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ARTICLE INFO ABSTRACT

In traffic surveillance video analysis systems, the cast shadows of vehicles often have a negative effect on
video analysis results. A novel cast shadow detection framework, which consists of a new foreground detec-
tion method and a cast shadow detection method, is presented in this paper to detect and remove the cast
shadows from the foreground. The new foreground detection method applies an innovative Global Fore-
ground Modeling (GFM) method, a Gaussian mixture model or GMM, and the Bayes classifier for foreground
and background classification. While the GFM method is for global foreground modeling, the GMM is for
local background modeling, and the Bayes classifier applies both the foreground and the background models
for foreground detection. The rationale of the GFM method stems from the observation that the foreground
objects often appear in recent frames and their trajectories often lead them to different locations in these
frames. As a result, the statistical models used to characterize the foreground objects should not be pixel
based or locally defined. The cast shadow detection method contains four hierarchical steps. First, a set of
new chromatic criteria is presented to detect the candidate shadow pixels in the HSV color space. Second,
a new shadow region detection method is proposed to cluster the candidate shadow pixels into shadow
regions. Third, a statistical shadow model, which uses a single Gaussian distribution to model the shadow
class, is presented for classifying shadow pixels. Fourth, an aggregated shadow detection method is pre-
sented for final shadow detection. Experiments using the public video data ‘Highway-1’ and ‘Highway-3’,
and the New Jersey Department of Transportation (NJDOT) real traffic video sequences show the feasibility
of the proposed method. In particular, the proposed method achieves better shadow detection performance
than the popular shadow detection methods, and is able to improve the traffic video analysis results.
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1. Introduction pixels [17,11,12]. Yet, the cast shadows are usually classified into
the foreground class as they have the similar motion patterns to
their foreground objects, which deteriorates traffic video analysis

performance.

In traffic video analysis, shadows are often detected as part of
the foreground, as they share the similar motion patterns to the
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foreground objects [1-3]. The cast shadows are always strong and
occupy large areas, especially during the sunny days. These cast
shadows often adversely affect the video analysis performance in
various applications, such as vehicle tracking and vehicle classifica-
tion [4]. Many algorithms have been published to detect the moving
foreground objects in video [5-16]. Some methods like the Gaus-
sian Mixture Modeling (GMM) estimate the background for each
pixel using a number of Gaussian distributions [5-7,9,11,12]. Other
methods apply a classification method, such as the support vec-
or machine M)_to classify the foreground and the background
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We present a novel cast shadow detection framework based on
color and statistical modeling to detect and remove the cast shad-
ows from the foreground region in order to improve video analysis
performance. The novelty of our proposed framework comes from
the following methods: a new foreground detection method and a
novel cast shadow detection method. The new foreground detection
method applies an innovative Global Foreground Modeling (GFM)
method, a Gaussian mixture modeling or GMM method, and the
Bayes classifier for foreground and background classification. The
motivation for developing the GFM method is based on the obser-
vation that the foreground objects often appear in recent frames
and their trajectories often lead them to different locations in these
frames. In contrast to the uniform distribution or a local foreground
modeling of the foreground [5-7], our GFM method models all the
foreground objects globally using multiple Gaussian distributions.
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Thus, the statistical models used by the GFM method to characterize
the foreground objects are not locally defined. As a result, the GFM
method is for global foreground modeling, the GMM method is for
local background modeling, and the Bayes classifier applies both the
foreground and the background models for foreground detection.

The novel cast shadow detection method contains four hierar-
chical steps, whose contributions are summarized below. First, we
present a set of new chromatic criteria to detect the candidate
shadow pixels in the HSV color space. We use the HSV color space for
shadow detection due to its property of separating the chromatic-
ity from intensity [2,18-21]. Our new chromatic criteria are more
robust than the criteria used by other popular methods for shadow
detection [2,21]. Second, we present a new shadow region detec-
tion method to cluster the candidate shadow pixels into shadow
regions. Many shadow detection methods can not solve the shadow
outlines problem: the outlines of the shadow regions are often classi-
fied to the foreground. As a result, after removing the shadow pixels
from the foreground, the shadow regions are only partially removed,
and the shadow outlines are often classified to the foreground. Our
new shadow region detection method is able to solve this problem
by applying the prior knowledge that both the foreground objects
and their cast shadows should define continuous regions. Third, we
present a statistical shadow modeling method, which uses a single
Gaussian distribution to model the shadow class, to classify shadow
pixels. The shadow pixels detected by both the new chromatic cri-
teria and the new shadow region detection method tend to be more
reliable shadow pixels, we therefore use these shadow pixels to
estimate the Gaussian distribution for the shadow class. Finally, we
present an aggregated shadow detection method that integrates the
detection results using the new chromatic criteria, the new shadow
region detection method, and the new statistical shadow model-
ing method. A gray scale shadow map is obtained by calculating a
weighted summation of the candidate shadow pixels. A shadow free
foreground may be derived by thresholding the gray scale shadow
map.

