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ARTICLE INFO ABSTRACT

This paper presents an algorithm for the identification of parameters for a stochastic hot water end-use process
that drives a homogeneous population of thermostatically controlled electric water heaters (EWH). Usually, only
metered interval consumption data (kWh) is collected and the hot water end-use process is unobservable to
utility and aggregators. However, the availability of EWHs for demand response (DR) is closely coupled with the
hot water end-use process. In this context, the hot water end-use process is modeled as a two-state Markov chain
(Use / No use), which causes the thermostatic ON-OFF switching process to behave as a Markov renewal process
(MRP). A set of first passage-time problems is developed to obtain the moments of the transition probability
densities of the MRP. These problems are addressed by establishing a system of coupled partial differential
equations characterizing the temperature evolution of the EWH population. A key quantity in the methodology
for estimating the parameters is the total time an EWH is ON within a period of interest. It is referred to as the
total busy time. Total busy time in this approach is a random variable for which analytical expressions of the
moments are developed as a function of the metered window length. The latter expressions become the basis of a
hot water demand model identification algorithm which is validated using agent-based simulations of EWHs.
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1. Introduction

Connectivity is becoming ubiquituous and, with smart appliances
today, it is technically and economically feasible to leverage available
distributed energy resources (DERs), such as “smart” air-conditioners
and electric water heaters (EWH) to provide ancillary services using
demand dispatch [1]. In demand dispatch, the DERs are aggregated,
coordinated, and dispatched to provide grid services while taking into
account local quality of service (QoS) requirements for the end-users.
For example, the QoS requirement for EWHs dictates the temperature
range specifying the device’s thermostatic controller parameters needed
to ensure that water in the tank is maintained within a desirable tem-
perature range. Together with QoS requirements, the DER end-use
dynamics, such as hot water extraction rates from an EWH, place limits
on the feasible range of demand dispatch schemes. This is because QoS
specifications and end-use dynamics together determine the nominal
power consumption of the device. Since QoS specification (e.g., tem-
perature range) do not change over time, they are static and relatively
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simple to model. However, end-use is generally a stochastic process and
strongly affects nominal power consumption of a DER. Thus, having an
accurate estimate of the uncontrollable end-use process can be valuable
to predict performance of demand dispatch schemes.

Several DER control architectures have been proposed in the lit-
erature for demand dispatch schemes and a variety of local/distributed
control policies to model the aggregate response (or flexibility) of DER
populations [2-6]. Their overall aim is to utilize the flexibility available
from the DERs while preserving QoS. However, these aggregate models
assume that the underlying end-use process is known a priori, which in a
practical setting is generally not the case. In other words, the expected
capability of these demand dispatch schemes strongly depends on
knowing the end-use process. In this paper, we propose a method to
overcome this challenge by estimating representative end-use process
parameters for a population of EWHs only from measured electric uti-
lity meter data (kWh) and physical water heater parameters.

Aggregate models of DERs generally assume the underlying end-use
process to be white noise with drift that represents the fluctuations in
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energy due to uncontrollable end-user events as in [3]. The aggregated
heat loss or gain due to end-user events in the case of heating and
cooling loads such as electric space heaters and refrigerators can be
accurately represented by the white noise process. However, the energy
losses in an EWH are only due to: (i) water extraction from the tank and
(i) standing losses due to ambient conditions. Therefore, white noise is
not an adequate representation of the end-use process for EWHs [7].
In [8], the end-use process is described by a Poisson random pulse
(PRP) with randomized pulse amplitudes and widths, which is re-
presentative of the physics of water extraction processes [7]. While a
hot water end-use process consists of varying water extraction rates,
this paper focuses on a two state continuous-time Markov chain with
constant water extraction rates as a starting point for the challenging
stochastic parameter estimation problem [9]. Relatively constant per-
iods of hot water extraction rates is a reasonable assumption due to the
correlated nature of human activities over the hours of a day.

