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Abstract—As latency is the key performance metric for loT applications, fog nodes co-located with cellular base stations can move the
computing resources close to 0T devices. Therefore, data flows of IoT devices can be offloaded to fog nodes in their proximity, instead
of the remote cloud, for processing. However, the latency of data flows in loT devices consist of both the communications latency and
computing latency. Owing to the spatial and temporal dynamics of loT device distributions, some BSs and fog nodes are lightly loaded,
while others, which may be overloaded, may incur congestion. Thus, the traffic load allocation among base stations (BSs) and
computing load allocation among fog nodes affect the communications latency and computing latency of data flows, respectively.

To solve this problem, we propose a workload balancing scheme in a fog network to minimize the latency of data flows in the
communications and processing procedures by associating loT devices to suitable BSs. We further prove the convergence and the
optimality of the proposed workload balancing scheme. Through extensive simulations, we have compared the performance of the
proposed load balancing scheme with other schemes and verified its advantages for fog networking.

Index Terms—Fog node, internet of things (IoT), workload allocation, user association

1 INTRODUCTION

IN the past few years, a tremendous number of smart devices
and objects, such as smart phones, wearable devices, indus-
trial and utility components, have been equipped with sensors
to sense the real-time physical information from the environ-
ment [1]. Hence, Internet of Things (IoT) has been introduced
as a concept, where various smart devices are connected with
each other via the internet and empowered with data analytics.
Various IoT applications, such as smart transportation, smart
health, smart city and smart home have been widely studied
to improve our daily life [2]. Owing to the high volume and
fast velocity of data streams generated by IoT devices, the
cloud that can provision flexible and efficient computing
resources is employed as a smart “brain” to process and store
the big data generated from distributed IoT devices [3], [4].
However, as the data streams generated from IoT devices are
transmitted to the remote cloud via Internet, the transferred
data may consume a huge amount of bandwidth and energy
of the core network [5]. On the other hand, since the remote
cloud is usually far from IoT devices, the latency for processing
data streams may be too long, especially unbearable for many
delay sensitive IoT applications [6]. Therefore, fog nodes,
which bring computing resources close to IoT devices and IoT
users, can be employed to alleviate the traffic load in the core
network and minimize the latency for IoT devices [7], [8].

In a fog network, data flows sensed by IoT devices are
transmitted to respective BSs and then processed by fog
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nodes that are co-located with the BSs. Thus, the latency of
each data flow consists of both the communications latency
towards the corresponding BS and the computing latency
incurred by the respective fog node. Regarding mobile net-
works, the communications latency of IoT devices’ data
flows is jointly determined by IoT devices’ channel condi-
tions and their BSs’ traffic workload status. As the traffic
load increases, a BS tends to be congested and thus data
flows of IoT devices have to wait for more time to be trans-
mitted. As a result, the traffic load allocation among BSs
will significantly affect the delivery time (i.e., communica-
tions latency) of data flows. On the other hand, at the side of
fog nodes, the computing latency of data flows is directly
determined by the computing loads allocated to these fog
nodes. Specifically, the heavy computing load of a fog node
translates to a longer computing latency. Thus, provided
with the dynamic distribution of computing workloads, the
load allocation among fog nodes critically impacts the com-
puting latency of all data flows in the network. As each fog
node is assumed to be attached to a specific BS in this paper,
the workload of a fog node is related to the number of IoT
devices associated with its corresponding BS. In other
words, when one IoT device is associated with one BS, its
data flows are also offloaded to the BS’s co-located fog node.

Since adjacent BSs always have overlapped coverage areas,
IoT devices in these areas can be associated to suitable BSs in
order to balance the loads among BSs; this association criti-
cally impacts both the traffic loads of BSs and computing
loads of fog nodes. As the latency of each data flow consists of
the communications latency and computing latency, both the
traffic loads of BSs and computing loads of fog nodes should
be taken into consideration in the load balancing process, in
order to minimize the latency of data flows. Specifically,
owing to the dynamic distribution of IoT devices, when some
BSs are overloaded, they will become the bottleneck of the fog
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network, thus making the communications latency the domi-
nating factor of the latency of data flows; in this case, some
IoT devices of these BSs should be offloaded to other neigh-
boring BSs to mitigate their congested traffic loads. Mean-
while, when some fog nodes are congested, the computing
load balancing is more critical, and thus some IoT devices of
the BSs co-located with these fog nodes can be assigned to
neighboring BSs in order to reduce the computing workloads
of these fog nodes. In this case, the computing load balancing
may increase the traffic loads of the neighboring BSs, which
may in turn degrade the communications latency of all data
flows to a certain extent.

