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Topologically ordered phases of matter can be characterized by the presence of a universal, constant
contribution to the entanglement entropy known as the topological entanglement entropy (TEE). The TEE can
be calculated for Abelian phases via a “cut-and-glue” approach by treating the entanglement cut as a physical
cut, coupling the resulting gapless edges with explicit tunneling terms, and computing the entanglement between
the two edges. We provide a first step towards extending this methodology to non-Abelian topological phases,
focusing on the generalized Moore-Read (MR) fractional quantum Hall states at filling fractions v = 1/n. We
consider interfaces between different MR states, write down explicit gapping interactions, which we motivate
using an anyon condensation picture, and compute the entanglement entropy for an entanglement cut lying
along the interface. Our work provides new insight towards understanding the connections between anyon
condensation, gapped interfaces of non-Abelian phases, and TEE.
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I. INTRODUCTION

Entanglement has become an indispensable tool in the
characterization of quantum many-body systems, particularly
topologically ordered phases of matter, which cannot be iden-
tified through local order parameters. The most elementary
measure of entanglement is provided by the entanglement
entropy (EE). Given a state |) and a bipartition of the Hilbert
space H = H4 ® Hp, the EE is given by

(1.1)

where ps = Trg |¢) (Y] is the reduced density matrix of
A. Specializing to 2 4 1-dimensional systems, if |) is the
ground state of a local Hamiltonian and we choose a spatial
bipartitioning of the Hilbert space, then the EE satisfies

§ = —Tra(palIn ps),

S=aL—y 1.2)

in the thermodynamic limit, where L is the length of the
entanglement cut separating regions A and B. The first term
in this expression is known as the area law, where « is a
nonuniversal constant. In contrast, y is a universal quantity
known as the topological entanglement entropy (TEE) and is
nonzero for topologically ordered systems [1,2]. If A has the
topology of a smooth disk, then y = In D, where D is the total
quantum dimension, a quantity which characterizes the anyon
content of a topological order.

As a single number, the TEE provides a rather coarse
grained description of a gapped state. A more descriptive
object is provided by the entanglement spectrum (ES) [3],
which is defined by first formally writing the reduced density
matrix for region A in the form of a thermal density matrix,

pa o< e e, (1.3)
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The ES is then given by the spectrum of the operator H,,
which is known as the entanglement Hamiltonian. Remark-
ably, for (chiral) topological phases, the low-lying part [4]
of the ES for a spatial entanglement cut corresponds to
the physical spectrum of the conformal field theory (CFT)
describing the edge of the topological order. This was first
demonstrated numerically in fractional quantum Hall systems
[3], while analytic arguments for the correspondence appeared
shortly thereafter [5-9].

Of particular interest to us is the work of Qi, Katsura, and
Ludwig [7], which employed a “cut-and-glue” approach to
calculate the ES. These authors argued that one can compute
the ES by physically cutting the system along the entangle-
ment cut between A and B and turning on an interaction
between the resulting gapless edge states. Since the correla-
tion length vanishes in the bulk, any entanglement between A
and B should come from the coupled edges. Using boundary
CFT techniques, Qi et al. deduced the ground state of the
coupled edge system and showed that the ES does indeed
match that expected for the bulk topological order. Subsequent
works applied this approach to the specific cases of Abelian
topological phases, whose edges are described by multicom-
ponent Luttinger liquids [10]. In this case, one can write down
explicit gapping terms for which the ground state can readily
be approximated, without recourse to boundary CFT methods
[11,12] (see also Refs. [13,14] for related calculations).

The utility of the cut-and-glue approach was made manifest
in the work of Cano et al. [12], in which the TEE for an entan-
glement cut along a gapped interface between distinct Abelian
topological phases was computed. The authors demonstrated
that the TEE in fact receives (universal) corrections depending
on the choice of interactions used to gap out the interface,
even for an interface between two regions with the same
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topological order.! Gapped interfaces of topological phases
are of physical interest, due to the possibility of realizing
non-Abelian defects at their endpoints [15-26]. In fact, it
was demonstrated that the aforementioned TEE corrections
are directly related to the emergence of 1D SPTs along
these interfaces [27]. Recently, progress has also been made
in understanding (gapless) interfaces of topological phases
beyond effective field theory constructions through numerical
simulations [28-30].

The goal of the present work is to provide a first step to-
wards extending the above story to non-Abelian topologically
ordered phases of matter. Namely, we would like to, for some
class of non-Abelian states, (1) use the cut-and-glue approach
to compute the TEE in all topological sectors. Furthermore,
we will aim to (2) identify when a gapped interface can be
formed between these states and what interactions can gen-
erate these interfaces, as well as (3) compute the TEE for an
entanglement cut along such an interface. The second of these
issues—the construction of explicit gapping interactions—has
been extensively studied for Abelian systems [31-33], but is
less well understood for non-Abelian phases (although inter-
faces of non-Abelian states have been studied at an abstract
level [34-42]).

To these ends, we focus on the generalized Moore-Read
(MR) states [43], which provide examples of the simplest
non-Abelian fractional quantum Hall (FQH) states. These
states may be viewed as arising from p 4 ip pairing of com-
posite fermions [44] and, accordingly, their edge theories are
described by a free compactified chiral boson and a free Ma-
jorana fermion [45]. One might then expect the computation
of the TEE in the MR state to be an uneventful extension of
the Abelian case. However, the choice of the local electron
operator, which determines the allowed quasiparticles and
provides the origin of the non-Abelian properties of these
phases, glues the bosonic and fermionic sectors of the Hilbert
space together in a nontrivial manner. As we will see, the
calculation of the EE requires a careful treatment of this
organization of the Hilbert space. Before delving into these
calculations, given the length of this paper, we first provide a
summary of our results.

Summary of results

(1) We first demonstrate that the correct ES and TEE is
obtained for uniform MR interfaces on a torus in all topo-
logical sectors using the cut-and-glue approach. On a torus,
the ground state of each topological sector, a, is a minimum
entropy state [46,47] and for an entanglement cut splitting the
torus into two cylinders, the TEE in these states is given by

y =21n(D/d,), (1.4)

where d,, is the quantum dimension of the anyon associated to
the a topological sector. For the MR state at filling v = 1/n,
D = /4n, while the allowed anyons have either d, = 1 or
d, = V2 [46,48]. The local interaction that gaps the interface
corresponds to a single-electron backscattering term. This

'See also Ref. [74] for related considerations and Ref. [75] for a
calculation using the bulk Chern-Simons theory.

interaction is given by a sine-Gordon operator coupled to
a Majorana mass and simultaneously gaps out the charged,
chiral boson and neutral Majorana sectors. As in Refs. [11,12],
we will take the strong coupling limit and approximate this
interaction to quadratic order in fluctuations of the fields about
their vacuum expectation values. This approximation violates
the requirement of electron locality alluded to above and must
be supplemented by a projection into the correct topological
sector.

(2) We investigate interfaces of MR states at filling frac-
tions vy = 1/pb? and vg = 1/pa®, where p,a, b € Z and we
take a and b to be coprime. Although gapped interfaces of
non-Abelian states have been studied in the literature [34—42],
a systematic understanding of interactions generating distinct
classes of these interfaces is lacking. So, we use anyon
condensation [49,50] as a guide to deduce when gapped
interfaces should exist and to motivate explicit gapping terms.
Interestingly, although we can always gap out an interface
between MR states at fillings v4 and vg, we find that when
a and b are both odd, a single interaction term is needed,
whereas when one of a and b is even and the other odd,
two terms are needed. Moreover, in the latter case, we find
that the gapped interface is most easily constructed using an
alternative representation of the v = 1/n MR edge CFT which
is topologically equivalent to its standard description in terms
of a chiral Majorana and a U(1),, chiral boson. In particular,
we will make use of the fact that we can rewrite the Ising
CFT as

) SON + 1),
Ising = ————
SO(N )

where G denotes a Wess-Zumino-Witten (WZW) theory with
Lie group G at level k and the symbol X indicates a tensor
product supplemented by the condensation of a particular set
of bosons. The nature of the equivalence will be explained
in more detail later on. This will allow us to express the
MR edge in terms of a chiral boson and multiple chiral and
antichiral Majorana fermions, which can be used to construct
the appropriate gapping interactions.

(3) Combining the above results, it is then straightforward
to compute the TEE for an entanglement cut along an interface
between MR states at fillings v4 and vg. In this calculation,
we must take into account the additional constraints on the
ground states imposed by the specific forms of the gapping
interactions, in a manner analogous to that of the calculation
for Abelian interfaces [12]. Again working on the torus, we
find the TEE in the vacuum sector to be given by

~SON + 1)1 KSO(N);,

y = 21In(2/ pabh?) (1.5)
for a and b both odd while,
y = 21n(4y/ pa?b?) (1.6)

for one of @ and b odd and the other even. Finally, we discuss
the connection between these values of the TEE with the
existence of a “parent” topological phase for the two MR
states on either side of the interface.

It should be emphasized that ours is not the first work
to investigate the EE of non-Abelian systems through a cut-
and-glue type approach. The work of Qi et al. applies to
generic uniform chiral topological orders (both Abelian and
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FIG. 1. Moore-Read state on a cylinder with chiral edge states.
The insertion of an anyon flux a through the cylinder (top) is
equivalent to nucleating a conjugate anyon pair in the bulk of the
cylinder and dragging them to opposite edges (bottom). The cylinder
geometry is homotopic to a sphere with two punctures (right), which
bounds the anyon pair.

non-Abelian) and demonstrated that the ground state of the
coupled edge system at the interface should be described by
so-called Ishibashi states [51,52]. Wen et al. [53] later showed
that appropriately regularized Ishibashi states furnish the
correct entanglement structure for generic chiral phases and
generic bipartitions on manifolds of arbitrary genus (a related,
earlier calculation was also performed in Ref. [54]). Interfaces
between distinct non-Abelian and/or Abelian orders have
also been considered, where the interface was conjectured to
be described by an appropriately constructed Ishibashi state
[55]. One of the main contributions of this work is a more
microscopic justification of these results, for a specific set of
non-Abelian phases, starting from an explicit effective field
theory description of the interface.

The remainder of the paper is structured as follows. We
begin by reviewing the MR edge theory, placing special em-
phasis on the interpretation of the distinct topological sectors
in the CFT language in Sec. II. Section III provides a review of
the cut-and-glue approach and our handling of the topological
sectors. We proceed to calculate the EE for a uniform MR
state in Sec. IV. In Sec. V, we identify the two distinct classes
of interfaces between MR states at different fillings and write
down explicit gapping terms. The computation of the EE for
each of these interfaces is presented in Sec. VI. We provide a
discussion of our results and conclude in Sec. VII. Finally, the
Appendixes collect some technical details.