The literature on estimating end-use process parameters include
data-driven methods [10], where historical electric meter data is used
to develop regression-based models for load forecasting purposes.
However, these “business as usual” regression-based models are in-
sufficient to predict both DER behavior and the effect on QoS when
subjected to demand dispatch [9]. A method to generate hot water
profile based on average energy consumption per activity such as bath
and laundry is developed in [11]. Statistical models using time use data
of daily activities of household members gathered from surveys such as
American Time Use Survey (ATUS) data or time use data by Statistics
Sweden (SCB), to predict the controlled load behavior have been de-
veloped to tackle this modeling gap [12-15]. These household activity
data inform a model about the interaction between humans and their
appliances. Then, the models are aggregated to predict the energy
consumption of all residential households. While this approach is pro-
mising, it relies on high fidelity data, which is usually unavailable and
not generalizable.

The impact of utility control on the load behavior can be seen from
Fig. 1 which shows the aggregate power consumption of approximately
1700 EWHs in Vermont over several days. Daily profiles of power
consumption usually consist of a morning peak, between 7 am and 9 am
in Fig. 1 and an evening peak. In this figure, the utility turned OFF all
water heaters between 2pm to 6pm resulting in cold load pick-up set-
ting a peak right after 6pm. This peak is significantly different than the
one observed in the morning and is due to the type of demand response
program deployed by the utility. Note that the aggregate demand
profile of EWHs can be divided into hourly periods of relatively con-
stant demand as characterized by constant water extraction rates.
Therefore, capturing the underlying water extraction process is helpful
to predict even the controlled load dynamics as shown herein.

This paper builds on and extends the estimation methods presented
in [9,16,17] where physics-based models of electric space heaters are
employed. The estimation scheme first introduces a total busy-time
random variable defined as the total ON time of the heater within fixed-
time intervals. The rationale for defining this quantity is that by split-
ting the power consumption data of an electric water heater into per-
iods of stationary statistics, one can relate the total thermostat ON time
to the underlying likewise stationary water extraction statistics. Re-
cursive relations for the moments of the total busy time are then used to
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Fig. 1. Average power consumption of 1700 real EWHs in VT.
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develop an estimation algorithm for calculating the parameters of the
stochastic hot water end-use process [9]. This paper extends the esti-
mation scheme to the physically-based models of electric water heaters
with two key contributions:

(1) The analytical results from [7], which were only valid for low
water extraction rates have now been generalized to the case of arbi-
trary water extraction rates. This includes: (i) The generalization of the
coupled Kolmogorov equations representing the aggregate dynamics of
a homogeneous group of EWHs to the case of arbitrary water extraction
statistics; and (ii) the development of an adequate set of first passage-
time probability density functions that are used to obtain the moments
of the total ON time over fixed time windows.

(2) From the analytical contribution, a practically relevant identi-
fication procedure is developed and validated for estimating stochastic
parameters of the unmeasured, hot water end-use process based only on
interval meter readings and physical (tank) parameters for a homo-
geneous population of EWHs.

2. Overview of identification procedure

This section provides a overview of the inputs and outputs of the
identification procedure, as illustrated in Fig. 2.

2.1. Availability of the metered data

In general, gathering data on hot water end-use processes requires
expensive, device-level flow meters. In rare cases, sensors may be
available to measure water extraction rates for the entire residence (all
water) or device-level (hot water only) [18]. Furthermore, it can be
seen from Fig. 1 that the power consumption of electric water heaters
driven by the end-use process vary significantly throughout a day since
it is a non-stationary random process. However, it can be considered
stationary during durations of near-constant electric demand [7,17],
e.g. the morning peak between 7am and 9am in Fig. 1. Thus, we classify
the daily kWh meter data into periods of statistically stationary hot
water usage and propose the estimation strategy on one such period.
This strategy can easily be generalized to multiple distinct periods that
make up a representative day or a week.

