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A B S T R A C T   

This paper presents an algorithm for the identification of parameters for a stochastic hot water end-use process 
that drives a homogeneous population of thermostatically controlled electric water heaters (EWH). Usually, only 
metered interval consumption data (kWh) is collected and the hot water end-use process is unobservable to 
utility and aggregators. However, the availability of EWHs for demand response (DR) is closely coupled with the 
hot water end-use process. In this context, the hot water end-use process is modeled as a two-state Markov chain 
(Use / No use), which causes the thermostatic ON-OFF switching process to behave as a Markov renewal process 
(MRP). A set of first passage-time problems is developed to obtain the moments of the transition probability 
densities of the MRP. These problems are addressed by establishing a system of coupled partial differential 
equations characterizing the temperature evolution of the EWH population. A key quantity in the methodology 
for estimating the parameters is the total time an EWH is ON within a period of interest. It is referred to as the 
total busy time. Total busy time in this approach is a random variable for which analytical expressions of the 
moments are developed as a function of the metered window length. The latter expressions become the basis of a 
hot water demand model identification algorithm which is validated using agent-based simulations of EWHs.   

1. Introduction 

Connectivity is becoming ubiquituous and, with smart appliances 
today, it is technically and economically feasible to leverage available 
distributed energy resources (DERs), such as “smart” air-conditioners 
and electric water heaters (EWH) to provide ancillary services using 
demand dispatch [1]. In demand dispatch, the DERs are aggregated, 
coordinated, and dispatched to provide grid services while taking into 
account local quality of service (QoS) requirements for the end-users. 
For example, the QoS requirement for EWHs dictates the temperature 
range specifying the device’s thermostatic controller parameters needed 
to ensure that water in the tank is maintained within a desirable tem
perature range. Together with QoS requirements, the DER end-use 
dynamics, such as hot water extraction rates from an EWH, place limits 
on the feasible range of demand dispatch schemes. This is because QoS 
specifications and end-use dynamics together determine the nominal 
power consumption of the device. Since QoS specification (e.g., tem
perature range) do not change over time, they are static and relatively 

simple to model. However, end-use is generally a stochastic process and 
strongly affects nominal power consumption of a DER. Thus, having an 
accurate estimate of the uncontrollable end-use process can be valuable 
to predict performance of demand dispatch schemes. 

Several DER control architectures have been proposed in the lit
erature for demand dispatch schemes and a variety of local/distributed 
control policies to model the aggregate response (or flexibility) of DER 
populations [2–6]. Their overall aim is to utilize the flexibility available 
from the DERs while preserving QoS. However, these aggregate models 
assume that the underlying end-use process is known a priori, which in a 
practical setting is generally not the case. In other words, the expected 
capability of these demand dispatch schemes strongly depends on 
knowing the end-use process. In this paper, we propose a method to 
overcome this challenge by estimating representative end-use process 
parameters for a population of EWHs only from measured electric uti
lity meter data (kWh) and physical water heater parameters. 

Aggregate models of DERs generally assume the underlying end-use 
process to be white noise with drift that represents the fluctuations in 
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energy due to uncontrollable end-user events as in [3]. The aggregated 
heat loss or gain due to end-user events in the case of heating and 
cooling loads such as electric space heaters and refrigerators can be 
accurately represented by the white noise process. However, the energy 
losses in an EWH are only due to: (i) water extraction from the tank and 
(ii) standing losses due to ambient conditions. Therefore, white noise is 
not an adequate representation of the end-use process for EWHs [7]. 
In [8], the end-use process is described by a Poisson random pulse 
(PRP) with randomized pulse amplitudes and widths, which is re
presentative of the physics of water extraction processes [7]. While a 
hot water end-use process consists of varying water extraction rates, 
this paper focuses on a two state continuous-time Markov chain with 
constant water extraction rates as a starting point for the challenging 
stochastic parameter estimation problem [9]. Relatively constant per
iods of hot water extraction rates is a reasonable assumption due to the 
correlated nature of human activities over the hours of a day. 

