Mining Multivariate Discrete Event Sequences
for Knowledge Discovery and Anomaly Detection

Bin Nie
William and Mary
Williamsburg, VA
bnie@cs.wm.edu

Haifeng Chen
NEC Laboratories America
Princeton, NJ
haifeng @nec-labs.com

Abstract—Modern physical systems deploy large numbers of
sensors to record at different time-stamps the status of different
systems components via measurements such as temperature,
pressure, speed, but also the component’s categorical state.
Depending on the measurement values, there are two kinds of
sequences: continuous and discrete. For continuous sequences,
there is a host of state-of-the-art algorithms for anomaly detection
based on time-series analysis, but there is a lack of effective
methodologies that are tailored specifically to discrete event
sequences.

This paper proposes an analytics framework for discrete
event sequences for knowledge discovery and anomaly detection.
During the training phase, the framework extracts pairwise rela-
tionships among discrete event sequences using a neural machine
translation model by viewing each discrete event sequence as
a “natural language”. The relationship between sequences is
quantified by how well one discrete event sequence is “trans-
lated” into another sequence. These pairwise relationships among
sequences are aggregated into a multivariate relationship graph
that clusters the structural knowledge of the underlying system
and essentially discovers the hidden relationships among discrete
sequences. This graph quantifies system behavior during normal
operation. During testing, if one or more pairwise relationships
are violated, an anomaly is detected. The proposed framework
is evaluated on two real-world datasets: a proprietary dataset
collected from a physical plant where it is shown to be effective in
extracting sensor pairwise relationships for knowledge discovery
and anomaly detection, and a public hard disk drive dataset
where its ability to effectively predict upcoming disk failures is
illustrated.

Index Terms—anomaly detection, categorical event sequences,
discrete event sequences, rare events, unsupervised learning,
physical plant failures, disk failures

I. INTRODUCTION

Today’s information technology systems consist of many
heterogeneous components working concurrently. Similarly,
a typical industrial plant contains heat-generating units, tur-
bine/generator units, condensers, and pump systems. Hundreds
to thousands of sensors of various types may be deployed
in these components to monitor a host of system attributes.
The collected data are analyzed to obtain system status; this
may include being fed into log analytics engines to learn

Jianwu Xu
NEC Laboratories America
Princeton, NJ
jlanwu@nec-labs.com

Jacob Alter
William and Mary
Williamsburg, VA

jralter@email.wm.edu

Evgenia Smirni

William and Mary
Williamsburg, VA
esmirni @cs.wm.edu

about system structure, detect anomalous behavior, aid sys-
tem administration and maintenance, and/or diagnose system
failures [6], [8], [9], [18], [21], [28] In a physical plant, the
collected sensor data may consist of continuous measurements
(e.g., temperature, pressure, utilization) and/or discrete ones
(e.g., system states such as ON/OFF or command execution
orders). Discrete data typically have a categorical format. For
example, a software controller may record event information
in the form of time stamps that signify the start and completion
of a job.

The challenge here is to use measurements to understand the
joint behavior of different system components [7], [29], [36],
[39]. One way to model joint behavior is to model pairwise
relationships among system components using regression [17].
This has the benefit of using far fewer parameters than
modeling a full joint distribution of the data and can lead
to more readily interpretable results. However, the fact that
different sensors record system states in the form of continuous
time series (i.e., consisting of numerical variables) or discrete
event time sequences (i.e., consisting of categorical variables)
introduces additional difficulties as regression models are not
readily applicable to discrete sequences. Categorical variables
cannot be meaningfully assigned to numeric values. For ex-
ample, if a sensor has three levels—Ilow, medium, and high—
these could easily be assigned the values {0, 1,2} or equiva-
lently {1,10,100}. Furthermore, many regression models are
fit based on the assumption of Gaussian error distributions,
which is unhelpful in the case of discrete data.

In practice, a large percentage of signals collected in com-
plex systems are in the format of categorical variables [21].
For example, in a typical physical plant, the percentage of
sensors that produce discrete event sequences can be as high
as 90%. Operation management technologies designed for
continuous sequences have to either discard the discrete event
sequences or rely on extensive feature engineering efforts to
“translate” discrete sequences in continuous format, which
requires domain-specific knowledge [46].

An additional challenge is that anomalies are typically very



rare. For example, for the proprietary dataset used in this paper,

there are only two anomalies in a month. Similarly, for the two

datasets in [45], the number of anomalies is less than three per

month. Such datasets are extremely imbalanced [6], [29], [30]

and the use of supervised learning on those is infeasible as su-

pervised learning would require years of system measurements
to collect enough anomalies in order to achieve good perfor-
mance for the minority class [24], [44], [45]. Unsupervised
learning algorithms such as K-Means [10], [43] and one-class

SVM [35] can be used instead, as they build models based

entirely on samples from normal system operation periods and

detect outliers that fall out of the learned distribution [4], [35],

[43]. Unfortunately, existing unsupervised algorithms require

continuous sequences as input.

In order to resolve the aforementioned challenges, this paper
presents a novel framework for knowledge discovery and
anomaly detection for multivariate discrete event sequences.
In the remaining of this paper and for ease of presentation,
we assume that each discrete event sequence is generated
by a sensor. Knowledge discovery is achieved by mining
the interdependence relationship of sequences during normal
system operating times via the creation of pairwise relation-
ships among sensors generating discrete event sequences. The
pairwise sensor relationships are organized in the form of
a multivariate relationship graph. This directed graph can
be used to cluster sensors into connected components in
subgraphs that capture physical or functional relationships
among sensors. Since the multivariate relationship graph re-
flects normal system operation, when an anomaly occurs,
the relationships among sensor pairs may break down. These
broken relationships serve as signs of abnormal behaviors.

Core to the proposed solution is the identification of an
effective metric to quantify the pairwise relationship between
two discrete event sequences. To achieve this, we resort to
neural machine translation (NMT) models [23]. The intuition
is that if we assign a distinct character to each discrete system
state, then discrete event sequences are translated into a list of
letters. We can then derive a sensor “language” by carefully
portioning sequences of characters into words and sentences.
With this transformation, NMT models are able to translate
sentences of the source sensor to sentences of the target
sensor, similar to translating from a source language to a
target one. Translation quality is typically evaluated using the
BiLingual Evaluation Understudy (BLEU) score [31] that can
quantify the relationship between two discrete event sequences
and eventually between the two sensors that produce these
sequences. Based on this quantification, we are able to build
the multivariate relationship graph, which can be used to
discover system anomalies.

Our contributions are summarized as follows:

« We design a novel process to quantify pairwise relation-
ships between discrete event sequences by leveraging NMT
models originally designed for natural languages.

« We propose a methodology for discrete event sequences
reported by sensors in real-world systems.

— This methodology is generic. It directly works on cate-

gorical variables and does not rely on domain knowledge,
thus it can be readily applied to any system with discrete
event sequences.

— This methodology is unsupervised. By capturing pairwise
relationships among sensors during normal system op-
eration, we build a multivariate relationship graph that
provides useful information for knowledge discovery and
anomaly detection.

We show the effectiveness of the proposed methodology on a
real world system log of a physical plant that consists of 90%
discrete event sequences. We further validate the proposed
methodology with a public dataset of hard disk drive (HDD)
failures [1] that illustrates how the methodology can work for
continuous time series that are discretized.

II. METHODOLOGY

In this section we describe the data preparation process,
the algorithms used to construct the pairwise relationship
among the multivariate discrete event sequences, and how this
information can be used for knowledge discovery and anomaly
detection.

