buffer state space of a MAP(2) arrival process.

we proceed as follows. First, we derive the average number
of requests generated during each phase, evm = λm/ωm, as the
product of the request arrival rate, λm, and the average duration
of each phase, 1/ωm. Then, we compute the average number
of times that the buffer is in state (0,m) when the first request
of a batch arrives. Knowing that evm is the number of requests
generated during phase m, we divide it by the expected batch
size:

αm =
evm

min(B,λm ·T +1)
. (13)

The initial state, πππ(0), to be used in Eq. (5) in the MMPP(2)
case, is computed as:

πππ(0) =
(

α1

α1 +α2
,

α2

α1 +α2

)
. (14)

With a MMPP(2) arrival process, also the required time, τ , to
collect B− 1 requests besides the first one (i.e., the time to
reach the maximum batch size) is different from the Poisson
case since it depends on the arrival process. Hence, Eq. (10)
in case 3 of the proposed model, i.e., Eq. (9), needs to be
replaced by:

τ = (B−1) · ω1 +ω2

λ1 ·ω2 +λ2 ·ω1
. (15)

MAP(2) arrival process. MAPs are flexible non-renewal
stochastic processes that can model general distributions and
are commonly used to describe correlated and bursty events
[50, 56–59]. MAPs are a generalization of MMPPs [52] that
allows changing a phase also during observed events. A two-
phase MAP is defined by the matrix in Eq. (11), where:

DDD000 =

[
−(λ1 +λ12 +ω1) ω1

ω2 −(λ2 +λ21 +ω2)

]
and DDD111 =

[
λ1 λ12
λ21 λ2

]
,

(16)

and the state space of the buffer is represented by the CTMC
in Fig. 8. A MAP(2) is defined by four parameters (i.e.,
mean, square coefficient of variation, skewness, and lag-1
autocorrelation) and can easily fit bursty traces [60]. The
request latency distribution with a MAP(2) arrival process is
computed with the exact same steps as for the MMPP(2) case.

V. PROTOTYPE IMPLEMENTATION

We prototype BATCH atop AWS Lambda and discuss the
implementation choices for its key components in this section.

Serving package development and deployment. We de-
velop the serving package according to the guidelines provided

by AWS [61]. The serving package is implemented using two
widely used ML frameworks, Tensorflow [26] and MXNet
Model Server [62]. A function is created using the cre-
ate function method from the boto3 library [63] for deploying
the package. We minimize the invocation delay by 2× through
persisting the model graphs in memory.

Serverless Inference. Once the function is created and the
package is deployed, the framework is ready for serving. The
serving function takes incoming requests (e.g., images) as
inputs in the form of a list, each item on the list represents a
request. As soon as the function is invoked, the list of requests
are transformed into a batch by the serving function and the
batched requests are processed through the ML model for
inference. For each request, typically the top inferred value
is returned from the model and sent back to the end users.

Profiler. The most time consuming task of the Profiler is
measuring the service time of the ML application under differ-
ent system configurations (i.e., memory size, batch size, and
timeout). To reduce the profiling time, the Profiler measures
the workload service time under only a few different system
configurations and estimates service times of the remaining
ones through regression. We prototype the Profiler atop of
AWS CloudWatch [64]. Since this is an offline phase and
the profiler requires little computational power, it can be
collocated with the Buffer and Performance optimizer.

Buffer. The buffer module uses a proxy server to collect
incoming requests to form a batch. The proxy server requires
little computational power and can be deployed on a cheap
burstable instance (e.g., t2.nano [65], less than 0.14 $/day)
along with the Profiler. Alternatively, the buffer can be im-
plemented using the streaming service offered by AWS (e.g.,
Amazon Kinesis [66]) but at the premium charged by AWS.

Performance optimizer. The performance optimizer imple-
ments the model described in Section IV to determine the best
system configuration based on the actual workload intensity.
The analytical model can be collocated with the Profiler and
Buffer. It quickly builds the state space of all considered con-
figuration options and selects the optimal system configuration
in less than 10 seconds. Figure 9 shows the CPU and memory
usage of an AWS t2.nano instance ($0.14/day) hosting BATCH
components. The maximum memory utilization is less than
200 MB (over 512 MB available for a t2.nano instance). Since
the optimizer runs every hour and takes less than 10 seconds
to find an optimal solution, CPU utilization is negligible. The
computation time of BATCH depends only on the number of
explored configurations and is not affected by the intensity of
the arrival process since the state space is finite.

VI. RESULTS

Here, we evaluate the accuracy of the multivariable polyno-
mial model for the estimation of the batch service time (see
Section III-A). BATCH is validated experimentally on AWS
Lambda and compared to other available strategies.

A. Experimental Setup

We evaluate BATCH with two ML Serving Frameworks:

 0

 25

 50

 75

 100

 0 1 2 3
 0

 128

 256

 384

 512

C
P
U

 U
ti

l.
 [

%
]

M
e
m

. U
til. [M

B
]

time [hr.]

CPU Memory

Fig. 9: CPU and memory usage over three hours of an AWS
t2.nano instance hosting BATCH components. The daily cost
of a t2.nano instance is less than $0.14.

 0
 50

 100
 150
 200
 250
 300

 0 0.5 1A
rr

iv
a
l
In

te
n
si

ty
 [

r/
s]

time [hr]

MMPP(2)1 MMPP(2)2

(a) Arrival rate of MMPPs

 0

 50

 100

 150

 200

 250

06:00 12:00 18:00A
rr

iv
a
l
In

te
n
si

ty
 [

r/
s]

time

NYS Thruway
Twitter

(b) Arrival rate of real traces

Fig. 10: Intensity of arrival processes used to evaluate BATCH.