2.2. The electric water heater model

The EWH considered herein consists of a first-order, simplified
model with just a single equivalent heating element and an “average,”
lumped temperature state. The hot water is extracted from the top of
the tank and the cold water enters from the bottom. The temperature
dynamics are governed by the following ordinary differential equation
(ODE),

dx(@ _ Pem(n)  x() —x) _ (x() _xm>vT)(t)
de coLn 7 60L ’ (€]

where x(t) is the average temperature of the electric water heater, x;, is
the temperature of the cold water entering through the tank inlet, x, is
the ambient temperature, ¢ = 4.186 [kJ/kg-"C] is the specific heat ca-
pacity of 50°C water, p = 0.988 [kg/liters] is the density of hot water, L
[liters] is the capacity of the water heater tank, P*® is the rated power
in kW of the heating element, 7 is the heat transfer efficiency, 7; is the
time constant representing the standing losses. The uncontrollable rate
at which hot water is extracted from the tank is given by
w(t): =w(t)q(t) [liters/min], where q(t) € {0, 1} is the logic state for
the hot water usage process, i.e., q(t) = 1, if water is extracted from the
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Fig. 2. Overview of the end-use process identification problem.
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tank at rate w(t) [liters/min] at time ¢; else w(t) = q(t) = 0. The EWH
operates in thermostat mode and m(t) € {0, 1} represents the physical
state of the mechanical relay (open = 0) at time t. The thermostat
control logic maintains the temperature within the user-specified, fixed
dead-band [x_, x;], x_ < x,. The logic switches from ON (m(t) = 1) to
OFF (m(t) = 0) at the upper boundary (x;) and from OFF to ON at the
lower boundary (x_).

This paper considers the case of a homogeneous group of electric
water heaters whose physical parameters and dead-band settings are
known from manufacturer specifications and user-preferences, respec-
tively. Energy measurements are then used as proxies for the time an
EWH is ON within a time window of interest and referred to as the total
busy time. The moments of the total busy time random variable are
derived in Section 5. The proposed estimation strategy, shown in Fig. 2,
takes as input the energy measurements and computes the total busy
time within successive time windows of interest. Statistics of the total
busy time along with the physical parameters of a homogeneous group
of EWH are used to estimate the parameters of the unobservable end-
use process, which is mathematically described in the next section.

3. Modeling of the hot water end-use process and estimation

This section describes the modeling of water heater end-use process
and the corresponding Markov renewal process (MRP) defined at the
switching instants of the thermostat. A set of first passage time pro-
blems are then presented to determine the transition density functions
of the MRP.

3.1. Modeling water heater end-use process

Consider the rate of hot water extraction from the tank of an in-
dividual EWH to be constant (i.e., w(t) = W). Then, the hot water end-
use process is either in demand (q(t) = 1) or not in demand (q(¢) = 0),
and evolves according to what is assumed to be a two-state ({0, 1})
Markov chain model q(t) (see [7]). The corresponding time invariant
transition probabilities are given by,

P(q(t+ h) =1|q(t) = 0) = Aoh + o(h) (2
P(q(t+h)=0lqg() =1) = Lh + o(h) 3

where h > 0 is a small time increment. The electric water heater op-
erating under this simplified demand process maintains the tempera-
ture within the deadband by the operation of the thermostat switch. A
Markov renewal process, y(t) is defined by recording the thermostatic
switching instants (m(t)) which occur at the edges of the deadband [7].
The Markov renewal process, y(t) consists of four states {0, 0’, 1, 1’}, as
illustrated in Fig. 3, where 1 represents the onset of a power con-
sumption without hot water use, 1’ indicates the onset of a power
consumption in the presence of hot water use. Similarly, 0 denotes the

Markov renewal process Power consumption
y(t) (measured)

woriid’
‘ m(t)
910’
I I

End-use process
(unobservable)

Fig. 3. State transition diagram of the Markov renewal process.