II. REVIEW OF MOORE-READ EDGE THEORY

We begin by reviewing the edge theory for the MR state at
filling fraction v = 1/n [45]. Note that n may be either even
or odd. If n is even, we have a MR state of electrons (i.e.,
fermions) while, if #n is odd, we have a MR state of bosons.
In the following, we will often refer to the local particles
comprising the MR FQH state as electrons, regardless of
whether n is even or odd (and hence regardless of whether
the local particles are fermions or bosons).

Now, let us consider a MR state defined on a cylinder with
circumference L. Standard arguments imply that the edges
of the cylinder will be described by CFTs of opposite chi-
rality, © = L, R = 4, —, as indicated in Fig. 1. Specifically,
as described in the introduction, the edge theory contains

both a neutral Majorana fermion x sector and a charged U(1)
boson ¢ sector. The two edges are formally described by the
Lagrangian densities

i n
‘C/L = EXu(at - Mvnax)X/L + Eaxqsu(ﬂat - Ucax)¢1u
2.1

where v, > 0 and v, > 0 are the velocities of the Majorana
and boson, respectively. The Majorana fermion and the U(1)
boson are Hermitian: x" = x, ¢ = ¢. The fields obey the
equal-time (anti)commutation relations

2mipn
[Bu(x), 3yP ()] = " 5(x —y), (2.2)
(X (), xu ()} = 6(x — ). (2.3)

The bosons are compactified on a circle of radius R = 1 so
that ¢7/r = ¢r/r + 27, and the primary fields in the U(1)
sector are normal-ordered vertex operators ¢/"? with integral
r. The charge densities on the two edges are given by pr/r =
0x¢r/r/(27). Note that this means the winding numbers of the
scalars around the length of the edges,

L Bcdppu(x) L
N, = /0 2‘7‘1 dx = /0 pu(x)dx,

count the total charge carried by the edges (in units of e above
the ground state) and so can only take values in the set of
rational numbers, as determined by the charge of the minimal
charge anyon.

At the level of the Lagrangian, it would appear that the
charge and neutral sectors are decoupled and hence that the
MR edge theory is described by an Ising x U(1),, CFT. This is
not the case, as the physical theory is not fully defined until the
electronic (i.e., local) operators are specified. This determines
the anyon content and hence the Hilbert space topological
sectors, as all physical excitations must have trivial braiding
statistics with respect to the electron. This constraint of elec-
tron locality is ultimately a consequence of the fact that the
bulk topological state is constructed from electrons. In the MR
edge theory, the charge e operators,

" Yer = xre " 2.5)

Yer = xre"*,
are defined to be electronic operators.
For later use, let us also define the fermion parity operator,
(—1)F, which anticommutes with the fermions of both edges:

2.6)

2.4)

(=DF xry = —xrin (= DF.

A similar operator for the bosonic sector is given by
(—1)Ne+Ne - which using the commutation relations of
Eq. (2.2), is seen to have the action

(_ 1 )NR+NLei’1¢;L — —eimﬁ“ (_ 1 )NR+NL . (27)
Hence, the combined operator
G = (—1)f (=)t (2.8)

which measures the relative parity between the fermion num-
ber and bosonic winding number (i.e., charge) of both edges,
clearly commutes with the electron operators of both edges.
Having specified the electron operators, we can now enu-
merate the anyon content of the theory. Explicitly, the MR
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theory of the u = L, R edge carries the following primary
fields:

e e, o el (2.9
where r = 1, ..., n. We can restrict to these values of r, as two
excitations are considered equivalent if they differ by fusion
with an electron operator or a bosonic oscillator mode. Here,
1, x and o are the primary fields of the neutral Ising sector,
where x is the Majorana fermion and o represents the non-
Abelian Ising twist field. They obey the Ising fusion rules,

xxx=1
X X0 =0,
oxo=1+4yg. (2.10)

The vertex operators ¢"® are charge-carrying Laughlin quasi-
particles. In the bulk, the braiding phase between the fields
¢"? and % is 27"1"2/" In contrast to the Laughlin U(1),
edge theory, the charge e boson (fermion) e?:, for n even
(odd), is fractional and is not a local excitation. This allows
for the existence of the non-Abelian twist fields oe'"t1/2¢
which exhibit —1 braiding with respect to the boson/fermion
¢ (from the ¢/#/? factor) and the Majorana fermion x (from
the o factor), but are local with respect to the electronic quasi-
particles in Eq. (2.5). In the bulk language, o ¢'®/? corresponds
to a non-Abelian half vortex, which traps a Majorana zero
mode (MZM), represented by o. The MZM flips the boundary
condition of the Majorana fermion at the edge, since it exhibits
a braiding phase of —1 with respect to x. Note that, although
the Ising x U(1), CFT is described by the same Lagrangian as
the MR CFT, its anyon content is given by a direct product of
that of the Ising and U(1),, topological orders, as the “electron
operator’ is the vertex operator ¢™: {1, o, x} x {€"®},—1. ..

The quantum dimension d, of an anyon a is defined to
respect the fusion rules so that d,dp, = ) NSd. if a x b=
3. N¢,c. The 2n Abelian anyons ¢”? and x ™ have quantum
dimension d = 1 while the remaining n non-Abelian Ising
anyons oe'"+t1/2¢ have quantum dimension d = +/2. The
total quantum dimension D is defined as

D= d..

For the MR state, D = +/4n. The conjugate @ of an anyon
a is the unique anyon type that annihilates a under fusion
axa=1+...,1ie, N =1. For example, o, ¢e/"+1/2%. ~
0,/ "==1/2%:_Note that, in any physical excited state sup-
porting some number of anyons q;, fusing together all the
a;’s must yield the vacuum, since any physical state must
ultimately be constructed from electrons.

As noted above, the choice of electron operator glues
together the bosonic and fermionic sectors in a nontrivial way
not specified at the level of the Lagrangian. In particular, we
must restrict the edge CFT Hilbert space to states satisfying
G =1 [Eq. (2.8)]. That is, the parity of charge must match
the fermion parity (as measured with respect to the ground
state). Physically, this is just the statement that all physical
states must be constructed out of electrons and acting with an
electron operator changes the Majorana fermion parity by the
same amount as the winding number parity. Loosely speaking,

@2.11)

one may view the invariance of the electron operators under
conjugation by G as reflecting a Z, gauge symmetry and
the constraint G = 1 as a projection to the gauge-invariant
subspace. This rule organizes the states of the theory into
topological sectors, which are in one-to-one correspondence
with the fundamental anyon excitations. From the bulk per-
spective, these topological sectors are excited states corre-
sponding to the insertion of Wilson lines connecting the two
edges or, equivalently, the process of nucleating of an anyon
and its conjugate in the bulk and dragging them to opposite
edges, as shown in Fig. 1. (If one glues the edges together
to form a torus as we shall do later, the Wilson line becomes
a Wilson loop and the topological sectors now correspond to
degenerate ground states.) In the following, we describe how
these distinct sectors manifest themselves in the edge CFT.

Let us first consider the ground state of the MR theory
on the cylinder (which implies there is no flux through the
hole of the cylinder). Clearly, this state has Ny = Ny, = 0 and
no fermionic excitations; hence G = 1 in this state. Acting
with the electron operator v, ; = x.e™? on the left edge
of the cylinder, we obtain an excited state which is still, by
definition, within the same topological sector. Since ¥, ; and
G commute, it immediately follows that the application of the
electron operator on the ground state can only yield states in
which the fermion parity has flipped and the bosonic winding
has increased by one. All states in this topological sector
can be obtained by the application of an arbitrary number
of electron operators and d,¢ operators, the latter of which
simply create charge density fluctuations without changing
the charge or fermion parity. Hence, the states in the identity
(1) sector are characterized by having their fermion parity
equal to the bosonic winding parity (equivalently, the parity
of charge added above the ground state), individually on each
edge. That is to say,

1sector: (—1)Mer(—1)fke = 41, (2.12)

Here we have defined individual fermion parities for each
edge, (—1)f%. This is possible because, in the untwisted
sector, the fermions obey antiperiodic boundary conditions
and so do not possess zero modes. So, acting on a state
with, say, a right-moving fermion operator cannot change the
left-moving fermion parity.

Let us now consider the states within the x sector. Starting
from the ground state, we can supply some energy to the
bulk to nucleate a pair of neutral x anyons and drag them to
opposite edges (see Fig. 1). This defines a state in the x sector,
in which the fermion parity is odd but the bosonic winding
is even (zero). Constructing the remaining states within this
topological sector using the ye™® and d,¢ operators, we see
that all states within the x sector have fermion parity opposite
to that of the bosonic winding number parity. In other words,

x sector:  (—1)Nker(—1)fre = —1. (2.13)

Distinct topological sectors can also be obtained by insert-
ing r magnetic flux quanta through the hole of the cylinder.
This is equivalent to nucleating a Laughlin quasiparticle, e,
and its conjugate in the bulk and dragging them to opposite
edges. The Majorana fermions, being electrically neutral,
are unaffected by this flux insertion. The winding number
parity (—1)V/k = Nk becomes fractional in this sector.
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The anyon flux, which in low-energy is represented by the
vertex combination ¢"?-¢" on the two edges, associates a
phase ¢"#"/" to the winding number parity because

(-1 )Nu eirq>L eir¢>R — einur/neirm eirgbR(_ 1 )NM , Q2. 14)
for w = L, R = 4+, —. In other words, th¢ electron operators
on both edges pick up a phase of e?* when transported
around the circumference of the cylinder. It is straightforward
to see that this implies

Oux+L)=¢,(x)+ 27N,

= ¢, (x) +2rp— modulo27Z  (2.15)
n
and so the winding numbers are quantized as
NLZNL—FI, NRZNR—I, NL/REZ. (2.16)
n n

Hence, in the ¢"¢ sector, we have

(=DVe(=D)f = [(=1)Vr(=1)F*]*

inr/n

e sector:
—e (2.17)

Likewise, starting in the x sector, we can insert » magnetic
flux quanta in addition to the x flux to obtain the xe""? sectors:

(=DN(= D = [(= DV (=1)f*]*

inr/n

xe'"? sector:

= —e¢

(2.18)

Note that in all of these sectors, we still have G = 1.