• TensorFlow [26] is a widely adopted ML framework which
supports a wide range of ML applications such as image
classification, speech recognition, and more. We are unable
to use the TensorFlow serving due to package size limita-
tions (250 MB) imposed by AWS Lambda. We implement
our own serving system based on TensorFlow.

• MXNet Model Server [62] is a popular ML framework that
supports a wide range of ML applications. MXNet does
not inherently support dynamic batch size for inference. We
extend MXNet for dynamic batching.

ML Applications. We use popular computer vision ML
models with serving requests extracted from the ImageNet-
22K dataset [67] (image resolution: 224 ×224×3):
• MoBiNet [68] is a Mobile Binary Network for lightweight

image classification.
• ResNet-18 and ResNet-50 [69] are medium size models with

residual functions (18 and 50 layers, repsectively).
• Inception-v4 [70] is a large deep convolutional neural net-

work (48 layers) with tens of millions of parameters.
• ResNet-v2 [70] is a deep convolutional neural networks (162

layers) with hundreds of millions of parameters.
Workload. BATCH is evaluated with MMPP arrivals (i.e., two
synthetic arrival processes) and real arrival traces from NYS
Thruway [29] and Twitter [30]. Figs. 10(a) and 10(b) depict the
arrival intensities of MMPPs and real traces, respectively. To
highlight the capability of BATCH to handle heavy traffic, the
arrival rate observed in [29] (i.e., between 0 and 12 reqs/sec) is
increased by 15 times. This is motivated by the arrival intensity
observed from Microsoft production traces [19], where the
arrival rate to a single front-end server may vary from 0 to 50
reqs/sec (Figure 6 in [19]). Since the ML platform proposed
in [19] is made of multiple front-end servers, it is reasonable

to assume that the arrival intensity of real MLaaS clusters is
similar to (or larger than) the one used in this paper. Twitter
traces are not scaled and are used without any modification.
Static Choices. The performance of BATCH is compared
with Vanilla Lambda, the state-of-the-practice tool SageMaker
[31], and the state-of-the-art approach MArk [16]. Vanilla
Lambda does not implement batching and only the memory
size may be tuned. We consider two strategies to select the
memory size: 1) maximum value (i.e., 3 GB, if application
requirements are not known) or 2) cherry pick the value that
allows minimizing the cost (this strategy requires to profile the
application). The experiments on SageMaker are conducted
on c5.4xlarge instances with auto-scaling enabled following
the AWS guidelines [71]. To accommodate the expected
traffic without resource over provisioning auto-scaling must
be configured manually. We deploy MArk on CPU instances
(c5.4xlarge) that, as suggested in [16], are more cost-effective
than GPU instances.

B. Service Time Model: Is it Truly Deterministic?

We first confirm the deterministic service time assumption.
Fig. 11 shows that the batch service time of image recognition
applications can be approximated with a deterministic process
since the empirical coefficient of variation (CV) is always
smaller than 0.1 (the deterministic distribution has CV=0).

To determine the mean of the service time distribution
with as few experiments as possible for the various mem-
ory/batch size configurations, BATCH uses a multivariable
regression model that is trained with a few configurations (in
our experiments, less than 3%). Results show that BATCH
can reduce the profiling time by more than 97% compared to
exhaustively profiling all system configurations. The accuracy
of the regression model is validated against configurations that
are not used for training. The mean absolute percentage error
is always less than 2%.

C. Validation of the Analytical Model

In the heart of BATCH lies the analytical model. Because
the target of BATCH is to predict SLOs, essentially tail
latencies, it is important to evaluate its accuracy regarding how
well it can predict the probability distribution of latencies.

Arrivals Driven by MMPP(2). We evaluate model
accuracy and robustness on AWS Lambda using different appli-
cations (i.e., MoBiNet, ResNet-v2, and ResNet-18), workload
arrival patterns, maximum batch sizes (i.e., 15 and 20), time-
outs (i.e., 10, 100, and 1000 ms), and memory sizes (i.e., 1536
and 3008 MB). A large maximum batch size and different
timeouts allow testing the model accuracy with different batch
buffer sizes. The actual batch size is also controlled by the
timeout value. The arrival process for the above experiments
is driven by traces generated from the two MMPP(2) processes
described in Section VI-A, results are shown in Fig. 12. Model
predictions with different system/workload configurations are
remarkably close to the AWS measurements with an error
consistently less than 9%. The analytical model remains ac-
curate regardless of the application, the arrival process, and

(a) Inception-v4 (b) ResNet-v2

Fig. 11: Coefficient of variation (CV) of service time for
various memory/batch size configurations.

the memory size. In the interest of space, similar results for
different system configurations are omitted.

Arrivals Driven by Real Traces. The accuracy of the
prediction model is also evaluated using real traces from the
NYS Thruway and Twitter. Note that in this experiment we
assume that we know the arrival process a priori. Since
the analytic model needs to admit an input for the arrival
process in a MAP(2) form, we first fit the trace data using
the KPC-Toolbox [42,72] that is publicly available. The MAP
returned by the KPC-Toolbox is passed to the prediction
model to forecast the request latency CDF. Fig. 13 depicts
predicted and observed latency CDFs for NYS Thruway and
Twitter traces. The effectiveness of the analytic model is again
remarkably accurate: independently of the considered system
configuration, the error is consistently smaller than 8%.

