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A Packetized Energy Management Macromodel
With Quality of Service Guarantees for
Demand-Side Resources

Luis A. Duffaut Espinosa

Abstract—Using distributed energy resources (DERs), such as
thermostatically controlled loads (TCLs), electric vehicles (EVs),
and energy storage systems (ESSs) as a way to manage demand
has been known for decades. A demand management scheme that
explicitly considers the individual DER’s local quality of service
(QoS) is known as demand dispatch. Packetized energy manage-
ment (PEM) is a demand dispatch paradigm that borrows packet-
based concepts from wireless communications to dynamically man-
age fleets of DER at-scale and in realtime via small, discrete
fixed-duration/fixed-power energy packets. PEM addresses QoS
in a bottom-up fashion by having a coordinator authorize/deny
incoming requests from DERs to consume energy packets. This
manuscript extends prior work on modeling a large-scale pop-
ulation (i.e., macro-model) of homogeneous TCLs and ESSs op-
erating under the PEM paradigm. In particular, we extend the
macro-model methodology to include deferrable loads (DLs), such
as EVs, together with analysis of QoS guarantees. Comparisons be-
tween an agent-based (micro-model) simulation and the proposed
macro-model are presented to validate modeling accuracy and QoS
guarantees.

Index Terms—Distributed energy resources, packetized energy
management, demand dispatch, relay control, modeling.

ACRONYMS
CMC  Controlled Markov chain
DER  Distributed energy resource
DL Deferrable load
DR Driving mode
EWH  Electric water heater
ESS Energy storage system
EV Electric vehicle
MTTR Mean time-to-request
PEM  Packetized energy management
PRP Poisson rectangular pulse
PV Photo-voltaic
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NOMENCLATURE

Zero matrix of size N-by-NV.

Identity matrix of size N-by-N.

Column vector of ones of length V.
Proportion of requests accepted for h €
{c,d}.

Proportion of population in h € {c,d}
switching to standby.

Switching mode of n-th DER.

Frequency that defines MTTR at the set point.
Number of charge (c) or discharge requests
(d).

Standby, charging, and discharging energy
loss parameters of n-th DER.

i-th Poisson process with parameter A;.
Total number of DERs.

Normal distribution with mean y and stan-
dard deviation o.

Transition probability from bin 4 to bin j for
a specific h € {c,sb,d}.

Request probability of standby states for h €
{c,d}.

Energy transfer rates of the n-th DER when
charging (c) or discharging (d).

Aggregated demand power.

Balancing signal or reference power.

Vector of population percentages for h €
{c,sb,d}.

Power input of n-th DER.

End-user event process of n-th DER.

Finite set of states with elements x} for h €
{c,sb,d}.

Timer state for charging (h = ¢) or discharg-
ing (h = d) modes.

Dynamic state of n-th DER.

Dynamic state update of n-th DER.

Lower and upper dynamic state boundaries.
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z5et Deadband set point of n-th DER.
ZSB, ZDR Standby (SB) and driving (DR) mode for
EVs.

1. INTRODUCTION

INCE the early 1980s, aggregated DERs have been known
S to be capable of significant actuation in bulk power sys-
tems [1]. Yet, since then, the technology deployment on this front
has been underwhelming. However, recently, demand manage-
ment has become the centerpiece of bold renewable portfolio
standards as the means to integrate large-scale, intermittent
renewable generation. In [2], the authors illustrate how fleets of
DERs can be employed in transmission and distribution system
operations to manage the variability from renewable generation
and to provide relevant grid services. A fleet of DERs in this
context may consists of TCLs, such as electric water heaters
(EWHs), bidirectional ESSs, such as Enphase’s AC Batteries,
and DLs, such as EVs. These principles were expanded upon
in [3] where a state-bin transition (macro) model was developed
for a fleet of TCLs. The TCLs then transition probabilistically
between ON and OFF based on a broadcasted control signal.
While this framework depends on solving a challenging state-
estimation problem and may not always be observable [4], it has
been analyzed and extended to include interesting use cases [S]—
[7]. Related works with state bin transition models of TCLs
has also focused on higher order models [8], and compressor
constraints [9], and analyzing the aggregation abstraction error
for populations of TCLs [10].

Ineffective management of QoS will drive DER owners (i.e.,
humans) to permanently opt-out of the scheme, which reduces
the availability of flexible resources and limits the long-term
viability of DER coordination programs. A demand manage-
ment scheme that explicitly considers QoS is known as demand
dispatch [11]. The work based on [4] employs a novel mean-
field model that via linearizations can be well-approximated by
a single-input, single-output (SISO) model for fleets of pool
pumps, fleets of TCLs, and fleets of ESSs [12]. The demand
dispatch approach then broadcasts a single scalar control signal
that perturbs the transition probabilities of all DERs of the same
type (from a given baseline) and uses measured power of the
fleet as feedback. This line of work has since been expanded to
include opt-out control to improve QoS [13] and device-level
filter design to consider heterogeneity in the fleet [14].

This manuscript focuses on a demand dispatch framework that
uses low-bandwidth, bidirectional communications between a
device and the coordinator and also includes QoS guarantees
via opt-out control. It is called packetized energy management
(PEM) [15]-[18]. PEM leverages packet-based strategies from
random access communication channels that have previously
been applied to the distributed management of wireless sensor
networks (i.e., similar to ALOHA protocol, but with multiple
channels). PEM enables the delivery of energy to DERs via
multiple fixed-duration/fixed-power (charging or discharging)
energy packets, similar to how digital communication networks
enable the transmission of small, kB-scale data packets rather
than bulky files. Unlike other approaches, PEM is device-driven
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and does not broadcast a control signal to all DERs. Instead,
PEM, in bottom-up fashion, is designed to have each DER prob-
abilistically request an energy packet from the coordinator based
on the DER’s local need for energy. This gives the coordinator
the ability to respond in realtime to incoming (asynchronous)
packet request based on grid and/or market conditions. Other
work related to packet-based coordination is [19], where a
packet control algorithm is proposed that requires just binary
information from each DER at each time instant (in bottom-
up fashion) and with the drawbacks of synchronized packet
acceptances and the need for continuously queuing packet re-
quests, which serves as memory but creates delays in service.
This manuscript presents a complete macro-model for PEM
for diverse demand-side resources. Specifically, the technical
contributions are:

1) Generalized modeling of DER end-user events is pre-
sented in the form of Poisson rectangular pulses (PRPs)
and analysis provides key event statistics that are used to
improve modeling of transition probabilities.