Electric Power Systems Research 189 (2020) 106625

onset of a power interruption with no hot water use and, finally, 0
indicates the onset of a power interruption but with hot water use. The
transitions between states can only occur at the edges of the deadband,
i.e. the switching instants of the EWH’s thermostat transitions from 1 to
0, if x(t) = x, without hot water use and transitions from 1 to 0’, if
x(t) = x; with hot water use. The remaining transitions follow in a
similar fashion. Note that Fig. 3 also includes the first passage time
probability density functions, g;(t), which are defined as,

gijd'r: =P[t<t<t+dry({)=]j], 1Y)

Vi, j={1,1,0,1}, where f is the first time the MRP y(t) switches to
state j given that y(t) has just switched to state i at ¢ = 0. The transitions
between the states 1 and 1’ and 0 and 0’ are not possible since the MRP
y(t) as defined, switches state only when the thermostat changes state,
at which time the end-use state g(t) is also recorded. More specifically,
&1 (1) = gp1(t) = oy (t) = gy (t) = 0. In the next subsection, the statis-
tical evolution of the ensemble of homogeneous EWHs is obtained from
two coupled Kolmogorov equations with boundary conditions. These
equations are then used to express the g; probability density functions.

3.2. Partial differential equation description of load dynamics

The probability density functions, f, f;, associated with the Markov
process consisting of the continuous state x(t), the discrete state m(t)
and the hot water end-use process q(t) are defined by,

£, )dA = PA<x(t) <A+ dA, m(t) =1, q(t) = 0] 5)
FA, 0DdA=PA<x(t) <A+ dh m(®) =i, q(t) = 1] (6)

for i = {1, 0}. The probability density functions satisfy the following
system of coupled partial differential equations [7],

9 =27 7
0= Vi f (e 0+ AT (0

)
where,
- fix, t)
f o) =) , Vi = diagfy;, v},
k £Go 0 e
- _ rate
A =[Ao /10]7vi=x_ xa_(P )i,
A A T coLn
— rate
v == x“—(P )i+A,
T cpLn (8)

for all i € {0, 1}, where A: =%W is the heat loss from the tank due
to hot water extraction. In A, note that variable x(t) has been replaced
with constant x_ in order to make the analysis more tractable. This is an
acceptable approximation since the exact loss rate should not vary too
much over a small (a few degrees) temperature deadband. The cooling
rates are represented by, vy, vy < 0 when thermostat is ON, and vy, vy
when the thermostat is OFF. The conditional transition probability
functions g;(t) are obtained by the first passages of the x(t) temperature
process to the x_ or x;, boundaries. The corresponding transition
probability functions are given by (see [7])

gy(t) = vifl:(x+’ t)s (9)
g =vfite—,n), ¥ i={1,1}j={0,07% (10)

In the next subsection, we use (7), (9) and (10) to derive a set of re-
cursive equations yielding analytical expressions of any order moments
of the g;(t) first passage-time densities.

3.3. High water usage case and the first passage time problems

The previous section introduced the coupled system of PDEs that

govern the time evolution of the probability density functions f(x, t)
away from the edges of the thermostat deadband. It should be noted
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here that v; < 0 and vy < 0 represents the case of low hot water use in
which the temperature of the tank increases in the presence of hot
water use. However, during periods of high hot water use, the tank
temperature decreases instead and is characterized by v; < 0 and
vy > 0. The first passage time analysis for the case of lower hot water
use was developed in [7]. In this section, the focus is on the more im-
portant case of high hot water use in which the temperature decreases
in the presence of hot water use even though the thermostat is ON
which is represented by v; < 0, vy > 0 in the system of coupled PDEs.