To the best of our knowledge this is the first analytical
model that can capture accurately the shape of the latency
distribution in the presence of bursty arrivals and deterministic
service times.

D. Optimizing Cost or Latency

For these experiments we use the May 25, 2017 trace
from Twitter [30] and the October 11, 2018 trace from NYS
Thruway [29] and focus on the two optimization problems
given in Eqs. (2) and (3). Here, the arrival process is not
known a priori. To determine the arrival process to pass to
BATCH for prediction, we monitor incoming requests with a
1-hour long (sliding) window and find the best fitting MAP

using the KPC-toolbox [42]. When BATCH is deployed on a
t2.nano instance, the minimum size of the sliding window is
smaller than 10 seconds (i.e., the time to derive the optimal
configuration, see Section V). Deploying BATCH on a more
powerful instance decreases the computation time and the
minimum size of the sliding window.

Cost Minimization and Latency SLOs: BATCH is
tested with ResNet-v2 and ResNet-50 to minimize cost, while
complying with the SLO defined on the 95th percentile latency,
i.e., using Eq. (2). Results are shown in Fig. 14 for NYS
Thruway (columns 1 and 2) and Twitter (columns 3 and 4).
The first row of Fig. 14 shows the 95th percentile latency of
different approaches normalized over the SLO (black line).
BATCH is the only approach that always keeps the latency
close to the SLO target without violating it, independently
of the load and ML application. The second row depicts the
complementary CDF (CCDF) of latencies (normalized over
the SLO and note the log scale of the y-axis). Here, we opted
for showing the CCDF to better illustrate the performance
of tail latencies. The vertical solid line is the SLO and
the horizontal dashed line is the 95th percentile. The third
row shows the monetary cost of each approach. Values are
normalized over the cost of Vanilla Lambda (with maximum
memory). BATCH always minimizes cost. For ResNet-50
(columns 2 and 4), BATCH and Vanilla Lambda (cherry pick)
achieve similar cost. This is due to a strict SLO that reduces
the batching capability of BATCH since the request latency
increases with the batch size. When BATCH can fully exploit
batching (columns 1 and 3), it provides the smallest cost.
SageMaker achieves the lowest 95th percentile latency and low
cost when serving the Twitter load with ResNet-v2 (column 3).
Differently from BATCH that automatically selects the optimal
system configuration, SageMaker requires a long time to be
manually configured. Note that we fine-tuned SageMaker here
to optimize its performance.

Fig. 15 depicts the parameters selected by BATCH for
the NYS Thruway trace with ResNet-v2 (column 1 in Fig.
14). It shows how BATCH dynamically changes the effective
batch size, timeout, and memory to minimize the cost while
complying with the given SLO. Cost minimization is enabled
by the correct setting of the maximum batch size and timeout
(the effective batch size varies from 6 to 13) and dynamic

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8

Avg. Err. = 8.26%

P
(R

 <
 t

)

Latency, t [s]

Model
Experiment

(a) ResNet-v2, MMPP(2)1
Memory=3008 MB, Timeout=10ms

Max Batch Size=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.25 0.5 0.75 1

Avg. Err. = 8.60%

P
(R

 <
 t

)

Latency, t [s]

(b) MoBiNet, MMPP(2)1
Memory=3008 MB, Timeout=100ms

Max Batch Size=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Avg. Err. = 6.14%

P
(R

 <
 t

)

Latency, t [s]

(c) ResNet-18, MMPP(2)2
Memory=1536 MB, Timeout=1000ms

Max Batch Size=15

Fig. 12: Request latency distribution driven with arrivals generated by MMPP(2) processes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1

Avg. Err. = 4.44%

P
(R

 <
 t

)

Latency, t [s]

Model
Experiment

(a) MoBiNet, NYS Thruway, 6-7am
Memory=3008 MB, Timeout=100ms

Max Batch Size=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

Avg. Err. = 5.48%

P
(R

 <
 t

)

Latency, t [s]

(b) ResNet-18, NYS Thruway, 7-8am
Memory=2048 MB, Timeout=100ms

Max Batch Size=20

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.3 0.6

Avg. Err. = 5.97%

P
(R

 <
 t

)

Latency, t [s]

(c) MoBiNet, Twitter, 8-9pm
Memory=2496 MB, Timeout=50ms

Max Batch Size=20

Fig. 13: Request latency distribution with arrivals driven from real workload traces.

 0

 0.5

 1

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(a) TensorFlow, ResNet-v2

 0

 1

 2

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(b) MXNet, ResNet-50

 0

 0.5

 1

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(c) TensorFlow, ResNet-v2

 0

 1

 2

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(d) MXNet, ResNet-50

99.9th

99th

90th

0th

 0 0.5 1 1.5 2

C
C

D
F

Norm. Latency

(e) TensorFlow, ResNet-v2

99.9th

99th

90th

0th

 0 0.5 1 1.5 2

C
C

D
F

Norm. Latency

(f) MXNet, ResNet-50

99.9th

99th

90th

0th

 0 0.5 1 1.5 2

C
C

D
F

Norm. Latency

(g) TensorFlow, ResNet-v2

99.9th

99th

90th

0th

 0 0.5 1 1.5 2

C
C

D
F

Norm. Latency

(h) MXNet, ResNet-50

 0

 0.5

 1

 1.5

N
o
rm

.
C

o
st

(i) TensorFlow, ResNet-v2
 0

 0.5

 1

N
o
rm

.
C

o
st 6.75

(j) MXNet, ResNet-50
 0

 0.5

 1

 1.5

N
o
rm

.
C

o
st

(k) TensorFlow, ResNet-v2
 0

 0.5

 1
N

o
rm

.
C

o
st 4

(l) MXNet, ResNet-50

Latency SLO Lambda (max Mem.) Lambda (cherry pick) SageMaker BATCH

Fig. 14: Cost minimization for NYS Thruway (columns 1 and 2) and Twitter (columns 3 and 4) traces with latency SLO. The
first row shows the 95th percentile latency over 24 hours, the second row shows the latency CCDF, and the third row shows the
cost. Latency and cost are normalized (simple ratio) over the SLO and the cost of Vanilla Lambda (max Mem.), respectively.

memory allocation.