Thus far, we have only considered untwisted sectors—
that is, topological sectors in which the Majorana fermions
obey antiperiodic boundary conditions. The twisted sectors
are obtained by inserting a & flux through the cylinder to
which only the Majoranas are sensitive, flipping their bound-
ary conditions from antiperiodic to periodic (note that the
Majorana fermions, being real, can only see fluxes which
are multiples of 7). However, the electron operators, being
local objects, cannot have their boundary conditions changed,
which implies we must simultaneously insert a magnetic flux
of (an odd integer multiple of) 7 to which the chiral bosons are
sensitive. This particular flux insertion corresponds precisely
to the half-vortex of the bulk theory, represented by o e'*/? (or
oe'"t1/29 in general, for r € Z) in the CFT.

Now, it is clear that the effect on the chiral bosons is to
simply change the quantization of their winding to

r+1/2

oux+L)=¢,(x)+2mp et

modulo 27 Z,
(2.19)

and therefore the winding numbers are quantized as

. r+1/2 - r+1/2 -
Np =N, + n/ , Ngr=Ng— n/ s NL/RGZ.

(2.20)

The o¢'+1/2¢ flux through the cylinder can be detected by

2Ny =2miNe — 2T+ (9 0]

o2 sector: e
The effect on the Majorana fermions, as stated above, is
to change their boundary conditions to being periodic. As a
result, each edge possesses a Majorana zero mode (MZM),

xL(k =0) =co, xp(k =0) = ¢p; these must be paired to-
gether to form a single, physical complex fermion mode,
f = (co + i¢)/~/2, which may be occupied or unoccupied.
This is a reflection of the Ising fusion rules of the o particles,
Eqg. (2.10). Note that this means we can no longer define
separate fermion parities for the two edges, as the MZM oper-
ator changes the occupancy of this complex fermion mode,
{eo. (=1} = {Go. (=DM} =0 for (=1 =(=1)//. In
the twisted sector, one can construct a physical state for given
windings Nk, in (2.20) by filling up an arbitrary number of
finite momentum Majorana fermion states on either edge, and
then choosing the complex fermion zero-mode f to be either
occupied or unoccupied to satisfy the G = 1 condition.

Altogether, we see that there are 2n untwisted and n twisted
sectors, corresponding to the 2n Abelian and n non-Abelian
anyons of the v = % MR state. The 2n Abelian anyon fluxes
¢ and xe"® through the cylinder can be distinguished
by the local edge combined parity (—1)M«(—1)«, which is
identical to a Wilson loop of anyon type o,e«/? around
the cylinder. The phases in (2.17) and (2.18) are identical to
the monodromy braiding phases between o,¢%:/? and ¢"?,
X elr¢

imur/n

(2.22)

DS(r“e'%/Z,g"'d’u =e

As noticed previously, the remaining n non-Abelian fluxes
0" t1/2% through the cylinder cannot be detected by the
same local edge combined parities because separate fermion
parities for each edge, (—1)™, cannot be defined in these
twisted sectors. This is consistent with the trivial modular
S-matrix entries S, i12 goi+120 = 0. Instead, the twisted sec-
tors can be distinguished by their U(1) sector according to
e*™Nu which is identical to a Wilson loop of anyon type e/
around the cylinder. The phases in (2.21) are identical to the
monodromy braiding phases between e and o,/ /2%

2ﬂiu(r+1/2)/n. (223)

DS o it = €

Note that passing from one topological sector to another
requires the application of a nonlocal Wilson line operator. In
our computation of the EE using the cut-and-glue approach,
we will thus need to ensure that any approximations we make
do not mix topological sectors since the “gluing” will be
achieved via local electronic interactions. We describe this
calculation and how we handle this subtlety next.

III. CUT-AND-GLUE APPROACH REVIEW AND
TOPOLOGICAL SECTOR PROJECTION

As described in the introduction, our EE calculation is
based on the cut-and-glue approach [7] as it is employed
in Refs. [11,12] and which we now review in the context
of the MR state. The application of this methodology to
non-Abelian states such as the MR state brings with it new
subtleties regarding the careful treatment of the edge theory’s
topological sectors, as noted above. We will discuss these
issues below and describe in detail our approach, which is
an important new aspect of our work, for addressing them in
Sec. IITA.

Consider a MR state on the torus. We wish to compute the
EE associated with the entanglement cut splitting the torus
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XRA; PRA ¢XLB7 OLB

XLA, LA XRB>PRB

ak>0, NrA, di ar<o, NLB, Ck

ar<o, Npa, dx ax>o0, NrB, ck

FIG. 2. (Top) Moore-Read state on a torus. The arrow passing
through the x-cycle (i.e., the vertical cycle) of the torus represents an
anyon flux a. The green dashed lines represent an entanglement cut
between regions A and B. In Secs. IV and V, we will consider the
situation in which regions A and B are occupied by MR states with
equal and unequal, respectively, filling fractions. (Middle) A cartoon
of the cut and glue approach to computing the entanglement entropy.
The dotted green lines represent the electron tunneling terms added
to glue the edges together. (Bottom) Same as the middle figure, but
with each edge at interfaces 1 and 2 labeled by which mode operators
act on them.

into two cylinders, with the left and right halves labeled as
regions A and B, respectively, as depicted in Fig. 2. The cut-
and-glue approach employs the fact that, since the correlation
length of the system is vanishingly small in a topological
phase, we can approximate the EE as arising purely from
entanglement between degrees of freedom near the entangle-
ment cut. To that end, we can treat the entanglement cut as a
physical cut and split the torus into two cylinders labeled as A
and B. Adding electron tunneling interactions will gap out the
edges and heal the cut. We can then compute the entanglement
between the resulting coupled edge theories. In the case of a
torus geometry, we will have two interfaces, as depicted in
Fig. 2, which we label as the LA/RB and RA /LB interfaces, or
interface 1 and interface 2, respectively.

The edges at interface 1, before coupling them through a
tunneling term, are described by the Hamiltonians:

L .
Ve 1

Hyeet = / dx[—(axqsm)z - vanB—axxRB}
0 47T 2

L
+ / [ (Oebia)? + vnxia
0 2

8xXLAi| 3.1

The Majorana fields have mode expansions

1 i 1 "
— e, xax) = — e™d,, (3.2)
T = T

with half-integer quantized momenta in the untwisted sectors,
k= 2T’T(j +1/2), j € Z, and integer quantized momenta in
the twisted sectors, k = 2Tﬂ J» j € Z. The mode operators
satisfy

XrB(X) =

ol =cop dl =d; 3.3)
and obey the anticommutation relations
fef. oy = (df.di} =8, lerde} =0 (34

The boson fields have mode expansions

¢RB—¢RBO+27TNRB_+Z —— (@™ + aje ™),

lel

bra = Prao + 2NNLA + Z (are™ + aje™™)

L|k|
3.5)

with integer quantized momenta in all sectors: k = %’T j.je€
Z/ {0}. The mode operators obey the commutation relations:

la), ap] = Skws  lax, ap] =0, (3.6)

[érB.0, Nrg] = —[¢ra,0, Neal = —— 3.7

The quantization of the winding numbers is determined by the
topological sector, as detailed in Sec. II.

Likewise, before adding any couplings, interface 2 is de-
scribed by

L Ve i
Hyeep = / dx|:4_(ax¢LB)2 - anLB_axXLB]
0 JT

2

L Ve i
+/ dx| —(3:Pra)* + VnXra=OcXRa |- (3.8)
0 4 2

We write the mode expansions of the interface 2 fields as
follows:

[ I s
XLB = —= e C,  Xra = —= e™dy, 3.9
ikx T —ikx
Ora = Pra0 + ZJTNRA + Z L|k| (are™ + age™™),

(Cl eth+ lkx)7

¢LB—¢L30+27TNLB—+Z L|k|

(3.10)
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where the quantization of the momenta and winding numbers
are determined in the same way as for the interface 1 fields.
Now, the (quasi)electron operators are given by

ingra

—in
we,La = XLa€ s Pre

VYe.Re = XRa€ 3.11)

We also define a Z, symmetry operator for each cylinder:
G, = (_l)Fa(_l)NLa+NRa’ a =A,B, (3.12)

where (—1)%« is the fermion parity operator on the two edges
of cylinder «. Since we have physically split the torus into
two cylinders, we require separately that G, = 1 fora = A, B.
As before, in the untwisted sectors, we can define separate
fermion parities for each edge of either cylinder: (— 1)/,

We now wish to glue the two edges together to heal the cut.
So, we add in the electron tunneling terms

P RN P H
AB—/O x E(%,LA%,RB‘F .c.)
NET H
+/o X[E(I/f&LBwe,RA‘F .C-)}
boT2s.
=f dxl:;lXLAXRB cos[n(¢rp +¢LA)]]
0

L Tag.
+/ dx[;lXLBXRACOS[n@RA+¢L3)]], (3.13)
0

where we take g > 0.2
Our task is to approximate the ground state of

H = Hyec,1 + Haee,2 + Hap, (3.14)

which requires us to approximate Hyp. In the strong coupling
limit, the ground state is assumed to give rise to individual
expectation values of the bosonic operators ix;4xgs and
cos[n(drp + ¢dra)]. Without loss of generality, the ground
state for g — o0 is represented by the expectation values

(n(drp + ¢ra)) = ((Pra + ¢rp)) =7,
X {ixraXrB)> {ixpxra) >0 (3.15)

As such, expanding the fields around their classical expecta-
tions values yields a harmonic approximation of the interface
interaction

L
Hpp ~ f dx |:COIISt + Vn8ixXra XRB + Vn8iXLBXRA
0

VAT 2 UcAT ’
+ 2 (PrB+Pra — )"+ 2 (Pra + g — )" |,
(3.16)
where § = —2g/(v,m) < 0 and A > 0. Since we are consid-

ering only small fluctuations of ¢ra + ¢rp and ¢rp + dra

2Note that this interaction is irrelevant in the renormalization group
sense and so need not open up a gap. This can be remedied by adding
in a density-density interaction of the form U 0, ¢4 9, ¢gp. For arange
of U, the scaling dimensions of the scalar fields will be renormalized
so as to make the tunneling term relevant. However, in the interest of
simplicity, we will not include such terms and simply assume g to be
large and the edges are gapped out by the interactions.

about their pinned values, they cannot have nonzero winding
numbers, as this would imply they vary significantly over the
length of the system. We thus have the constraint [11]

Ngra + Npp = Npa + Ngp = 0, (3.17)

in this strong coupling limit.