To solve the above problem, we propose a LoAd Balanc-
ing (LAB) scheme for the fog network to minimize the
latency of IoT data flows, by taking into account of both the
communications latency and computing latency. Below are
major contributions of the paper.

e We formulate the problem of minimizing the latency
of all data flows by associating IoT devices with dif-
ferent BSs/fog nodes. The models of both the traffic
loads at BSs and computing loads at fog nodes are
introduced while the latency ratios (i.e., the amount
of time that an IoT flow has to wait to obtain a unit
service time) of BSs and fog nodes are adopted to
reflect the communications latency in BSs and com-
puting latency in fog nodes, respectively. Moreover,
we have also analyzed the impact of load balancing
on the average latency of IoT flows.

e To solve the load balancing problem in a fog network,
we design a distributed IoT device association scheme
(LAB) that assigns IoT devices to suitable BSs/fog
nodes to reduce the latency of all data flows. In the
scheme, each BS iteratively estimates its traffic load
and computing load, and then broadcasts this infor-
mation. Meanwhile, at the side of IoT devices, they can
choose the favorable BSs in each iteration based on the
estimated traffic loads and computing loads of BSs/
fog nodes. Furthermore, we have proved the conver-
gence and the optimality of the proposed algorithm.

The remainder of this paper is organized as follows. In

Section 2, we briefly review related works. In Section 3, we
illustrate the fog network architecture and describe the sys-
tem model. In Section 4, we formulate and analyze the load
balancing problem. In Section 5, the LAB algorithm is pro-
posed to obtain the optimal solution of the workload balanc-
ing problem. Section 6 shows the simulation results, and
concluding remarks are presented in Section 7.

2 RELATED WORKS

bf fog computing resources to IoT
e studies have focused on integrat-
g. Bonomi et al. [9] elicited how fog
lied in various IoT applications.
rized the opportunities and chal-
the networking context of IoT and
advocated that fog Computmg can fill the technology gaps in
IoT. Sun and Ansari [11] proposed the IoT architecture (Edge-
IoT) to handle the data streams from IoT devices at the fog
node. Moreover, Jutila [12] proposed adaptive fog computing
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solutions for IoT networking in order to optimize traffic flows
and network resources.

Fog computing, which moves computing resources close to
IoT devices or mobile users, has been proposed to improve the
performance of IoT applications and mobile applications [13],
[14], [15]. To optimize different objectives such as latency and
energy consumption of the network, many studies have
focused on allocating computing workloads among edge
computing resources (fog nodes or cloudlets) without consid-
ering the traffic load balancing in mobile networks [16]. Gu
et al. [17] proposed to integrate fog computing and medical
cyber-physical system, and then designed a cost efficient
resource management scheme by jointly considering BS asso-
ciation, task distribution and virtual machine placement.
Zeng et al. [18] proposed to jointly consider the task schedul-
ing and image placement in fog computing based software-
defined embedded system to minimize the response time of
task requests. Tong et al. [19] proposed a workload placement
algorithm in a hierarchical edge cloud network in order to
optimize the response time of all tasks. The algorithm allo-
cates tasks among different tiers of fog nodes and allocates the
computing resources of each fog node for their assigned tasks.
Fan et al. [20] proposed to migrate mobile users’ virtual
machines (VM) among distributed cloudlets to reduce the
brown energy consumption of cloudlets by jointly considering
the green energy generation among cloudlets and energy con-
sumption of VM migrations. Fan and Ansari [21] proposed a
workload allocation scheme, referred to as WALL, in a hierar-
chical cloudlet network to optimize the response time of user
tasks. This workload allocation scheme assigns user tasks
among different tiers of cloudlets and then allocates comput-
ing resources of each cloudlet to their associated users. More-
over, some works [22], [23] look into placing a certain number
of edge computing resources among a given set of available
sites and then assigning workloads to the edge computing
resources based on the real-time requirement. Note that all
the above works only consider the wired communications
latency, where the wireless delay is neglected. In contrast,
other works also consider the impact of wireless delay on the
latency of tasks while allocating workloads among edge
computing resources. Jia et al. [24] proposed a model to
place cloudlets in the network and realize the load balancing
among the cloudlets to minimize the response time of
users. In this paper, the wireless delay for each user is
assumed to be constant. Some works proposed to control the
transmission power of BSs to adjust the data rate of users in
the communications links as well as the workloads among
edge computing resources, thus reducing the response time
of users [25], [26].

Moreover, many existing works on mobile networks have
addressed traffic workload balancing among BSs. Kim et al.
[27] proposed an iterative distributed user association algo-
rithm to balance the traffic loads among BSs based on different
performance metrics. Han and Ansari [28] proposed a traffic
workload balancing scheme to make a tradeoff between the
traffic delivery time and brown energy consumption in the
cellular networks. Fan et al. [29] proposed a user association
algorithm to improve the flow level throughput and green
energy utilization in heterogeneous cellular networks.