We compare BATCH to MArk [16] using the MMPP(2)1
arrival process. In this case, the SLO is defined on the 99th
percentile of latency. Figs. 16(a) and 16(b) show the 99th
percentile of latency and the latency CCDFs, respetively. All
results are normalized over the SLO. Although the monetary
cost of using either BATCH or MArk is similar (Fig. 16(c),
costs are normalized over the cost of MArk), BATCH always
meets the latency objective, even when sudden workload
surges are observed, thanks to the autoscaling property of
serverless. MArk routes requests to serverless only when it
detects workload variations; if the surge detection takes too

long, resource scaling is not optimal and latency repeatedly
violates SLO due to the time overhead of slow detection.

Latency on a Budget: BATCH can be used to control
the application latency while complying with the available
budget (cost), i.e., using Eq. (3). Results are shown in Fig.
17 for ResNet-v2 and Inception-v4, when the arrival process
is driven by NYS Thruway traces (columns 1 and 2) or
Twitter ones (columns 3 and 4). The first row depicts the
95th percentile latency of each approach normalized over
the one of Vanilla Lambda (with maximum memory), while
the second row shows the cost of each approach normalized
over the budget constraint (horizontal line). BATCH always

 0

 4

 8

 12

 16

 20

06:00 12:00 18:00
 0

 0.06

 0.12

 0.18

 0.24

 0.3

B
a
tc

h
 S

iz
e
 [

re
q

.]

Tim
e
o
u
t [s]

time

Batch Size
Timeout

(a) Batch size and Timeout

 0

 1

 2

 3

06:00 12:00 18:00

M
e
m

o
ry

 [
G

B
]

time

(b) Memory

Fig. 15: Batch size, timeout, and memory used by BATCH for
serving ResNet-v2 (NYS Thruway with SLO on latency).

 0

 1

 2

 0 15 30 45 60

N
o
rm

.
La

te
n
cy

time [min.]

(a) Latency

99.9th

99th

90th

0th

 0 0.5 1 1.5 2

C
C

D
F

Norm. Latency

(b) CCDF

 0

 0.5

 1

N
o
rm

.
C

o
st

(c) Cost

Latency SLO
MArk
BATCH

Fig. 16: Comparison between BATCH and MArk.

complies with the available budget. This comes with the trade-
off of a generally longer request latency comparing to other
configurations. SageMaker’s latency may be much longer than
the one of BATCH, see Fig. 17(b), due to the time required to
turn on new EC2 instances to serve incoming requests. These
results illustrate the ability of BATCH to keep latency low
without budget overspending.

We emphasize that BATCH seamlessly adjusts the environ-
ment parameterization while effectively coping with workload
burstiness, service characteristics, and optimization targets.

E. Discussion

GPU accelerators. Past work shows that inference latency
on serverless platforms may be longer than expected when
the ML model is deployed on IaaS [12, 16, 18].Differently
from IaaS, serverless computing does not allow processing
requests using GPUs. Since serverless computing is new [73]
and since by 2021 its market size is estimated to grow by
310% comparing to 2016 [74], it is reasonable to assume that
cloud providers will invest more resources to this technology.
BATCH is easily adaptable because it only needs to re-train the
regression model used by the profiler to estimate the service
time of the application, the analytic model of Section IV can
be adopted without any modification.
Cold start in serverless. Latency overhead when starting
serverless functions is generally observed and it is called
cold start [75, 76]. In AWS Lambda, cold start is observable

especially when the time between two request arrivals (i.e., the
function inactivity) is longer than 40 minutes [77]. Since the
real traces considered here do not have such long inter-arrival
times, cold start does not affect performance and is therefore
not investigated. Solutions exist to reduce the overhead of
cold start [78–80]. AWS has recently introduced provisioned
concurrency [75] to keep functions ready to serve requests.

VII. RELATED WORK

Ishakian et al. [12] investigate the suitability of serverless
computing for deep learning models. Systems for ML training
(but not for ML inference) on serverless platforms include
[11, 13] Zhang et al. [16] propose MArk, a serving system
for ML inference that combines IaaS and serverless to de-
crease cost while meeting SLOs. Since serverless computing is
used only when workload variations are detected, unexpected
workload surges result in longer latency tails. BARISTA [18]
is a framework for horizontal and vertical scaling for ML
services with bursty workloads but is not evaluated on a public
serverless platform. Gujarati et al. [19] propose Swayam, an
autoscaling framework deployed atop Microsoft Azure, that
proactively allocates resources to increase resource efficiency
of ML inference services, while complying with SLOs. Pro-
visioning cost is not relevant for Swayam since it deploys
models in private MLaaS clusters.