We implement experiments using the public data ‘Highway-1’
and ‘Highway-3’ videos, and the New Jersey Department of Trans-
portation (NJDOT) real traffic video sequences to show the feasibility
of the proposed method. In particular, the experimental results (both
qualitative and quantitative results) show that our proposed method
achieves better shadow detection performance than some popu-
lar shadow detection methods [21-25], and is able to improve the
vehicle tracking performance.

2. Related work

In traffic video analysis, our goal is to be able to analyze the
behavior of the moving objects (vehicles, pedestrians etc.) and dis-
tinguish the categories of the objects, but the cast shadows of the
objects often affect our analysis of video. Many methods have been
published for cast shadow detection [1-3]. As color often provides
useful information for shadow detection, some methods apply color
information to detect shadows [18,20,26-28]. Many shadow detec-
tion methods assume that the shadow areas are darker in intensity
but relatively invariant in chromaticity [2,18-21]. The color spaces
that separate chromaticity from intensity are thus often used for
hmple such color spaces are the HSV color
space [19], and the YUV color space [20].
bly a set of chromatic criteria by assum-
ave similar hue to the background, but a
br value than the background [2,21].
bling is applied for shadow detection as
29,24,30|. The major assumption of these methods is that
the light source is pure white and the attenuation of the illumina-
tion is linear. Generally speaking, these statistical shadow modeling
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methods are able to predict color changes of the shadow pixels bet-
ter than the color based methods, but the shadow detection accuracy
in outdoor scenes tends to deteriorate.

There are methods that use the shape, size, and orientation infor-
mation for shadow detection [22,31,32]. These methods are designed
to deal with some objects that have specific shapes. The advantage of
these methods is that they do not need to estimate the background
color of the shadow, but the disadvantage is that they have difficulty
in dealing with multiple types of objects in complex scenes.

There are methods that utilize texture for shadow detection, such
as classifying a region into the shadow region or the object region
based on the texture correlation between the foreground and the
background [23,25,33-36]. These methods extract the texture infor-
mation in different sizes of the regions. The advantage of these meth-
ods is that they are more robust to illumination changes than the
color based methods, but the disadvantage is that the computation
efficiency of matching the texture features is low.

There are also methods that use machine learning techniques
for shadow detection. Guo et al. proposed a paired region based
shadow detection algorithm [34]. Vidente et al. presented a kernel
least-squares SVM method for separating shadow and non-shadow
regions [37,35]. Many shadow detection algorithms using the deep
neural network are presented recently [38-43].

3. A new foreground detection method using global foreground
modeling and local background modeling

In video analysis, the cast shadows are often detected with their
foreground objects, as these shadows share the similar motion pat-
terns to their objects. Our proposed method will first detect the fore-
ground regions that contain both the foreground objects and their
shadows, and then remove the cast shadows from the detected fore-
ground regions. Towards that end, we first present a new foreground
detection method, which applies an innovative Global Foreground
Modeling (GFM) method [15,16], a Gaussian mixture model (GMM),
and the Bayes classifier for foreground and background classification.
While the GFM method is for global foreground modeling, the GMM
is for local background modeling, and the Bayes classifier applies
both the foreground and the background models for decision making.

Our GFM method applies multiple Gaussian distributions to
model all the foreground objects globally. Compared with the tradi-
tional GMM method, which estimates a mixture Gaussian distribu-
tion for every location in a frame, the GFM method only estimates
one mixture Gaussian distribution for the whole frame. The rationale
of the GFM method stems from the observation that the foreground
objects often appear in recent frames and their trajectories often lead
them to different locations in these frames. For example, a vehicle
may appear in several continuous frames but at different locations.
As aresult, the statistical models used to characterize the foreground
objects should not be pixel based or locally defined. In order to adapt
to the dynamic nature of the foreground objects in video, we propose
to globally model the foreground objects as follows:

K
px) = > up(xien) (1)
k=1
exp [~ 3(x - M3 (x - M)
p(X|wy) = AL (2)
K
D=1 3)
k=1

where x e R is the input feature vector, and My, 3, and o are the
mean vector, the covariance matrix, and the weight of the k-th Gaus-
sian density p(x|wy ), respectively. The feature vector X can be defined



H. Shi and C. Liu / Image and Vision Computing 94 (2020) 103863 3

iedye 4

o — — -,
T 280 F00KIING SWES, T RT280-FO0KING

@

dyon.