The harmonic approximation Eq. (3.16) plays a key role
in this work, for it allows us to calculate the entanglement
entropy and spectrum at the interface by analytical means.
However, important issues underlying this approximation
need to be accounted for. First, the approximated tunneling
Hamiltonian violates both the Z, gauge symmetry gluing the
fermionic and bosonic sectors together (as discussed above)
and the U(1) gauge symmetry associated with independent
shifts of the bosonic fields®: ¢/ — ¢r/r + 27 Pk, Pojr €
Z. Indeed, under conjugation by G4, we see that i x4 xrp —
—ixra Xrp- This in turn means that the approximated tunneling
Hamiltonian mixes topological sectors. For instance, consider
the identity (1) and x sectors of the MR theory. Recall
that in the former sector, the fermionic parity matches the
bosonic winding number parity on each edge, while these two
quantities are opposite in the latter. Now, it is easy to see that
the gix.4 xrp term in the approximated interaction will change
the fermionic parity on both edges and so will mix the identity
and y sectors on each half of the torus. The (¢rs + ¢ra — 7)?
term also violates the U(1) symmetry associated with the shift
symmetry ¢ra/rs — @ra/re + Cra/rs and so, in principle, will
also mix bosonic winding number sectors corresponding to
distinct topological sectors. Hence the ground state of this
approximated Hamiltonian cannot describe an approximation
of the ground state of the interface theory in a definite anyon
sector.

Our strategy for dealing with the Z, gauge symmetry
violation encoded in Eq. (3.16), is to promote the theory to
an “expanded” Hilbert space in which the gauge symmetries
are violated. In this expanded Hilbert space, the bosonic and
fermionic sectors are genuinely decoupled and so we can
compute the ground state of the approximated Hamiltonian
using straightforward free field theory methods. Once this is
done, we can project the resulting state into the appropriate
topological sector of the gauge-invariant subspace. Restoring
the U(1) gauge symmetry amounts to projecting to states with
appropriately quantized bosonic winding numbers. Restoring
the Z, symmetry means projecting to states obeying the ap-
propriate matching of the fermion parity and bosonic winding
number parity. We describe this in more detail next.

A. Description of the projection

Let us denote the exact ground state of the coupled edge
system, as described by the Hamiltonian of Eq. (3.14), in
topological sector a as

Vo) = [¥1.4a) ® [¥2,4) - (3.18)

3Note that, when we say the gauge symmetries are violated, we do
not mean to imply that a gauge field is being Higgsed. As we explain,
we mean simply that the harmonic approximation of Hyp, taken
at face value, will mix topological sectors (that is, it is a nonlocal
expression).
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Here, |1 4) and |2 4) are the ground states of interfaces 1 and
2, respectively, in the topological sector a. Note that, although
we can express the ground state as a tensor product of the two
interfaces, the ground states of the interfaces are constrained
to lie in the same topological sector. This is a consequence of
the fact that the anyon flux a passing through one interface
must necessarily pass through the other interface, as shown in
Fig. 2. In particular, this means that we must have G4 |V,) =
Gg |V,) = |¥,)—that is to say, each cylinder must, on its own,
lie in the physical MR Hilbert space.

We can write the ground state of the approximated Hamil-
tonian, given by Eq. (3.14) with the approximation of Hyp by
Eq. (3.16), in a similar form

[Va) = [V1.0) ® [¥2.0) -

(Henceforth, symbols with hats will denote objects in the
unprojected Hilbert space.) As emphasized above, our approx-
imation of the gapping term violates the Z, gauge symme-
try, and so both |1/}1,a) and |1ﬁ2,a) will be superpositions of
states from different topological sectors of the MR theory.
Nevertheless, we have written |1ﬁ17a) and |1ﬁz,a) as having a
dependence on a because they still retain some information
about a through the boundary conditions of both the bosonic
and fermionic fields. For instance, if we are working in one
of the twisted sectors, our approximation of the interaction
term will not change the fact that the Majorana fermions obey
periodic boundary conditions.

In order to obtain a state in a definite topological sector of
the MR theory, we consider

[Va) & Py lia) = PaaPus 1Va)

where P, , projects cylinder « to the topological sector a, and
we have defined P, = P, 4P, 5. We will show in Sec. IV that
the projected state Eq. (3.20) correctly describes the universal
entanglement properties of the MR state in each topological
sector a (and takes the expected form of an Ishibashi state
[7,53]).

For a general topological sector a, the action of the projec-
tion is most easily understood when writing |¥,) in terms of
a superposition of eigenstates of N, and (—1)f, in which
case the projection amounts to removing those states in the
sum which do not satisfy the Z, constraint appropriate to the
topological sector in question. Focusing first on the untwisted
sectors, we can, as noted above, define separate fermion
parities for each edge:

(=D = (=D (=)

(3.19)

(3.20)

(3.21)

This permits us to define operators which project each edge
to specific topological sectors of the untwisted sector. Indeed,
we can formally write

Pa,a = Pa,LaPa,Ra (322)

as the operator which projects cylinder « to the untwisted
sector a, where P, ,, are operators acting on edges (o.
Specialising momentarily to the sector @ = ¢"® and edge RB,
we define P, gp viaits action on a basis of states for the edge.
An arbitrary state on edge RB can be written as a superposition
of the states

INgg, N4,k }k=05 {7e kJk>0) 5 (3.23)

which are eigenstates of Ngp, a;ak, and chk with eigenvalues
Ngp, {nai}i=0, and {n. x}x~0, respectively. We then define

P.irs g INRB, {0k}, (nex}) = INRB, (i}, (ned)  (3.24)
if Neg + £ € Z and (—1)Mo i 5umee = 1, while
P,iro gp |NrBs {Na i}, {nei}) =0 (3.25)

otherwise. The first condition enforces that the winding num-
ber obey the appropriate quantization for the a = ¢/® sector
on edge RB, Eq. (2.16), while the second condition ensures
that the Z, constraint for sector a = €%, Eq. (2.17), is satis-
fied. In physical terms, this operator ensures that the correct
magnetic flux is threaded through the circle defined by the
edge and that the fermion parity matches the integer part
of bosonic winding on this edge. We similarly define for
edge LB

Pero 15 INL, (nak}, (nex}) = INLs, {na}, {nex}) — (3.26)
if Npg — £ € Z and (—1)YMs—iF2umex = 1, while
Pef'¢,LB INL, {Vla,k}, {nex}) =0 (3.27)

otherwise. The operators P, ,4 are defined in an analogous
manner. Likewise, the P, ,, operators are defined in a
similar way, but by instead enforcing the Z, constraint of
Eq. (2.18) on each edge.

As for the twisted sectors, since we cannot define separate
fermion parities for each edge, we cannot write down a
projection operator as a product of operators acting on the
two edges of the cylinder. Let us first consider cylinder B. We
define a complex fermion from the Majorana zero modes of
each edge (recall that the Majorana fermions obey periodic
boundary conditions in the twisted sectors),

L
V2

which explicitly ties together the « = L, R Hilbert spaces of
the cylinder. An arbitrary state on cylinder B can then be
written as a superposition of states of the form

fz = —=(co + icp), (3.28)

INRB, (g} k>0, (M i }i=0)

® |NLg, {nax}k<o, (nexti<o) ® Ing), (3.29)

which are eigenstates of Ng/; 3, aZak, aZak, chk, E;Ek, f;fg
with eigenvalues, N/ g, {1,k } k05 {Ne kx>0, {Me.x}k<0, and np
respectively. We then define the operator P, g, which projects
cylinder B to the twisted topological sector a = e/ +1/29,
via its action on these states:

Py eirvie g Ny, {Naja i, Neje i}, ne)

= |N.B, {Raja ks Neje i} nB) (3.30)

if Nug + i € Z and (— 1) Mot 2ieatne-tns — 1 while

P, civv126 g INug, {naja i, nejz i}, ng) =0 (3.31)

otherwise. Again, the first constraint ensures that the bosonic
winding numbers satisfy the quantization of Eq. (2.20) while
the second condition enforces the Z, constraint Gg = 1. Phys-
ically, P,,iw+120) g ensures the correct magnetic flux passes
through the cylinder and that the total fermion parity across

045102-8



ENTANGLEMENT ENTROPY OF GENERALIZED ...

PHYSICAL REVIEW B 102, 045102 (2020)

both edges matches the total bosonic winding of the two
edges. An analogous operator, P, ir+1/20 4, for cylinder A can
be defined, after forming a complex fermion, fj4, defined from
the Majorana zero modes of the two edges:

fa = —(do + ido).
V2
One can write down explicit expressions for the projection
operators defined above but, for our purposes, the above oper-
ational definitions will prove more convenient. We also note
that there is a bit of an ambiguity in defining the projection
operators for the twisted sectors in that there is a choice as to
whether one defines an occupied f4,p state as corresponding
to odd or even fermion parity. We will return to this point in
Sec. IV B, when we calculate the EE in the twisted sectors
and in Appendix B 2, where we present explicit expressions
for the twisted sector ground states.

(3.32)

IV. UNIFORM INTERFACE ENTANGLEMENT ENTROPY

We are now prepared to move on to the actual computation
of the ES and EE of the MR states. We first recall that, for an
entanglement cut of the torus of the type we are considering
(Fig. 2), the TEE in the ground state of topological sector a is
given by

Yo =2In(D/d,), 4.1)

where D is again the total quantum dimension and d,, is the
quantum dimension of the anyon a. These states (on the torus)
are known as minimum entropy states, as they maximize the
TEE within the space of degenerate ground states [46,47]. As
noted in Sec. I, a MR state at filling v = 1/n has D = 2./n,
the Abelian anyons e”? and xe? all have d, = 1, and the
non-Abelian anyons o ¢!t/ have d, = +/2. Hence, in the
untwisted sectors, we expect to find the TEE

Ya=2In2yn, a=e"?, xe"? 4.2)
while in the twisted sectors, we expect
Ya=2Inv2n, a=oce"t29, 4.3)

We can glean some intuition for these results by contrasting
them with the TEE for the Abelian system consisting of a
p+i p superconductor stacked with (and decoupled from) a
V= Laughhn state. Such a state has D = /n and an edge
is also described by Eq. (2.1), but with local (electronic)
operators given by x and e™?. The TEE in, for instance, the
trivial sector on the torus of this theory is thus y; = 21n /n,
in contrast to y; = 21n24/n for the MR state. As we will
see explicitly, the factor of two difference in the argument of
the logarithm arises precisely from the projection discussed
in Sec. IIT A. Indeed, when writing the approximated ground
state |,), as a superposition of states with definite bosonic
winding and fermion occupation numbers, we will find that
the projection to the physical MR Hilbert space, Eq. (3.20),
will remove exactly half of the states appearing in the su-
perposition. This increases the TEE by In 2 + In 2, with each
interface contributing a single In 2.