Dynamic batching for improving ML inference performance
is used by Clipper [21]. Clipper is not suitable for the server-
less paradigm because it uses an exhaustive profiling strategy
(i.e., additive-increase-multiplicative-decrease scheme) to find
a good batch size. While this may be suitable for an IaaS
environment under a relatively stable arrival workload, it
requires too much profiling for serverless if the workload is
highly dynamic (the additional dimension of added memory
size adds to the profiling complexity). Moreover, Clipper is
SLO-oblivious due to its reactive design while BATCH acts
proactively to offer SLO guarantees.

Dynamic batching is also adopted by Stout [81] and Grand-
SLAm [82]. The former implements dynamic batching for
increasing the throughput of cloud storage application. Stout
only considers average performance values (not percentiles)
and the batch parameter cannot be tuned to comply with
user-defined SLOs. GrandSLAm uses dynamic batching for
processing microservice requests and increases the system
throughput while complying with SLOs. Differently from
BATCH, GrandSLAm accounts only for synthetic Poisson
workloads, and not generic or bursty ones. The authors of [83]
use a multi-formalism model to perform a capacity planning
analysis of a system where dynamic batching is used for
transmitting sampled data through a radio channel. In this
case, no analytical solution is provided. AWS Batch [84]
automatically provides the system with the optimal number
of resources based on its workload, but it does not support
serverless computing yet. BATCH is the first framework to
implement ML batching on serverless platforms on the public
cloud.

 0

 1

 2

 3

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(a) TensorFlow, ResNet-v2

 0

 5

 10

 15

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(b) TensorFlow, Inception-v4

 0

 1

 2

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(c) TensorFlow, ResNet-v2

 0

 1

 2

 3

06:00 12:00 18:00

N
o
rm

.
La

te
n
cy

time

(d) TensorFlow, Inception-v4

 0

 0.5

 1

 1.5

 2

N
o
rm

.
C

o
st

(e) TensorFlow, ResNet-v2
 0

 0.5

 1

 1.5

 2

N
o
rm

.
C

o
st

(f) TensorFlow, Inception-v4
 0

 0.5

 1

 1.5

 2

N
o
rm

.
C

o
st

(g) TensorFlow, ResNet-v2
 0

 0.5

 1

 1.5

 2

N
o
rm

.
C

o
st

(h) TensorFlow, Inception-v4

Budget SLO Lambda (max Mem.) Lambda (cherry pick) SageMaker BATCH

Fig. 17: Latency minimization for NYS Thruway (columns 1 and 2) and Twitter (columns 3 and 4) traces with budget SLO. The
first row shows the 95th percentile latency over 24 hours and the second row shows the cost. Latency and cost are normalized
(simple ratio) over the latency of Vanilla Lambda (max Mem.) and the SLO, respectively.

VIII. CONCLUDING REMARKS

We introduce BATCH, a novel framework for optimiz-
ing ML serving on serverless platforms. BATCH uses a
lightweight profiling strategy and an analytical model to
identify the best parameter configuration (i.e., memory size,
batch size, and timeout) to improve the system performance
while meeting user-defined SLOs. The efficiency of BATCH is
evaluated using real traces and comparing its performance with
other available strategies (e.g., AWS SageMaker). We show
that BATCH decreases the cost of maintaining the system by
50% and can minimize the system performance while meeting
the budget independently of the arrival intensity. Future work-
ing includes extending BATCH to support different service
time distributions and adopting optimization algorithms that
are faster than the exhaustive search used here to support co-
optimization of latency and cost.

ACKNOWLEDGEMENT

This work is supported in part by the following grants:
National Science Foundation IIS-1838024 (using resources
provided by Amazon Web Services as part of the NSF BIG-
DATA program), IIS-1838022, CCF-1756013, CCF-1717532,
and CNS-1950485. We thank the anonymous reviewers for
their insightful comments and suggestions that significantly
improved the paper.

REFERENCES

[1] “Aws lambda – serverless compute,” https://aws.amazon.com/lambda/,
[Online; accessed 04-December-2019].

[2] “Ibm cloud – cloud functions,” https://www.ibm.com/cloud/functions/,
[Online; accessed 04-December-2019].

[3] “Azure functionsserverless architecture – microsoft azure,” https:
//azure.microsoft.com/en-us/services/functions/, [Online; accessed 04-
December-2019].

[4] “Cloud functions – serverless environment to build and connect cloud
services — google cloud platform,” https://cloud.google.com/functions/,
[Online; accessed 04-December-2019].

[5] L. F. Herrera-Quintero, J. C. Vega-Alfonso, K. B. A. Banse, and E. C.
Zambrano, “Smart its sensor for the transportation planning based on
iot approaches using serverless and microservices architecture,” IEEE
Intelligent Transportation Systems Magazine, vol. 10, no. 2, pp. 17–27,
2018.

[6] P. Persson and O. Angelsmark, “Kappa: serverless iot deployment,” in
Proceedings of the 2nd International Workshop on Serverless Comput-
ing. ACM, 2017, pp. 16–21.

[7] G. McGrath and P. R. Brenner, “Serverless computing: Design, imple-
mentation, and performance,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems Workshops (ICDCSW). IEEE,
2017, pp. 405–410.

[8] B. Cheng, J. Fuerst, G. Solmaz, and T. Sanada, “Fog function: Serverless
fog computing for data intensive iot services,” in 2019 IEEE Interna-
tional Conference on Services Computing (SCC). IEEE, 2019, pp.
28–35.

[9] J. Rajewski, “System and method for live streaming content to subscrip-
tion audiences using a serverless computing system,” Jun. 7 2018, uS
Patent App. 15/369,473.

[10] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in Proceedings of the ACM
Symposium on Cloud Computing. ACM, 2018, pp. 263–274.