WEL

(b)

(©

Fig. 1. (a) A video frame from an NJDOT traffic video. (b) The background derived using the GMM model. (c) The foreground (with shadow) detected using our new foreground

detection method.

by the color components in a specific color space, or one of some
innovated feature vectors [15,16]. K is the number of the Gaussian
distributions used to model the foreground objects globally. We also
create a counter 1y, for each Gaussian density to count the number of
input vectors X and use it in the updating steps.

The initialization of the GFM method involves initializing all the
parameters in the K Gaussian distributions to zero: the mean vectors,
the covariance matrices, and the weights. During the initialization
process, the counters n; for the K Gaussian distributions are also set
to zero. Then, we apply an online learning strategy to update our
foreground model. Before all the K Gaussian distributions are asso-
ciated with a non-zero weight, we use a hard thresholding method
to determine which Gaussian distribution should be updated. If an
input feature vector x is within the threshold of the conditional prob-
ability density function of its corresponding background, we regard it
as a background pixel and do not update the foreground model. Oth-
erwise, we check if x can fall in the threshold of any non-zero weight
foreground Gaussian distributions. If it can, we use X to update that
Gaussian density and increase the corresponding counter by one. If
it cannot, we find a Gaussian distribution with zero weight in the
foreground model, and use x to define the mean vector, set the diag-
onal values of the covariance matrix to a predefined value oy, and
change the corresponding counter to one. The updating strategy is
summarized as follows [44]:

M, = (mMy + x)/(n + 1)
S = (Mg + (X — M)(x — M)/ (ng + 1)
m,=ng+1

After updating the density function, we also update the weights of all
the Gaussian densities:

(7)

K
@G =m/>

k=1

earns multiple Gaussian distributions to
rround in video. For each pixel in a frame,
n distributions is chosen as the conditional
on for the foreground class. Specifically, the
m the GFM model chosen as the conditional
ion for each pixel is determined using the
inimum error [45] as follows:
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p(xjey)P(ey) = max(p(xio)P(o)) (8)

where oy represents the foreground class, and p(x|wy) is the fore-
ground conditional probability density function for that pixel. Note
that the input feature vector X is also used to update the Gaussian
distribution.

In contrast to the global foreground modeling, the background
is locally modeled using a Gaussian mixture model (GMM), which
defines L Gaussian density functions for each location in a frame
[5-7]. At each location (i,j), we select the most significant Gaussian
density among the L Gaussian density functions as the conditional
probability density function p; j(x|®, ) for the background and use the
mean values of that density to estimate the background color. Let @,
be the background class.

After the global foreground modeling and the local background
modeling, our new foreground detection method applies the Bayes
classifier for decision making. In particular, let p(x|wy) and p(x|wp)
be the foreground and background conditional probability density
functions, respectively, and let P(wy) and P(wp) be the prior prob-
abilities for the foreground and the background, respectively. The
discriminant function is as follows:

h(x) = p(xlwy)P(wr) — p(Xlwp)P(wp) 9)
Note that the prior probability for the background, P(wp), is esti-
mated using the weight of the most significant Gaussian distribution
in the GMM model, and the prior probability for the foreground,
P(wy), is estimated as 1 — P(wp). The pixel will be classified to the
foreground class if h(x) > 0, and the foreground mask is defined by
the foreground pixels.

Fig. 1 (a) shows a video frame from an NJDOT traffic video. The
background, which is derived using the GMM model, is shown in
Fig. 1 (b), and the foreground (with shadow), which is detected using
our new foreground detection method, is displayed in Fig. 1 (c). As
shown in Fig. 1, the foreground includes both the foreground objects
and their cast shadows. Next, we will present our novel cast shadow
detection method to detect and remove the cast shadows from the
foreground.