A heuristic understanding of the difference between the
TEEs of the untwisted and twisted sectors follows from the
fact that a cylinder with a o¢/"+1/2 flux traps a MZM at each

edge. Gluing two cylinders together to form a torus, as we
do, hybridizes the MZMs on the edges. On tracing out one
cylinder to compute the EE, one is, loosely speaking, tracing
out half of a qubit for each pair of edges, giving a contribution
of 21n /2 to the EE.

In the following subsections, we proceed to compute the
entanglement spectrum and TEE of the ground state of the MR
theory for the Abelian and non-Abelian topological sectors.
We will compute the ground state for the interface 1 explicitly;
the calculations for interface 2 are identical.

A. Abelian (untwisted) sectors

We begin by considering a MR state on a torus in one of the
untwisted topological sectors: e?, x e"®. The Majorana fields
satisfy antiperiodic boundary conditions while the bosons
obey the boundary conditions of Eq. (2.15) and hence the
winding numbers are quantized as in Eq. (2.16). Now, using
the field mode expansions, the full approximated Hamiltonian
describing interface 1 decouples into fermionic and bosonic
terms:

Hl HO@C + HOQC + HZSI'O. (4.4)
The bosonic zero-mode Hamiltonian is given by

I vC nkvc

Hiw = (NRB — Npa)* +

(PrB0 + Bra0)’,
4.5)

where we have made use of the constraint of Eq. (3.17). The
bosonic oscillator part takes the form

= % g(al ak)(gz ﬁi) <a€flkk)’ 4.6)
where
Ak=|k|+m—”2, By = 20
nlk| nlk|

Lastly, the fermion oscillator modes are governed by the
Hamiltonian

HYS =0, Y (] d_k)< __’E) (;{‘k).

k>0

4.7)

(4.8)

Since, within our harmonic approximation, the bosons and
fermions decouple, we can compute the ground state of these
two sectors separately. However, as emphasized above, this
decoupling is a manifestation of the violation of the Z, gauge
symmetry by our approximation. As discussed in Sec. IIT A,
we will have to perform a projection to obtain a state in a
definite untwisted topological sector. Having done so, it will
then be straightforward to obtain the reduced density matrix
for subregion B, as the projected ground state will take a
simple Schmidt decomposed form.

1. Bosonic sector ground state

In the expanded Hilbert space, the computation of the
ground state in the bosonic sector is identical to the calculation
carried out by Lundgren et al. [11] for the Laughlin states
at filling v = 1/n. For completeness, we briefly review the
calculation here.
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Starting with the oscillator sector, we can diagonalize
Eq. (4.6) via a Bogoliubov transformation,

ax \ _ (coshoy sinh 6; b,"
<aTk> - (Sinh Ok cosh Ok) <ka ’ 4.9
where cosh(26y) = Ay/er, sinh(26y) = —By/¢r, and g =

V1k|? + 4A72/n. With these definitions, we can write HYY =

Ve Zk 20 &k (blbk + %), so that the ground state is defined by
by |Gp,osc.1) = 0. It is readily checked that the ground state is
given by the coherent state

|Gh,0sc,l> = exp (Z uk/ZQTQT k) |0) s

k>0

(4.10)

where u; = Incoth?(26;) and |0) is the ground state of the
decoupled system, satisfying a; |0) = 0 for all £ # 0. For

k| < A,
2
u ~ = /Ekz vk,
T\ A

where we have defined the entanglement velocity v, = %ﬁ .

As for the zero-mode sector, on defining X = n(Ngp —
Npa)/2 and P = a0 + ¢rp.o so that [X, P] = i, we see that
Eq. (4.5) describes a simple harmonic oscillator. In the L —
oo limit, we can ignore the discretization of X and simply
write down the ground state:

|Gb,zcr0,1 > =

@11

— Ve TT N 2
Z e VTN 2L | Npp = N, Npa = —N)
NeZ—*
(4.12)

where we have again made use of the constraint Ngg + Npg =
0 [Eq. Eq. (3.17)] and enforced the quantization of the wind-
ing numbers given in Eq. (2.15).

2. Majorana sector ground state

Turning next to the Majorana fermions, we can perform
a unitary transformation to diagonalize Eq. (4.8). We define
Yk = COS @Ck + i sin gpkdik, where sing; = g/Ag, cosS¢p =
k/Ax, and Ay = /k? + g2. The Hamiltonian, in this basis,
becomes H‘“]S =, Zk#, Ak(yk Vi — 2) The ground state is
defined by i |Gy osc,1) = 0. Explicitly, we can write the
ground state of H"*; in BCS form:

G o) = exp (Zw e )|0> (4.13)
k>0
where we have defined wy through e %*/> = —tan g (re-

calling that g < 0) and |0) is the ground state of the decou-
pled system, satisfying ¢, |0) = d_ |0) = 0 for all k > 0. For
|k| < g, we have that

2k
wy & — = .k, 4.14)
|8l

where we have defined ¥, = 2/|g|.

3. Projecting to the physical Hilbert space

We can now construct the full ground state of the coupled
edge system in the expanded Hilbert space by combining the

above results with the analogous results for interface 2 (i.e.,
the RA/LB interface). Explicitly,

V) = 1¥1.0) ® Y20} »

|1ﬁi,a) = |Gh,zer0,i> & |Gb,osc.i) ® |Gf,osc,i) s i= la 27 (415)
where,
Graroz) = Y ¢ B INup = =N, Nea =N, (4.16)
NeZ—*
|G.ose.2) = exp (Z e‘“f"/za;‘;a"'k> 10), (4.17)
k>0
|G .osc.2) = exp (Z ie VkI2ET df ) 0) . (4.18)
k>0

Note that in the expressions for the oscillator sector ground
states, we have taken the low-energy limit by expanding uy
and wy to linear order in k. This is because the correspondence
between the entanglement spectrum and the physical edge
CFT spectrum only holds for the low lying entanglement
spectrum eigenvalues.

In order to obtain an approximation to the true ground state
[¥a) (a = € or xe'"?), we must apply the projection operator
P, = P, oP, p defined in Eq. (3.20). Now, since |1/3a) is a su-
perposition of states with winding number and fermion parity
eigenvalues satisfying Ngg = —Ny4 and (— 1) = (—1)f14 as
well as Ny g = —Ngy and (—=1)78 = (=1)"® it is straightfor-
ward to see that

[Va) = Pul¥a) = Pua 1Wa) = Pug 1Va) - (4.19)

In more physical terms, this expresses the fact that the electron
tunneling term enforces that the two cylinders reside in the
same topological sector.

The explicit form of |y,) = P, p |, is rather cumber-
some, and so we leave it for Appendix B 1. However, on
expanding out the exponentials in |Gp osc,1/2) and |Gy osc,1/2),
it is not too difficult to see that |y,) = P, p |,) is in a Schmidt
decomposed form. Indeed, we have that

W1a) = e P2 N P, gyl INgs = —Nia)
Ngs,
{naks nex}
® Hnax = na—k, Nex = g, —k}k=0)1, (4.20)
[V2,a) = e M2 Z i2x" P, p[|[Npp = —Nga)
Nis,
{nak, nex}
® na,—k = nax, ne—k = ng =0l 4.21)
where
ks [
H,” =v. (TNRB + Zkakak 12L>
e k 4.22
+7 (,; cler — 24L) (4.22)
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and

T
HLE = (T s+ > Iklaja, — 12L>

k<0

<Z kieie - 24L>
k<0

Note that we have multipled |, ;) by unimportant overall
constants, e 7/24L and ¢~ %7/48L for later convenience. For
readers familiar with boundary CFT methods, it should hope-
fully be clear that [, 4) are essentially regularized Ishibashi
states for the a topological sectors of the MR CFT [7,53]
(up to unimportant relative phases). In other words, |¥,) =
[V1.4) ® |¥2.4) 18 a superposition of all states in the a topolog-
ical sector, regulated by the operator exp[—(HL8 + HEB)/2].
We can thus deduce that the reduced density matrix for, say,
cylinder B is given by

(4.23)

L
Pa,Be ¢ ¢ a,B’

a8 = Tralla) (Yall =

Zos (4.24)
So, the form of the entanglement Hamiltonian precisely
matches that of the physical edge Hamiltonian in the topo-
logical sector a, as expected. The projection operator P, p
ensures the reduced density matrix only acts on states within
the topological sector a of the physical Hilbert space.

4. Entanglement spectrum and entropy

At this point in the calculation, we are actually done. In-
deed, we have argued that the entanglement spectrum exactly
matches the physical edge CFT spectrum (taking into account
the projection into the appropriate topological sector), and
so we will necessarily obtain the correct TEE. Nevertheless,
for completeness, we will show explicitly that we obtain the
correct TEE for the ¢ sectors.