[11] J. Carreira, P. Fonseca, A. Tumanov, A. Zhang, and R. Katz, “A case
for serverless machine learning,” in Workshop on Systems for ML and
Open Source Software at NeurIPS, vol. 2018, 2018.

[12] V. Ishakian, V. Muthusamy, and A. Slominski, “Serving deep learning
models in a serverless platform,” in 2018 IEEE International Conference
on Cloud Engineering (IC2E). IEEE, 2018, pp. 257–262.

[13] H. Wang, D. Niu, and B. Li, “Distributed machine learning with a
serverless architecture,” in IEEE INFOCOM 2019-IEEE Conference on
Computer Communications. IEEE, 2019, pp. 1288–1296.

[14] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture search: A
survey.” Journal of Machine Learning Research, vol. 20, no. 55, pp.
1–21, 2019.

[15] ——, “Neural architecture search,” in Automated Machine Learning.
Springer, 2019, pp. 63–77.

[16] C. Zhang, M. Yu, W. Wang, and F. Yan, “Mark: Exploiting cloud services
for cost-effective, slo-aware machine learning inference serving,” in
2019 USENIX Annual Technical Conference (USENIX ATC 19), 2019.

[17] J. M. Hellerstein, J. M. Faleiro, J. Gonzalez, J. Schleier-Smith,
V. Sreekanti, A. Tumanov, and C. Wu, “Serverless computing: One
step forward, two steps back,” in CIDR 2019, 9th Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January
13-16, 2019, Online Proceedings. www.cidrdb.org, 2019. [Online].
Available: http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf

[18] A. Bhattacharjee, A. D. Chhokra, Z. Kang, H. Sun, A. Gokhale, and
G. Karsai, “Barista: Efficient and scalable serverless serving system
for deep learning prediction services,” in 2019 IEEE International
Conference on Cloud Engineering (IC2E). IEEE, 2019, pp. 23–33.

[19] A. Gujarati, S. Elnikety, Y. He, K. S. McKinley, and B. B. Brandenburg,
“Swayam: distributed autoscaling to meet slas of machine learning
inference services with resource efficiency,” in Proceedings of the 18th
ACM/IFIP/USENIX Middleware Conference. ACM, 2017, pp. 109–120.

[20] X. Tang, P. Wang, Q. Liu, W. Wang, and J. Han, “Nanily: A qos-
aware scheduling for dnn inference workload in clouds,” in 2019
IEEE 21st International Conference on High Performance Computing
and Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and Systems
(HPCC/SmartCity/DSS). IEEE, 2019, pp. 2395–2402.

[21] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and
I. Stoica, “Clipper: A low-latency online prediction serving system,” in
14th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 17), 2017, pp. 613–627.

[22] F. Yan, S. Hughes, A. Riska, and E. Smirni, “Overcoming limitations
of off-the-shelf priority schedulers in dynamic environments,” in
2013 IEEE 21st International Symposium on Modelling, Analysis
and Simulation of Computer and Telecommunication Systems, San
Francisco, CA, USA, August 14-16, 2013, 2013, pp. 505–514. [Online].
Available: https://doi.org/10.1109/MASCOTS.2013.72

[23] N. Mi, A. Riska, E. Smirni, and E. Riedel, “Enhancing data
availability in disk drives through background activities,” in The
38th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2008, June 24-27, 2008, Anchorage,
Alaska, USA, Proceedings, 2008, pp. 492–501. [Online]. Available:
https://doi.org/10.1109/DSN.2008.4630120

[24] F. Yan, S. Hughes, A. Riska, and E. Smirni, “Agile middleware
for scheduling: meeting competing performance requirements of
diverse tasks,” in ACM/SPEC International Conference on Performance
Engineering, ICPE’14, Dublin, Ireland, March 22-26, 2014, 2014, pp.
185–196. [Online]. Available: https://doi.org/10.1145/2568088.2568104

[25] N. Mi, A. Riska, Q. Zhang, E. Smirni, and E. Riedel, “Efficient
management of idleness in storage systems,” ACM Trans. Storage,
vol. 5, no. 2, pp. 4:1–4:25, 2009. [Online]. Available: https:
//doi.org/10.1145/1534912.1534913

[26] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: A system for
large-scale machine learning,” in 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), 2016, pp. 265–283.

[27] G. Neubig, Y. Goldberg, and C. Dyer, “On-the-fly operation batching
in dynamic computation graphs,” in Advances in Neural Information
Processing Systems, 2017, pp. 3971–3981.

[28] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch pre-release,” Jun.
2020. [Online]. Available: https://doi.org/10.5281/zenodo.3872213

[29] “Nys thruway origin and destination points for all vehicles,”
https://data.ny.gov/Transportation/NYS-Thruway-Origin-and-
Destination-Points-for-All-/em4e-ui5w, [Online; accessed 14-
November-2019].

[30] ArchiveTeam, “Twitter streaming traces, 2017.”
[31] “Amazon. build, train, and deploy machine learning models at scale.”

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html,
[Online; accessed 03-December-2019].

[32] M. Arlitt and T. Jin, “A workload characterization study of the 1998
world cup web site,” IEEE network, vol. 14, no. 3, pp. 30–37, 2000.

[33] A. Riska and E. Riedel, “Disk drive level workload characterization,”
in Proceedings of the 2006 USENIX Annual Technical Conference,
Boston, MA, USA, May 30 - June 3, 2006, 2006, pp. 97–102. [Online].
Available: http://www.usenix.org/events/usenix06/tech/riska.html

[34] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Injecting realistic
burstiness to a traditional client-server benchmark,” in Proceedings of
the 6th international conference on Autonomic computing. ACM, 2009,
pp. 149–158.