2) Development of a generalized bin transition macro-model
of a fleet of diverse DERs under PEM. Unlike the authors’
prior work in [16], this macro-model is now able to de-
scribe a fleet of packetized EV chargers by including a new
explicit embedding for uncontrollable transitions between
modes of operation, such as “driving” and “charging.”

3) Analysis of QoS guarantees are provided by including
opt-out dynamics and bounds on uncontrollable end-user
events.

4) Simulation-based analysis provides validation of the
macro-model with deferrable loads and QoS results.

The manuscript is organized as follows. Section II provides

a review of PEM fundamentals. In Section III, a description
of end-user events for DERs is given and it is followed by
the development of a bin transition Markov model for PEM.
Section IV presents analysis of QoS guarantees under PEM
with particular emphasis on the case of DLs, such as EVs. The
conclusions are given in the final section.

II. FUNDAMENTALS OF PACKETIZED ENERGY MANAGEMENT

The following high-level description summarizes the bottom-
up approach that is PEM and is detailed in [15], [16]:

1) A DER estimates its local state of charge, SoC.

2) If the SoC is within a predefined range of comfort, the
DER, based on its state, probabilistically requests to con-
sume energy from the grid at a fixed rate (e.g., 4 kW)
for a pre-specified epoch (e.g., 5 minutes) to beget an
energy packet (e.g., 0.33 kWh). If the SoC exceeds a local
pre-defined range (e.g., too low), the DER automatically
opts out of PEM (to guarantee QoS) and reverts to a default
control mode (e.g., charges) until the SoC is returned
within limits when it opts back into to PEM.

3) If a request is received, the coordinator or Virtual Power
Plant (VPP) either accepts or denies the DER’s packet
request based on grid or market conditions. If the request
is denied, go to 7). If the request is accepted, consume the
energy packet and then go to 7).
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Fig. 1. Closed-loop feedback system for PEM with P provided by the grid
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Fig.2. Illustrating the charge/discharge energy packet request rates and MTTR

for a generic packetized DER. Note that (3) is represented by the blue line (left
to right top plot). Top plot gives the effect of local state z,, (e.g., state-of-charge)
on the packet request probabilities and bottom plot provides the corresponding
MTTR of a packetized DER under PEM.

The above scheme can ensure consumer’s QoS for a heteroge-
neous fleet of electric water heaters by including the opt-out con-
trol when the SoC falls below a certain pre-defined threshold. At
the same time, randomization is injected to the request rule based
on the local SoC, which limits synchronization and promotes
equitable access to the grid. Fig. 1 illustrates the closed-loop
system under PEM.

In a fleet of diverse DERSs, the general discrete-time dynamic
model for the n-th DER having SoC z,, is given by

28 = fu(2ns dn, PRy IS  wn), )

where f,, is a one-dimensional mapping (usually linear or
bilinear), w,, is the parameter mapping end-consumer usage
to the energy state, Py and Py are the energy transfer
rates of the n-th DER when charging (c) or discharging (d),
respectively, and ¢,, is the hybrid state of the DER dynamics.
Here ¢,, take values in the set {c,sb,d} that corresponds to
the {charge, standby, discharge} modes, respectively [15], [16].
In this manuscript, the focus is on EWHs, ESSs, and EVs (as
deferrable loads). The latter represents the first instance of EVs
for a PEM macromodel.

Since EWHs were presented in [15], [16], consider (1) for
an ESS with background power usage w, € R and charge
(discharge) rate limits of P (Pj%) > 0. Then,

Z:; = Msl,;nZn T Ug, . nNb,,n + Wn, (2)

where ug,, n is Py for ¢, = ¢, —P§"s for ¢, = d and 0 for
¢pn, = sbin [kW], and 1) 1, 7, and 1q ,, are the standing losses,
charging, and discharging parameters, respectively. Herein, an
ESSis modeled as a bidirectional battery, in which, simultaneous
charging and discharging are not possible. Fig. 2 illustrates the

ESS probabilistic request mechanism.
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In a similar manner, an EV is modeled as an ESS, however,
driving is assumed the only means of discharging.! Therefore,
EVs are modeled as in (2), where ¢,, € {c,sb,d} is the hy-
brid state corresponding to charge/standby/driving, respectively,
ug, n = Po5 [kW] is the control input equal to the EV’s
charging rate when ¢,, = ¢ and ug, », = 0, otherwise. A key
difference between ESSs and EVs is that w,, is dependent on
¢n. That is, w, = 0 for ¢, = {c,sb} and w,, # 0 is the power
consumed by the EV’s battery when driving (¢,, = d). Given that
the timescale of interest in this work is hours and minutes, EVs
in this manuscript assumes no standing losses (i.e., 15,5, = 1).
Since we will be modeling a population of EVs, we employ the
simplifying assumption that the (average) discharging rate, w,,
is a constant value based on the notion of the (average) driving
speed of EVs. For example, at a speed of 50mph, the discharging
rate is approximately 7kW, which provides 3 hours (or ca.
150 miles) of continuous driving for a battery with capacity of
22.5kWh, which is reasonable on average [20]. This assumption
can be relaxed by considering a distribution of driving rates
rather and is a topic for ongoing work and outside the scope of
this manuscript.