The literature on estimating end-use process parameters include 
data-driven methods [10], where historical electric meter data is used 
to develop regression-based models for load forecasting purposes. 
However, these “business as usual” regression-based models are in
sufficient to predict both DER behavior and the effect on QoS when 
subjected to demand dispatch [9]. A method to generate hot water 
profile based on average energy consumption per activity such as bath 
and laundry is developed in [11]. Statistical models using time use data 
of daily activities of household members gathered from surveys such as 
American Time Use Survey (ATUS) data or time use data by Statistics 
Sweden (SCB), to predict the controlled load behavior have been de
veloped to tackle this modeling gap [12–15]. These household activity 
data inform a model about the interaction between humans and their 
appliances. Then, the models are aggregated to predict the energy 
consumption of all residential households. While this approach is pro
mising, it relies on high fidelity data, which is usually unavailable and 
not generalizable. 

The impact of utility control on the load behavior can be seen from  
Fig. 1 which shows the aggregate power consumption of approximately 
1700 EWHs in Vermont over several days. Daily profiles of power 
consumption usually consist of a morning peak, between 7 am and 9 am 
in Fig. 1 and an evening peak. In this figure, the utility turned OFF all 
water heaters between 2pm to 6pm resulting in cold load pick-up set
ting a peak right after 6pm. This peak is significantly different than the 
one observed in the morning and is due to the type of demand response 
program deployed by the utility. Note that the aggregate demand 
profile of EWHs can be divided into hourly periods of relatively con
stant demand as characterized by constant water extraction rates. 
Therefore, capturing the underlying water extraction process is helpful 
to predict even the controlled load dynamics as shown herein. 

This paper builds on and extends the estimation methods presented 
in [9,16,17] where physics-based models of electric space heaters are 
employed. The estimation scheme first introduces a total busy-time 
random variable defined as the total ON time of the heater within fixed- 
time intervals. The rationale for defining this quantity is that by split
ting the power consumption data of an electric water heater into per
iods of stationary statistics, one can relate the total thermostat ON time 
to the underlying likewise stationary water extraction statistics. Re
cursive relations for the moments of the total busy time are then used to 

develop an estimation algorithm for calculating the parameters of the 
stochastic hot water end-use process [9]. This paper extends the esti
mation scheme to the physically-based models of electric water heaters 
with two key contributions: 

(1) The analytical results from [7], which were only valid for low 
water extraction rates have now been generalized to the case of arbi
trary water extraction rates. This includes: (i) The generalization of the 
coupled Kolmogorov equations representing the aggregate dynamics of 
a homogeneous group of EWHs to the case of arbitrary water extraction 
statistics; and (ii) the development of an adequate set of first passage- 
time probability density functions that are used to obtain the moments 
of the total ON time over fixed time windows. 

(2) From the analytical contribution, a practically relevant identi
fication procedure is developed and validated for estimating stochastic 
parameters of the unmeasured, hot water end-use process based only on 
interval meter readings and physical (tank) parameters for a homo
geneous population of EWHs. 

2. Overview of identification procedure 

This section provides a overview of the inputs and outputs of the 
identification procedure, as illustrated in Fig. 2. 

2.1. Availability of the metered data 

In general, gathering data on hot water end-use processes requires 
expensive, device-level flow meters. In rare cases, sensors may be 
available to measure water extraction rates for the entire residence (all 
water) or device-level (hot water only) [18]. Furthermore, it can be 
seen from Fig. 1 that the power consumption of electric water heaters 
driven by the end-use process vary significantly throughout a day since 
it is a non-stationary random process. However, it can be considered 
stationary during durations of near-constant electric demand [7,17], 
e.g. the morning peak between 7am and 9am in Fig. 1. Thus, we classify 
the daily kWh meter data into periods of statistically stationary hot 
water usage and propose the estimation strategy on one such period. 
This strategy can easily be generalized to multiple distinct periods that 
make up a representative day or a week. 