Introducing the fictitious inverse temperature § = 1/T, we
wish to compute

_ RB_ /LB
Zef"i’,e = TrB[Pemf) B€ BOLT+H, )Pemp,B]

= z8 7% (4.25)
where we have defined*
ZEE | = Trgp[Poro gpe #™ Pors gp). (4.26)
Z88 | = Trps[Pars 15 P Povo 1] 4.27)

In the following, we will focus on the computation of Z*2 iré o> AS
the calculation of Zﬁﬁ , is virtually identical. First, we define

4We emphasize that the trace is taken over all states in the physical
MR Hilbert space on cylinder B. In particular, this means that we
cannot, in general, separate the trace into separate traces over the
edges RB and LB, since the states appearing in the trace must
lie in a definite topological sector. However, the presence of the
P,irs ,p Operators within the trace ensures that only states on edge uB
satisfying the winding number quantization of Eq. (2.16) contribute,
ensuring we do not mix topological sectors. So, in this case, we are
justified in splitting the trace over B into two traces over its two
edges.

the modular parameters

T =it = zﬂTv =it = iﬂz“ (4.28)
and the variables
qg= g27rt‘r q — 627'[['7?. (429)

We compute the trace using eigenstates of Ngp, aZak, and

czck. Keeping in mind that that the role of the projection
operator P,irs g is to exclude those states which do not satisfy
the constraint of Eq. (2.17), we compute the entanglement
partition function to be

Z8 =16 " DX @) + X @)

Isin

+ 300 D@ — X @),

where, employing the notation of Ref. [45], we have defined

(4.30)

X0 (@) = %ﬁ 1‘[(1 +g) + H<1 a1y |
431)

X = 57 H(l T - 1‘[(1 7 |,
4.32)

and
X)) =q7% (Z(il)’vq”w‘;)z/z> ﬁ(l —q/)".
NeZ j=1

4.33)

Let us take a moment to unpack these expressions. The
terms Xosmg(q) and le;g(q) are the contributions from the

fermionic sector. Focusing first on x,""8(§), we note that
the first product appearing within the square brackets is simply
the partition function for a free Majorana fermion with mo-
menta quantized as k = 27 (j + 1/2)/L. The second product
is the partition function for a free Majorana, but with each
state weighted by its fermion parity, (—1)F. So, when these
two products are added together, all terms corresponding to
a state with an odd number of excited Majorana oscillator
modes will cancel out. In other words, xésmg(c]) is the partition
function for a free Majorana, with the trace restricted to states
with an even fermion parity, (—1)" = +1. Likewise, x, /2g )
is the partition function for a free Majorana, with the trace
restricted to states with an odd fermion parity, (—1)F = —1.
In more formal terms, X()SIl 75(q) are the characters of the 1 and
x sectors of the Ising CFT, respectively. Similarly, x; /n(q)

are the characters for a U(1), boson in the ¢”? sector. In
particular, the term in large rounded brackets in Eq. (4.33)
results from the trace over the winding number sector, while
the product outside the brackets results from the trace over
the oscillator modes. The term Xr_/n(q) is the character for
a U(1), boson in the e sector, but with each term in the
trace weighted by the parity of the integer part of its winding

number, (—1)". Hence, Xj/n(q) + xr’/n(q) correspond to the
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partition functions for U(1), bosons in the ¢"? sector with the
trace over the winding numbers restricted to states with the
integer part of the winding being even and odd, respectively.
Altogether, the first (second) line of Eq. (4.30) corresponds to
a trace of e~ "< over states with even (odd) fermion number
and an even (odd) integer part of the bosonic winding number.
This accounts for all states in the ¢”"? topological sector. So,
the entanglement partition function of the right-movers of the
MR theory in the e sector is indeed given by Eq. (4.30).

Now, we can write Eq. (4.30) in terms of the Dedekind 7
and Jacobi 0 functions (see Appendix A):

\/90@) N \/%ﬁf
SN T e

r/m

(nt)+e n 91/2/"'(nt)

n(0)
\/93’(%) B \/91%(%)
n(@) n(@)

r/m

1 -r /
y (nt)y—e” 91/2 (nt) 4.34)
n(z)
Using the modular transformation properties of the 1 and 6
functions given in Eqs. (A4) and (A7), as well as their asymp-
totic behavior in the limit L — oo as given in Egs. (A11) and
(A12), we find

7 1 1
— e Getm),

hm ZR8 e
n

e

(4.35)

Essentially identical calculations yield ZR8 = Z[;ﬁ in this

limit. Hence,

1r¢ e

S, B[T In Zemp_e] |
eiré — aT T=1

(4.36)

L/l 1
eV + = (S 4 —),
3 \v., 20,

and so we obtain the expected TEE [see Eq. (4.2)].

B. Non-Abelian (twisted) sectors

Next we turn to the twisted sectors, corresponding to the
insertion of a oe*!/2¢ anyon flux through the torus. The
mode expansions of the fields have the same form as that
in Egs. (3.2) and (3.5), except that the quantization of the
quantum numbers has changed. The Majorana fields are now
periodic and so have integer-quantized momenta k = %’T Js
J € Z. As for the bosons, the momenta will still be quantized
ask = ZNT’ J € Z. The winding numbers, however, now obey
the quantization of Eq. (2.20).

Let us again first focus on interface 1. The full approximate
Hamiltonian takes the form

Hy = HY + HE® + HYS + HI. (437)
Here, H;, H};, and H{%° are again given by Egs. (4.5)-
(4.8), with appropriate changes to the quantization of the
momenta and winding numbers. The new addition is a con-

tribution from the Majorana zero modes

H{® = (4.38)
We now proceed to derive the reduced density matrices for
each sector, following the same methodology as was em-

ployed for the untwisted sectors.

igd()Co.

1. Bosonic sector ground state

Aside from the change in the quantization of the winding
modes, the calculation of the bosonic sector ground state
proceeds as before. Hence, we can immediately write the
zero-mode ground state as

Lg][nN
Yo e INgp = N, Nea = —N) ,

+1/2
NeZ-""F

|Gb,zer0, 1 > =

(4.39)

with the only change being the quantization of Ngp. Similarly,
the oscillator mode ground state is again given by Eq. (4.10).

2. Majorana sector ground state

Likewise, the ground state for the Majorana oscillator
mode sector is again given by Eq. (4.13), where now k = ZT” Js
J € Z. The new aspect of the calculation in the twisted sector
is the presence of the Majorana zero modes. Constructing
complex fermion operators as

1 ~ 1 -
f=—=(co+ido), [f=—=(do+ico) (4.40)

V2 V2
the Hamiltonian describing the zero modes of interfaces 1 and
2 can be expressed as

-3 r+ 7 -1
(4.41)

where g < 0. Now, a complete basis for the zero-mode Hilbert
space is given by |n, i) where n (71) denotes the occupation
of the f (f) fermion. The ground state is then given by
1G.ser0) = 10, 0).

We can also form a different pair of complex fermions from
the above Majorana zero modes, localized in the two halves of
the torus, as defined in Egs. (3.28) and (3.32):

H lze}o + sze;" = igdyco + i8Cody =

Jfa= %(do +ido), fp= %(Co + icp).
Calculating the reduced density matrix for cylinder B will
require us to trace out the f degree of freedom from the state
|0, 0), and so we must express |G f,zer0) in terms of the basis
states |n4, ng), where ny,p denotes the occupation of the fy,p
fermion:

1
|G f,zer0) = (104, 0g) + i |14, 1p)).

V2

3. Projecting to the physical Hilbert space

(4.42)

Putting everything together, we can write the ground state
of the approximated Hamiltonian, Eq. (4.37), as

|1ﬁu> = |Gb,osc,1) ® |Gb.zero,]) ® |Gf,osc,l>

X |Gb,osc,2> Q |Gb,zer0,2> 02y |Gf,osc,2> 02y |Gf,zer0> s
(4.43)
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where the explicit forms of |Gy, zero,1)5 |Gp,0s¢,1)» |Gf,0s¢,1), and
|G £ zer0) are given above, while

Le‘TIXN
> e INLp = —N, Nga = N),

r+1/2
NeZ—-""1=

|Gb,zero,2> =

(4.44)

|Gp,osc,2) 1s again given by Eq. (4.17), and |Gy oc,2) is given
by Eq. (4.18) with k = & j, j € Z.

We now obtain an approximation to the physical ground
state, |v,), through the projection P, = P, 4P, p defined in
Sec. IIT A, with a = oe/"t1/2%_ As in the untwisted sector
problem, it suffices to apply only one of the projection op-
erators acting on one of the cylinders, say, P, p, due to the
form of |v,). Indeed, from its explicit form, we see that every
state appearing in [v/,) has (—1)NetNs = (—1)Nm+Ns apd
(—1)fs = (—=1)". Hence, following the same reasoning given
in the untwisted sector calculation, we have that

[Wa) = Pa 1Y) = PanPas |Va) = Pup [Va)

Again, we reserve the explicit form of |y,) for
Appendix B 2. We also discuss, in Appendix B 2, an impor-
tant subtlety regarding the definition of the fermion parity
of the complex fermion zero mode. Now, as we did in the
untwisted sector problem, we can make use of the fact that
[Wa) = P, | ) = Pag|t,) is in a Schmidt decomposed form
to deduce the form of the reduced density matrix for, say,
cylinder B. Explicitly,

(4.45)

Pa,B = Pa,szero,Be RE_H&BP B> (4.46)
Zgeitr+1/2p.e
where
RB _ 2
He <_NRB + ;kakak 12L)
+ Ve (Z kaCk + ﬁ) (4.47)
k>0
LB _ T
"= (T L+ g klaja — 12L)
¥, <g |k|ee + ﬁ) (4.48)
Ozero,8 = |08) (Op| + [1p) (15]. (4.49)

We have again shifted the entanglement spectrum by a con-
stant for convenience.

4. Entanglement spectrum and entropy

Now, introducing the fictitious inverse temperature § =
1/T, we wish to compute (for a = o/ +1/29)

Zge = Trp [Pa,B,Ozero,Be_ﬁ(HfB-'—HfB)Pa,B]' (4.50)

When computing the trace, the presence of the P,p pro-
jection operators requires that we only sum over states in
the a = o€/’ T1/2?% sector. Now, consider a state |8) which
obeys the correct quantization of winding numbers for the
0" t1/29 sector, but has a fermion parity such that (— 1) #£

(—1)Nes+Nez - implying it does not lie in the physical MR
Hilbert space and so will not contribute to the trace. It follows
that by applying either fz or f; (recall that these are the zero-
mode operators on cylinder B) to |8) will yield a state that
does satisfy the parity selection rule (—1) = (—1)Mes+Ns,
Moreover, whichever of fz |8) or f; |B) is nonzero will have
the same eigenvalue as |) under pzero,Be’ﬂ(HfBJrHﬁB), since
Pzero.p 18 simply the identity operator in the zero-mode sector.
It is then not too difficult to see that we obtain

4.51)

RB LB

Zael‘<"+1/2>¢,e = gei(m/2>¢,eZ¢,ei<r+1/2)¢,g
where, focusing on edge RB and recalling the definitions of
Eq. (4.29),

X%jilng(mx(tﬂ/z)/n(q} (4.52)

RB _
Zaemﬂ/m,e =

Here,

o0
K@) = g ]‘[ (4.53)
results from the trace over the (antiperiodic) Majorana oscilla-
tor modes and is the character of the Ising CFT in the twisted
sector. The quantity x,"(g) was defined in Eq. (4.33). It should
be emphasized that the entanglement partition function can be
expressed as a product of traces over edges RB and LB because
the Majorana zero modes have been traced over; the Hilbert
spaces of edges RB and LB are not genuinely decoupled.
This expression for the entanglement partition function
matches the character of the appropriate topological sector in
the MR CFT [45], and so it follows immediately that we will
obtain the correct EE. Indeed, as usual, we can express the en-
tanglement partition function in terms of modular functions:

91/2( )0 (r+1/2)/n(n_c)
2n(T) n(t)

Making use of the modular transformation and asymptotic
properties of the 6 and n functions (see Appendix A), we
obtain, in the L — oo limit,

(4.54)

Zo-ex(Hrl/Z)d) e

. S
2% p2n,

(4.55)

. RB
Lhm Zo.ei(r'+]/2)¢ e ~
— 00 ’

1
v2n
One finds that Z2%,.,,,, , is given by the same expression in
this limit. So,

O[T In Z iv+129 o(B)]
Sae,(,+1/7)¢ = llm :
Looo oT

T=1

L{1 1
= —2In(~2n) + ”—(— + T), (4.56)
3 \v, 20,

as required [see Eq. (4.3)].