In this context, the discrete-time implementation of PEM
assigns a probability of requesting access to the grid to the
packetized load n based on its local SoC z,[k| € [z,,,Z,] and
desired set-point zi*' € (z,,,Z,) during time-step k (over in-
terval At). This request probability has been defined by the
cumulative exponential distribution function, P(z,[k]) :=1 —
e #EnlFDAL where the rate parameter (2, [k]) > 0 is depen-
dent on the SoC. Denoting by PJ'(n|Q) the probability that
DER n requests a packet for consumption (h = c) or injection
(h = d) given condition @ is satisfied. While any request
probability function would suffice, the key is a mapping of
the SoC to the request probability that considers the boundary
conditions:

D Pn|zalk] S 2,) =1 A Pin|zalk] 2 2,) =0,

i) Pi(n|zufk] <2,) =0 A Pln|z.[k] >z,) =1,
from which ) gives rise to the following helpful design of
w(zn [k]) for consuming a packet:

11(zn[K])
0, if 2, [K] > Z,,

= Cmp (Egeld) (E2), itk e zom) O
00, if z, k] < z,

where mp > 0 [Hz] is a design parameter that defines the mean
time-to-request (MTTR) at 2. For example, if one desires
a MTTR of 5 minutes when z,[k] = 25 then mp = 55Hz.
The design of u(z,[k]) for injecting a packet is described in
similar fashion, but with boundary conditions i) above. Fig. 2
maps boundary conditions to charging and discharging packet
requests. Next, we present a general model for DER end-use
events, which is then embedded in a state bin transition model
for PEM for a large population of DERs.

"'We do not consider Vehicle-to-Grid (V2G) capability in this model, but could
be included in future work.
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III. STATE TRANSITION MODEL UNDER END-USER EVENTS

This section develops a state bin transition macro-model for
a large population of packetized DERs, which explicitly cap-
tures the unique packet request-notification dynamics inherent
to PEM. In particular, the cases for TCLs, ESSs and EVs are
provided. A macro-model for a diverse population of multiple
DER types with charging and discharging is comprised of a
finite number of homogeneous populations of DERs coordinated
under the same VPP. However, each class of DERSs is affected by
different types of end-user events, which makes the aggregation
of homogeneous DERs behave differently depending upon the
DER class. Therefore, the discussion is initially focused on
the modeling of end-user events: hot water usage, unscheduled
power consumption/injection, and driving behavior.

A. Modeling End-User Events for DERs

The end-user events are uncontrollable and modeled employ-
ing a simple birth/death stochastic differential equation for the
process, wy, (t). In this regard, the main assumption for choosing
a user model is that water consumption starts with certain
probability and stops with another. If one thinks of starting
(stopping) water events as independent from each other, then a
reasonable assumption is that these occur with an exponentially
distributed inter-arrival time. This amounts to a Poisson process
for starting water events and another for stopping water events.
The parameters of these two processes can be chosen so that
the average time between start and stop events is related to the
average historical usage at some time during a 24-hour period.
These assumptions permit to formulate a model for a process
of this kind in a manner that the aggregate statistics of the
aggregation of a number of these processes can be computed
analytically. For the sake of simplicity, the 24-hour variation is
neglected in our simulations, however, the intensity of usage
is modeled with an appropriate random variable whose mean is
fixed. To clarify notation, the subscript n is omitted hereafter as
this section focuses on a single DER at first (and later we extend
to a population average). Assume that there exists an appropriate
probability space (2, P, F), where € is the set of events, F
a filtration, and P the probability measure of elements in F.
For this purpose, a Poisson rectangular pulse (PRP) stochastic
differential model is employed [21]. That is,

dw(t) = (v(t) — w(t)) dN1(t) — w(t) dNa(t),  (4)

where N7 (N2) is an independent, stationary Poisson point
process with constant rate parameter A1 (i2), representing the
starting (stopping) of a random end-user event and v(t) is a
random variable independent of N; and Ny that describes the
intensity of the end-user event and is appropriate for the type of
DER under study. For example, with an ESS, v may have a sym-
metric probability density function with mean approximately
zero and with an EV, driving behavior can be approximated as
(4) with v as a random variable corresponding to the driving
speed of the EV. However, EVs are considered a special type
of DER in that they become unavailable to PEM when driving.
This means that when an EV end-user event occurs the EV’s
hybrid state change from sb to d, and when driving concludes d
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to sb. This mobility is a fundamental feature that differentiates
EVs from other DERs.

The statistics of the aggregated behavior of end-user events
are employed in the next section for the computation of the
(average) transition probabilities for a fleet of DERs.

1) TCL and ESS Populations: A reasonable assumption is
that the end-user event for each DER are independent and
identically distributed random processes. Denote the expected
value of the random process w as w(t) := Efw(t)]. Due to the
assumed independence of the processes N1, Ny and v in time,
one can compute the expected end-user event for each DER as

d%it) = (0(t) —@(t))A1 + @(t) 2. )
The solution of (5) when w(0) = 0 is
'lf)(t) = E['U] Al (1 — exp(_()\’l + )\42)0)

A+ Ao

The expected event reaches steady state as ¢ goes to infinity.
Hence, the mean of end-user event in steady state is

E[U])\,l
A+ Ao

The next theorem describes the probability distribution of these
events as the number of devices increases.

Theorem 1: The steady-state aggregation of individual end-
user events, w, is distributed as N (fiy,, 04, /v/Ne), where N, is
the total number of end-user event processes and (., and o, are
the corresponding expected value and standard deviation of the
process w in steady state.

Proof: The proof is based on deriving the differential equa-
tion for the characteristic function of w in (4) from a direct
application of the Itd chain rule for jump processes [22]. Let
F.(w) = €% then

d et — (FK(U) _ Fﬁ(w))le +(1- Fn<w))dN2

(6)

Wggt 1= tlig.lo 'Ll_}(t) =

By definition, the characteristic function of w is given by
E[F.(w)] =: Uy(k,t) and E[N;(t)] = A;. It then follows that

A t
% - \Ilv(ﬁat))‘l + Ao — \Pw(ﬁat)()‘-l + )‘-2) (7N
In steady state, %(t”’t) = 0. Thus,
A U, (Kk)A
W, 00) = 22 0ol

(2 + 22)

Clearly, the moments of w in steady state can be obtained by
computing E[w"] = (—4)"dW,(k, 00)/dt|,.—0. A direct appli-
cation of the central limit theorem for i.i.d random variables
completes the proof given that in steady state all end-user events
are independent of each other and identically distributed with
the distribution associated to the solution of (7). Hence one can
consider, on average, that a single DER is driven by a process
w o~ N (o, o). [ |

The previous theorem simply states that the aggregation of
PRP realizations behaves on average as a Gaussian process. It
also allows the computation of PRP aggregation statistics, which
is illustrated next in Example 1.
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Fig. 3. PRP simulation. (Top) Realization of one PRP using (4). (Bottom)

Average of 2000 end-user events modeled by PRPs compared against the
aggregation given in Theorem 1 with same parameters as in Example 1.