2.2. The electric water heater model 

The EWH considered herein consists of a first-order, simplified 
model with just a single equivalent heating element and an “average,” 
lumped temperature state. The hot water is extracted from the top of 
the tank and the cold water enters from the bottom. The temperature 
dynamics are governed by the following ordinary differential equation 
(ODE), 

=x t
t

P m t
c L

x t x x t x
L

w td ( )
d

( ) ( ( ) ) ( ( ) )
60

¯ ( ),
L

rate
a in

(1) 

where x(t) is the average temperature of the electric water heater, xin is 
the temperature of the cold water entering through the tank inlet, xa is 
the ambient temperature, =c 4.186 [kJ/kg-∘C] is the specific heat ca
pacity of 50∘C water, = 0.988 [kg/liters] is the density of hot water, L 
[liters] is the capacity of the water heater tank, Prate is the rated power 
in kW of the heating element, η is the heat transfer efficiency, τL is the 
time constant representing the standing losses. The uncontrollable rate 
at which hot water is extracted from the tank is given by 

=w t w t q t¯ ( ): ( ) ( ) [liters/min], where q(t) ∈ {0, 1} is the logic state for 
the hot water usage process, i.e., =q t( ) 1, if water is extracted from the 

Fig. 1. Average power consumption of 1700 real EWHs in VT.  Fig. 2. Overview of the end-use process identification problem.  

A. Khurram, et al.   Electric Power Systems Research 189 (2020) 106625

2



tank at rate w(t) [liters/min] at time t; else = =w t q t¯ ( ) ( ) 0. The EWH 
operates in thermostat mode and m(t) ∈ {0, 1} represents the physical 
state of the mechanical relay (open ≡ 0) at time t. The thermostat 
control logic maintains the temperature within the user-specified, fixed 
dead-band <+ +x x x x[ , ], . The logic switches from ON ( =m t( ) 1) to 
OFF ( =m t( ) 0) at the upper boundary ( +x ) and from OFF to ON at the 
lower boundary (x ). 

This paper considers the case of a homogeneous group of electric 
water heaters whose physical parameters and dead-band settings are 
known from manufacturer specifications and user-preferences, respec
tively. Energy measurements are then used as proxies for the time an 
EWH is ON within a time window of interest and referred to as the total 
busy time. The moments of the total busy time random variable are 
derived in Section 5. The proposed estimation strategy, shown in Fig. 2, 
takes as input the energy measurements and computes the total busy 
time within successive time windows of interest. Statistics of the total 
busy time along with the physical parameters of a homogeneous group 
of EWH are used to estimate the parameters of the unobservable end- 
use process, which is mathematically described in the next section. 

3. Modeling of the hot water end-use process and estimation 

This section describes the modeling of water heater end-use process 
and the corresponding Markov renewal process (MRP) defined at the 
switching instants of the thermostat. A set of first passage time pro
blems are then presented to determine the transition density functions 
of the MRP. 

3.1. Modeling water heater end-use process 

Consider the rate of hot water extraction from the tank of an in
dividual EWH to be constant (i.e., w(t) ≡ W). Then, the hot water end- 
use process is either in demand ( =q t( ) 1) or not in demand ( =q t( ) 0), 
and evolves according to what is assumed to be a two-state ({0, 1}) 
Markov chain model q(t) (see [7]). The corresponding time invariant 
transition probabilities are given by, 

+ = = = +P q t h q t h o h( ( ) 1 ( ) 0) ( )0 (2)  

+ = = = +P q t h q t h o h( ( ) 0 ( ) 1) ( )1 (3) 

where h > 0 is a small time increment. The electric water heater op
erating under this simplified demand process maintains the tempera
ture within the deadband by the operation of the thermostat switch. A 
Markov renewal process, y(t) is defined by recording the thermostatic 
switching instants (m(t)) which occur at the edges of the deadband [7]. 
The Markov renewal process, y(t) consists of four states {0, 0′, 1, 1′}, as 
illustrated in Fig. 3, where 1 represents the onset of a power con
sumption without hot water use, 1′ indicates the onset of a power 
consumption in the presence of hot water use. Similarly, 0 denotes the 

onset of a power interruption with no hot water use and, finally, 0′ 
indicates the onset of a power interruption but with hot water use. The 
transitions between states can only occur at the edges of the deadband, 
i.e. the switching instants of the EWH’s thermostat transitions from 1 to 
0, if = +x t x( ) without hot water use and transitions from 1 to 0′, if 