Figure 1 gives an overview. The left two boxes present
the process of transforming multivariate discrete event se-
quences into multiple sensor “languages” composed of many
“sentences”. We then leverage NMT models to quantify the
relationships of two sensors by translating sensor “languages”
from one to the other. The next step is to build a mul-
tivariate relationship graph using the pairwise relationships
among sensors. This relationship graph is built based on this
quantification (i.e., translation scores) and provides useful
information for knowledge discovery (i.e., exploring structures
among various system components) and system-level anomaly
detection (i.e., whether the system encounters an abnormal
state).

A. Construction of Multivariate Relationship Graph

The multivariate discrete event sequences are composed
of multiple event sequences collected from multiple sensors
which are defined as {X¥ k € [1,2,...,N],t € [1,2,..., T|},
where N is the total number of sensors, T is the total length of
the training sequences, and X¥ is record of a single event for
sensor k (see the leftmost box in Figure 1). X¥ captures for
sensor k at time ¢ the sensor’s state: e.g., “on” and “off” for a
switch or “status 17, “status 27, “status 3” for a recording
unit, a command execution (i.e., “open” and “close” for a
valve), or any other categorical information. The sensor output
is evenly sampled which implies that the intervals between any
two consecutive samples are the same. The cardinality of each
event sequence is limited as the states of the sensor status are
limited.

1) Sensor Encryption: Each event record is processed and
converted into a standard coding schema in order to transform
the sensor event sequences into different “languages” using
the following steps:

o Sequence Filtering: The first step removes meaningless
event sequences. If all events in a sequence are identical



Offline Training

-
'
'
'
'

—————————————————————————————————————————————————————————————————————

Multivariate Discrete Event
Sequences

on off on .. off off
Lot 6 Lt t
Sensor 1

s
transform

statuslstatus2status3 ... statuslstatusd
R i i i

tot ot [
Sensor 2 .

t

open close close
Lot t tha

open close

t
Sensor k

Multivariate Relationship o ;
i i
Graph o Knowledge 1
A ' Discovery '
. . } 3
construct 0 i 1
® ‘ ;
[ o ® !
o :
2 ' Anomaly
e ; Detection
° ° [ H
e sensor —— relationship i '

Fig. 1: Multivariate Discrete Event Sequence Analytics Framework.

during the entire sampling period, then this sequence cannot

provide any contribution to the Language Translation Model

(see section II-A3). We therefore exclude sequences with

constant events, essentially we discard these sensors. Note

that discarded sensors are not used in the online testing
phase.

o Discrete Event Encryption: The second step encrypts
each event record into a character. For each sequence, we
collect the unique set of event records and sort them in
alphanumeric order. Then we assign letters to each unique
event record'. To differentiate across multiple sequences, we
prefix the sensor name in front of the character. For example,
the event record “on” in the sequence of sensor 1 is coded
as “sl.a”. The purpose of encryption is to map the event
record into an alphabet so that the transformed sequence
becomes a sensor language.

2) Language Sequence Generation: Once the encoded
characters are obtained for each event record, we group the
characters into words and sentences in order to leverage
existing NMT models [23].

« Converting Sequences to Words: We compose “words” of
equal length of ¢ characters. Using a sliding window of j
characters, we generate the next word. For example if j = 1,
we use the first ¢ characters of the sequence to compose the
first word, the second to the ¢ + 1th characters to compose
the second word, and the third to the 7 + 2th characters
to compose the third word, and so on. The distinct set of
words derived by each sensor is the sensor vocabulary. One
can choose meaningful values for 7 and j according to the
dataset’s sampling granularity. For a sample that uses per
minute recording, ¢ = 10 implies that each word contains
the information of 10 minutes. If the sample uses per day
recording, ¢+ = 7 implies that each word contains a week’s
worth of information. The value of j regulates the overlap
between two consecutive words.

« Word to Sentence Conversion: We group words into
sentences of equal length by setting the length of one
sentence to m words with a sliding window of n words.
The choice of m depends on the sampling granularity to
include meaningful information. The choice of n decides

'We always reserve a special character (i.e., <unk>) for any unknown
system states which may occur in online testing.

the overlap of two consecutive sentences and determines
the granularity of detection. For example, with a per minute
sampling granularity and n = 1, detection can be performed
every minute. Clearly, such fine-grained detection requires
longer offline training time. The parameter n essentially
controls the trade-off of the granularity of detection and
training time and can be adjusted according to the prediction
needs of the specific system.

Having transformed the multivariate discrete event se-
quences of all sensors ({XF}) into a corpus of sensor lan-
guages ({ZF}) (composed of words and sentences), we apply
the NMT model to establish pairwise relationships among
Sensors.

3) Generation of the Language Translation Model: Algo-
rithm 1 presents the main steps for generating the multivariate
relationship graph G. Given two language sequences from the
multi-language corpus {Z¥, k € N}, the algorithm applies the
NMT model to build two directional pairwise relationships
for each pair of language sequences (sensors). We there-
fore construct the multivariate relationship graph G, where
nodes represent sensors and edges represent the modeled
relationships between sensors. Such graph models the inter-
relationships among sensors in the system and can be used to
deliver meaningful system-level knowledge.

Algorithm 1 Multivariate Relationship Graph Generation

Input: Multivariate Training Language
{Z¥, k€ [1,2,...,N],t € [1,2,..., T]}
Output: Multivariate Relationship Graph G
for {Zi, Z]} € ZF,i#j €N do

g(i,7) + directional NMT model for (4, j) sensor pair

s(i,j) « directional translation score for (7,j) sensor
pair

G + g(i,7) and s(i,7)

Sequences

return G

Neural Machine Translation (NMT) Model: The neural
machine translation model uses a multi-layered Long Short-
Term Memory (LSTM) to map the sentences of source lan-
guage to a vector of a fixed dimensionality and uses another
LSTM model to decode the vector into the sentences of target
language [23], [37]. We transform the problem from originally



extracting relationship of multivariate discrete event sequences
to translating multi-lingual sensor “languages”. We apply the
NMT model to construct the nonlinear relationship g¢(4,j)
between each pair of sensors. Here, we use the state-of-the-art
seq2seq model with attention mechanism [23].

Model Translation Score: The model translation score
s(i,j) quantifies the relationship between a pair of sensors
(i, 7). Here, we use BiLingual Evaluation Understudy (BLEU)
score [31], the most commonly used metric to quantitatively
evaluate the quality of machine translations. The score ranges
from O to 100. A higher value indicates a better translation.
By using the same architecture and parameter settings to train
the NMT models for all sensor pairs, the BLEU scores are
comparable across different pairs.

B. Knowledge Discovery

The multivariate relationship graph G produced by Algo-
rithm 1 provides useful knowledge and insights for system-
wide and component-wise relationships among different sen-
sors: (a) discovery of system components (i.e., clusters of
sensors) and (b) extraction of relationships between system
components. Two types of subgraphs can be extracted from
the multivariate relationship graph G: global subgraphs and
local subgraphs. These graphs can provide meaningful in-
formation on the system. For example, to discover structural
information such as cluster structures of local sensors, we
can apply to these graphs a random walk-based community
detection algorithm [33]. Sensors in each local cluster likely
originate from the same system component.