As we know, the latency of a data flow sensed by a IoT
device consists of both the communications latency and
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Fig. 1. Fog network architecture.

computing latency, which are impacted by the traffic loads of
BSs and computing loads of fog nodes. As a result, simply bal-
ancing the traffic loads or computing loads is not enough to
optimize the response time. However, few works have paid
attention on balancing the traffic loads and computing loads
simultaneously, and this issue remains an open challenge.
Therefore, considering the impact of IoT device-BS associa-
tion on the average communication latency and computing
latency, we propose to jointly balance the traffic loads among
BSs and computing loads among fog nodes by associating IoT
devices to the optimal BSs. When some BSs are congested by
heavy traffic loads, these BSs may become the bottleneck of
the fog network, i.e., the communications latency is the domi-
nating factor of the latency of IoT devices” data flows. In this
case, IoT devices should be released from these overloaded
BSs and re-assigned to lightly loaded BSs in order to ease the
traffic congestion. On the other hand, if some fog nodes
become the bottleneck of the network, some IoT devices
located in the coverage of the fog nodeBS should be allocated
to the neighboring BSs in order to mitigate the congestion of
these fog nodes at the expense of increasing the traffic loads of
neighboring BSs that may slightly degrade the communica-
tions latency of data flows.

3 SysTEM MODEL

A fog network architecture is illustrated in Fig. 1, where fog
nodes are attached to BSs and neighboring BSs have over-
lapped coverage areas. Note that all BSs adopt the NB-IoT
interface to offer communications services for all IoT devices
[11]. In the network, since the workload allocation among fog
nodes requires the data flows to go through the mobile cellu-
lar core, which incurs additional delay for the IoT flows, the
IoT flows are generally preferred to be processed at the local
BSs fog node. On the other hand, in the workload allocation
among fog nodes, a central controller is required to collect all
workload information of both fog nodes and IoT devices in
order to execute a centralized algorithm in real time, the com-
plexity of which will be unbearable for large scale networks,
twork. Thus, we assume that data
processed by the fog node attached
bad of other fog nodes. Based on the
isting researches such as [26] also
bn. Note that in this case, the com-
ilanced among fog nodes by adjust-
ing ToT dev1ce associations among BSs. As the IoT device
association is determined by a distributed algorithm run by
both the BS and IoT devices, the algorithm has low complexity
and is scalable to different networks. Therefore, in this paper,
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TABLE 1
The Important Notations

Definition

Binary indicator of location = being associated to BS j.
Computing capacity of fog node j.

Data rate of an IoT device at location « towards BS j.
Transmission power of IoT devices at location x.

The flow arrival rate at location z.

The average traffic size of a flow at location z.

The average computing size of a flow at location x.

J Set of BSs or fog nodes.

A The coverage area of all BSs.

P; Traffic load of BS ;.

P; Computing load of fog node j.

M Communications latency ratio of BS j.

; Computing latency ratio of fog node j.

L(n)  Latency ratio of the fog network.

Pmaz ~ Maximum traffic load threshold of BS j.

Pmaz ~ Maximum computing load threshold of fog node j.

the IoT device association among BSs not only determines the
traffic loads among BSs, but also determines the computing
loads among fog nodes. Meanwhile, adjacent macrocells
employ different frequency spectrum, and thus we do not
consider the inter-cell interference [30]. In the fog network,
data flows sensed by an IoT device are transmitted to its asso-
ciated BS, and then processed by the fog node co-located with
the BS. Thus, to calculate the latency of data flows, we will
focus on the uplink communications of IoT devices and the
data processing in fog nodes.

3.1 Traffic Load Model

As each BS is assigned with a specific fog node, J can be
used, in this paper, to represent either the set of BSs or the
set of fog nodes. Denote A as the coverage area of all BSs,
and z as a location within .A4. We assume that IoT data flows
arrive according to a Poisson Point Process with an average
rate per unit area, A(x), at location x. The inhomogeneity
results in the spatial variability of traffic loads. Key nota-
tions used in this paper are summarized in Table 1.

Denote P(z) as the transmission power of the IoT device
at location z, g;(x) as the uplink channel gain from location
x to BS j and o? as the noise power. Then, the signal to noise
ratio (SNR) of the IoT device at location z towards BS j can
be derived as

Pla)g,(@) 0

)/j(‘r )=
Since the uplink data rate of IoT devices depends on the chan-
nel condition, IoT devices at different locations may have dif-
ferent data rates. Therefore, if an IoT device at location z is
associated with BS j, the capacity of the IoT device (data rate)
rj(z) can be generally expressed as a logarithmic function of

its yj(w), according to the Shannon Hartley theorem,
rj(x) = Wjlog (1 + y,(z)), ()

where W; is the total bandwidth of the jth BS [28].