= +x t x( ) with hot water use. The remaining transitions follow in a 
similar fashion. Note that Fig. 3 also includes the first passage time 
probability density functions, gij(t), which are defined as, 

= < + =g d P t t t d y t j: [ ¯ , (¯) ],ij (4) 

=i j, {1, 1 , 0, 1 }, where t̄ is the first time the MRP y(t) switches to 
state j given that y(t) has just switched to state i at =t 0. The transitions 
between the states 1 and 1′ and 0 and 0′ are not possible since the MRP 
y(t) as defined, switches state only when the thermostat changes state, 
at which time the end-use state q(t) is also recorded. More specifically, 

= = = =g t g t g t g t( ) ( ) ( ) ( ) 011 1 1 00 0 0 . In the next subsection, the statis
tical evolution of the ensemble of homogeneous EWHs is obtained from 
two coupled Kolmogorov equations with boundary conditions. These 
equations are then used to express the gij probability density functions. 

3.2. Partial differential equation description of load dynamics 

The probability density functions, f f, ,i i associated with the Markov 
process consisting of the continuous state x(t), the discrete state m(t) 
and the hot water end-use process q(t) are defined by, 

= + = =f t d P x t d m t i q t( , ) [ ( ) , ( ) , ( ) 0]i (5)  

= + = =f t d P x t d m t i q t( , ) [ ( ) , ( ) , ( ) 1]i (6) 

for =i {1, 0}. The probability density functions satisfy the following 
system of coupled partial differential equations [7], 

= +
t

f x t V
x

f x t f x t( , ) ( , ) ( , )i i i i (7) 
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i
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i
a

i
a

0 0

1 1

rate

rate

(8) 

for all i ∈ {0, 1}, where =A W: x x
L60

in is the heat loss from the tank due 
to hot water extraction. In A, note that variable x(t) has been replaced 
with constant x in order to make the analysis more tractable. This is an 
acceptable approximation since the exact loss rate should not vary too 
much over a small (a few degrees) temperature deadband. The cooling 
rates are represented by, v v, 01 1 when thermostat is ON, and v v,0 0
when the thermostat is OFF. The conditional transition probability 
functions gij(t) are obtained by the first passages of the x(t) temperature 
process to the x or +x boundaries. The corresponding transition 
probability functions are given by (see [7]) 

= +g t v f x t( ) ( , ),ij i i (9)  

= = =g t v f x t i j( ) ( , ), {1, 1}, {0, 0 }.ji j j (10) 

In the next subsection, we use (7), (9) and (10) to derive a set of re
cursive equations yielding analytical expressions of any order moments 
of the gij(t) first passage-time densities. 

3.3. High water usage case and the first passage time problems 

The previous section introduced the coupled system of PDEs that 
govern the time evolution of the probability density functions f x t( , )i
away from the edges of the thermostat deadband. It should be noted Fig. 3. State transition diagram of the Markov renewal process.  
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here that v1 ≤ 0 and v 01 represents the case of low hot water use in 
which the temperature of the tank increases in the presence of hot 
water use. However, during periods of high hot water use, the tank 
temperature decreases instead and is characterized by v1 ≤ 0 and 

>v 01 . The first passage time analysis for the case of lower hot water 
use was developed in [7]. In this section, the focus is on the more im
portant case of high hot water use in which the temperature decreases 
in the presence of hot water use even though the thermostat is ON 
which is represented by >v v0, 01 1 in the system of coupled PDEs. 