4. A novel cast shadow detection method

In video analysis, shadows are often detected as part of the fore-
ground, which deteriorates the performance of many video analysis
tasks. We therefore present in this section a novel cast shadow detec-
tion method that is able to detect and remove the cast shadows from
the foreground. In particular, Fig. 2 shows the system architecture of
our proposed cast shadow detection method in video using color and
statistical modeling. First, we apply the new foreground detection
method introduced in the previous section to detect the foreground,
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Fig. 2. The system architecture of our proposed cast shadow detection method.

which contains both the foreground objects and their cast shadows.
Second, we present a cast shadow detection method with the follow-
ing novelties: (i) A new method based on new chromatic criteria is
presented for candidate shadow pixel detection. (ii) A shadow region
i i sed to cluster the candidate shadow pix-
A statistical shadow model is presented
Is. (iv) An aggregated shadow detection
hl shadow detection.
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1% New chromat or shadow pixel detection

As color provides useful information for shadow detection, we
present in this section a new method based on a set of new chromatic
criteria for shadow pixel detection. After foreground detection, we

need to detect the cast shadow pixels in the foreground region. Our
new method will apply the new chromatic criteria to detect candi-
date shadow pixels. As the HSV color space is widely used in shadow
detection due to its property of separating the chromaticity from
intensity, we choose this color space for shadow detection. Let H, S,
and V be the H (hue), S (saturation), and V (value) components in the
HSV color space.

For every frame, we estimate a corresponding background picture
using the GMM method. Let S; and Vy be the S and V components
of a pixel in the frame, respectively, and S, and V}, be the S and V
components of the corresponding pixel in the background picture,
respectively. Our new chromatic criteria are defined as follows:

Tsi <S —Sb < Tsh
[ Ty < ‘;b - Vf < Tyh (10)

where 7y, Ts, Ty, and Ty, represent the thresholds. If a pixel in the
foreground region satisfies these chromatic criteria, it is classified as
a candidate shadow pixel.

To illustrate the rationale of our new chromatic criteria, we
show the difference of the S component between the frame and
the estimated background picture, and the difference of the V com-
ponent between the estimated background picture and the frame,
respectively. In particular, Fig. 3 (a) shows a color video frame,

© ®

Fig. 3. (a) A video frame from an NJDOT traffic video. (b) The H (hue) component
of a video frame. (c) The S (saturation) component of the video frame. (d) The V
(value) component of the video frame. (e) The difference of the S component between
the frame and the background. (f) The difference of the V component between the
background and the frame.
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Fig. 3 (b) —(d) display the H (hue), S (saturation), and V (value)
components in the HSV color space, Fig. 3 (e) shows the differ-
ence of the S component between the frame and the estimated
background picture, and Fig. 3 (f) shows the difference of the V com-
ponent between the estimated background picture and the frame.
From Fig. 3 (e), we can see that for the shadow pixels the difference
values of the S component between the frame and the background
are within a range that can be bounded by two threshold values 7
and Ty, as shown in Eq. (10). From Fig. 3 (f), we can see that for the
shadow pixels the difference values of the V component between the
background and the frame also fall into a range that can be bounded
by two threshold values 7,; and 7,;, as shown in Eq. (10).

Note that many shadow detection methods assume that the
shadow areas are darker in intensity but relatively invariant in chro-
maticity [2,18-21]. As a result, some color spaces that separate
chromaticity from intensity are applied to detect shadows, such as
the HSV color space [18], the c1c2c3 color space [19], and the YUV
color space [20]. Some popular methods [2,21] apply a different set
of chromatic criteria: |[Hf — Hp| < Ty, Sf — Sp < 75, By < V/Vp < By,
where Hy, S5, Vf, Hp, Sp and V,, represent the hue, saturation, and value
of a pixel of the frame and the background, respectively. 7y, Ts, 34
and (3, are the thresholds that are chosen empirically. The pixels
that satisfy these three criteria are classified as shadow pixels. These
chromatic criteria assume that the cast shadows have similar hue to
the background, but a lower S (saturation) and a lower V (value) than
the background [2].

In contrast, our new chromatic criteria are more robust than these
chromatic criteria. In our research, we find that the assumption that
the cast shadows have similar hue to the background is often not
satisfied. For example, Fig. 3 (b) shows that the H values of the cast
shadows are not similar to the background. As a result, in our new
chromatic criteria the H values are excluded as they vary a lot espe-
cially for the background. The S values, however, are relatively stable
for the background and the cast shadows comparatively, but vary
for the foreground objects. Thus, the difference of the S component
between the shadow and the background often falls into a fixed
range. Another characteristic of cast shadows is that the shadows are
always darker than the background, but they cannot be exactly black.
Based on these observations, we present our new chromatic criteria
for candidate shadow pixel detection as shown in Eq. (10).