As mentioned above, the traffic (data flows) arrival at loca-
tion z follows a Poisson distribution with average arrival rate
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A(z). Assume that the lengths of all data flows follow an expo-
nential distribution with the average value of I(x). Then, the
average traffic load density of the IoT device at location « in
BS j can be expressed as [31]

A(@)l()n; ()

ri(z)

0i(z) = , (3)
where 7,() is a binary variable indicating whether location
x is associated with the jth BS (1 if so; 0, otherwise).

The average traffic load p; of BS j is obtainted by aggre-
gating traffic load densities of all locations covered by BS j.
In particular, the value of 0; refers to the fraction of time
during which BS j is busy (i.e., the utilization of BS j) [27].

pi=>_ o). €y
zeA

In mobile communications, based on different metrics
such as the network capacity and user fairness, various
scheduling algorithms have been proposed to help IoT devi-
ces properly share the radio resources of a BS [32]. For ana-
lytical tractability, in this paper, we assume that IoT devices
at different locations associated with a BS can schedule their
uplink transmissions in a round-robin fashion, in which
multiple IoT devices can access the uplink channel sequen-
tially. In addition, the traffic arrival rate of location x follows
the Poisson Process. Meanwhile, since the traffic sizes of
data flows follow the exponential distribution while the
data rate at each location is given, the service time of data
flows at location « satisfies an exponential distribution [28],
where the average service time of data flows at location x

can be expressed as s;(z) = ,]J((—TL)) As a result, the uplink com-

munications of a BS realizes a M/M/1-processor sharing
(PS) queue [33]. In the model, as different IoT devices have
different data rates due to their channel conditions and they
will fairly share the ratio resources of a BS, it is a feasible
model to emulate the practical data transmission. Moreover,
to keep the queue stable, we always need to guarantee that
p; is smaller than 1.

Given the M/M/1-processor sharing queue of a BS, the
average delivery time of data flows at location = can be
expressed as [33]:

()
=——. (5)
ri(@)(1 = p;)
Meanwhile, the average waiting time for each data flow at
location z is

tj(x)

pil(z)
—sj(z) =——"—. (6)
! ri(z)(1 = p;)
Denote u;(z) as the latency ratio of the waiting time to the
service time in BS j for data flows at location . Then,

(7)
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re, all the IoT devices associated
with BS j have the same latency ratio. Hence, we define the
communications latency ratio of BS j as
= ®)
py

From Eq. (8), we can see that increasing traffic load p; of BS j
will increases ;. When 1 is high, IoT devices associated
with BS j have to wait for a longer time to access the trans-
mission channel. Hence, p; is used to reflect the average
delivery delay of BS j.

3.2 Computing Load Model
Aside from the communications latency, the latency of data
flows in the fog network is also related to the computing
latency in the fog nodes. As the flow arrival at location x fol-
lows a Poisson process with the average arrival rate of \(z),
the flow arrival rate of fog node j, which is the sum of the
flow arrivals at different locations covered by fog node j,
also constitutes a Poisson process. On the other hand, we
assume that the computing sizes of data flows follow an
exponential distribution, where the average computing size
(in CPU cycles) of a data flow at location = is expressed as
v(z). Meanwhile, as we are focusing on the coarse grained
computing load balancing among fog nodes by IoT device
association, we consider a fog node as a computing unit
(like a server). Since the computing capacity of a fog node
(in CPU cycles per second) is fixed, the service time of a
data flow in a fog node, which equals to the computing size
of the data flow divided by the capacity of the fog node,
also follows an exponential distribution. By considering a
fog node as an entity, it is therefore appropriate to model
the processing of IoT flows from IoT devices by a fog node
as an M/M/1 queueing model.

Denote C; as the computing capacity (in CPU cycle/
second) of fog node j. In fog node i, the average service
time of data flows at location x can be expressed as

5(z) = —+. 9)

In addition, the average computing load density of data
flows at location « in fog node j can be expressed as

(0 - A,
J C]
Aggregating the computing load densities at different loca-

tions covered by BS j results in the computing load of fog
node j:

. (10)

pi=> o). 1)

zeA

Based on queuing theory regarding the M/M/1 model, the
average waiting time of data flows at location « in fog node
j can be derived as

. _ :Z)j"(x)
2@ =T a5

Denote fi;(x) as the computing latency ratio, which equals
the ratio between the average waiting time and the average
service time. In other words, it shows the required waiting
time per unit service time in fog node j.