Theorem 1. Let =m x m x m x( ): [ ( ), ( )]k k k
(1) (1 ) be the vector of moments of 

the kth order corresponding to the vector probability density function: 
f x t k( , ), 01 . The vectors m x( )k satisfy the following recursive system of 
linear ordinary differential equations (ODE): 

= +
x

m x V m x V f xd
d

( ) ( ) ( , 0),0 1
1

0 1
1

1 (11) 

and for all k ≥ 1, we have 

=
x

m x V m x kV m xd
d

( ) ( ) ( ),k k k1
1

1
1

1 (12) 

with the absorbing boundary conditions =+f x t( , ) 01 and =f x t( , ) 0 ,1 0

where < < ×x x , 00
2 1 and the initial condition, 

=+f x x x( , 0 ) ( )
01

(13) 

for the first passage time in 1 and 

=+f x x x( , 0 ) 0
( )1

(14) 

for the first passage time in 1′. Further defining, 

=x m x m x m x( ) [ ( ) ( ) ( )],k k0 1 (15) 

it obeys the following ODE, 

= +

=

= =
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0 0
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1
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1
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1
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1
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1
1

1
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1
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(16) 

with the condition, 

= < <x x xlim ( ) 0, .
x

0 0
0 (17) 

Proof. See Appendix A □ 

It should be noted here that in the case under consideration of high 
water usage, MRP y(t) can only exit from 1 and 1′ in state 0, owing to 
the fact that temperature always decreases in the presence of water 
demand. Furthermore, one can derive a similar system of equations for 
the moments starting at 0 or 0′. It is omitted for lack of space. 

The previous theorem provides initial conditions, boundary condi
tions and a system of linear ODEs to carry out first passage time com
putations under high water extraction rates. By solving the system of 
ODEs in (16) one can derive analytical expressions of the moments of 
the first passage time densities gij. First passage time process is con
ceptually depicted in Fig. 4. It follows the temperature of an EWH and 
corresponding MRP states visited, as it enters the lower edge (x ) in 

state 1 and transitions to 0 at the top edge ( +x ) of the deadband. Within 
the deadband, temperature decreases with rate v1 when water is 
being extracted from the tank and increases otherwise with rate v1. 
The particular set-up of Fig. 4 is used to obtain the moments of g10 and 
g10 . 

4. Illustrative example 

In this section, an illustrative example is presented for the first 
passage time moment calculations described in the previous section. 
These moments lead to approximate analytical expressions for the 
transition probability density functions gij that are essential to relate the 
statistics of the power consumption data to the end-use process. 

4.1. Solution of first passage time problems 

Consider a homogeneous group of electric water heaters with 
cooling rates v v,1 1 and v v,0 0 and simplified case of two moments, i.e., 
m x( )0 and m x( )1 . The linear system (16) can be written for the first 
passage time in 1 as, 

=x A x B u xd
dx

( ) ( ) ( )1 1 1 1 (18)  

= =A

v v

v v

v v v

v v v

B V
I
0

0

0 0

0 0

1 0

0 1
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0

1

1

1

0

1

1

1

1

0

1

1

1

1

0

1

1

1

1
1

(19)  

= =u x f x V v
v( ) ( , 0)

0
, 0

0
1 1

1

1 (20)  

= =m x
m x
m x

m x
m x
m x

( )
( )
( )

, ( )
( )
( )

,0
0
(1)

0
(1) 1

1
(1)

1
(1 )

(21)  

= =f x x x( , 0) ( )
0

, ,0 1

0 1 (22) 

where zero vector ×0 ,2 1 zero matrix ×0 ,2 2 and I is identity 
matrix. This system has two repeated eigenvalues: 

= +
+

+
+v v

v v1
0 1

1 1

0

0 1
1

1

0 1
1

(23)  

= 0.2 (24) 

Fig. 4. This figure illustrates the first passage time process starting at the lower 
edge of the deadband (x ) in state 1 (thermostat ON and without hot water 
use). The first passage time corresponds to the first time the temperature 
reaches the upper boundary ( +x ) of the deadband. 
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The average heating rate should be positive or equivalently the average 
cooling rate should be negative, because the probability flux should 
escape entirely from the upper boundary ( = +x x ). The mathematical 
consequence of this fact is that the nonzero eigenvalue (γ1) of the 
system should be positive (γ1 > 0) and the average cooling rate 

+
+

+
<v v 0,0

0 1
1

1

0 1
1

(25) 

which indeed implies that γ1 > 0. Solving the initial value problem 
described in the previous section results in the following zero order and 
first order moments, 

=+m x v( )
1 , 00
1

T

(26)  

= ++
+ +

m x v v v( )
1 , 01

1 1 1

T

1
0 1

0
0 1 (27)  

Similarly, first passage time calculations can be performed for the 1′ 
state. For the remaining states (0, 0′) a similar procedure is used and its 
details are omitted here. 