Clusters of sensors can be either isolated or connected.
The sensors and edges connecting two clusters are critical as
they are potentially responsible for error propagation after an
anomaly occurs. Such component-wise knowledge offers root
cause localization and insights on anomaly propagation for
fault diagnosis. Section III-B provides a detailed discussion
using a case study.

C. Anomaly Detection

Once the multivariate relationship graph G is generated
through offline training, it can be used for online anomaly
detection. Assuming that there is no anomaly in the training
data, G represents system behavior under normal operation.
Our focus is on detecting system anomalies when multiple
sensors behave abnormally and lead to different relation-
ships/interactions from those modeled in the offline training
period. To this end, we define a metric called anomaly score
to quantify the “significance” of anomalies (see definition in
the next paragraph). Algorithm 2 presents the main steps for
detecting an anomaly.

Given the multivariate testing language sequences {YF, k €
N} and the graph G, an anomaly is detected at time stamp
t by applying the directional NMT model to the sensor pair
(i,7) provided that the NMT model g(i, j) is a valid one. The
validity of NMT model ¢(i, j) is determined by the range of

Algorithm 2 Anomaly Detection

Input: Multivariate Testing Language Sequences
{YF, ke[l,2,..,N],t € [1,2,.... L]},
Multivariate Relationship Graph G
Output: System Anomaly Score {as, t € [1,2,...,L]},
Sensor Pair Alert Status {W,, t € [1,2,...,L]}
for ¢tin[1,2,...,L] do
a; + 0, pteO, Wt<—07
for {Yi, Y/}eYFi#jeN do
if directional NMT model ¢(4,j) is a valid model
then
pt < pr+1
f(i,7) <« output BLEU scores by applying
directional NMT model ¢(i, j) for (i, 7) sensor pair
if f(4,5) < s(i,7) then
a; +— a; + 1
Wt(l,]) —1
a; < a;/pt
return a;, W,

BLEU score s(i, j) set by the user 2. A broken relationship
between sensor pair (¢,7) at time stamp ¢ is detected if the
testing BLEU score f(i,7) is smaller than the BLEU score
s(i, ) obtained by training (see Algorithm 1).

One broken relationship may not be effective to detect
anomalies in a complex real-world system. Therefore, we use
the anomaly score to aggregate all broken relationships in the
system. The anomaly score a; is computed as the total number
of broken relationships normalized by the total number of valid
models (i.e., pt). Clearly, a larger score implies that more
sensors behave abnormally. In addition, the sensor pair alert
status {Wy, t € T} captures any link between two sensors
with a broken relationship. This information (a; and W) can
be used for interpreting anomalies.

III. CASE STUDY I: PHYSICAL PLANT DATASET

The dataset of the first case study is a proprietary one
collected from a physical plant . We demonstrate results for
a publicly available dataset in Section IV.

A. Dataset and Experiment Setup

The dataset is collected from a physical plant in November
2017 (30 days). During the entire month, there are only two
days that are labeled post hoc as anomalous by the data owner:
November 21 and 28. The limited number of anomalies in
the dataset mandates the use of an unsupervised technique
to learn the system behavior on normal days and use the
learned knowledge to detect outliers as anomalies. There are
128 sensors recording system status in categorical format.
Figure 2 shows the discrete event sequences recorded by two
representative sensors in the system on one normal day and on

2Models with different BLEU scores show different detecting ability. In the
evaluation sections (Section III-C and Section 1V-D2), we find that models
with BLEU scores in the [80, 90) range are best for anomaly detection.

3Unfortunately, we are not allowed to release the physical plant data log
due to non-disclosure agreements.



one abnormal day. Both sensors report binary states, i.e., “ON”
and “OFF”. Sensor #4 (see Figure 2 (a)) exhibits periodical
state changes while Sensor #91 (see Figure 2 (b)) mostly stays
in the "OFF” state and occasionally switches to "ON”. Despite
the different behaviors of the two sensors, it is challenging
to visually distinguish status changes between normal and
abnormal days. The purpose of the proposed methodology is
to detect subtle state changes (if any) across pairs of sensors
that are indicators of abnormal system operation.

ormal Abnormal
ON] ‘

00 02 04 06 08 10 12 14 16 18 20 22 00 02 04 06 08 10 12 14 16 18 20 22
Hour

(a) Sensor #4

ormal Abnormal
ONj| ‘

0 02 04 06 08 10 12 14 16 18 20 22 0
Hour

02 04 06 08 10 12 14 16 18 20 22

(b) Sensor #91

Fig. 2: Discrete event sequences collected by two representa-
tive sensors on one normal day (marked with blue) and one
abnormal day (marked with red). System states are recorded
every minute.

On average, sensors report 2.07 distinct discrete variables
(i.e., system states). The majority (i.e., 97.6% of them) have
a cardinality of 2, the one with the highest cardinality has 7
distinct discrete variables, see the CDF of sensor cardinalities
in Figure 3 (a). With a log granularity of one minute, each
sensor contains 30 x 24 x 60 = 43,200 samples, resulting in
a total of 5.5 million samples.

100%F 100%

80% 80%

W 60%f L 60%
[a} [a]

o [®]

40% 40%

20% 20%

‘ ‘ . ave=2 |
2 3 4 5 6 7
Cardinality

avg=707
ot 102 10° 10*
Vocabulary Size

0% 0%,

(a) CDF of sensor cardinality (b) CDF of vocabulary size

Fig. 3: (a) CDF of sensor event cardinality and (b) CDF of
sensor vocabulary size.

1) Converting Discrete Event Sequences to Languages:
Following the steps outlined in Section II-A2, we assign
distinct characters (i.e., a, b, c, ...) to each categorical value,
combine successive characters into words, and combine suc-
cessive words into sentences. The sliding window size for
words and sentences controls the overlap between neighboring
words and sentences and regulates the total corpus size.

Generating words. We assume that 1 word consists of
10 characters. Consequently, each word contains the sensor
status in the current minute (represented by the last character)
and the history of the previous 9 minutes (as captured by the
9 preceding characters). We choose the size of the sliding

window to be 1 character. With this, adjacent words have an
overlap of 9 characters, adding one new character to represent
the current system status.

We opt for long words (10 characters) because most sensors
output two values only. Longer words result in a larger
vocabulary size, passing more information to the translation
model. Yet, the larger the vocabulary size, the longer the
training time. A word size of ten characters strikes a good
balance between prediction effectiveness and time efficiency.
Figure 3(b) shows the CDF of the vocabulary size when the
word size is 10. About 40% of sensors have vocabulary size
smaller than 13, implying that the system states recorded
by those sensors are stable for most of the time with only
occasional changes (e.g., sensor #91 in Figure 3 (b)). Less than
20% of sensors have large vocabulary size (i.e., greater than
100). The average vocabulary size is 707 across all sensors.

Generating sentences. Each sentence contains 20 words
that capture the system state changes for a period of 20
consecutive minutes. In contrast to words, there is no overlap
between two consecutive sentences, i.e., the sentence sliding
window is set to 20 words. This places the time granularity
for anomaly detection at 20 minutes. The choice of the
sentence length allows for a sufficiently tight time granularity
of prediction without excessive training time.

Considering that every day each sensor records 24 x 60 =
1440 discrete values (or characters), there are 1440+ 20 = 72
sentences per sensor per day. In total, there are 276K sentences
across all sensors. If more sentences are required (e.g., to
refine the prediction granularity), the sliding window size can
be decreased. For example, if the sentence sliding window
size is set to be 1 word, then there are 1440 sentences per
sensor per day, therefore anomaly detection is performed every
minute. Note that such larger language corpus contains finer
information on system state changes, but also results in longer
model training time.