Fig. 4 shows the shadow detection results using our new chro-
matic criteria and the criteria in [2,21]. Specifically, Fig. 4 (a) shows
a video frame from an NJDOT traffic video, Fig. 4 (b) displays the
shadow detection results using the chromatic criteria in Refs.[2,21],
and Fig. 4 (c) shows the shadow detection results using our new
chromatic criteria. Note that the shadow pixels are represented using
gray scale value of 128. We can see from Fig. 4 (b) and (c) that our
proposed method using the new chromatic criteria is able to detect
the shadow pixels more reliably.
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4.2. A new shadow region detection method

One inherent problem in shadow detection is that the outlines of
the shadow region are often classified to the foreground class. As a
result, after removing the shadow pixels from the foreground, the
shadow regions are only partially removed, and the shadow outlines
are often classified to the foreground. Fig. 5 (b) and (c) show the
partially removed shadow regions and the shadow outlines that are
not removed. These unremoved shadow regions and outlines often
deteriorate the performance of video analysis tasks, such as video
tracking and incident detection.

To solve this problem, we present a new shadow region detec-
tion method based on the prior knowledge that both the foreground
objects and their cast shadows should define continuous regions.
Note that in each frame, the detected foreground often consists of
several foreground regions, each of which contains both the fore-
ground objects and their cast shadows. In each foreground region,
all the shadow pixels are on one side and all the foreground object
pixels are on the other side. As a result, each foreground region may
be divided into two regions: the shadow region and the foreground
object region. As the candidate shadow pixels inside each foreground
region are detected using the new chromatic criteria introduced in
Section 4.1, the remaining pixels are the foreground object pixels.

The idea of our new shadow region detection method is to clus-
ter the shadow pixels and the foreground object pixels into two
classes using the centroids of the two classes. Our idea is similar to
the K-means clustering algorithm but without any iteration steps.
Specifically, in each foreground region B, we first find the centroid
of the candidate shadow pixels Cents(B) and the centroid of the fore-
ground pixels Cento(B). We then compute the Euclidean distances
between each pixel and the two centroids. We finally classify the
pixel into a foreground object class or a shadow class based on the
Euclidean distances: if the distance to the foreground object class
is smaller, the pixel is assigned to the foreground object class, and
vice versa. In particular, for the pixel x at location (i,j) in each fore-
ground region B, we calculate the distance between the pixel and
the shadow centroid Dist(x;;, Cents(B)) and the distance between the
pixel and the foreground object centroid Dist(X;;, Cento(B)), respec-
tively. If Dist(x;, Cents(B)) is smaller, then we classify x;; into the
shadow class. Otherwise, we classify it into the foreground object
class. The new shadow region detection method thus detects the
candidate shadow regions.

Fig. 5 (a) displays a video frame from an NJDOT traffic video,
Fig. 5 (b) shows the shadow detection results using Huang and Chen'’s
method [24],Fig. 5 (c) shows the shadow detection results using
the new chromatic criteria introduced in Section 4.1, and Fig. 5 (d)
shows the shadow detection results using the new shadow region
detection method. Fig. 5 (b) and (c) reveal that the outlines of the
shadow region are often classified to the foreground class leading to

Fig. 4. (a) A video frame from an NJDOT traffic video. (b) The shadow detection results (shadow pixels are represented using gray scale value of 128) using the chromatic criteria

in Refs. [2,21] (c) The shadow detection results using our new chromatic criteria.



6 H. Shi and C. Liu / Image and Vision Computing 94 (2020) 103863

(€Y (b)

(© (d)

Fig. 5. (a) A video frame from an NJDOT traffic video. (b) The shadow detection results using Huang and Chen’s method [24]. (c) The shadow detection results using our new
chromatic criteria. (d) The shadow detection results using our shadow region detection method.

the incorrect shadow detection. In contrast, Fig. 5 (d) shows that our
proposed new shadow region detection method is able to detect the
whole shadow regions including their outlines.