4.2. Approximation of gij by moment matching 

The conditional probability density functions (pdfs) gij are ap
proximated by the moment matching techniques, in which the pdfs are 
represented by the approximated functions ĝij whose moments match 
those obtained from the solution of the first passage time problems. In 
this paper, only the zero and first order moments are considered re
sulting in the following Markovian-type (exponential) approximation of 
the pdf, 

=g t m
m

m
m

t^ ( ) expij

ij

ij

ij

ij
0

1

0

1 (28) 

where m m,ij ij
0 1 are the appropriate zero order and first order moments 

of gij. In Laplace domain, 

= +G s m
m

s m
m

^ ( ) ( )
ij

ij

ij

ij

ij
0

2

1

0

1

1

(29) 

This result can be extended to generalized phase-type distributions by 
matching any number of moments depending upon the desired accu
racy and is the topic of ongoing work [19]. 

5. Parameter estimation from total busy time 

In this section, we bring together the results from prior sections and 
propose an estimation strategy based on the available data. The MRP 
defined at the switching instants of the thermostat classifies the process 
into four states {1, 1′, 0, 0′}. However, the available utility grade power 
consumption data cannot distinguish between 1 (thermostat ON, 
without hot water use) and 1′ (thermostat ON, with hot water use) states 
since the hot water end-use process is not observed. Similarly, the states 
0 and 0′ are indistinguishable from measurements. However, in the 
stationary steady-state of the MRP, the total ON time random variables 
become identically distributed since the state at the start of a mea
surement interval becomes random with a common distribution. 
Therefore, in the stationary steady-state the states 1 and 1′ are com
bined into an ON state with a density obtained by combining the 1 and 
1′ densities with weights m0

(01) and m0
(01 ) and similarly with states 0 and 

0′ which are probabilistically combined into an OFF state. The ther
mostat ON and OFF are represented by 1A and 0 ,A respectively, and the 
resulting process is a 1 0A A alternating renewal process (ARP). 
Subscript (.)A is added to distinguish between the states of the MRP and 
the ARP. The stationary ARP statistics are then used to identify the 
parameters of the underlying hot water end-use process. 

5.1. Moments of the total busy time 

The parameters of 1 0A A ARP in its stationary steady-state which 
is blind to the initial MRP state at the start of power measurement 
windows, are now identifiable from the data available for estimation. 
Furthermore, let =t m d( ) ( )t

0 be the total time the thermostat is 
ON within a time period of length t. This variable ξ(t) is also called total 
busy time random variable over an interval of length t. Recursive ex
pressions for the moments of ξ(t) in steady state were derived in [9] that 
do not require the knowledge of the state of the thermostat at the start 
of the window. The first-order and the second-order moments of ξ(t), in 
the Laplace domain, are obtained after application of [Theorem 2 in 9] 
resulting in the following equilibrium distribution expressions, 

=
+

t s
µ

µ µ s
E [ ( )]( ) 1 ,eq

1

1 0
2

A

A A (30)  

=
+

+
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2
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(1 ( ))(1 ( ))
(1 ( ) ( ))

,

eq
2 1

1 0
2

1 0
4

0 1

0 1

A

A A

A A

A A

A A (31) 

where =F s f t i( ) [ ( )], {1 , 0 },i i A A is the Laplace transform the pdf 
associated with 1A and 0A states, and =µ f t iE[ ( )], {1 , 0 }i i A A with E[.] 
being the usual expectation operator. A short description on computa
tion of Fi(s), μi for i ∈ {1A, 0A} is provided in Appendix B. We are finally 
in a position to estimate λ0, λ1 from the moments of ξ(t) as is presented 
next. 