V. NONUNIFORM MOORE-READ GAPPED INTERFACES

Thus far, we have demonstrated that the cut-and-glue ap-
proach can be extended to the computation of the EE in all
topological sectors of the MR theory. However, the utility
of this approach is that it may be used to compute the EE
for an entanglement cut lying along the interface between
two different topological phases. This was demonstrated for

045102-13



SOHAL, HAN, SANTOS, AND TEO

PHYSICAL REVIEW B 102, 045102 (2020)

interfaces of arbitrary Abelian phases in Ref. [12]. The focus
of the remainder of the present work is to conduct a similar
analysis of interfaces of MR states at different filling fractions.

As a prerequisite to computing the EE for nonuniform
interfaces, it is necessary to first deduce which pairs of MR
states actually admit gapped interfaces and what interaction
terms can generate such a gap. The corresponding question
for arbitrary Abelian states has been studied in great detail
[31-33,56]. It is now well established that an interface be-
tween Abelian topological orders A and B can be gapped
if and only if (i) A and B have identical chiral central
charge c(A) = c¢(B), which is related to the thermal Hall
conductance [57-59] by « = dlenergy/dT = c% T, and (i1)
the topological order A x B (where the overbar indicates
time-reversal) possesses a Lagrangian subgroup, a maximal
set of mutually local bosons which, when condensed, confine
all other anyons. Such subgroups, when they exist, are related
to the so-called null vectors [60], which label sine-Gordon
interactions corresponding to tunneling of integer numbers of
electrons.

Interfaces of non-Abelian states have also been studied
intensively [34-42], although many open questions still re-
main. Indeed, in contrast to Abelian edge theories, which
are described by multicomponent Luttinger liquids [10], non-
Abelian edge theories are described by generic CFTs [43],
whose primary fields need not have free-field representations.
As such, a comprehensive approach to classifying gapped
interfaces via explicit gapping interactions seems difficult to
develop (although specific examples have been considered
before, such as those in Ref. [61]). Our goal in this section
is to use anyon condensation, which we will briefly review, to
understand when interfaces between MR states can be gapped,
and then to use this picture to propose explicit gapping inter-
actions.

A. Anyon condensation picture of gapped interfaces

Suppose we wish to determine whether one can form a
gapped interface between topological phases A and 3, assum-
ing they have identical chiral central charges. This is equiva-
lent to asking whether one can gap out an interface between
the phase A x B and the vacuum by the folding trick [23,50].
In the case where A and B are both Abelian, the necessary and
sufficient criterion for the existence of such an interface is the
existence of a Lagrangian subgroup, £ C A x B.If A x Bis
a bosonic topological order (i.e., the local “electron” operators
have bosonic statistics), then a Lagrangian subgroup is a set
of anyons defined by the requirements that (1) for all a € £,
e = 1, where 6, is the spin of a, (2) for all a, b € L, e =
1, where 6, is the braiding phase between a and b, and (3) for
any b ¢ L, there exists some a € £ such that e £ 1. Now,
in the anyon condensation picture of Bais and Slingerland
[49], if one condenses all anyons in £, all other anyons in
the theory will become confined. If A4 x B is fermionic, then
condition (1) is relaxed to the constraint ¢’ = 41—that is,
the anyons in £ can have bosonic or fermionic self-statistics.
This is because a fermionic anyon a € £ can be fused with
a local fermion (an electron) to obtain a bosonic quasiparticle
which can be condensed. In either case, A x B can be reduced
to the vacuum or a trivial state without the closing of a

gap, implying the existence of a gapped interface between A
and B.

It is believed that a similar anyon condensation criterion
can be used to identify gapped interfaces of non-Abelian
states [39,40]. In this case, the picture is a bit more subtle
as non-Abelian anyons may “split” under condensation, and
so the maximal set of condensable anyons may not be closed
under fusion. For this reason, we will call such a set of anyons
a Lagrangian subset, as opposed to a subgroup. Although,
to the best of our knowledge, there is no rigorous proof
of connection between the existence of a Lagrangian subset
and the gappability of a non-Abelian interface, we can use
this picture as motivation for writing down explicit gapping
terms for the Moore-Read states. After first reviewing gapped
Laughlin interfaces, this will be the next order of business.

1. Review of Laughlin interfaces

Let us consider an interface between Laughlin states at
fillings vi = 1/k; and v, = 1/k», as studied in Ref. [24]. The
free part of the Lagrangian describing the interface is given by

k1 k2
»CO = 4_ x¢L(3t - 8x)¢L + _8X¢R(_8t — 8x)¢R- (51)
4 4

The interaction term we add in to gap out the interface must
be constructed from local degrees of freedom (i.e., electron
operators). It will be sufficient to restrict our attention to an
electron tunneling term:

Line = (W))*Wh + Hee. = cos(akipr, + bhapr),  (5.2)

where ¥; = e 9 and i = % are the local electron
operators. Here, A = (a, b) must satisfy Haldane’s null vector

criterion [60]
ool 4)0)

This ensures the argument of the cosine argument behaves as
a classical variable and so can obtain an expectation value in
the strongly interacting limit, gapping out the scalar fields. In
the present case, this means

(5.3)

a*k; — b*ky = 0. (5.4)
We also require A to be primitive [62], so as to not introduce
a spurious ground state degeneracy, meaning that ¢ and b
must be coprime. These two requirements can be shown to
constrain the fillings to be [24]

— -1 — -l
V) = kl = W’ V) = k2 = W (55)

Hence, there exists a gapped interface between Laughlin states
A and B at the filling fractions:

V=——=

pa®’

1
(A v=—5 (B)

e (5.6)

Let us now confirm that there indeed exists a Lagrangian
subgroup for A x B, which is condensed by Eq. (5.2). The
anyon content of A x B is

A x B = {eir(pL}r:l ..... pb? X {eiAWR}‘v:l,...,paz‘

5.7
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For concreteness, r and s will henceforth always index the A
and B factors, respectively. These anyons have spin

1/ r2 52
hrs =\ — ——> )

T 2\ ph?  pa?
Hence, anyons of the form (r, s) = [(b, a) have trivial spin;
it is also straightforward to see that they have trivial braiding

statistics with each other and nontrivial statistics with respect
to all other anyons. So, the anyons

by, ila
L= {e"e" %Y pab

(5.8)

(5.9)

form a Lagrangian subgroup and their condensation fully gaps
the interface. Note, in particular, that

(eib¢L £la%r )pab — eipahng;_ eipathSR (5.10)
corresponds to the composite electron operator vy’ W—é appear-
ing in Eq. (5.2) and will obtain an expectation value when the
argument of the cosine is pinned, resulting in the condensation
of all anyons in £. This makes explicit the connection between
Lagrangian subgroups and electron tunneling terms.

2. Extension to Moore-Read interfaces

We would now like to identify gapped interfaces between
generalized MR states at different filling fractions. Absent
a correspondence between gapping terms and Lagrangian
subsets, as exists in the Abelian case, we can at best use
the anyon condensation picture as a source of intuition for
identifying candidate gapping terms. As a first step, however,
we can restrict which filling fractions to consider by focusing
on gapping terms that correspond to tunneling of electrons.
Indeed, if we consider an interface between MR states at
filling fractions v; = 1/k; and v, = 1/k,, the most general
electron tunneling term we can write down is given by

Lint = (1p2)“1//£ +H.c. = iXZXI? cos(ak|¢p + bkrypr).
(5.11)

We will analyze this interaction term in more detail in the
following subsection. For now, we emphasize that our im-
plementation of the cut-and-glue approach required that the
Majorana and bosonic parts of the interaction term were
separately bosonic and so separately obtained expectation
values in the strongly interacting limit [see the discussion
around Eq. (3.15)]. Using our analysis of Laughlin interfaces
above, we see that this is only possible if k; = pband k, = pa,
with a and b coprime.5 So, we will restrict our attention to
gapped interfaces (GIs) between two MR phases, A and B, at
filling fractions

1

(A) VZW

| (B) v:%. (5.12)

5The condition that @ and b be coprime arose in the Abelian case
by requiring primitivity of the gapping term. We do not have a
systematic understanding of what constitutes a primitive gapping
term in the MR case, but we can at least justify requiring a and
b being coprime by noticing that any tunneling term of the form
(wz )2 gb + H.c. with ¢ integer will necessarily be less relevant (in
the renormalization group sense) than Eq. (5.11).

This is not to say that GIs cannot be formed between MR
states at other filling fractions, only that these GIs are those
most obviously amenable to our cut-and-glue approach to the
calculation of the EE.

In this case, the anyon content of A x Bis

A® B — {eirqﬁL , XLeirqu’ O_Lei(r+1/2)¢L }r:1 ..... o

.. (5.13)

..... pa

Again, our goal is to condense a set of bosonic anyons such
that all other anyons will be confined. Our strategy is as
follows: we will first condense all possible Abelian anyons.
This will yield a new topological order in which all of the non-
Abelian anyons will have, hopefully, either become confined
or have split into Abelian ones. It will then be straightforward
to see whether that order can be reduced to a trivial one.

Motivated by our analysis of the Laughlin problem, we
start by condensing the following set of Abelian anyons:

Lo = (™Y, up x {111, XLXR)- (5.14)

It follows immediately that all anyons of the form e %: ¢/
and e yge%* not lying in Lo will be confined. The
condensation pattern of the remaining anyons depends on
whether a and b are odd or even. Since we have assumed a
and b to be coprime, there are only two cases to consider: (i)
one of a and b even, the other odd and (ii) both a and b odd.