2) Model Settings: We train the model using events from
normal, non-anomalous days. We use the first 10 days as the
training set, the following 3 days as the development set, and
the remaining 17 days for testing*. Note that both training
and development sets consist of normal days only, the two
anomalies are located in the test set.

Recall that we leverage the NMT translation scores to quan-
tify the strength of pairwise relationships between sensors. It
is important to note that we have a strong preference toward
NMT models that are able to distinguish strong and weak
pairwise relationships between sensors, rather than models
that are capable of delivering good translations even for bad
cases (e.g., sentences with “grammar errors” or abnormal event
sequences). We train two NMT models (directional) per sensor
pair, essentially “translating” the language of the source sensor
to that of the target sensor. Recall that, we use these models
not for achieving high translation accuracy, but for quantifying
the strength of the relationship between pair of sensors. The

“4For splitting training/development/testing datasets, we tried various parti-
tions with results of similar quality. We therefore opted for a small training
set to allow for more testing cases.



two derived translation scores for each pair reflect the strength
of their relationship. Higher scores imply that the two sensors
are more related.

We apply the same parameter settings to each NMT model
to ensure that all pairwise relationships are quantified with the
same metric. Here, we use the state-of-the-art NMT model [23]
and set the parameters of each model as follows: # of LSTM
layers=2, # hidden units=64, # embedding size=64, # training
steps=1000, and dropout=0.2. We tried different settings but
the above one is deemed suitable as it delivers good distin-
guishing ability while maintaining acceptable training time.

Figure 4 (a) shows the CDF of model runtime. On average,
each model requires 2.5 minutes for both training and testing.
Therefore, model scalability is not a concern. This can be
further accelerated if this process is done in parallel for
different sensor pairs. Moreover, by comparing the pattern of
sensor discrete event sequences, we notice that many sensors
actually share similar event sequences. If redundant sensors are
further filtered out, then models are trained on representative
sensors only and training time reduces significantly. Since our
aim here is to capture the state of the entire system, we run
all pairwise models.

100%
80%
w 60%[

40%

20%

avg=152s
{ . . h )
140 145 150 155 160 165 0 20 40 60 80 100

0%

Runtime (second) DEV BLEU Score

(a) CDF of
model runtime

(b) Histogram of
BLEU scores

Fig. 4: (a) CDF of model runtime including training and testing

time and (b) Histogram of the BLEU scores.

B. Multivariate Relationship Graph

After completing the training process, we use the devel-
opment set (3 normal days) to collect translation (BLEU)
scores for all sensor pairs. These scores serve as measures
that quantify the strength of the relationship between the
discrete event sequences of two sensors during normal operat-
ing conditions. Higher scores imply that the two sequences
are similar; lower scores imply the opposite. Figure 4 (b)
shows the histogram of the BLEU scores. Notice that the
majority (i.e., 89.4%) of scores are greater than 60, implying
that the discrete event sequences of most sensors are related.
Intuitively, one may surmise that stronger relationships are
preferable for knowledge discovery and anomaly detection,
since it is more readily apparent when these relationships
are violated. After trying different score ranges, we find that
relationships with scores in the [80, 90) range provide the most
accurate information’. We provide evidence for this in the rest

5This optimal range also applies to other datasets, including the Backblaze
dataset, see Section IV-D.

of this section.

1) Global Subgraphs : If we treat each sensor as a node
and the relationship between each pair of sensors as an edge,
we can obtain a directed graph of all sensors representing the
system (i.e., the multivariate relationship graph G returned
by Algorithm 1). There are two edges between any two
sensors, each edge representing a “translation” from the source
language to the target language. The BLEU score acts as
an edge weight representing the quality of the “translation”.
Note that the same BLEU score of the edges that connect
the same two sensors may be different. This full graph is the
original multivariate relationship graph (short as Ori-MVRG).
If we were to plot all sensors and their relationships in the
Ori-MVRG, the graph would be fully connected, though the
relationships would be of varying strengths. Such a graph
is too noisy to be useful. We therefore partition the Ori-
MVRG into subgraphs, according to edge weights (i.e., BLEU
scores of sensor pairs). We choose a set of score ranges and
produce a subgraph for each range. A given edge is included
in a subgraph if and only if its BLEU score falls into the
corresponding range. If a sensor has no edges in a subgraph,
it is deleted from that subgraph. Table I shows the partition
results according to the selected ranges of BLEU score ranges.
We merge less significant subgraphs (i.e., relationships with
scores smaller than 60) into a single subgraph .

TABLE I: Statistics for global subgraphs at different BLEU
score ranges.

BLEU score range | [0, 60) [60, 70)  [70, 80)  [80,90)  [90, 100]
% relationship 10.6% 12.8% 28.8% 17.8% 29.9%
# sensors 54 32 56 73 82
# popular sensors
(in-degree > 100) 9 14 32 18 31
# relationships |, 162 77 146 151
(w/o popular sensors)

Figure 5 shows the CDFs of in-degree and out-degree for
the subgraphs defined in Table I. Looking at the in-degree (see
Figure 5 (a)), we notice that a small portion (around 20% to
25%) of sensors are “popular”, i.e., with in-degree > 100,
while others are much less connected to, i.e., with in-degee
~ 10. Table I lists the number of popular sensors in each
global subgraph in its third row. These sensors are critical
indicators of system health status as any abnormal behaviors
in their event sequences would propagate broadly. Figure 5
(b) shows that the out-degree distribution spreads relatively
evenly, falling between 10 to 35. To visually show a global
subgraph , we plot the one defined by the [80, 90) score range
in Figure 6. The larger nodes in the figure signify the popular
ones (i.e., with in-degree > 100).

2) Local Subgraphs : The example of the global subgraph
illustrated in Figure 6 is still too densely connected to provide
useful clustering information across sensors. We therefore
remove the popular sensors (i.e., those with in-degree > 100)
from each global subgraph to generate the corresponding local
subgraphs. Figures 7 (a) and 7 (b) show the local subgraphs for



20%} —— [90, 100]
[80, 90)

-+ [70, 80) 20%} a3
—- [60, 70) :

25 50 75 100 125 10 20
In-Degree Out-Degree

(a) CDF of in-degree (b) CDF of out-degree

Fig. 5: CDFs of (a) in-degree and (b) out-degree of sensors in
global subgraphs at different BLEU score ranges.

4
C
@ -\
L
)
(
\3 (4 p
) gl T

Fig. 6: Global subgraph with BLEU score in the [80, 90) range.
Each node represents a sensor and each edge represents the
relationship between two sensors. Larger nodes correspond to
popular sensors with in-degree > 100.

[80, 90) and [90, 100] score ranges, respectively. Both figures
clearly illustrate the presence of several clusters of sensors.
In addition, most clusters are isolated, i.e., not connected to
others, although there is an exception where we see some loose
connectivity, see Figure 7 (a) where two clusters are connected
through a single edge.

I :
-%

(a) Local subgraph (b) Local subgraph
at [80, 90) at [90, 100]

Fig. 7: Local subgraphs with BLEU score in the (a) [80, 90)
and (b) [90, 100] range.

In all cases, the clusters reflect the underlying system
architecture. Sensors in the same cluster could come from
same system components or record similar or related system
states. This assumption is confirmed by domain experts on this
dataset. Furthermore, this clustering information is extremely
useful as some data are often encrypted and provide no
information about the organization of the real system. Yet, the
local subgraphs allow us to surpass this difficulty and identify

related sensors.