4.3. A new statistical shadow modeling and classification method

We present in this section a new statistical shadow modeling
and classification method. For statistical modeling, we use a single
Gaussian distribution to model the shadow class. In the previous
two sections, our proposed method using the new chromatic criteria
detects candidate shadow pixels and our new shadow region detec-
tion method detects the candidate shadow regions. As the shadow
pixels detected in both methods tend to be more reliable shadow
pixels, we apply these shadow pixels to estimate the Gaussian distri-
bution for the shadow class.

Specifically, let S and S; be the candidate shadow pixel sets
detected by our proposed method using the new chromatic criteria
and our new shadow region detection method, respectively. For each
pixel x in the foreground, if X € S¢ and x € S;, we will use x to update
the Gaussian distribution Ny(M, 3) as follows:

M =M-a(M -Xx) (11)

S/ =3 4 a((M-x)(M—-x) —3) (12)

where M and ¥ are the mean vector and the covariance matrix of
the shadow Gaussian distribution, respectively. « is a small number
which influences the model updating speed.

For shadow pixel classification, we apply the following discrimi-
nant function for each pixel x € R? in the foreground:

sv)=W—-vi))-po;  ie{l,2,....d) (13)
where v; is the i-th element of the input vector x, y; is the i-th
element of the mean vector M, 0; is the i-th diagonal element of
the covariance matrix 3, and p is the parameter which determines
the threshold. If s(v;) is greater than zero for any i € (1,2,...,d},
we classify x into the foreground object class. Otherwise, we clas-
sify it as a shadow pixel. Our new statistical shadow modeling and
i i letects the candidate shadow pixels.

o pdfelement  Z
The Trial Version hdow detection is the aggregated shadow
e detection results using the new chro-
matic criteria, the new shadow region detection method, and the
new statistical shadow modeling and classification method dis-
cussed in the previous three sections. Specifically, we first assign all

the pixels in the shadow class a gray scale value of 128, and the pix-
els in the foreground object class a gray scale value of 255. We then
define three weights for the three methods to indicate their signifi-
cance for the final cast shadow detection: w, for the new chromatic
criteria, w; for the shadow region detection, and ws for the statisti-
cal modeling. The weights are normalized so that their summation
equals one:

We+wr+ws =1 (14)

Note that the larger a weight is, the greater impact the cor-
responding method exerts to the final shadow detection results.
These weights may be learned from the data, but without any prior
information, they may be set to equal values.

For each location (i,j) in the foreground, the gray level G(i,j) is
calculated as follows:

G(i,j) = weC(i.j) + wrR(i,j) + wsS(i, ) (15)

where ((i,j), R(i,j) and 5(i,j) are the values at location (i,j) derived by
using the new chromatic criteria, the shadow region detection, and
the statistical modeling method, respectively.

In the gray scale image, the smaller value a pixel has, the more
likely it is a shadow pixel. We use a threshold T; to generate a shadow
free binary foreground mask. The binary value B(i,j) at location (i,j)
is calculated as follows:

0, if G(ij) <Ts

B(i,j) = 16
(8.J) 255, otherwise (16)

Fig. 6 shows the results of our novel cast shadow detection
method step by step. Fig. 6 (a) is a video frame from an NJDOT
traffic video. Fig. 6 (b) shows the foreground detected using our
new foreground detection method. Fig. 6 (c) -(e) show the shadow
detection results using the chromatic criteria detection, the shadow
regions detection, and the statistical modeling detection. Note that
the shadow pixels are indicated using the gray scale value of 128.
Fig. 6 (f) shows the gray scale image generated by the aggregated
shadow detection method. Fig. 6 (g) shows the foreground after
removing the shadows. Fig. 6 (h) displays the video frame with the
foreground in red color.
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Fig. 6. (a) A video frame from the NJDOT traffic video. (b) The detected foreground (with shadow) using the new foreground detection method. (c) The detected shadow pixels
using the new chromatic criteria. (d) The detected shadow regions using the shadow region detection method. (e) The detected shadow pixels using statistical shadow modeling
and classification. (f) The detected shadow pixels using the aggregated shadow detection method. (g) The shadow free foreground. (h) The video frame with the foreground in red

color.