Bom  4pm Gpm 12am
(b) Hour

Fig. 4. a) Simple driving model. zgp is the state in which an EV is in standby
mode, and zpgR is the state representing when an EV is in driving mode. b)
NHTS data indicating the average number of arrivals and departures over a 24
hour period [20].

Example 1: If v ~exp(A), then p, =ip and o, =
Ay/2p — p?, where p := Mﬁ:h. In Fig. 3, the average of 2000
water usage profiles generated following (4) is compared against
the aggregation model given by Theorem 1 with A = 2.1 liters
per minute, A1 = 1/3600 sec™! and Ay = 1/800 sec . In this
particular case, the mean and standard deviation of the aggre-
gated PRP are 0.3868 and 0.0382, respectively. Using Theorem 1
gives a mean of 0.3818 and standard deviation of 0.0369, which
is very close for a small population of 2000. Hence one can
consider, on average, that a single DER is driven by a process
w~ N (Mwy Uw)' u

2) EV Population: The modeling of the aggregated behav-
ior of EVs includes the (mobility) transitions from standby to
driving (SB — DR) and driving to standby (DR — SB). The
EV driver model consists of a two-state Markov chain and is
illustrated in Fig. 4 with p; the probability of going from SB
to DR and p» the probability of going from DR to SB. It is
assumed that the driving model is independent of the energy state
of the EV population, which simplifies integration of this model
together with the population model described in the subsequent
section. More complex driver models could be developed and
integrated with a PEM macromodel, but such detailed EV driver
models are considered outside the scope of this manuscript.

Many useful and simple EV driving metrics, such as average
standby and driving times, can be derived from this model. In
this regard, a discrete-time model for only the driving behavior

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 5, SEPTEMBER 2020

of EVs, with time step At , is given by
ZSB [k]

ZDR[]C]

zsplk + 1] _ 1—pm P2
zpr [k + 1] P1 1—po

Clearly, this model permits a non-trivial, unique stationary dis-
tribution for probabilities p; and ps. The stationary distribution
provides the averaged occupancy of each state, which is the
percentage of the EVs that, on average, are either in zgg or zpg.
Moreover, p; and p2 can be chosen from driving data [20], as in
Fig. 4b). For example, from this data set, the average driving
duration in urban cities is about 30 minutes, which is what
we use in this manuscript. That is, if 7 = (7., 7.,,) | denotes
such stationary distribution, then one has that 7, , = plp_fm and
Tapp = 1” L - Here the occupancy of the standby states is pro-
vided by 7sg, and the occupancy of the driving states is provided
by 7pr. The number of time steps that an EV spends driving
(also known as sojourn time) is computed from the transition
probability in (8). Denote with ¢)(2pgr) the expected number of
time steps needed to reach state zgg given that one starts in zpg
and 1 (zsp) if one were to start in state zgg. Forcing the state
zsp to be absorbing, it follows that ¢)(zsg) = 0 and ¥ (2pr) =
1+ (1 — p2)¥(2pr), which provides ¢)(zpr) = 1/p2. Thus, ps
describes how many time steps an average EV stays in driving
mode, and the actual expected time spent in driving mode is
trivially ¢,,, = ¥ (2pr) At = At/ps.

Example 2: Consider an EV population where the data shows
that the expected time spent driving is 30 minutes, then py =
1/120 for At = 15 sec. Since the occupancy of the driving state
is given by 7,,,, one has that p; = pa(1/7,,, — 1) ~ 0.00092
for an occupancy of the driving state of 7., = 0.1. |

®)

B. Dynamics of State Bin Transitions

In this section, end-user event models are embedded into
the state bin transition description. Consider a population of
DERs obeying some dynamical equation (1) and with common
underlying state space. To create a finite state abstraction (i.e.,
a macro-model) of the entire population’s evolution, the state
space is discretized in a manner that the main features of the
system are preserved and the system as a whole is such that
the effects of an individual DER is negligible with respect to
the average behavior [23]. Clearly, the spatial and temporal
discretization strongly affects the modeling the aggregated dy-
namics [24], [25]. Therefore, in this manuscript, an appropriate
discretization time step At (used to obtain the discrete model
(1)) was chosen so that it is ensured that only contiguous
bin transitions occur [26]. Note that the approach described
below has the capability of overcoming such restriction. The
focus of this manuscript is on DERs that have hybrid one
dimensional dynamics as in (1). More specifically, an interval
[z,Z] within Z is divided into N consecutive bins each cor-
responding to a bin state in X, where x; € X’ corresponds to
the interval [z;_1, 2;[C [z, Z]. Since (1) includes three types of
dynamics (charge/standby/discharge)?, the state space for the

2The ON/OFF dynamics of (1) can be seen as charging/standby dynamics with
a disconnected/inaccessible and trivial discharging dynamics, and the driving
dynamics of EVs simply corresponds to uncontrollable discharging dynamics.
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Fig. 5. Typical transition rate calculation for charging, standby and discharg-
ing states.

system consists of the union of the full state space given by
X = A, U Xy U Ay, At time k, the probability mass function
of the system is ¢" = (q.,q4,qd) With ¢n = (¢}, ., ¢¥)"
for h = {c, sb,d}. Note that ¢ contains the percentage of the
population in each state of X. For example, if V. is the total
number of DERs and Néc is the number of devices in state
xl, then N} . = giN,. Similarly, the percentage of N, that is
charging and discharging, and the total power of the system are

Yo = Ccq, Ya = Caq, and y = cq, )

where c. = (1}, 0---0) € RN, ¢4 =(0---0, 1}) € RV,
c=N.P(c, —cy) eR*¥N, 1y =(1,...,1)T € RY, and
P s the average power consumption by the DERs. If the
transition probability between bins ¢; and g; in ¢ is denoted as
pij and M = {p;; }i j=1,...3n. it then follows that

qlk +1] = Mqlk], (10)

which represents the dynamics of a Markov chain.