Knowledge Discovery Takeaways:

o Global subgraphs identify sensors that are critical indicators
of system health status.

o Local subgraphs identify sensors that come from the same
system components or report similar system states.

C. Anomaly Detection

In this section, we discuss how anomalies are detected in
the online testing component. Here, we calculate the anomaly
score (see Section II-C for its definition) for every sentence in
the testing dataset. Higher anomaly scores indicate that more
pairwise relationships are broken, thus an anomaly is detected
with higher confidence.

Global subgraphs are superior to local ones for anomaly
detection, the reason is that popular sensors contain more
information about sensor interactions during normal times and
are critical indicators of system health status. Therefore, we
focus on global subgraphs in the rest of this section.

Figure 8 shows the anomaly detection results with global
subgraphs at two different BLEU score ranges. The z-axis
is the timeline and the y-axis shows the calculated anomaly
score. Recall that the anomaly score reflects how many pair-
wise sensor relationships are broken at a certain timestamp.
There are two anomalies in the testing dataset (marked with
red shade in Figure 8). The global subgraph with BLEU score
in the [80, 90) range delivers the most clear detection (see
Figure 8 (a)), as it correctly detects the anomalies of days
21 and 28 (i.e., the anomaly score is close to 0.8). The other
four spikes are false positives. However, we observe that they
closely precede the two anomalies. As confirmed with the
domain experts, the spikes before the two true anomalies (days
19, 20, and 27) are sings of early detection, which could signal
system administrators to take proactive actions. During normal
times, the anomaly scores are low, mostly below 0.2. Notice
that, on the 30th day, there is also a sign of anomaly (i.e.,
score over 0.8). If the following day were to be confirmed to
be an anomaly (unfortunately we do not have log data beyond
day 30), then it would be a correct sign of early detection.
Otherwise, it is a false positive.

Figure 8 (b) illustrates the anomaly detection results for the
global subgraph with BLEU score in the [90, 100] range, i.e.,
the subgraph with the strongest relationships. In this case, the
anomaly scores are too low to give clear signs of anomalies. To
better understand why the global subgraph with the strongest
relationships fails, we look closely at the translation results of
the target sensors and notice that these sensors have simple
languages. Their system states barely change over the entire
month, resulting in a small vocabulary size. For example,
a significant portion of words in the vocabulary of these
target sensors are “aaaaaaaa” (due to unchanged state over
an extended period). Translating to sentences composed only
of that simple word would inevitably result in high translation
scores. In other words, the global subgraph with BLEU score
in [90, 100] range does not necessarily contain sensors that



14 15 16 17 18 19 20 21

23 24 25 26 27 28 29 30

Day

(a) Global subgraph with BLEU score in [80, 90) range

14 15 16 17 18 19 20 21

23 24 25 26 27 28 29 30

Day

(b) Global subgraph with BLEU score in [90, 100] range
Fig. 8: Anomaly detection with global subgraphs with different BLEU score ranges.

are strongly related but instead clusters of easily translatable
Sensors.

We experimented with the remaining of global subgraphs,
results are not presented here due to lack of space and
can be summarized as follows: Global subgraphs of weaker
relationships (i.e., with BLEU score lower than 80) generally
do well but can result in many false positives.

Interpretation of anomaly detection results: For each
detected anomaly, the framework uses the local subgraphs
for fault diagnosis by tracing the broken relationships in
the multivariate relationship graph and identifies problematic
sensors that are responsible for the anomaly. Figure 9 presents
the fault diagnosis results for the anomaly detection illustrated
in Figure 8 (a). Red edges in Figure 9 represent broken
relationships, i.e., the BLEU score is lower than that that
of normal times (see Section II-C for more details). Gray
edges correspond to normal relationships, as these sensor pairs
behave normally even during anomalous days. The broken
relationships can be used to locate sensors that should be
responsible for the corresponding anomaly. In Figure 9 (a),
we observe that sensors clustered in the upper right and lower
right corners (i.e., circled with green lines) are problematic.
In contrast, in Figure 9 (b), almost all relationships are broken
(i.e., see the red edges circled in green boxes), implying that
this is a severe anomaly that affects a significant portion of
sensors. Such diagnosis is helpful to system administrators
to quickly locate problematic sensors and the source of the
anomaly. The analytics framework provides the option to
describe similar figures for each anomaly at finer granularities,
e.g., every hour, to visually present how faults propagate
through sensors over time. Results are not shown here due
to space constraints.

Anomaly Detection Takeaways:

o Global subgraphs are more suitable for anomaly detection
than local subgraphs .

« Global subgraphs with the strongest relationships (i.e.,

(a) 2017-11-21 (b) 2017-11-28

Fig. 9: Fault diagnosis with local subgraphs with BLEU score
in [80, 90) range on anomalous days. Edges marked with red
are broken relationships. Green circles indicate faulty clusters
of sensors that are responsible for the anomalies.

BLEU score above 90) are not useful.

o Local subgraphs are helpful to locate sensors that are
responsible for anomalies.

« Fault diagnosis can be performed at various time granular-
ities to show fault propagation over time.

IV. CASE STUDY II: HDD DATASET

To provide verifiable results, we apply here the proposed
analytics framework to a publicly available dataset. Unfor-
tunately, among the public datasets with categorical data in
the Kaggle repository [2], none reports failures or anomalies.
Thus, we chose to use the Backblaze dataset that is publicly
available and details HDD reliability statistics (disk failures)
over time [1]. The Backblaze data set has mostly continuous
features but with some minimal preprocessing we show that
they may be converted into discrete ones.

A. Dataset of HDD Failures

The Backblaze data consist of daily performance logs col-
lected from hard disk drives (HDDs) housed at the Backblaze
data center. For each day of operation, the drives report a list of
SMART attributes [3], which report either cumulative lifetime
counts of particular hardware events (e.g., certain types of



drive errors) or daily summaries of drive activity (e.g., read
or write counts). Of particular interest to us is an additional
attribute marked by the maintainers of the Backblaze dataset:
certain days of drive operation are marked as “failures,’
indicating that, on the following day, the drive ceases to
function and is removed from production.

B. Baseline Models

We start with choosing the best set of features. Backblaze
claims to report 100+ SMART features, but many of them
are only recorded on a small proportion of drives or drive
models. Therefore, we restrict ourselves to features that are
recorded for all disk drive types, resulting in 20 features only.
In addition, we find that 14 of these features are cumulative
counts, monotonically increasing over the lifetime of the drive.
These features change relatively slowly over time and due to
their trending behavior, they tend to spuriously correlate with
other cumulative features. Due to the difficulties this poses to
our correlation-based approach, we transform these cumulative
features using a first-order difference, yielding a set of daily
deltas. In the end, we utilize 34 features, including 20 raw
SMART features and 14 differenced ones. We consider the
latest data collected in 2018 and focus on data reported by
Seagate models for enterprise workloads, which account for
35% of the Backblaze data in total and 46% of the data for
Seagate models in 2018.

To obtain a performance baseline, we use two commonly
used nonlinear machine learning models:

« Random Forest (RF). This is a supervised ensemble model
based on decision trees, which has been previously success-
fully applied to the Backblaze dataset [24]. We use 80%
of the drives for training and 20% for testing. Since there
are many more non-failures than failures, we randomly sub-
sample non-failure cases such that the training data has a
1-to-1 majority-to-minority ratio.