(12)

; wi(z) _ P

nj(x) = =7~ =-——. 13)
() 5i(x)  1—p;

Since /i;(z) is only dependent on the computing load of fog

node j, all IoT devices have the same latency ratio in fog
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& Uplink
=

ToT device

= s

Queue at BS Queue at fog node

Fig. 2. The queuing system of the fog network.

node j. Hence, we define the computing latency ratio of fog
node j as:

Py

Ky = 1— ;Oj-
Here, a smaller st means that fog node j incurs less delay to
its associated IoT devices. Hence, /1; is adopted to reflect the
average computing latency in fog node j.

Considering the M/M/1 processor-sharing queue in a BS
and M/M/1 queue in the corresponding fog node, we can
model the flow processing in a pair of BS and fog node as a
queue system as shown in Fig. 2. In order to minimize the
latency of IoT devices’ data flows in the fog network, we
adopt pu; +/i; (latency ratio) to represent the average
latency of processing data flows via the pair of BS j and fog
node j.

(14)

4 PROBLEM FORMULATION

In this paper, we aim to improve the latency of all data
flows by balancing workloads among BSs/fog nodes. Con-
sidering both the communications latency and computing
latency, we denote the latency ratio of the fog network as
L(n) = >_;c7 1t; + it;. Our problem is to optimally associate
IoT devices to BSs (i.e., balancing loads among BSs/fog
nodes) in order to minimize the latency ratio of the fog net-
work. Therefore, the problem can be formulated as follows:

Pl :mﬂin L(n) (15)
Zn]-(x) =1,Vz € A; (16)
jeJ
0<0; < Pax, Vi € T; an
0<pj < Puax, VI € T (18)
n;(z) € {0,1},Ve € A Vje J. (19)

Here, Constraint (16) indicates that each location can be
associated with only one BS. Constraint (17) imposes the
traffic load in BS j not to exceed the maximum load thresh-
old of the BS. Constraint (18) imposes the computing load in
fog node i to be less than the maximum load threshold of

ocess, the traffic load allocation and
may affect each other. When the
BSs are the main constraints of the
d scheme pays more attention on
#8 among BSs. As a result, the poten-
t1a1 trafﬁc Congeshons in the overloaded BSs will be mitigated,
thus reducing the latency of data flows. However, in the
above process, IoT devices are allocated to balance the traffic
loads among BSs that may incur the uneven computing loads
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among the fog nodes to a certain extent. In contrast, when
some fog nodes become the bottleneck due to their heavy
computing loads, the computing latency becomes the domi-
nating factor of data flows’ latency. Hence, the proposed
scheme will focus on balancing the computing loads among
fog nodes by adjusting the IoT device associations among
BSs. In this case, although the communications latency may
increase owing to the uneven traffic load allocations, the sig-
nificant reduction of computing latency can still improve the
latency of all data flows in the fog network.

5 LAB: A DisTRIBUTED IOT DEVICE ASSOCIATION
SCHEME

In this section, we present the LAB scheme, where the com-
munications latency in BSs and the computing latency in fog
nodes are taken into account simultaneously. The proposed
scheme consists of a BS side algorithm and an IoT device side
algorithm. The former one iteratively estimates the traffic
loads of BSs and the computing loads of fog nodes, and then
broadcasts them to IoT devices. In the latter algorithm, each
IoT device selects the suitable BS based on both the updated
advertised load information and its uplink data rates towards
different BSs such that the latency ratio of the fog network
L(n) is minimized.

5.1 The loT Device Side Algorithm

At the beginning of the kth iteration, all BSs broadcast their
estimated traffic loads p; and computing loads p; to IoT
devices. Based on the definition of L(n), we have

Cil()(1 = p;(k))* +rj(@)v() (1 = p;(K))* _
Cirj(@)(1 = (k)" (1 = p;(k))?

aL(n)
3'7j(37)

= \(@)

(20)

Based on the broadcast message, each IoT device can select
the suitable BS by

pk(x) = arg rfle%x erj(:z:)qu(k), (21)
where
1— p;(k)*(1 = p,(k))?
0,(k) = ( : p‘,(Q)) (1 — p;(k)) @)
Cil(x)(1 = p;(k))” + ri(x)v(x) (1 = p;(K))
Here, p*(x) is the index of the BS selected by the user at loca-

tion z, and thus

77?(35) _ { 1, .lf‘? :p:(ac),Vac cA

0, if j # p"(x),Vz € A.
5.2 The BS Side Algorithm
At the side of a BS, it needs to estimate its traffic load and the
computing load of its corresponding fog node in each itera-
tion. Thus, it has to estimate an intermediate IoT association
fyf(m) for each IoT device in the iteration. Then, based on the
estimated load information among BSs, IoT devices select

their BSs/fog nodes by the IoT device side algorithm, and
then the current IoT device association in the kth iteration

becomes 7 (x). Therefore, based on the intermediate 7 ()
(estimated by a BS) and the current IoT device association
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( ) (decided by IoT devices) in the kth iteration, BS j can
estlmate the intermediate IoT association n"“( ) for the IoT
device atlocation z in the next iteration as follows.