The transition rates p;; are computed explicitly by considering
how the dynamic state interval corresponding to a particular bin
state is altered by the DER hybrid dynamics. Recall that the
main factor affecting these transition rates is the background
usage of DERs by the end-user as modeled in Section III-A with
a generic birth and death process. For EVs, the Markov chain
(8) is embedded into M in (10) by setting the transition x%, €
Xy — 4 € Xyto py and o} € Xy — x%y € Xy to po for all i.
The above assumes that driving patterns are independent of the
EV’s SoC, however, one can add energy-dependent transitions,
p1(z%,) and pa(x}), based on available data.

Fig. 5 provides a simple illustration of how a (uniformly
distributed) probability mass in an arbitrary state shifts after
At time as a function of a DER’s dynamics for the hybrid
states, ¢, sb and d, which in this manuscript follow either (1)
or (2) and with respect to the average end-user event of the
corresponding population. More specifically and dropping the
subscript n, denote the solution of (1) with respect to the hybrid
state h € {c, sb, d} and initial condition zy at time % by the map-
pings ¢ (k,w) = @, (k, w)h=c, DL (k,w) = ., (k, w)n—s
and ¢ (k,w) = ®.,(k,w)n—q. Let W be the average end-user
event resulting from the aggregation of processes satisfying
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(4). One can show that W is a process comprised of normally
distributed random variables having parameters gy (mean)
and oy (standard deviation). In addition, if Py (w) denotes
the occurrence probability of W = w with w € [w,w]?, then
P(z =®" (t,w)) = Py (w). Therefore, one can map any zo €
[2i—1, 2] (interval corresponding to bin 4) through ® (¢,w)
with h € {c,sb, d} for all w € [w, w]. The mapping gives as an
outcome the dynamic state of the DER after naturally evolving
for kAt seconds. Repeating this procedure for all zg € [z;_1, 2;]
and normalizing the resulting histogram of dynamic state out-
comes gives the t-seconds-ahead distribution of the ¢th bin. The
transition probability from bin ¢ to bin j at an specific hybrid
state h € {c,sb,d}, p?j, is then simply the probability mass
that started entirely in bin ¢ and after ¢ seconds now overlaps
with bin j. This procedure makes the bin transition probabilities
a function of the statistics of the end-user events. The work
in [16], [17] lack such feature and assumed that transitions only
occurred between contiguous bin intervals. Therefore, there was
an apparent mismatch from what the aggregated model produced
in relation to what an agent based simulation provided under
stressed conditions. Observe that a DER population does not
transition to higher states, as expected, when h = {sb, d} since
no energy is injected into DERs while in these modes. For
instance, (1) and (2) are driven by non-negative energy losses
or zero-mean bounded damping terms, thus the only way these
can increase their SoC is by charging.

C. The State Bin Model for Conventional DER Dynamics

Without coordination schemes, such as PEM, the DERs nom-
inally operate based on (conventional) decentralized control
logic that is specific to each DER type. For example conven-
tional TCLs operate under hysteretic control, which is based
on keeping the local state variable (e.g., temperature) within a
dead-band [z,Z] of width zpp and set point zs € [z, Z]. More
precisely, a conventional TCL transitions to the c state only
when z < z, transitions to sb from a d state only when z < 2,
and transitions to sb from a c state when z > z. Clearly, the
TLCs’ discharging states are unreachable since a TCL cannot
actively inject power into the grid. Similarly, conventional EV
or ESS control logic can be mapped to a state bin model to
consider an EVs’ charge-upon-arrival rule and average driving
behavior and an ESSs’ solar PV net-metering tariff. Thus, the
associated Markov transition matrix M for a fleet of DERs in
(10) can be described by the following nominal, autonomous
(uncoordinated) dynamics:

Mc Mc,sb ON

Msb,c Msb Md,sb )
On |Mgpa| My

M = (11)

where Oy denotes the /N-dimensional zero matrix and M,
for h € {c,sb,d}, is a multi-diagonal matrix containing the
probabilities of staying, going to higher energy states, and going
to lower energy states. Similarly, M. g, and My, . are responsible
for transferring DERs that exceeds Z from c to sb and any DERs

3In reality, W is lower (upper) bounded by some fixed values w ().
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that fall below z from sb to c, respectively. Finally, Mg, and
Mg, 4 provide the transition probabilities from d to sb and from
sb to d including the probabilities of uncontrollable transition
events following some model comparable to the one described
for EVs in Section III-A. Observe that, by design, the Markov
chain associated with M is irreducible since one can reach any
state from any arbitrarily chosen initial state and is aperiodic
due to every state having self-loops. It follows then that this
abstraction possesses a unique invariant distribution since X’
is finite dimensional. Next, we augment the hysteretic control
scheme with the probabilistic transitions and opt-out control
inherent to PEM as discussed in Section II.

D. The State Bin Model for Packetized Energy Management

Under PEM, a DER can only switch to charging/discharging
modes for an epoch if the corresponding charging/discharging
packet request is accepted by the coordinator (i.e., VPP). To
capture the unique nature of PEM ‘s fixed packet duration and the
VPP’s role in authorizing/denying packet requests, we leverage
prior literature on fault-tolerant recovery logic [27] and TCL
modeling with compressor lockout periods [9]. In this subsec-
tion, earlier work on modeling PEM in [16] is adapted and
extended to consider EVs. PEM coordination can be described
as a controlled Markov chain.

Definition 1: Let {uy, }1>0 be a sequence of real valued func-
tions taking values on a set U. A Markov chain { X} } x>0 is said
to be a controlled Markov chain (CMC) if its transition matrix
M(u) = {qij (u)}lgi,jSN satisfies

P(Xn+1 = J,‘inJrl ‘Xn =Ty

.7X0 :.’L‘Z'O,un,...,UQ)

= P(X’rl-‘rl = Lipga ‘X” - Qf,’n,u”) = Pipyrin (U’Vl)'

Note that the resulting matrix M (u) must be a (column)
stochastic matrix for any choice of u € U. As usual, the prob-
ability mass function of a CMC is computed similarly using
q[k + 1] = M (u[k])g[k] given an initial distribution ¢[0] and
control policy u(x)[k] : X — U for k = 0,1, . ... The underly-
ing transition matrix over which PEM is implemented is (11),
but with Mg, . = M. = On and Mg, and My, accounting
only for uncontrollable transitions. In this section, our model
assumes that any DER in the top/bottom states in &, Xy}, and
X that transitions in the next time step outside of [z,Z] will
remain in those top/bottom states. This assumption is relaxed in
the next section where the opt-out mechanism is introduced in
order to avoid using absorbing states.