Theorem 1. Let iy (x): =[m® (x), m,El/)(x)]T be the vector of moments of
the kth order corresponding to the vector probability density function:

?1 (x, t), k > 0. The vectors my(x) satisfy the following recursive system of
linear ordinary differential equations (ODE):

d —
— iy (x) = Vi AT (x) + Vi, (x, 0),

dx an
and for all k = 1, we have

d

o () = VI AT () — KV e (), 12)

with the absorbing boundary conditions f, (x,, t) = 0 and f, (xo,t) = 0,
where — o0 < Xy < X_, 0 € R¥! and the initial condition,

2 N _|6Gc—x0)
fon -[153)

13
for the first passage time in 1 and
2 0
(x, 0) =
e 0 [50‘"‘*)] 14)
for the first passage time in 1’. Further defining,
=
GO = [ne(e) mi(x) - ()], 15)
it obeys the following ODE,
d = -
aﬁc(x) = A Li(x) + Beuy(x)
[viiam o 0 0
vit viiAT o 0
Ac = o 2yt VAT 0
0 0
| o o kVTY VAT
- -
vit o - 0 f 0
Be=| 0 I 0luw=| 0
| 0 0 O I 0 16)
with the condition,
lim T (x) = 0 <x <
im I'(x)) =0, —o0 <Xxo<X_.
e 0 an

Proof. See Appendix A [

It should be noted here that in the case under consideration of high
water usage, MRP y(t) can only exit from 1 and 1’ in state 0, owing to
the fact that temperature always decreases in the presence of water
demand. Furthermore, one can derive a similar system of equations for
the moments starting at O or 0’. It is omitted for lack of space.

The previous theorem provides initial conditions, boundary condi-
tions and a system of linear ODEs to carry out first passage time com-
putations under high water extraction rates. By solving the system of
ODEs in (16) one can derive analytical expressions of the moments of
the first passage time densities g;. First passage time process is con-
ceptually depicted in Fig. 4. It follows the temperature of an EWH and
corresponding MRP states visited, as it enters the lower edge (x_) in

Electric Power Systems Research 189 (2020) 106625
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Fig. 4. This figure illustrates the first passage time process starting at the lower
edge of the deadband (x_) in state 1 (thermostat ON and without hot water
use). The first passage time corresponds to the first time the temperature
reaches the upper boundary (x,) of the deadband.

state 1 and transitions to O at the top edge (x,) of the deadband. Within
the deadband, temperature decreases with rate — vy when water is
being extracted from the tank and increases otherwise with rate — v;.
The particular set-up of Fig. 4 is used to obtain the moments of g;o and

810
4. Ilustrative example

In this section, an illustrative example is presented for the first
passage time moment calculations described in the previous section.
These moments lead to approximate analytical expressions for the
transition probability density functions g; that are essential to relate the
statistics of the power consumption data to the end-use process.

4.1. Solution of first passage time problems

Consider a homogeneous group of electric water heaters with
cooling rates vy, vy and vy, vy and simplified case of two moments, i.e.,
r71)0(x) and ﬁl(x). The linear system (16) can be written for the first
passage time in 1 as,

%ﬁ(x) = AT - BT

(18)
B ko
" 1%
Lo A 0 0 )
_ vy vy _ V- 0
S B _ﬁ’B‘_[" I]’
v, v, v,
o L _A A
| vy vy vy | 19)
T =|h0 ,Vl=[”01 0}
1%14
0 (20)
= mP )| - m{® (x)
iy (x) 0, , 1 (x) D)
o0 (x X
1)
T = |06 xro [T Ay
AO —ll (22)

o
where zero vector 0 € R>*!, zero matrix 0 € R?*2, and I is identity
matrix. This system has two repeated eigenvalues:

_ ot A A v+ % v
1%0%14 Ao‘l‘lll lo+lll

i 23)

»=0. 29



A. Khurram, et al.

The average heating rate should be positive or equivalently the average
cooling rate should be negative, because the probability flux should
escape entirely from the upper boundary (x = x,). The mathematical
consequence of this fact is that the nonzero eigenvalue (y;) of the
system should be positive (y; > 0) and the average cooling rate

(e wia)
vy + v | <0,
Ao+ A4 Ao+ A4 (25)

which indeed implies that y; > 0. Solving the initial value problem
described in the previous section results in the following zero order and
first order moments,

s 1T
mo(x4) :[_‘Tl’ 0]

T
1 A
) [() T, °]

o+ A Ao+

(26)

27)

Similarly, first passage time calculations can be performed for the 1’
state. For the remaining states (0, 0’) a similar procedure is used and its
details are omitted here.