it (z) = (23)

; (1= B)n)(x) + il (x),

where 0 < B < 1 is a system parameter. Consequently, with
the intermediate IoT device association in iteration k+ 1,
the advertised traffic load of BS j can be estimated as

k+1
)= [ N

rj(@)
Similarly, the next advertised computing load of fog node j
can be estimated as

dx. (24)

vz lc+1 T
= [ MO,

The detailed procedure of the BS side algorithm is illus-
trated in Algorithm 1.

(25)

Algorithm 1. The BS Side Algorithm

Input: IoT devices’” BS selection: p"' (z),Vz € A. The interme-

diate IoT device association vector 7i* in the kth iteration.
Output: The estimated traffic loads of BSs p(k + 1) and the

estimated computing loads of fog nodes p(k+1) in the

(k + 1)th iteration.

1: Update the intermediate IoT device association for different
locations based on: 7*!(z) = (1 — B)nli(x) + Bii(x),z € A,j € T;

2: Calculate p;(k + 1) and p;(k 4 1) based on Eqs. (24) and (25);

3: return p(k) and p(k + 1).

As we know, the feasible set of Problem P1 can be
expressed as

r={lp,= [ N,

7j(z)

n;(z) € {0,1},0 < p; < Py (26)
D @) =1,¥je T, Va e A}.
jeJ

As n;(x) € {0,1}, F' is not a convex set. In order to derive
suitable intermediate IoT associations to gradually reduce
the average latency ratio L(n) in each iteration, we first relax
the constraint to make 0 < 5* < 1, and then prove that the
traffic load and computing load vectors can finally converge
in the feasible set. Then, the relaxed feasible set of Problem

P1 can be expressed as:
[ Ao,
zeA T’](.T})

1') <1,0< Py < Puaxs

B ndfelement

(27)

The Trial Version

1,Vje J,Vx E.A}.

Lemma 1. The relaxed feasible set F' is a convex set.

Proof. Since the set £ includes any convex combination of
n, it is a convex set. ad

Lemma 2. The objective function L(n) is a convex function of n,
when 1 is defined in F.

Proof. This lemma can be easily proved by showing that
V2L(n) > 0 when 7 is defined in F. O

5.3 Analysis of the Algorithm

In this section, we will analyze the convergence and opti-

mality of the LAB scheme in the feasible set of Problem P1.

Lemma 3. When "+ # #*, j#+!
L(#) at 7*.

Proof. As 0 < 7¥(z) <1, L(7) is defined in F'. As shown in
Lemma 2, L(7) is a convex function of 7, and thus we

7"t —7") < 0. Thus, we have

provides a descent direction for

need to prove (VL(7*)

(VL@"), 7" =)

- ,,;A(‘”)”(” G,

) W (@) — i)
‘/xeﬁ(x)”(“”); Ty @by (R)

J

(28)

Based on Eq. (23), we have

—ij(z) = (1= B)(n}(x)
As we know,
1, if j = p¥(a)

B0 =0 a7

Owing to the BS selection rule at the user side in the
kth iteration, i.e., p*(z) = arg max;cy Cjr;(x)¢;(k), we can
derive

7 () — ifi(x)). (29)

(z) — 7} (x)
1-— 7‘/ <0. (30)
24P e ®
Since 7! # 7,
() — ()
1-pB)-Lt——2L = <0 31
2L =BG e
Hence, we have proved (VL(i"), "' — ) < 0. O

Meanwhile, as the LAB scheme is executed iteratively,
we will also analyze if the BS selection rule at the IoT device
side in each iteration is the best option by proving the fol-
lowing theorem.

Theorem 1. Given the advertised traffic loads of BSs and com-
puting loads of fog nodes, the optimal IoT device association
rule at the IoT device side is:

pF(z) = arg Iglg;{ erj(x)qu(k)

Proof. In the kth iteration, n* is the IoT device association
achieved by the proposed IoT device side algorithm:

p"(x) = argmaxjey Cjrj(x)$;(k). Meanwhile, let n’ denote
any other possible IoT device association vector in the
iteration. Thus, to prove this theorem, we just need to
prove that 5’ cannot reduce L(n) any more as compared
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e, (VL(n*),n' —n*) > 0.

(VL(n"),n' — ")

to ¥, i.