5.2. Numerical validation of parameter estimation 

The parameter estimation strategy is demonstrated on a period of 
relatively stationary water demand for example, the morning peak 
between 7am and 9am in Fig. 4. The case here is that of high water 
usage with the end-use parameters = { , },0 1 for which the transitions 
probability functions (gij) are derived in 4. Data for this type of esti
mation can be obtained by measuring the aggregated power con
sumption of a group of EWHs within the same period of interest over 
the course of several days, and then appended together. Following this 
line of thought, 10,000 EWHs are simulated for 16 h, with tank size 250 
litres, heating element rated at 4.5 kW, hot water rate of extraction of 
5.4 litres/min, ambient and inlet temperature 21.1∘C, thermostat set- 
point and deadband adjusted at 51∘C and 6∘C respectively. Aggregated 
power consumption of this group is measured where each 2 h period is 
assumed to represent a single day. The simulated data then represents 
the aggregate power consumption over 8 days and in what follows, we 
show that this data at least in the simulation environment is sufficient 
to accurately estimate the unknown ϕ. 

The proposed estimation problem determines =* { *, *}0 1 that 
minimizes the loss function, 

=
argmin

r t r t* ( , )
^

( , ) 2
2

(32) 

where =r t t t t t
^

( , ) (Ê [ ( )]( , ), Ê [ ( )]( , ))eq eq
2 is the empirical 

mean and second moment obtained from the data, 
=r t t t t t( , ) (E [ ( )]( , ), E [ ( )]( , ))eq eq

2 is the analytical mean and 
second order moment from (30), (31). The estimation problem (32) is 
solved using lsqcurvefit in Matlab for t ∈ {1, 2, 5, 15} min. It can be 
seen from Table 1 that the estimated ^ are close to true ϕ. An im
mediate observation from the results in Table 1, is that shorter windows 
result in the estimated parameters closer to the true values. This type of 
analysis will enable the utilities to collect appropriate metered data that 
results in reasonable estimates of the end-use consumption. Therefore, 
we show next the accuracy of the estimated ^ in the context of cold- 
load pickup of Fig. 1. 

The objective now is to show a potential application of the 
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estimation scheme in demand dispatch. Consider the same group of 
EWHs that generated the data for estimation under constant water 
demand. After 2 h all EWHs are forced OFF for a period of 4 h and 
subsequently allowed to turn back ON, mimicking the direct load 
control scheme from Fig. 1. Aggregate response of EWHs for the actual 
and estimated parameters is shown in Fig. 5 with =t 2 min. Clearly, the 
aggregated power demand and the mean tank temperature match well. 
Similar results are obtained for t ∈ {1, 5, 15} min. The difference 
however, is in the transient response after EWHs are allowed to turn 

back ON, as shown in Fig. 6. 
The estimated ^ differs slightly from the true ϕ as seen in Table 1 

even though the steady state response of the estimated system is exact. 
This is because the estimated =^ { ^ , ^ }1 0 corresponds to the same 
steady state of the end-use process as the actual ϕ. The difference in the 
transient response, as shown in Fig. 6, is apparent from the nonzero 
eigenvalue γ1 in (23). For the window size of 15 min, it follows from  
(23) that the nonzero eigenvalue obtained from the estimated para
meters is twice the eigenvalue obtained from true parameters. One 
possible explanation for this behavior is that shorter windows corre
spond to increasing the sampling frequency of the ARP. Therefore, 
several window sizes may result in the same occupation behavior of the 
ARP. Furthermore, the estimates can be improved by including the 
correlation information between occupation time of successive win
dows for estimation as in [9]. However, further work is required to fully 
characterize the impact of this aliasing-type effect observed here. 
Nonetheless, the estimated values are helpful to model steady-state 
demand and average EWH QoS under homogeneous conditions. 

6. Conclusion and future work 

This paper develops preliminary results for an identification algo
rithm to estimate the parameters of an underlying hot water end-use 
process of electric water heaters from energy measurement. Unlike 
prior work in the area, which focused on low hot water extraction rates, 
this identification procedure has been generalized herein to include 
arbitrary extraction rates and validated within a conventional DR set
ting for 10,000 EWHs. The estimated parameters serve to accurately 
model the dynamics of a homogeneous fleet of EWHs and is valuable for 
utilities to predict the controlled load behavior when subjected to de
mand dispatch. 