4.2. Approximation of g; by moment matching

The conditional probability density functions (pdfs) g; are ap-
proximated by the moment matching techniques, in which the pdfs are
represented by the approximated functions é\ij whose moments match
those obtained from the solution of the first passage time problems. In
this paper, only the zero and first order moments are considered re-
sulting in the following Markovian-type (exponential) approximation of
the pdf,

ij ij

A my mg
bin="0 exp{——,,.t}

my my

where m{, mJ are the appropriate zero order and first order moments
of g;. In Laplace domain,

ijy2 i\
8,6) = (("’Oy )(S+ ”‘—01)
my my (29)

This result can be extended to generalized phase-type distributions by
matching any number of moments depending upon the desired accu-
racy and is the topic of ongoing work [19].

(28)

5. Parameter estimation from total busy time

In this section, we bring together the results from prior sections and
propose an estimation strategy based on the available data. The MRP
defined at the switching instants of the thermostat classifies the process
into four states {1, 1/, 0, 0’}. However, the available utility grade power
consumption data cannot distinguish between 1 (thermostat ON,
without hot water use) and 1’ (thermostat ON, with hot water use) states
since the hot water end-use process is not observed. Similarly, the states
0 and 0’ are indistinguishable from measurements. However, in the
stationary steady-state of the MRP, the total ON time random variables
become identically distributed since the state at the start of a mea-
surement interval becomes random with a common distribution.
Therefore, in the stationary steady-state the states 1 and 1’ are com-
bined into an ON state with a density obtained by combining the 1 and
1’ densities with weights m®® and m{®"’ and similarly with states 0 and
0’ which are probabilistically combined into an OFF state. The ther-
mostat ON and OFF are represented by 14 and 04, respectively, and the
resulting process is a 14 — 0y alternating renewal process (ARP).
Subscript (.)4 is added to distinguish between the states of the MRP and
the ARP. The stationary ARP statistics are then used to identify the
parameters of the underlying hot water end-use process.

Electric Power Systems Research 189 (2020) 106625

5.1. Moments of the total busy time

The parameters of 1, — 0, ARP in its stationary steady-state which
is blind to the initial MRP state at the start of power measurement
windows, are now identifiable from the data available for estimation.
Furthermore, let £(t) = fo' m(7)dr be the total time the thermostat is
ON within a time period of length t. This variable £(t) is also called total
busy time random variable over an interval of length t. Recursive ex-
pressions for the moments of £(t) in steady state were derived in [9] that
do not require the knowledge of the state of the thermostat at the start
of the window. The first-order and the second-order moments of £(t), in
the Laplace domain, are obtained after application of [Theorem 2 in 9]
resulting in the following equilibrium distribution expressions,

My, 1
E, t =———,
AlEM1(s) oy + g, 30)
2 o VO S
Eq[§2(D](s) = oty 5
2 (1 - F,(s))A = F,(s))

(y, + Ho)st (1= Fou(OF, () (€30)

where F(s) = L[f,(t)], i € {1a, 0a}, is the Laplace transform the pdf
associated with 14 and 04 states, and y; = E[f; ()], i € {14, 04} with E[.]
being the usual expectation operator. A short description on computa-
tion of Fy(s), y; for i € {14, 04} is provided in Appendix B. We are finally
in a position to estimate A, A, from the moments of £(t) as is presented
next.