1

= o)) (7 (z) — n¥(2)) =———dx
‘/Teé}“ MOE =) e m ™
1
= z)v(z ") = nf(z)) =———————du.
_/MA( u( )J_;(n]( ) =) e
Since
pl(z) = arg max Cyri(x)g;(k),
() = {0, if j # p(@).
Then, we have
275 @(k =2 @ 30

jeT G TJ )¢j( )
Hence, (VL(n),n' —n*) > 0. Therefore, n* is an optimal

IoT device association in the kth iteration. O

As we know, all BSs will estimate and broadcast the traf-
fic load vector p and the compuitng load vector p iteratively,
which can be employed by IoT devices to select the suitable
BSs. Thus, we need to prove the convergence of p and p for
the proposed scheme.

Theorem 2. At the BS side, the estimated traffic load vector p and
computing load vector p converge to the optimal load vectors p
and p*, respectively, such that L(#) is minimized.

Proof. As shown in Lemma 3, #*'! — #* provides a decent
direction of L(7) at #*, and hence L(#) gradually decreases
in each iteration. Since L(7) > 0,  will eventually con-
verge when L(7) is minimized.

According to Egs. (24) and (25), the traffic loads of BSs p
and the computing loads of fog nodes p are determined by
n. Thus, when the intermediate IoT device association 7
converges, the advertised traffic load vector p and comput-
ing load vector p also converge at the same time. 0

Lemma 4. Based on the optimal advertised traffic load vector p
and computing load vector p, the IoT device side algorithm
yields the optimal IoT device association for the load balancing
problem in the feasible set F'.

Proof. The proof of this lemma is similar to the proof of
Theorem 1. 0

As LAB is a gradient algorithm, which is a classic algo-
rlthm for convex problems, the number of iterations
gence can be found in [28].

B pdfclement RS

up simulations of the proposed
erformance. We select two other
: a-distributed algorithm [27] and
the Best SNR algorlthm The basic idea of the a-distributed
algorithm is to optimally allocate traffic workloads among
BSs in order to minimize the communications latency ratio
(e, e 7 m;) without considering the load distribution of

The Trial Version
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Fig. 3. Network topology.

fog nodes. On the other hand, the Best SINR algorithm is to
associate [oT devices to the BSs that provide the best chan-
nel conditions.

In the simulation, six BSs are randomly deployed in a
3000 x 2000 m?* area as shown in Fig. 3. The area is divided
into 15,000 locations, where each location represents a 20 m x
20 m area. The flow arrival at different locations follows the
Poisson point process where the average arrival rate per unit
area is set as 0.50 flows/second. As the traffic sizes of data
flows follow an exponential distribution, we set the average
traffic size as 0.05 Mbits. The computing sizes of data flows
also follow an exponential distribution; we set the average
computing size of each flow as 5000 CPU cycles. Then, the
location-based traffic load density and computing load density
can be derived based on Egs. (4) and (11), respectively. Mean-
while, we set the maximum traffic load threshold of each BS as
0.99 and the maximum computing load threshold of each fog
node as 0.99. In the simulation, the transmission power of each
IoT device is set as 100 mW while the uplink frequency band-
width of each BS is 10 MHz. We employ COST 231 Walfisch-
Ikegami [34] as the propagation model with 9 dB rayleigh fad-
ing and 5 dB shadowing fading. The carrier frequency is 2110
MHz, the antenna feeder loss is 3 dB, the transmitter gain is
1 dB, the noise power level is —104 dBm, and the receiver sen-
sitivity is —97 dBm.

As shown in Fig. 4, the average latency ratios of both LAB
and a-distributed algorithms do converge. Meanwhile, Fig. 5
shows that LAB achieves a much lower average latency ratio
than the other two schemes. As we know, the a-distributed
algorithm only focuses on the wireless communications
latency by allocating the traffic loads among BSs. In this case,
the computing loads of fog nodes may be unbalanced (i.e.,
while some fog nodes are lightly loaded, other fog nodes
are overloaded). Similarly, the Best SINR algorithm aims to
assign IoT devices to BSs that provide the best channel condi-
tions, and thus both the traffic loads among BSs and the
computing loads among fog nodes may be unbalanced. In
contrast, as the latency of a data flow consists of both the com-
munications latency and computing latency, LAB takes into
account of both the traffic loads and the computing loads in
the load balancing process. As a result, although the commu-
nications latency is slightly sacrificed as compared to the
a-distributed algorithm, LAB optimizes the average latency
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bnificantly reducing the computing
= pdfelement communications latency of differ-
e can see that LAB incurs a higher
atency than the a-distributed algo-
e fact that the o-distributed algo-
r1thm optlmally balances the traffic loads among BSs to
reduce the communications latency without considering the
computing load allocation. In contrast, besides the traffic load
balancing, LAB also adjusts the IoT device association to
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offload the computing loads from overloaded fog nodes to
lightly loaded fog nodes. Thus, the adjusted IoT device associ-
ation cannot guarantee the optimal traffic load balancing,
which slightly degrades the performance of communications
latency.