[35] J. Xue, R. Birke, L. Y. Chen, and E. Smirni, “Managing data center
tickets: Prediction and active sizing,” in 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2016, pp. 335–346.

[36] N. Mi, Q. Zhang, A. Riska, E. Smirni, and E. Riedel, “Performance
impacts of autocorrelated flows in multi-tiered systems,” Perform.
Evaluation, vol. 64, no. 9-12, pp. 1082–1101, 2007. [Online].
Available: https://doi.org/10.1016/j.peva.2007.06.016

[37] N. Mi, G. Casale, L. Cherkasova, and E. Smirni, “Burstiness in
multi-tier applications: Symptoms, causes, and new models,” in
Middleware 2008, ACM/IFIP/USENIX 9th International Middleware
Conference, Leuven, Belgium, December 1-5, 2008, Proceedings, ser.
Lecture Notes in Computer Science, V. Issarny and R. E. Schantz,
Eds., vol. 5346. Springer, 2008, pp. 265–286. [Online]. Available:
https://doi.org/10.1007/978-3-540-89856-6\ 14

[38] “Aws autoscaling,” https://aws.amazon.com/autoscaling, [Online; ac-
cessed 03-December-2019].

[39] “Aws lambda – pricing,” https://aws.amazon.com/lambda/pricing/, [On-
line; accessed 30-October-2019].

[40] S. Xu, H. Zhang, G. Neubig, W. Dai, J. K. Kim, Z. Deng, Q. Ho,
G. Yang, and E. P. Xing, “Cavs: An efficient runtime system for dy-
namic neural networks,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 937–950.

[41] “Make data useful,” http://www.scribd.com/doc/4970486/Make-Data-
Useful-by-Greg-Linden-Amazoncom, [Online; accessed 15-January-
2020].

[42] G. Casale, E. Z. Zhang, and E. Smirni, “Kpc-toolbox: Best recipes for
automatic trace fitting using markovian arrival processes,” Performance
Evaluation, vol. 67, no. 9, pp. 873–896, 2010.

[43] M. F. Neuts, “A versatile markovian point process,” Journal of Applied
Probability, vol. 16, no. 4, pp. 764–779, 1979.

[44] P. Royston and W. Sauerbrei, Multivariable model-building: a pragmatic
approach to regression anaylsis based on fractional polynomials for
modelling continuous variables. John Wiley & Sons, 2008, vol. 777.

[45] F. Yan, O. Ruwase, Y. He, and E. Smirni, “Serf: efficient scheduling for
fast deep neural network serving via judicious parallelism,” in SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2016, pp. 300–
311.

[46] T. Zhu, A. Tumanov, M. A. Kozuch, M. Harchol-Balter, and G. R.
Ganger, “Prioritymeister: Tail latency qos for shared networked storage,”
in Proceedings of the ACM Symposium on Cloud Computing. ACM,
2014, pp. 1–14.

[47] N. Li, H. Jiang, D. Feng, and Z. Shi, “Pslo: enforcing the x th percentile
latency and throughput slos for consolidated vm storage,” in Proceedings
of the Eleventh European Conference on Computer Systems. ACM,
2016, p. 28.

[48] L. Kleinrock, Queueing systems. Volume I: theory. wiley New York,
1975.

[49] F. Yan, Y. He, O. Ruwase, and E. Smirni, “Efficient deep neural
network serving: Fast and furious,” IEEE Trans. Network and Service
Management, vol. 15, no. 1, pp. 112–126, 2018. [Online]. Available:
https://doi.org/10.1109/TNSM.2018.2808352

[50] G. Casale, N. Mi, and E. Smirni, “Model-driven system capacity
planning under workload burstiness,” IEEE Transactions on Computers,
vol. 59, no. 1, pp. 66–80, 2009.

[51] A. Reibman and K. Trivedi, “Numerical transient analysis of markov
models,” Computers & Operations Research, vol. 15, no. 1, pp. 19–36,
1988.

[52] W. Fischer and K. Meier-Hellstern, “The markov-modulated poisson
process (mmpp) cookbook,” Performance evaluation, vol. 18, no. 2, pp.
149–171, 1993.

[53] J. Bernardo, M. Bayarri, J. Berger, A. Dawid, D. Heckerman, A. Smith,
and M. West, “The markov modulated poisson process and markov
poisson cascade with applications to web traffic modeling,” Bayesian
Statistics, 2003.

[54] N. Bean, D. Green, and P. Taylor, “The output process of an mmpp/m/1
queue,” Journal of Applied Probability, vol. 35, no. 4, pp. 998–1002,
1998.

[55] X. Lu, J. Yin, H. Chen, and X. Zhao, “An approach for bursty and
self-similar workload generation,” in International Conference on Web
Information Systems Engineering. Springer, 2013, pp. 347–360.

[56] F. Bause, P. Buchholz, and J. Kriege, “A comparison of markovian arrival
and arma/arta processes for the modeling of correlated input processes,”
in Proceedings of the 2009 Winter Simulation Conference (WSC). IEEE,
2009, pp. 634–645.

[57] G. Casale, E. Z. Zhang, and E. Smirni, “Trace data characterization and
fitting for markov modeling,” Perform. Evaluation, vol. 67, no. 2, pp. 61–
79, 2010. [Online]. Available: https://doi.org/10.1016/j.peva.2009.09.003

[58] M. F. Neuts, Structured stochastic matrices of M/G/1 type and their
applications. Marcel Dekker New York, 1989, vol. 5.