Before detailing the PEM request coordination mechanism,
consider the following CMC with controlled transition rates
By = diag{AL,..., BN} with 8 € [0,1] and h € {c,d} as the
percentage of the standby population in state ¢, that tran-
sitions to charge/discharge and Sy = diag{BLg., - - .. B}
with {4, € [0,1] and h € {c,d} the percentage of the charg-
ing/discharging population in state z{, that transitions to standby.
The relative transition rates of charging, discharging and
standby devices to a different state in ¢ is then given by the
transformation:

Q[k} = M(ﬁ[kL Bsb[k]) Q[k]7 (12)

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 35, NO. 5, SEPTEMBER 2020

where 3 := (B¢, B4) ", Bsb := (Besbs Bas) ', and

B IN - Bc,sb /60 ON
M(B, Bsy) := Beso  |IN — Be — Ba|  Basw , (13)
On Ba In — Basb

where Iy denotes the N-dimensional identity matrix.
Once M (B, Bsp) has switched some DERs to a new
charge/standby/discharge mode, the matrix A/ makes the DERs
in g evolve with the natural dynamics inside each mode of
operation. It then follows that

qlk + 1] = Mqlk] = MM (B, Bw)qlk],

which is a CMC as shown by the next theorem.

Theorem 2: Let Blk], B [k] € RZV*N be defined as in (12)
V k > 0. The sequence { X} } x>0 of random variables X}, taking
values in X and probability distribution satisfying (14) is a
controlled Markov chain as described by Definition 1 with input
ulk] = (1 Bk, Ly BunlH]) ™ € R4,

Proof: The proof is straightforward since matrices (11)
and (13) are stochastic for any choice of 3, Sy, and the product
of stochastic matrices is a stochastic matrix. ]

The details of PEM model are provided next in a manner that,
when applying Theorem 2, it is concluded that the resulting
PEM model is a CMC. Unlike the CMC in (14), the PEM
scheme is based on charging and discharging requests coming
from the standby population as a function of bin state (e.g.,
based on temperature for TCLs and state-of-charge for ESSs and
EVs). Thus, the number of charging and discharging requests are
paramount for modeling DERs in PEM. Define

(14)

i (K] 1= Treqn aso K] (15)
where  Tiqn = diag{pi™", ... o8} =1
e~ m(Z")At s the request probability assigned to z%, by

(3) with respect to the mid-point of state bin ¢ and h = {c,d}.
The number of charging/discharging requests received by
the VPP is then n[k] := 1}¢, [k]. It is assumed that each
bidirectional ESS cannot request to both charge and discharge
at the same time. This implies that if both packet types were
requested during time-step k, they cancel each other out and no
request is made. Therefore, for each individual DER, since a
charging and a discharging request occur independently: Tieqc
and Tieq 4 are replaced in (15) by
T 5‘ = Treq,c(IN - Treq,d) and

req,c,
Treq,d,& = Treq,d(IN - Treq,c)>

respectively. Thus, under PEM, the VPP determines the propor-
tion of accepted charging/discharging packets (5. [k] for charg-
ing and S4[k]| for discharging). Upon a packet being accepted by
the VPP, the DER transitions to the new state.

Due to the pre-determined duration of packets, the model
needs to capture the dynamics of the active and expiring packets
from the charging and discharging populations, which intro-
duces two sets of timer states. That is, given a packet epoch 9, the
sampling time step A¢, and two timer states vectors x, , € R"»
withn, = [0/At| andh = {c, d}, the timer dynamics are given
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by

xp,h[k + 1] = Mp,hxp,h[k:] + C ,h th}T [k]v (16)

where C,, € R™*YN s responsible for allocating the
new charge/discharge population into their corresponding
charge/discharge timer states. In reference to the matrix Cy, 1,, for
any DER whose packet is accepted, there is a state z. (zq) such
that ®¢ (6) =z (®¢ (6) = 2). Therefore C), . (C,q) interrupts
packets to prevent exceeding z (falling below z). That is, if
Zig1 < Ze (Zig1 > za), Cp ¢ (Cp.q) allocates all DERs requesting
charging packets from bin [2;,2;11] into the timer state z’

piC
(lej,d). Otherwise, it allocates the DER with z; > 2. (z; < zg)

in the timer state x ¢ (27, 4) with j = [(6 — t$)/At] (j = [(d —
t9)/At]) and t¢ (t) the time that the DER takes to move its state
from z; to Z (z) — this captures the PEM concept of interrupted
packets. The timers provide a formula for the percentage of

DERs whose packet expires. That is, 3, := x;ﬁf’ Vs xz(:f],
(@)

where 3, is the i-th component of ;. Abusing of the no-
tation, consider the particular 5 and Sy, in (14) given as 5 =
(BCTreq,c,&’ 5dTreq’d’§)Ta Bsb = (Bg In, Bd_IN)T where ¢ and fSq
are now scalars with values in [0,1]. Therefore, a simple al-
gebraic procedure yields the PEM population dynamics and
represents a CMC:

qlk +1] = M(I + My,

) — Mg, ry)alF]

= M(B[k], Bw[k])qlk], a7
where
BeIn |On]| On
Mg, = | =B In|On|—BsIN |,
On |On| BiINn
On BeT oy ed On
M g = | On —»3cTreq!C)& — 5dTreq’d!}¥ On
ON /ijjreq,d,ki ON
A full schematic diagram for the PEM dynamics is given in
Fig. 7.