5.2. Numerical validation of parameter estimation

The parameter estimation strategy is demonstrated on a period of
relatively stationary water demand for example, the morning peak
between 7am and 9am in Fig. 4. The case here is that of high water
usage with the end-use parameters ¢ = {1y, 4}, for which the transitions
probability functions (gy) are derived in 4. Data for this type of esti-
mation can be obtained by measuring the aggregated power con-
sumption of a group of EWHs within the same period of interest over
the course of several days, and then appended together. Following this
line of thought, 10,000 EWHs are simulated for 16 h, with tank size 250
litres, heating element rated at 4.5 kW, hot water rate of extraction of
5.4 litres/min, ambient and inlet temperature 21.1°C, thermostat set-
point and deadband adjusted at 51°C and 6°C respectively. Aggregated
power consumption of this group is measured where each 2 h period is
assumed to represent a single day. The simulated data then represents
the aggregate power consumption over 8 days and in what follows, we
show that this data at least in the simulation environment is sufficient
to accurately estimate the unknown ¢.

The proposed estimation problem determines ¢* = {15, A;"} that
minimizes the loss function,

_ argmin

p 17 ¢) = 7 (& PR 32

¢*
A

where 7 (t, ¢) = (Beg[E(D)1(t, $), Beg[E2(D](t, $))T is the empirical
mean and second moment obtained from the data,
T, ¢) = (Eeq[E(®)](t, ¢), Eeq[E2(1)1(¢, $))T is the analytical mean and
second order moment from (30), (31). The estimation problem (32) is
solved using 1sqgcurvefit in Matlab for t € {1, 2, 5, 15} min. It can be
seen from Table 1 that the estimated q/b\ are close to true ¢. An im-
mediate observation from the results in Table 1, is that shorter windows
result in the estimated parameters closer to the true values. This type of
analysis will enable the utilities to collect appropriate metered data that
results in reasonable estimates of the end-use consumption. Therefore,
we show next the accuracy of the estimated :;AS in the context of cold-
load pickup of Fig. 1.

The objective now is to show a potential application of the
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Table 1
Comparison between estimated and actual parameters.
Window size Actual 1 min 2 min 5 min 15 min
Ao 0.0014 0.0014 0.0016 0.0021 0.0029
M 0.0083 0.0084 0.0095 0.0120 0.0170
s
=40 RN == = actual
5 estimated
230 EWHs are forced
2 OFF for 4 hours
@20
5 e S S
g10r |
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g 0 I —
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E or 4 hours == = actual
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Fig. 5. Aggregate power consumption of the group of EWHs is shown here
when all EWHs are forced OFF for 4 h. The window size for estimation is 2 min.

actual — — 1min 2 min 5 min — — 15 min
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Fig. 6. The aggregate power consumption of EWHs using the parameter esti-
mates of ¢ obtained from different window sizes t € {1, 2, 5, 15} is plotted on
the left and the shaded region is enhanced in the right plot. It shows that the
aggregate power consumption differ in the oscillations before steady state is
achieved.

estimation scheme in demand dispatch. Consider the same group of
EWHs that generated the data for estimation under constant water
demand. After 2 h all EWHs are forced OFF for a period of 4 h and
subsequently allowed to turn back ON, mimicking the direct load
control scheme from Fig. 1. Aggregate response of EWHs for the actual
and estimated parameters is shown in Fig. 5 with ¢t = 2 min. Clearly, the
aggregated power demand and the mean tank temperature match well.
Similar results are obtained for t € {1, 5, 15} min. The difference
however, is in the transient response after EWHs are allowed to turn

Appendix. A. Proof of theorems
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back ON, as shown in Fig. 6.