¢ One-class SVM (OC-SVM). This is a widely used unsu-
pervised model for anomaly detection [35]. Here, we choose
the radial basis function (RBF) kernel. The OC-SVM takes
as training data a set of non-anomalous observations and
fits a decision boundary about these data. If a drive in the
training set is not observed to fail, we consider its data
“non-anomalous”. We find that training the OC-SVM scales
poorly to large datasets, so we randomly sub-sample from
among these relevant observations to get a more manageable
training set.

C. Multivariate Relationship Graph

In order to adapt our analytics framework to the Backblaze
dataset, each SMART feature is taken to be recorded by a sen-
sor. In the multivariate relationship graph, each node represents
a feature fed into the framework. As a generic method that
does not require feature engineering, our framework accepts
raw SMART features only. In addition, among the 20 raw
features, the values of 4 features are barely changed in the year.
As discovered in Section III-B, these features provide little
information, thus are removed. So, there should be 16 nodes

100%

100%

% L
80% 80%

60%

o u 60%
O [a}
40%} O 4o%}
20%f 20%
5 ‘ ‘ : ‘ ‘
0% 0 20 40 0%0 10000 20000 30000 40000 50000

value value

(a) SMART 187 (b) SMART 9

Fig. 10: Examples of features used for the two feature dis-
cretization schemes, shown as CDFs.

(i.e., features) and 16 x 15 = 240 edges (i.e., relationships) in

the learned multivariate relationship graph.

Unlike the physical plant system where sensors continue
to collect information when an anomaly happens, disks in
Backblaze are removed at the time they fail. As a result, each
disk only reports one failure sample, which is the last day of
its operation. In order to acquire more anomalies (rather than
only 1), we aggregate the data for all disks so that the number
of anomalies corresponds to the number of failure disks.

Recall that our method is designed for discrete event se-
quences. To make the Backblaze dataset amenable to our
model, we have to discretize the continuous values recorded
by those features. We tailor our discretization schemes in this
way in order to best maintain the semantics of each feature.
Figure 10 illustrates the two discretization schemes used with
two representative examples.

1) If most of the observations of a feature are equal to zero
(as is the case with many error counts), then we adopt a
binary discretization scheme. We replace the feature with
an indicator variable, indicating whether the feature is zero
(see Figure 10 (a)).

2) For all other features, we examine the distribution of the
feature across the training set and pull out the 20th, 40th,
60th, and 80th percentiles. These are used as decision
boundaries for assigning categories (see Figure 10 (b)).
To ensure a stable discretization of features, we focus on

disks with substantial samples. Here we consider disks with

over 10-month data in the year, ending up with 24 disks. For
each disk, we utilize its last 4 months data: the first 2 months
for training, the following one month for development, and the
last one for testing. For NMT model parameter settings, we
use the ones used for the private dataset (see Section III-A2).

Since features are recorded on a daily-basis, we set 1 word to

5 characters and 1 sentence to 7 words (both sliding windows

are set to be 1) to ensure a reasonable vocabulary size and

number of sentences.

D. Evaluation

Our analytics framework is a generic unsupervised method
that is especially designed for discrete event sequences. Lever-
aging the learned multivariate relationship graph, it provides
information about important features (i.e., reflected as nodes
with higher in-degree in global subgraphs, see Section IV-D1)
and disk failures (i.e., anomaly detection, see Section IV-D2).



The graphs can also help in locating features for fault diagnosis
but not shown here due to space constraints. In contrast,
the baseline models, which do not work directly for discrete
event sequences and rely on domain knowledge for feature
engineering, ether require more information as a supervised
method (i.e., Random Forest) or cannot provide feature impor-
tance analysis (i.e., one-class SVM). Table II shows a high-
level comparison among the models. Note that our method
is unsupervised, generic and especially designed for discrete
event sequences where RF and OC-SVM are not applicable.
It is therefore expected for our method to not achieve as high
recall comparing to algorithms for continuous time series that
rely on feature engineering.

TABLE II: Comparison of different models on Backblaze.

Unsu- Feature Feature Applicable to
Model per- Engineer- Rank- Recall Discrete Event
vised? ing? ing? Sequences?
70%-
RF X v v 80% X
OC-
SVM ' v X 60% X
Ours v X v 58%

1) Knowledge discovery: Let us start with knowledge dis-
covery with global subgraphs. Figure 11 (a) shows the global
subgraphs with BLEU score in [80, 90) range. This range
works best for the power plant dataset (see Section III-B) and
continues to be the best for Backblaze also. In the graph,
there are 16 nodes representing 16 features. 5 of them are
labeled with their SMART feature ID (i.e., larger nodes in
the figure). These features are more extensively connected
to others, implying that they are critical indicators of disk
health status. Table III lists the descriptions of those features
and their in-degree and out-degree. Nonzero values for these
features indicate that the disk has suffered failed I/O operations
and that the health of the disk is at risk. Their importance to
anomaly detection aligns with what we expect to be necessary
for prediction. As comparison, Figure 11 (b) presents 10
most important features given by the feature importance score
provided by the Random Forest model. We observe that
all 5 features are shown in the list and we find that these
features consistently place in the top 10 upon model retraining.
This confirms the effectiveness of using global subgraphs for
feature importance analysis.

2) Anomaly detection: We use the global subgraphs shown
in Figure 11 (a) to detect disk failures in Backblaze. Here, we
select several failed disks that are successfully detected and
several that are not detected, and show how their anomaly
scores change over time before their failure dates, see Fig-
ure 12. From Figure 12 (a), we observe that there is always a
sharp increase in the anomaly score (i.e., over 0.5 increment)
right before the failure date for every successfully detected
disk. In contrast, in Figure 12 (b), the anomaly scores for
non-successfully-detected ones are stable over time, regardless
at high scores of over 0.6 or at low scores of below 0.1. In
other words, we look for sharp increments as signs of disk

10

197

/M

a7 X Ine—afop

5 ]
192 |

187 |

190 |
193
194
197
198
241, diff
7, diff
0.00

5

L L
0.02 0.04 0.06 0.08

(a) Global subgraph

Fig. 11: Feature importance analysis (a) by global subgraph
with BLEU score in the [80, 90) range and (b) by the Random
Forest model.

(b) Feature ranking by RF

failures. In total, we are able to deliver a recall of 58%, which
is comparable to the recall of 60% given by the one-class SVM
trained on more features, without any feature engineering
effort that one-class SVM requires.

Iy
o

Iy
=)

—e— ZA180AB9
ZA180QS4
A ZCHOBWYK

—e— ZA170TZN
ZA180X8C

A ZCHO7D75
—¥- ZCHO095P7

o
o
o
©

o
o

o

Anomaly Score
-
T

e
N

o
o

[ —v ZJVOOHR] !

ot

r i
ahaaahdAdAbAds L o
A rriis N

0 10 20
Day

(a) Detected disks

30

T T DD,

°
o

o

Anomaly Score
B

°
N

o
o

10 30
Day

(b) Not detected disks

20

Fig. 12: Disk failure detection given by global subgraph with
BLEU score in the [80, 90) range.