5. Experiments

We first show the quantitative evaluation results using the
‘Highway-1" and ‘Highway-3’ videos [2]. The ‘Highway-1' and
‘Highway-3’ videos have the spatial resolution of 320 x 240 with a
duration of 440 frames and 2227 frames, respectively. These videos,
which are publicly available and broadly used, facilitate the compar-
ative evaluation of our proposed method with other representative
shadow detection methods published in the literature. We then use
the New Jersey Department of Transportation (NJDOT) traffic video
sequences to evaluate our proposed method qualitatively. Specifi-
cally, we apply four NJDOT traffic videos, each of which is 15 min
with a frame rate of 15 frames per second or fps, and with a spa-
tial resolution of 640 x 482. We demonstrate the improvement
for the vehicle tracking performance by using our proposed shadow
detection method with these videos.

The thresholds 7, 75, 7y and 7, in Eq. (10) are defined by the
saturation and value components of some manually selected shadow
pixels in the first frame of the video. The weights w., w;, and ws
are defined as 0.25, 0.25, and 0.5, respectively. The threshold T; in
Eq. (16) used in our experiment is 192. For fair comparison, we only
provide one frame of each video for parameter initialization before
testing. The model used for Zhu et al.’s method [43] is a pre-trained
model.

Table 1
The comparative running time (in milliseconds) of our proposed method and some

ods.
320 x 240 640 x 482
a pdfelement
10 44
; ) 9 39
The Trial Version 68 282
10 43
Sanin et al. [25] 13 54
Zhu et al.[43] (with GPU) 421 1069
Proposed method 9 39

The computer we use is a DELL XPS 8900 PC with a 3.4 GHz Intel
Core i7-6700 CPU, an NVIDIA GeForce GTX 745 GPU and 16 GB RAM.
All the running time is tested on the above computer. As shown in
Table 1, it takes 9 ms to process each frame in the 320 x 240 video,
and takes 39 ms to process each frame in the 640 x 482 videos
using our method. The running speed of our proposed method is
comparable to, or even faster than the other methods. As a result,
our proposed shadow detection method is able to perform real time
analysis of these videos.

The shadow detection rate 1), the shadow discrimination rate §,
and the F-measure are popular metrics used to evaluate shadow
detection performance quantitatively [46], which are defined as
follows:

TR
1= TP, T EN, (17)
TP,
&= 15, T N, (18)
F — measure = 2—”& (19)
n+§

where TPs and FN; represent the number of true positive and false
negative shadow pixels, respectively, and TP, and FN, stand for the
number of true positive and false negative foreground object pixels,
respectively.

Fig. 7 shows the shadow detection results of the ‘Highway-1’ and
‘Highway-3’ videos [2]. Specifically, Fig. 7 (a) shows one video frame
from the ‘Highway-1’ video, and Fig. 7 (b) shows one video frame
from the ‘Highway-3’ video. From left to right, top to down, each
sub-figure is showing one video frame of ‘Highway-1’/'Highway-3’
video [2], the ground truth of foreground mask (the white parts are
the foreground objects and the gray parts are the cast shadows),
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(a) Highway-1 video

(b) Highway-3 video

Fig. 7. The foreground masks obtained by different methods. (a). The results of ‘Highway-1’ video. (b). The results of ‘Highway-3’ video. From left to right, top to down, each sub-
figure is showing one video frame of ‘Highway-1'/*Highway-3’ video [2], the ground truth of foreground mask (the white parts are the foreground objects and the gray parts are the
cast shadows), the shadow free foreground mask of Cucchiara et al.’s method [18], Huang and Chen’s method [24], Hsieh et al.’s method [22], Leone and Distante’s method [23],
Sanin et al.’s method [25], Zhu et al.’s method [43], and our proposed method, respectively.

the shadow free foreground mask of Cucchiara et al.’s method [18],
Huang and Chen’s method [24], Hsieh et al.’s method [22], Leone
and Distante’s method [23], Sanin et al.’s method [25], Zhu et al.’s
method [43], and our proposed method, respectively. We can see
from Fig. 7 that our proposed shadow detection method achieves
better shadow detection and removal results than the other popular
shadow detection methods.

Table 2 shows the comparative shadow detection performance
of our proposed method and some other popular shadow detection
methods using the publicly available ‘Highway-1" and ‘Highway-3’
videos. In particular, our proposed method achieves the highest F-
measure score of 83% for ‘Highway-3’ video, compared with the
74%, 54%, 69%, 55%, 75%, and 46% F-measure scores by the Sanin et
al. [25] shadow detection method, the Lalonde et al. [47] shadow
detection method, the Bullkich et al. [48] shadow detection method,
the Guo et al. [34] shadow detection method, the Gomes et al. [21]
shadow detection method, and the Zhu et al. [43] shadow detec-
tion method, respectively. Our proposed method also achieves the
highest F-measure score of 91% for ‘Highway-1’ video, which is com-
parable with the 91% achieved by the Gomes et al. [21] shadow
detection method, and is better than all the others.