The estimated $ differs slightly from the true ¢ as seen in Table 1
even though the steady state response of the estimated system is exact.
This is because the estimated $= {/fl, /1/\0} corresponds to the same
steady state of the end-use process as the actual ¢. The difference in the
transient response, as shown in Fig. 6, is apparent from the nonzero
eigenvalue y; in (23). For the window size of 15 min, it follows from
(23) that the nonzero eigenvalue obtained from the estimated para-
meters is twice the eigenvalue obtained from true parameters. One
possible explanation for this behavior is that shorter windows corre-
spond to increasing the sampling frequency of the ARP. Therefore,
several window sizes may result in the same occupation behavior of the
ARP. Furthermore, the estimates can be improved by including the
correlation information between occupation time of successive win-
dows for estimation as in [9]. However, further work is required to fully
characterize the impact of this aliasing-type effect observed here.
Nonetheless, the estimated values are helpful to model steady-state
demand and average EWH QoS under homogeneous conditions.

6. Conclusion and future work

This paper develops preliminary results for an identification algo-
rithm to estimate the parameters of an underlying hot water end-use
process of electric water heaters from energy measurement. Unlike
prior work in the area, which focused on low hot water extraction rates,
this identification procedure has been generalized herein to include
arbitrary extraction rates and validated within a conventional DR set-
ting for 10,000 EWHs. The estimated parameters serve to accurately
model the dynamics of a homogeneous fleet of EWHs and is valuable for
utilities to predict the controlled load behavior when subjected to de-
mand dispatch.

Future work seeks to extend the procedure to estimate the water
intensity rate, w(t), to relax the homogeneous assumption on the fleet,
and study the role of uncertainty in the physical EWH (tank) parameters
on the end-use process estimates. Finally, we will incorporate actual
interval meter data from a utility partner to estimate and optimize
demand dispatch capability from a fleet of EWHs and compare against
similar estimates from “black box” learning-based methods.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Proof. (Theorem 1) Upon taking the Laplace transforms of the partial differential equations in (7) for i = 1 results in

N
D)y = AOF (5, 9) = VT 3, 0)
x
Since the kth order moment is defined as,
— X akﬁ (x, s)
m(x) = (=1) T s

s=0

V k=0,1, -,

(A.33)

(A.34)

therefore, setting s = 0 in (A.33) yields the linear first order ODE of zero order moment (ﬁo (x)) as,

dﬁl)o(x) —

0 = v T () ViF (x, 0%).

(A.35)

The first order moment is obtained by taking the derivative of (A.33) w.r.t. s and consequently setting s = 0 which results in,

diiy (x) _

W —V AT (x) = Vit ().

(A.36)
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Hence the kth order moment is given by,

dm (x)
" —Vi N (x) — KV i1 (x) (A.37)

which can be written in the form of the system of ODE of (16). The system of (16) consists of 2k equations and 4k unknowns. However, recall from

the discussion in section II-C that g, (t) = g, = 0. Therefore, mk( "’ — 0 which reduces the number of unknowns to 3k. Furthermore, owing to the
decrease in temperature in 1’ state, [}(x_) # 0 and is unknown, since there will always be some probability flux that crosses x_. However, in a
properly designed EWH, the long term mean upward temperature drift is positive and, the temperature of the tank will eventually reach x,. To
obtain the remaining 1k linearly independent equations, consider an arbitrary boundary x_ such that — oo < x¢ < x_ with the condition (17).
Evaluating (16) at x = xo and x; = x_ gives the remaining equations necessary to obtain the moments of first passage time densities. []

B. Calculation of Fy,, F,

Probability density function F, (s), Fo, (s) corresponding to the 14, Ox of ARP are given by,
Fiy () = Gio(®)m§™ + Gro(s)mg™”, (A.38)

Fop (8) = G (&)m™ + Gor(s)m§'™, (A.39)

where, G1o(s), Go1(5), Gro(s), Gor(s) are the transition probability functions obtained by solving first passage time problems as derived in Section 4,
and méij) is the zero order moment of g;. The mean u, A and Ho, associated with Fy, and F,, respectively follows from (A.38), (A.39) after taking the
expectation,

éol)ml(lo) + méol’) ml(l’O),

Wy, =m (A.40)
Mo, = m{m + m{Om 0, (A.41)
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