This section concludes with an illustrative simulation of a
population of 2000 EWHs aimed at validating the state bin
transition model developed for PEM. The model for the n-th
EWH is given by

prate Zn — Zamb  Zn — Zi
+ _ At n_*n __ *n amb  “n in
n = At (chnn Tn 60L, )’

(18)

where the parameters of (18) are provided in Table I and the
end-user events, w,, are PRPs with the same parameters as
in Example 1. The simulation initially accepts all charging
requests (5. = 1) until all incoming requests are denied after
minute 120 (8. = 0). Fig. 6 shows the result of such exper-
iment and compares the resulting power output of the agent
based (running each individual TCL and then aggregating the
outcomes) and macro-model simulations. On average the error in
power between these simulations never exceeds 8% throughout
the entire simulation time of 10 hours. For QoS, the error in
SoC was found to be less than 0.1°C, which amount to less
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TABLE I
EWH SIMULATION PARAMETERS

Value Unit

Simulation period 600 mins
Sampling period, At 15 s

Parameter

Specific heat capacity (Water), ¢ 4.186 kJ/ (kg-°C)
Water density, p 0.99 kg / liter
Ambient insulation losses, 7, 150 hr
Heater Capacity, Ly, 250 liters
Set-point temperature, 25 52 °C
Dead-band temperature, 25t DB 0.1225°¢ °C
PEM temperature bounds, szt’PEM O.OSZELet °C
PEM request parameter m g ﬁ Hz
Input heat transfer rate, Prys 4.5 kW
Heating efficiency, n 100 %
Ambient temperature, Z, 1, 14 °C
Inlet temperature, z;;, 14 °C

4000 |

| ————— Start denying all
3000,
E 2000 Accepting all

50 100 150 200 250 300 350 400

Average temperature

# devices
oW
58

)

0
100 200 300 400 500 50 52 54 56 58 48 50 52 54

min SoC (°C) SoC (°C)

Fig. 6. Comparing macro-model and a realization of a micro-model simula-
tion of 2000 EWHs for a 10-hour accept-all/deny-all VPP experiment. Power
response and distributions of the standby populations (accepting and denying)
are provided.

than 1% relative error with respect to the agent-based average
SoC. Furthermore, the DER standby distributions for accept-
ing all requests (at minute 100) and denying all (at minute
400) for both the agent base and macro-model simulations are
presented to illustrate how close the distributions are for both
simulations.

IV. Q0S GUARANTEES AND DIVERSE DERS

When managing demand, it is critical to be cognizant of
end-consumer QoS. For example, when coordinating EWHs,
people will opt out en masse from water heater DR programs,
the first time they experience cold showers. However, before
discussing QoS guarantees for EWHs, ESSs, and EVs consider
the following definition.

Definition 2: A coordinator (or VPP) providing grid services
is said to guarantee QoS if for a pre-specified SoC range and
set-point zset, there exist conditions under which the average
SoC of the DER population is greater than or equal to 2Zgc¢.

One way to guarantee QoS is with opt-out control, which has
been explored in the context of demand dispatch, e.g., see [15],
[28], but not for a PEM-based macro-model. The opt-out control
mechanism for PEM is described at the beginning of Section II
in ¢7). Thus, DERs whose dynamic state are lower than z exit
PEM (move to charge or exit ON) and join a new set of energy
states constituting the Opt-Out mode (denoted by @). On the
other hand, if the dynamic state is too high, packet interruptions
provided by the timer’s matrix C,, j, for h = {c,d} in (16) avoid
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Fig. 7. Transition diagram of a DER population under PEM with opt-out
control.

the need for a separate opt out (i.e., exit OFF). Interestingly,
adding opt-out operation to the PEM macro-model only re-
quires a simple augmentation of states with their corresponding
transition rates as shown in Fig. 7. That is, ¢ is redefined as
q" = (qi,q") with

qlk + 1] = Mexio(I+M gy — Mg,

5uk)a[k] and y[k] = cq[K],

19)

where I + M g‘ — M, adds a diagonal block identity matrix
and uses zeros elsewhere since gy are unaffected by 3, Bg.

Note that
M® |M em
Mexit = <M@ ]\; >7

pem

where M® is a sub-matrix of M that has all rows and columns
corresponding to states higher than the pre-specified PEM re-
entry bound removed. Finally, Mgm (Mp@em) provides the tran-
sition probabilities of exiting (re-entering) PEM. A depiction of
the transition diagram for a DER population under PEM with
opt-out control is provided in Fig. 7.

A. QoS for EWHs and ESSs

For this type of DERs, Definition 2 implies that there must
exist some 3 such that cq(8) > ze, where ¢(8) is the in-
variant distribution associated to 3. Naturally by making 5 =
(Be, Ba) = (1,0) for all times, the system reaches its maximum
average dynamic state, and the system is in equilibrium, which
also fixes (,. Since end-user events for EWHs and ESS do not
alter their hybrid state, QoS guarantees are provided by adding
the opt-out dynamics as in (19).

B. QoS for EVs

The end-user events for EVs (i.e., driving) do change the
hybrid state. This renders some EVs unavailable to PEM,
which couples QoS guarantees to the (average) EV driving
model. Next, we employ the simple driving model introduced in
Section III-A and formulate a condition under which EVs can
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Fig. 8. Average SOC for EVs as a function of driving time and the probability
of going from standby to a driving state (SB — DR). The solid and dashed red
lines indicate two level sets for constant p1. The red dot indicates the value for
p1 and ps) for the maximum occupancy of driving states for which the fleet’s
QoS is guaranteed to reach 80% SOC.

also guarantee QoS. The condition will be in terms of the average
drive time, which is related to p, and the probability of going
from driving (discharge) to standby.

Fig. 8 shows the relationship between the average state of
charge of a population of EVs as a function of departure rate po
and the probability of going from standby to driving (equal to
p1), where one can see that when the departure rate surpasses
a threshold for an specific p; guaranteeing QoS is not possible.
Recall from the discussion about the driving model that the
probabilities p; and py are independent of each other and that
they can be chosen so that they follow data such as that from
NHTS [20] (see Fig. 4b). For a fixed driving state occupancy, it
is possible to compute a bound for the maximum average driving
time that a fleet of EVs should have so that QoS is guaranteed,
which amounts to a bound on p». Recall that by fixing the driving
states occupancy and po, p; is automatically fixed. Moreover,
setting 3 = (0, 1) and assuming that cars return to standby from
driving independent of their energy state, the Markov transition
matrix for EVs has the form A + ps B, where A is an irreducible
and aperiodic column stochastic matrix and B is such that its
columns add to zero. The invariant distribution of the evolution
equation q[k + 1] = (A 4 p2B)ql[k]. for a fixed po, is computed
by solving Ag* = bwith

_ I—(A B - O«
fom (FTUABEY) g 5 (95)

This system of algebraic equations has 3N + 1 equations with

3N unknowns, where one equation is redundant due to the fact

that the the dimension of the nullity of I — (A + p2B) is one.