V. RELATED WORK

Understanding the interdependence relationship among mul-
tivariate time series is one of the most important tasks in
machine learning [14]. Most of existing literature focuses on
time series analysis of continuous sequences [40]-[42]. The
canonical correlation analysis [15] and its nonlinear version of
kernel canonical correlation analysis [5] aim at extraction of
common features from a pair of multivariate sequences based
on a linear or nonlinear transformation of the original variables
by maximization of correlation or kernelized correlation [5],
[15]. There are multiple dependence measures to quantify
bivariate relationships such as Spearman’s p, Spearman’s
footrule, Gini’s coefficient, Kendall’s 7 [19], copula-based
Kernel dependency measures [32], kernel dependency estima-
tion [38] and others. In time series analysis, auto-regressive
and moving average (ARMA) models have been proposed
to characterize the dependence measure between two time
series [14]. ARMA builds a linear relationship model between
two continuous time series. For example, a method based on an
ARMA model was proposed to quantify multivariate invariant
relationship in a distributing system [36]. These methodologies
work well for continuous time series and variables, but have
limitations when applied to discrete event sequences.

Regarding discrete categorical event data analysis, some
works focus on mining patterns from event sequences. The
discovered patterns can be used for further analysis, such as



TABLE II: Top 5 most important SMART features [3] reported by global subnetworks at [80, 90).

ID \ Name # in-degree # out-degree Description

192 Power-off Retract Count 15 3 Number of power-off or emergency retract cycles.

187 Reported Uncorrectable Errors 13 2 The count of errors that could not be recovered using hardware ECC.

. The total count of uncorrectable errors when reading/writing a sector. A rise in

198 (Offline) Uné?)lzifmble Sector 13 2 the value of this attribute indicates defects of the disk surface and/or problems
in the mechanical subsystem.

197 Current Pending Sector Count 13 5 Count of "unstable” sectors (waiting to be remapped, because of unrecoverable
read errors).
Count of reallocated sectors. The raw value represents a count of the bad

5 Reallocated Sectors Count 3 4 sectors that have been found and remapped. This value is primarily used as a
metric of the life expectancy of the drive.

anomaly detection. Algorithms that detect frequent episodes
in event sequences can be found in [20], [25]. Hubballi et.
al. [16] leverage the concept of n-gram in natural language
processing to model patterns in system calls, by constructing
n-gram trees for short sequences of system calls. The above
works share similarities with our method in terms of utilizing
a sliding window to cut the discrete events into many sub-
sequences. However, these works apply on event sequences of
high cardinality while here we are restricted by the fact that
all sequences are of low cardinality.

There are also works that focus on anomaly detection in
a single discrete categorical event sequence [26]. Dong et.
al. propose an efficient method for mining emerging patterns
in a categorical data sequence for trend discovery [12]. A
method based on MaxCut is proposed to detect anomalous
events in activity networks [34]. Another anomaly detection
technique that focuses on categorical datasets [11] uses a
local anomaly detector to identify individual records with
anomalous attribute values and then detects patterns where
the number of anomalous records is higher than expected.
The above techniques are applied to a single discrete event
sequence without considering the time aspect of events or
without considering any inter-dependence relationship among
different sources of events or variables. Therefore, these al-
gorithms cannot discover component-wise knowledge on the
underlying system or offer anomaly detection based on system-
wide understanding and modeling. Multidimensional Hawkes
processes [22] and its variants [13], [27] have been applied
to model the inter-dependent relationship across multi-source
events. Hawkes processes are based on point processes that
model the conditions that affect the intensity of arrival events
with changing intervals.

The proposed methodology in this paper is a generic un-
supervised learning framework for discrete event sequences
collected from sensors. By leveraging language translation, we
successfully quantify pairwise relationships among sensors,
which in turn are used to build a multivariate relationship
graph. This graph is able to provide valued system information
for knowledge discovery and anomaly detection.

VI. CONCLUSION

Modern physical systems deploy large numbers of sensors
to record the system status of different components. Although
a significant portion of those sensors report discrete event

11

sequences, there is a lack of effective methodologies that are
designed especially for such data. In this paper, we propose an
unsupervised learning analytics framework specially designed
for discrete event sequences collected from sensors in real-
world systems for knowledge discovery, anomaly detection,
and fault diagnosis. It leverages the concept of language
translation by considering the discrete event sequences of
sensors as their languages and then apply NMT models to
translate the language of one sensor to another. Naturally, the
translation score turns to be an effective metric to quantify
the pairwise relationships among discrete event sequences of
sensors, which are difficult to learn by most state-of-the-
art algorithms that mainly work for continuous time series.
With sensor pairwise relationships, the analytics framework
builds a multivariate relationship graph to represent system
information. The proposed framework is validated on two real-
world datasets: a proprietary dataset from a physical plant and
a public hard disk drive dataset from Backblaze, and is shown
to be effective in extracting sensor pairwise relationships for
knowledge discovery, anomaly detection, and fault diagnosis.

ACKNOWLEDGEMENTS
We thank our shepherd Patrick Lee. The majority of the
presented work was completed during a summer internship of
Bin Nie at NEC Labs. Smirni, Nie, and Alter are partially
supported by NSF grants CCF-1649087 and IIS-1838022.

REFERENCES

Backblaze hard drive
hard-drive-test-data.html.
Kaggle datasets. https://www.kaggle.com/datasets.

S.m.a.rt.  https://en.wikipedia.org/wiki/S.M.A.R.T#ATA_S.M.A.R.T._
attributes.

S. Agrawal and J. Agrawal. Survey on anomaly detection using data
mining techniques. Procedia Computer Science, 60:708-713, 2015.

S. Akaho. A kernel method for canonical correlation analysis. In
Proceedings of International Meeting on Psychometric Society, 10 2001.
J. Alter, J. Xue, A. Dimnaku, and E. Smirni. SSD failures in the
field: symptoms, causes, and prediction models. In Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC 2019, Denver, Colorado, USA, November 17-
19, 2019, pages 75:1-75:14. ACM, 2019.

D.J. Berndt and J. Clifford. Using dynamic time warping to find patterns
in time series. In KDD workshop, volume 10, pages 359-370. Seattle,
WA, 1994.

M. M. Botezatu, I. Giurgiu, J. Bogojeska, and D. Wiesmann. Predicting
disk replacement towards reliable data centers. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 3948, New York, NY, USA, 2016.
ACM.

[1] data. https://www.backblaze.com/b2/

[2]
[3]

[4]
[5]
[6]

[7]

[8]



[9]

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

L. Cherkasova, K. M. Ozonat, N. Mi, J. Symons, and E. Smirni.
Anomaly? application change? or workload change? towards automated
detection of application performance anomaly and change. In The 38th
Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, DSN 2008, June 24-27, 2008, Anchorage, Alaska, USA,
Proceedings, pages 452-461. IEEE Computer Society, 2008.

R. Chitrakar and H. Chuanhe. Anomaly detection using support vector
machine classification with k-medoids clustering. In 2012 Third Asian
Himalayas International Conference on Internet, pages 1-5. IEEE, 2012.
K. Das, J. Schneider, and D. B. Neill. Anomaly pattern detection
in categorical datasets. In Proceedings of the 14th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’08, pages 169-176, New York, NY, USA, 2008. ACM.

G. Dong and J. Li. Efficient mining of emerging patterns: Discovering
trends and differences. In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’99, pages 43-52, New York, NY, USA, 1999. ACM.

N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song. Recurrent marked temporal point processes: Embedding
event history to vector. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’16, pages 1555-1564, New York, NY, USA, 2016. ACM.