Future work seeks to extend the procedure to estimate the water 
intensity rate, w(t), to relax the homogeneous assumption on the fleet, 
and study the role of uncertainty in the physical EWH (tank) parameters 
on the end-use process estimates. Finally, we will incorporate actual 
interval meter data from a utility partner to estimate and optimize 
demand dispatch capability from a fleet of EWHs and compare against 
similar estimates from “black box” learning-based methods. 
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Appendix. A. Proof of theorems 

Proof. (Theorem 1) Upon taking the Laplace transforms of the partial differential equations in (7) for =i 1 results in 

=F x s
x

V sI F x s V f x( , ) ( ) ( , ) ( , 0).1
1

1
1

(A.33) 

Since the kth order moment is defined as, 

= =
=

m x F x s
s

k( ) ( 1) ( , ) , 0, 1, ,k
k

k

k
s 0 (A.34) 

therefore, setting =s 0 in (A.33) yields the linear first order ODE of zero order moment (m x( )0 ) as, 

= +dm x
dx

V m x V f x( ) ( ) ( , 0 ).0
1

1
0 1

1
(A.35) 

The first order moment is obtained by taking the derivative of (A.33) w.r.t. s and consequently setting =s 0 which results in, 

=dm x
dx

V m x V m x( ) ( ) ( ).i i
1 1

1
1

0 (A.36) 

Table 1 
Comparison between estimated and actual parameters.        

Window size Actual 1 min 2 min 5 min 15 min  

λ0 0.0014 0.0014 0.0016 0.0021 0.0029 
λ1 0.0083 0.0084 0.0095 0.0120 0.0170 

Fig. 5. Aggregate power consumption of the group of EWHs is shown here 
when all EWHs are forced OFF for 4 h. The window size for estimation is 2 min. 

Fig. 6. The aggregate power consumption of EWHs using the parameter esti
mates of ϕ obtained from different window sizes t ∈ {1, 2, 5, 15} is plotted on 
the left and the shaded region is enhanced in the right plot. It shows that the 
aggregate power consumption differ in the oscillations before steady state is 
achieved. 
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Hence the kth order moment is given by, 

=dm x
dx

V m x kV m x( ) ( ) ( )k
i k i k

1 1
1 (A.37) 

which can be written in the form of the system of ODE of (16). The system of (16) consists of 2k equations and 4k unknowns. However, recall from 
the discussion in section II-C that = =g t g( ) 010 1 0 . Therefore, =m 0k

(1 )
which reduces the number of unknowns to 3k. Furthermore, owing to the 

decrease in temperature in 1′ state, x( ) 0k and is unknown, since there will always be some probability flux that crosses x . However, in a 
properly designed EWH, the long term mean upward temperature drift is positive and, the temperature of the tank will eventually reach +x . To 
obtain the remaining 1k linearly independent equations, consider an arbitrary boundary x such that < <x x0 with the condition (17). 
Evaluating (16) at =x x0 and =x xi gives the remaining equations necessary to obtain the moments of first passage time densities. □ 

B. Calculation of F F,1 0A A

Probability density function F s F s( ), ( )1 0A A corresponding to the 1 , 0A A of ARP are given by, 

= +F s G s m G s m( ) ( ) ( ) ,1 10 0
(01)

1 0 0
(01)

A (A.38)  

= +F s G s m G s m( ) ( ) ( ) ,0 01 0
(10)

01 0
(10)

A (A.39) 

where, G s G s G s G s( ), ( ), ( ), ( )10 01 1 0 01 are the transition probability functions obtained by solving first passage time problems as derived in Section 4, 
and m ij

0
( ) is the zero order moment of gij. The mean µ1A and µ0A associated with F1A and F0A respectively follows from (A.38), (A.39) after taking the 

expectation, 

= +µ m m m m ,1 0
(01)

1
(10)

0
(01 )

1
(10)

A (A.40)  

= +µ m m m m .0 0
(10)

1
(01)

0
(1 0)

1
(01 )

A (A.41)   
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