[59] A. Riska and E. Smirni, “Mamsolver: A matrix analytic methods
tool,” in Computer Performance Evaluation, Modelling Techniques
and Tools 12th International Conference, TOOLS 2002, London, UK,
April 14-17, 2002, Proceedings, ser. Lecture Notes in Computer
Science, T. Field, P. G. Harrison, J. T. Bradley, and U. Harder,
Eds., vol. 2324. Springer, 2002, pp. 205–211. [Online]. Available:
https://doi.org/10.1007/3-540-46029-2\ 14

[60] G. Casale, N. Mi, L. Cherkasova, and E. Smirni, “How to parameter-
ize models with bursty workloads,” ACM SIGMETRICS Performance
Evaluation Review, vol. 36, no. 2, pp. 38–44, 2008.

[61] “Lambda package documentation,” https://aws.amazon.com/
premiumsupport/knowledge-center/build-python-lambda-deployment-
package/, [Online; accessed 19-June-2019].

[62] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu,
C. Zhang, and Z. Zhang, “Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems,” arXiv preprint
arXiv:1512.01274, 2015.

[63] “Boto 3 documentation,” https://boto3.amazonaws.com/v1/
documentation/api/latest/index.html, [Online; accessed 19-December-
2019].

[64] “Aws cloudwatch,” https://aws.amazon.com/cloudwatch/, [Online; ac-
cessed 04-April-2020].

[65] “Amazon ec2 t2 instances,” https://aws.amazon.com/ec2/instance-types/
t2/, [Online; accessed 7-January-2020].

[66] “Aws kinesis,” https://aws.amazon.com/kinesis/?nc=sn&loc=0, [Online;
accessed 04-April-2020].

[67] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, no. 3, pp. 211–252, 2015.

[68] H. Phan, D. Huynh, Y. He, M. Savvides, and Z. Shen, “Mobinet:
A mobile binary network for image classification,” arXiv preprint
arXiv:1907.12629, 2019.

[69] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[70] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Thirty-First AAAI Conference on Artificial Intelligence, 2017.

[71] “Load testing for production variant automatic scaling,”
https://github.com/awsdocs/amazon-sagemaker-developer-guide/blob/
master/doc source/endpoint-scaling-loadtest.md, [Online; accessed
07-January-2020].

[72] G. Casale, E. Z. Zhang, and E. Smirni, “Kpc-toolbox: Simple
yet effective trace fitting using markovian arrival processes,” in
Fifth International Conference on the Quantitative Evaluaiton of
Systems (QEST 2008), 14-17 September 2008, Saint-Malo, France.

IEEE Computer Society, 2008, pp. 83–92. [Online]. Available:
https://doi.org/10.1109/QEST.2008.33

[73] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski, “The rise
of serverless computing,” Commun. ACM, vol. 62, no. 12, pp. 44–54,
2019. [Online]. Available: http://doi.acm.org/10.1145/3368454

[74] Businesswire, “$7.72 billion function-as-a-service market 2017 - global
forecast to 2021: Increasing shift from devops to serverless computing
to drive the overall function-as-a-service market - research and markets,”
https://www.businesswire.com/news/home/20170227006262/en/7.72-
Billion-Funct\%20ion-as-a-Service-Market-2017---Global, [Online;
accessed 16-December-2019].

[75] “New for aws lambda – predictable start-up times with provisioned
concurrency,” https://aws.amazon.com/blogs/compute/new-for-aws-
lambda-predictable-start-up-times-with-provisioned-concurrency/,
[Online; accessed 9-January-2020].

[76] L. Wang, M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking behind
the curtains of serverless platforms,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018, pp. 133–146.

[77] W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, and S. Pallickara,
“Serverless computing: An investigation of factors influencing microser-
vice performance,” in 2018 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2018, pp. 159–169.

[78] E. Oakes, L. Yang, D. Zhou, K. Houck, T. Harter, A. Arpaci-Dusseau,
and R. Arpaci-Dusseau, “Sock: Rapid task provisioning with serverless-
optimized containers,” in 2018 USENIX Annual Technical Conference
(USENIX ATC 18), 2018, pp. 57–70.

[79] A. Mohan, H. Sane, K. Doshi, S. Edupuganti, N. Nayak, and V. Sukhom-
linov, “Agile cold starts for scalable serverless,” in 11th USENIX
Workshop on Hot Topics in Cloud Computing (HotCloud 19), 2019.

[80] K. Mahajan, S. Mahajan, V. Misra, and D. Rubenstein, “Exploiting
content similarity to address cold start in container deployments,” in Pro-
ceedings of the 15th International Conference on emerging Networking
EXperiments and Technologies, 2019, pp. 37–39.

[81] J. C. McCullough, J. Dunagan, A. Wolman, and A. C. Snoeren, “Stout:
An adaptive interface to scalable cloud storage,” in Proc. of the USENIX
Annual Technical Conference–ATC, 2010, pp. 47–60.

[82] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“Grandslam: Guaranteeing slas for jobs in microservices execution
frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, 2019, pp. 1–16.

[83] R. Pinciroli, M. Gribaudo, M. Roveri, and G. Serazzi, “Capacity
planning of fog computing infrastructures for smart monitoring,” in
Workshop on New Frontiers in Quantitative Methods in Informatics.
Springer, 2017, pp. 72–81.

[84] “Aws batch,” https://aws.amazon.com/batch/, [Online; accessed 13-
January-2020].