J. Hamilton. Time series analysis. Princeton Univ. Press, Princeton, NJ,
1994.

H. Hotelling. Relations between two sets of variates.
28:321-377, 1936.

N. Hubballi, S. Biswas, and S. Nandi. Sequencegram: n-gram modeling
of system calls for program based anomaly detection. In 2011 Third
International Conference on Communication Systems and Networks
(COMSNETS 2011), pages 1-10. IEEE, 2011.

G. Jiang, H. Chen, and K. Yoshihira. Modeling and tracking of
transaction flow dynamics for fault detection in complex systems. /[EEE
Transactions on Dependable and Secure Computing, pages 312-326,
2006.

X. Jin, Y. Guo, S. Sarkar, A. Ray, and R. M. Edwards. Anomaly
detection in nuclear power plants via symbolic dynamic filtering. IEEE
Transactions on Nuclear Science, 58(1):277-288, Feb 2011.

H. Joe. Multivariate Models and Dependence Concepts. Chapman &
Hall, 1997.

M. Leemans and W. M. van der Aalst. Discovery of frequent episodes
in event logs. In International Symposium on Data-Driven Process
Discovery and Analysis, pages 1-31. Springer, 2014.

T. Li, Y. Jiang, C. Zeng, B. Xia, Z. Liu, W. Zhou, X. Zhu, W. Wang,
L. Zhang, J. Wu, L. Xue, and D. Bao. Flap: An end-to-end event log
analysis platform for system management. In Proceedings of the 23rd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’17, pages 1547-1556, New York, NY, USA, 2017.
ACM.

D. Luo, H. Xu, Y. Zhen, X. Ning, H. Zha, X. Yang, and W. Zhang.
Multi-task multi-dimensional hawkes processes for modeling event
sequences. In Proceedings of the 24th International Conference on
Artificial Intelligence, IICAI’15, pages 3685-3691. AAAI Press, 2015.
M.-T. Luong, H. Pham, and C. D. Manning. Effective ap-
proaches to attention-based neural machine translation. arXiv preprint
arXiv:1508.04025, 2015.

F. Mahdisoltani, I. Stefanovici, and B. Schroeder. Proactive error
prediction to improve storage system reliability. In 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pages 391-402, Santa Clara,
CA, 2017. USENIX Association.

H. Mannila, H. Toivonen, and A. I. Verkamo. Discovery of frequent
episodes in event sequences. Data mining and knowledge discovery,
1(3):259-289, 1997.

E. McFowland, S. Speakman, and D. B. Neill. Fast generalized subset
scan for anomalous pattern detection. Journal of Machine Learning
Research, 14:1533-1561, 2013.

H. Mei and J. Eisner. The neural Hawkes process: A neurally self-
modulating multivariate point process. In Advances in Neural Informa-
tion Processing Systems, Long Beach, Dec. 2017.

B. Nie, D. Tiwari, S. Gupta, E. Smirni, and J. H. Rogers. A large-scale
study of soft-errors on gpus in the field. In 2016 IEEE International
Symposium on High Performance Computer Architecture, HPCA 2016,
Barcelona, Spain, March 12-16, 2016, pages 519-530. IEEE Computer
Society, 2016.

Biometrika,

12

[29]

[30]

[31]

[32]

[33]

[34]

(35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

B. Nie, J. Xue, S. Gupta, C. Engelmann, E. Smirni, and D. Tiwari.
Characterizing temperature, power, and soft-error behaviors in data
center systems: Insights, challenges, and opportunities. In 25th IEEE
International Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, MASCOTS 2017, Banff, AB,
Canada, September 20-22, 2017, pages 22-31. IEEE Computer Society,
2017.

B. Nie, J. Xue, S. Gupta, T. Patel, C. Engelmann, E. Smirni, and
D. Tiwari. Machine learning models for GPU error prediction in a large
scale HPC system. In 48th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2018, Luxembourg City,
Luxembourg, June 25-28, 2018, pages 95-106. IEEE Computer Society,
2018.

K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. BLEU: a method for
automatic evaluation of machine translation. In Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, pages
311-318. Association for Computational Linguistics, 2002.

B. P6czos, Z. Ghahramani, and J. G. Schneider. Copula-based kernel
dependency measures. In Proceedings of the 29th International Confer-
ence on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June
26 - July 1, 2012. icml.cc / Omnipress, 2012.

P. Pons and M. Latapy. Computing communities in large networks using
random walks. Journal of Graph Algorithms and Applications, pages
191-218, 2006.

P. Rozenshtein, A. Anagnostopoulos, A. Gionis, and N. Tatti. Event
detection in activity networks. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 1176-1185, New York, NY, USA, 2014. ACM.

B. Scholkopf and A. J. Smola. Learning with Kernels: support
vector machines, regularization, optimization, and beyond. Adaptive
computation and machine learning series. MIT Press, 2002.

A. B. Sharma, H. Chen, M. Ding, K. Yoshihira, and G. Jiang. Fault
detection and localization in distributed systems using invariant relation-
ships. In Dependable Systems and Networks (DSN), 2013 43rd Annual
IEEE/IFIP International Conference on, pages 1-8. IEEE, 2013.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning
with neural networks. In Proceedings of the 27th International Confer-
ence on Neural Information Processing Systems - Volume 2, NIPS’14,
pages 3104-3112, Cambridge, MA, USA, 2014. MIT Press.

J. Weston, O. Chapelle, V. Vapnik, A. Elisseeff, and B. Scholkopf. Ker-
nel dependency estimation. In S. Becker, S. Thrun, and K. Obermayer,
editors, Advances in Neural Information Processing Systems 15, pages
897-904. MIT Press, 2003.

J. Xue, R. Birke, L. Y. Chen, and E. Smirni. Managing data center
tickets: Prediction and active sizing. In 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pages 335-346. IEEE, 2016.

J. Xue, R. Birke, L. Y. Chen, and E. Smirni. Spatial-temporal prediction
models for active ticket managing in data centers. [EEE Trans. Network
and Service Management, 15(1):39-52, 2018.

J. Xue, B. Nie, and E. Smirni. Fill-in the gaps: Spatial-temporal models
for missing data. In 13th International Conference on Network and
Service Management, CNSM 2017, Tokyo, Japan, November 26-30,
2017, pages 1-9. IEEE Computer Society, 2017.

J. Xue, F. Yan, R. Birke, L. Y. Chen, T. Scherer, and E. Smirni.
PRACTISE: robust prediction of data center time series. In //th
International Conference on Network and Service Management, CNSM
2015, Barcelona, Spain, November 9-13, 2015, pages 126-134. IEEE
Computer Society, 2015.

Y. Yasami and S. P. Mozaffari. A novel unsupervised classification
approach for network anomaly detection by k-means clustering and
id3 decision tree learning methods. The Journal of Supercomputing,
53(1):231-245, 2010.

S.-J. Yen and Y.-S. Lee. Under-sampling approaches for improving
prediction of the minority class in an imbalanced dataset. In Intelligent
Control and Automation, pages 731-740. Springer, 2006.

K. Zhang, J. Xu, M. R. Min, G. Jiang, K. Pelechrinis, and H. Zhang.
Automated it system failure prediction: A deep learning approach. In
2016 IEEE International Conference on Big Data (Big Data), pages
1291-1300. IEEE, 2016.

S. Zhang, Y. Liu, W. Meng, Z. Luo, J. Bu, S. Yang, P. Liang, D. Pei,
J. Xu, Y. Zhang, Y. Chen, H. Dong, X. Qu, and L. Song. Prefix:
Switch failure prediction in datacenter networks. POMACS, 2(1):2:1-
2:29, 2018.