Therefore, a least square procedure provides a unique solution

q" that is the desired stationary distribution. Specifically,

¢ = (ATA)1ATh

(I = (A+p2B)) (I = (A+p2B)) + 1n1y) '1n.

Since po << 1 for any practical scenario, then
¢~ Qr'1y — Q' Q2Q; "1y,

where Q) =1n14 + Iy —(A+ AT —ATA) and Q2=
ATB+ BTA — B — BT. The condition that must be satisfied
for guaranteeing QoS is zgey < cg”, where ¢* is related to po

(20)
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Fig. 9. (Top) The result of a fleet comprised of 1000 EWHs, 1000 ESSs and
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Fig. 10. Number of charging and discharging requests from the EWH, ESS
and EV standby populations.

via (20) and the dependence on 3 is omitted given that it was
previously fixed. Thus, a bound for ps is given by:

~1
p2 < CQ,lll—N_,leEt
cQp Q207 1n

Observe that Q; = AT A|,,—o is always invertible because
Al po—=0 has full column rank. From the discussion at the end of
Section III-A, an occupancy of the driving states of 7., = 0.1
with p; = 0.00092 gives the exact threshold ps < 0.00053,
whereas the approximation yields p5™"** < 0.00051. In other
words, the exact calculation says that one can guarantee QoS
when the average drive is less than 471.72 minutes (for At = 15
sec), and the approximation gives 488.8 minutes as the driving
time threshold. Fig. 8 shows the curve corresponding to the
parameters above as well as the curve that intersects the set
point at 30 min driving time. These parameters are in agreement
with a fleet of EV's at off-peak driving hours of the day which is
when EVs become a real flexible resource and are well beyond
the 30 min average driving time assumed for the simulations in
this manuscript. For instance, the driving state occupancy for
guaranteeing QoS with 80% of average charge (accepting all
charging requests and rejecting all discharging requests) and 30
min average driving time is approximately 37% (see Fig. 8).

C. Illustrative Simulation With Tracking and QoS Awareness

A fleet of 1000 EWHSs, 1000 ESSs, and 250 EV's are modeled
using the macro-model developed in Section III-B and presented
in Figs. 9 and 10. The EWHs for this simulation have the
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same parameters shown in Table I. The ESS models here are
representative of Tesla’s PowerWalls (2.0), which have battery
capacity of 13.5 kWh, charge and discharge efficiency of around
95% (roundtrip of 92%), and a maximum (continuous) power
rating (Py%7 = P7) of 5.0kW. It is assumed that the battery
owner charges or discharges the battery based on a Gaussian
random walk with a minimum power draw of 1.5 kW in either
direction. This could be representative of excess or deficit solar
PV production. EVs, on the other hand, are assumed to have
an electric driving range of 150 miles and an electric driving
efficiency of 7 miles-per-kWh. The PEM system has the task
to track a detrended and scaled regulation signal [29]. The
most important observation is that under the conditions for
guaranteeing QoS one can construct a rule for acceptance such
that the three populations work together to balance their output
power with respect to the given reference in a manner that
average SoC is close to the predefined set points. The specifics of
this tracking problem and how the populations work in tandem
are detailed in [30]. In addition, Fig. 10 shows the number of
requests from the three populations as a function of time. The
VPP chooses a percentage of these charge and discharge packet
requests in order to balance the regulation signal provided by
the system operator as a reference. Note also that the QoS for
each population is maintained around its predefined set point
even though the populations are providing power balancing
dynamically (i.e., without predictive optimization). As can be
seen in Fig. 9, the EWHSs and EVs effectively provide the bias
while the ESS provide the corrective (together with EWHs) for
tracking the regulation signal. Furthermore, to achieve desired
tracking of the reference regulation signal, the ESS population’s
average SOC deviates slightly (< 5%) from the desired set-
point, which increases the number of ESS discharging requests.
The internal feedback offered by the population’s packet request
mechanism drives the availability upward/downward flexibility.
In this case, the ESS population alone can offer more downward
flexibility (discharge) than upward flexibility (charge) when the
VPP receives more discharge requests than charge requests.
Of course, if the reference signal was biased downward, the
populations would have to deviate from their SoC set-point
to achieve satisfactory tracking performance, which would ef-
fectively discharge the populations over time and lead to an
increase in the number of charge requests. After discharging
for sufficiently long, the opt-out mechanism built into PEM
would override the request-response mechanism and devices
would opt-out and tracking performance would be negatively
affected. The coupling between discharge/charge duration and
tracking performance is the subject of ongoing work and has led
to development of improved PEM-VPP controller designs [30]
and energy-based modeling of PEM population to capture the
battery-like, energy-power relations.

V. CONCLUSION AND FUTURE WORK

This manuscript presented a macro-model for the aggregation
of a system comprised by DERs. The approach was based
on a bottom-up DER coordination methodology called PEM.
The macro-model was described as a controlled Markov chain
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that included the mechanics of accepting, active, and expiring
packets with the help of two timers to differentiate charging
and discharging packet requests. Finally, QoS guarantees were
given for TCLs and ESS with an opt-out mechanism while QoS
guarantees for EVs were provided in terms of EVs’ average
arrival and departure rates.

Future work involves addressing heterogeneity of the macro-
model either by clustering or by a set-based Markov model.
Moreover, the dependence of end-user event rates and magni-
tudes on opt-out conditions is currently being explored by the
authors to study time-of-day changes in dispatchable demand.
Finally, incorporating live grid conditions into the PEM macro-
model is of interest to grid operators and aggregators.
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