To further study the load balancing process in the fog
network, we also compare the computing loads among
fog nodes and the traffic loads among BSs for different
schemes. Fig. 7 shows that the differences of computing
loads among fog nodes achieved by LAB are smaller than
those by the wa-distributed algorithm and the Best SINR
algorithm. While balancing the traffic loads, LAB also
balances the computing loads among different fog nodes,
thus reducing the computing latency in fog nodes. In con-
trast, both a-distributed and Best SINR do not consider the
computing latency, which is an important factor of the
final latency of data flows, and thus incur unbalanced com-
puting loads among fog nodes. Meanwhile, Fig. 8 shows
the traffic loads among BSs for different schemes. The
differences of traffic loads among BSs for both LAB and
a-distributed are smaller than that of the Best SINR algo-
rithm. In other words, the traffic loads of the two schemes
are balanced, and thus no BS is congested. Furthermore,
since the traffic loads among BSs in LAB and a-distributed
are similar, it indicates that LAB only slightly sacrifices the
communications latency in the load balancing process, as
compared to the a-distributed algorithm.

The capacities of fog nodes can critically impact the
computing latency. Specifically, based on Eq. (10), when the
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Fig. 9. Average latency ratio with respect to the capacity of each fog
node (A = 0.5).

capacities of fog nodes increase, the computing load density p;
will decrease correspondingly. Therefore, we need to study
the impact of the capacities of fog nodes on the average latency
of all data flows. As shown in Fig. 9, the average latency ratios
of both a-distributed and LAB decrease with the increase of
fog nodes’ capacities. When the capacities of fog nodes are rel-
atively low, LAB achieves a much lower average latency as
compared to the a-distributed algorithm because the comput-
ing latency becomes the dominating factor of the average
latency when fog nodes’ capacities are limited. In this case,
since LAB can balance the computing loads among fog nodes
via the suitable IoT device association, its average latency ratio
is remarkably lower than that of the a-distributed algorithm.
However, when fog nodes’ capacities keep increasing, all fog
nodes become lightly loaded and thus the computing latency
is no longer the dominating factor of the average latency. In
this case, the average latency of the «a-distributed algorithm
decreases quickly and gets close to that of LAB.

We also investigate the impact of the average traffic
arrival rate A\(x) on the average latency ratio of the network.
As shown in Fig. 10, when the average traffic arrival rate
increases, the average latency ratios of both the a-distributed
algorithm and LAB increase, where the value of LAB is
lower than that of the wa-distributed algorithm. When the
average arrival rate is relatively low, the average latency
ratios of the two schemes are similar because both the
BSs and fog nodes in the network are lightly loaded. As a
result, the computing load balancing of LAB cannot sig-
nificantly improve the average latency as compared to the
a-distributed algorithm. However, as the average traffic
arrival rate increases, the average latency ratio of LAB grows
slowly while the performance of the a-distributed algorithm
degrades quickly because both the traffic load and comput-
become heavy with the increase of
rate. In this case, the traffic loads
g loads among fog nodes jointly
y ratio. As LAB takes into account
hncing and computing load balanc-
ow average latency. However, the
a- dlstrlbuted algorlthm only focuses on balancing the traffic
loads among BSs, in which case some fog nodes are con-
gested especially when the computing loads in the networks
are very heavy.

m ndfelement
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7 CONCLUSION

In this paper, we have proposed the LoAd Balancing (LAB)
scheme for the fog network to minimize the average latency of
IoT devices” data flows. Since the latency of a data flow con-
sists of both the communications latency and computing
latency, LAB takes into consideration of both the traffic load
allocation and computing load allocation by associating IoT
devices to suitable BSs/fog nodes. In particular, when the traf-
fic load of the network is heavier than the computing load of
the network, the IoT device association focuses on balancing
the traffic loads among BSs. Similarly, when the computing
load of the network is heavy, i.e., the fog nodes become the bot-
tleneck, the computing latency becomes the dominating factor
of the average latency ratio. Nevertheless, LAB can still reduce
the average latency by adjusting the IoT device association to
balance the traffic load and computing load simultaneously.
To solve the problem, we have designed a distributed algo-
rithm to iteratively achieve the optimal solution. Furthermore,
we have proved the convergence and optimality of the solu-
tion. We have demonstrated the performance of LAB over the
a-distributed algorithm and Best SINR algorithm via extensive
simulations.
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