Another dataset we apply in our experiments is the NJDOT real
traffic video sequences. The videos in this dataset have stronger

Table 2

cast shadows and lower video quality than the ‘Highway-3’ video.
These videos are the real traffic surveillance videos which include a
lot of unexpected situations, such as camera jitter, network fluctu-
ation, etc. Many shadow detection methods fail to detect shadows
in these videos, but our proposed method is able to achieve good
shadow detection performance on these videos. The first column in
Fig. 8 shows several frames in the NJDOT traffic video, and each col-
umn shows the shadow free foreground mask by using one method.
From left to right are the Cucchiara et al.’s method [18], Huang and
Chen’s method [24], Hsieh et al.’s method [22], Leone and Distante’s
method [23], Sanin et al.’s method [25], Zhu et al.’s method [43],
and our proposed method, respectively. The significance of shadow
detection in these videos is to improve the performance of video
analysis tasks such as tracking and object detection. In particular,
Fig. 9 shows comparatively the vehicle tracking performance using
the NJDOT traffic videos: the vehicle tracking results without shadow
detection and the vehicle tracking results with shadow detection
using our proposed shadow detection method. We can see in the
left figure that two vehicles are connected together by their cast
shadows and fall into one tracking block when no shadow detection
algorithm is applied. After applying our shadow detection algorithm,
these two vehicles are separated into two tracking blocks. As a result,
the tracking performance is more accurate.

The quantitative shadow detection result of some popular methods [21] and our proposed method.

Highway-1 Highway-3
.- pdfelemeht n £ F-measure n g F-measure
82% 94% 88% 62% 91% 74%
flalondeatol. [471 - 61% 76% 67% 39% 86% 54%
72% 95% 82% 80% 61% 69%
68% 75% 71% 42% 82% 55%
Gomes et al. [21] 88% 94% 91% 65% 90% 75%
Zhu et al. [43] 95% 36% 53% 88% 32% 46%
Proposed method 89% 94% 91% 90% 76% 83%
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Fig. 8. The comparison of shadow detection performance of different methods. From left to right are the original video frames, the shadow free foreground masks of Cucchiara
et al.’s method [18], the shadow free foreground masks of Huang and Chen’s method [24], the shadow free foreground masks of Hsieh et al.’s method [22], the shadow free
foreground masks of Leone and Distante’s method [23], the shadow free foreground masks of Sanin et al.’s method [25], the shadow free foreground masks of Zhu et al.’s method

[43], and the shadow free foreground masks of our proposed method, respectively.

6. Conclusion

We have presented in this paper a novel cast shadow detection
method for traffic video analysis. The major contributions of our pro-
posed method are five-fold. First, we introduce a new foreground
detection method, which integrates the novel Global Foreground
Modeling (GFM) method, the Gaussian Mixture Model (GMM), and
the Bayes decision rule for minimum error to obtain the foreground
with shadows. Second, we propose a set of new chromatic crite-
ria for shadow pixels differentiation. Third, we use a shadow region
detection method to detect the continuous shadow regions based on
the property of cast shadows. Fourth, we build a statistical shadow
model to model and classify the shadow pixels with a single Gaus-
sian distribution. The model keeps learning and updating to adapt to
the changes of the environment. Fifth, we use an aggregated shadow
detection method to combine the shadow detection results from
the previous three steps. A weighted summation strategy is used to
aggregate the candidate shadow detection results.

The experimental results using the publicly available data
‘Highway-1' and ‘Highway-3’ videos, and the NJDOT real video
sequences have shown that (i) our proposed method achieves better

pdfelement

The Trial Version

v le tracking performance using a frame from the NJDOT
traf'ﬁc videos. Left the vehlcle tracking results without shadow detection. Right: the
vehicle tracking results with shadow detection using our proposed shadow detection
method.

shadow detection performance than other popular shadow detection
methods, (ii) our proposed method is able to detect cast shadows in
low quality videos, such as the NJDOT videos, while in comparison
other methods fail to detect the shadows, and (iii) our method can
help improve the results of traffic video analysis.
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