Case (i). One of a and b even, the other odd

Without loss of generality, let us take a to be even and b
odd. In this case, the anyons in the set

{xre"Pel9r oMoty p el aPRYy |, (5.15)

despite being fermionic, can be condensed after combining
them with (fermionic) electrons. In fact, they are all equivalent
to products of anyons in Ly, up to fusion with electron
operators. For instance,

Irxr ~ 1 xr X (XLeinzd’L)a % (XReil)a2¢R)b

(5.16)
ipab* . ,ipa®ber i

=e

where the tilde indicates an equivalence up to fusion with
electrons. Here we made use of the fact that x¢ ~ 1, since
a € 27. Thus we should extend the Lagrangian subset from
Lo to

(5.17)

It immediately follows that all of the non-Abelian anyons will
be confined. Indeed, any anyons of the form

oD ) G200 5 istr (5.18)

L= {e"™el @y 1 ap < (1L1R, XLXR)-

and

L aRe TR oy P PL i 1/200 (5.19)

will be confined, since they all possess nontrivial braiding
with x xg. As for anyons of the form,

41/ 5 pi(5+1/2)0n (5.20)

0L rORs = 0L€

we can compute their braiding with e/*?¢ll9%r  and
XLezlb¢L XRezla¢R to be

A l 1
el = exp <2ni— [ar —bs+ ~(a— b)}). (5.21)
pab 2
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Since a is even while b is odd, this phase can never be trivial.
Hence all anyons of the form oy ,og ; will be confined. Thus,
we obtain a gapped interface, but one which is opaque to non-
Abelian anyons since they are all confined.

Case (ii). a, bboth odd

As a first step, we again condense L. Upon doing so, the
anyon

ilbgy,

[ = xee™re O~y 1p ~ pxg ~ PP xge’r  (5.22)

remains deconfined, where the equivalences come from fusion
with elements of £,. However, any other anyon of the form
xLe e or e ype?r will clearly be confined, as the
chiral boson factors will yield nontrivial braiding with the
elements of L. It is also straightforward to see that any
anyons of the form oy e/ H1/2Peisr ~ o @l UH1/2PL yp oisPr
and " oRel T2k ~ 3, LRt/ will be confined,
since they all possess nontrivial braiding with xz xz.

This leaves us with the anyons of Eq. (5.20). Their braid-
ing with e??.¢ll9%r and y; et yre*r is again given by
Eq. (5.21). Since a and b are both odd, it follows thata — b €
27 and so this phase can be trivial for an appropriate choice
of r and s. Specifically, we need to look for r, s € Z satisfying
the Diophantine equation

ar —bs+ Y(a—b)=pabt, tel (5.23)

in order to identify the deconfined non-Abelian anyons. One
can show that solutions to this equation for arbitrary ¢ are
equivalent to those for r+ = 0, up to fusion with electrons. It
is easy to see that, for the + = 0 case, one solution to the
Diophantine equation is given by

b—1 a—1

2T = . 5.4
ro 3 0 > (5.24)

All other solutions can be parameterized as

ry=ro+ub, s,=s0+ua (5.25)

and correspond to fusing oy, ;,0r,5, With a condensed anyon in
Ly. Hence, after condensing Ly, oz, ,,0rs, is the only non-
Abelian anyon (up to fusion with electrons and condensed
anyons) which is not confined.

In order to understand the fate of oy, ,,0% 5, after condensing
the anyons in £, let us check the fusion of oy ,,0r, Wwith
itself. We have that

JL,VOGR,SQ X UL,rQGR,Sn
= (1+ xolg + 1o xr + xoxr)e™ %

S 2x1+2xf, (5.26)

where in the last step, we applied the identifications arising
from condensing L. Since the vacuum appears twice in this
fusion rule, o7 ,,0r 5, must split [49] into two Abelian anyons:
OL.ORs, — €+ m, with the fusion rules e* = m? = f2 =1
and e x m = f. So, after condensing the Abelian anyons in
Ly, we are left with the Abelian anyons {1, e, m, f}. Now,
since oy ,,0r,5, has bosonic self-statistics,

o To+1/27  (s0+1/2
e =exp | wi — =1,
pb? pa’

(5.27)

it follows that the daughter e and m anyons must also be
self-bosons. Additionally, the monodromy associated with
braiding f around oy, 0r s, and hence also around either e or
m, is —1. So, this condensation pattern is essentially that of the
Ising x Ising — Toric code transition. We can then condense
either e or m to fully gap out the interface. In contrast to the
previous case, however, a subset of non-Abelian anyons can
pass through this interface.

We thus conclude that we can always form a GI between
Moore-Read states at filling fractions v=! = pa? and v~! =
pb?, although the nature of the interface depends on whether
ornota—be2Z.

B. Gapping terms for v;i! = pb? and v;! = pa’ MR interfaces

We now turn to the problem of constructing explicit inter-
actions which can gap out these interfaces by drawing some
intuition from the above anyon condensation pictures.

1. Equal Parity Interface: a, b € 27 + 1

Let us first focus on the interface between vl_l = pb® and
vy - pa2 with a and b both odd. In this case, the naive
electron tunneling term of Eq. (5.11) takes the form

Lin = ix1x& cOS(pab* ¢y + pa*ber), (5.28)

where we used the fusion rule x2 = 1. [To be more careful
about this, one should point-split Eq. (5.11) and perform
an operator product expansion to obtain Eq. (5.28)]. It is
straightforward to see that, in the strongly interacting limit,
this interaction term will gap out both the scalar fields and
Majorana fermions.

How does this interaction term connect with the anyon
condensation picture described above? As a start, one may
ask what anyon (or anyons) generate the set of anyons, Ly,
of Eq. (5.14). First, we note that up to the electronic combina-
tions xze P9t and yge Pe P,

eipah2¢Leipa2h¢R
~ (XLe—ipbzm)a « (XRe—ipa2q>R)b % eiPab*dL pipabpr

= XLXk- (5.29)

So, all anyons in Ly can be obtained by fusing the anyon
e el wyith itself some number of times, which is to say,
Ly is generated by a single anyon. Additionally, we observed
above that

GL,VOGR,SO X GL,rQGR,SU

= (14 xplg + 1o xr + xpxr)e™ e, (5.30)

which means the elements of Ly, and hence the full La-
grangian subset, can all be generated from this single non-
Abelian anyon. This suggests that the corresponding gapped
edge can be obtained using a single gapping term, namely that
given by Eq. (5.28). Indeed, in the strong coupling limit, the
argument of the cosine will be pinned and x; xg will obtain
an expectation value, corresponding to the condensation of
x1xr and all anyons of the form ¢/*?¢/'“% as suggested by the
Lagrangian subset picture. That, roughly speaking, oz, ,,0r.s,
is condensed can be inferred from Eq. (5.30), since e??¢?? is
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also condensed, or by analogy with the standard Ising model,
in which the condensation of x; xg implies a gap for the full
theory.

2. Opposite parity interface: a € 27., b € 27 + 1

In contast to the previous case, the naive tunneling term
of Eq. (5.11) will not serve to gap out the interface. Indeed,
since a is even and b is odd, we have that {5 is fermionic
and so cannot obtain a nonzero expectation value. In order to
identify an appropriate gapping interaction, let us try to draw
some intuition from the above anyon condensation picture.
In particular, we may ask which anyons generate the set £
of Eq. (5.17). By inspection, we see that £ has the group
structure Zopqp X Zo. (Note that x; xg is not equivalent up
to fusion with electrons with ¢/7%"%¢iPb%x when one of a
and b is even and the other odd.) In particular, £ is generated
by e/ and x; xz. This suggests that we will need two
distinct tunneling terms to condense the anyons in each of the
Zpap and Z, factors and hence fully gap the interface.

Motivated by this observation, we can write down what is
effectively the square of the naive electron tunneling operator
of Eq. (5.11):

Lo = Y)Yy + Hee. = cos(2pab’ ¢, + 2pa*bgr),
(5.31)

where we again used the fusion rule x> = 1. It is clear that
this interaction can gap out the charged sector (i.e., the scalar
fields) and the pinning of the argument of the cosine will
correspond to the condensation of the anyons e//*?t¢/l“%x in
Eq. (5.17).

We are thus left with the task of gapping out the neutral
degrees of freedom, namely the Majorana fermions. The
naive expectation, on inspection of Eq. (5.17), is that the
neutral sector should be gapped out by a term of the form
(xLxr)* since x? =1 and x2 =1 are local quasiparticles
and (). xz)* obtaining an expectation value would correspond
to the condensation of x;xg. But, it is precisely due to
these fusion rules that (x, XR)2 ~ 1 cannot introduce a gap.
More precisely, on point splitting the interaction, one finds
(xLXr)* ~ x10xLXr0 Xr, Which is an irrelevant interaction (in
the RG sense) and cannot perturbatively introduce a gap.°
Evidently, we must employ a more indirect approach to fully
gap out the interface.

Indeed, we will make use of an alternative representation
of the Ising CFT

. SO(N + 1),

Ising = ———
SO(N)

where N = 2r is an even number with r > 1, SO(N), denotes

the SO(N) Kac-Moody algebra at level one, and the tensor
product X denotes a usual tensor product combined with the

~SONN + 1), KSOWN),, (5.32)

In the Ising model, this interaction induces a flow from the
tricritical to the critical Ising CFT, all along which the fermions
remain massless [76]. Beyond the tricritial Ising CFT fixed point,
this interaction does open a gap. Although a similar situation may
arise here, we are interested in writing down relevant interactions,
which we know will perturbatively introduce a gap.

condensation of a particular set of bosonic anyons to tie the
two factors together. The details of this representation are
reviewed in Appendix C. This representation allows us to to
re-express the Majorana sector of the MR theory in terms of
N + 1 left-moving and N right-moving Majorana fermions.
The topological data of theory (i.e., the anyon content) will
remain the same in this alternative reprsentation due to the
choice of condensed operators encoded in the X notation. In
particular, all 2N + 1 Majorana operators belong to a single
topological sector. So, we expect to obtain the correct TEE
in our entanglement calculation. However, the total central
charge will change and will alter the area law term in the
entanglement entropy. This, of course, is not distressing since
the coefficient of the area law term is a nonuniversal quantity.
The upshot of this alternative representation is that we can
write down current-current backscattering interactions which
are manifestly local and marginally relevant, which means
they can induce a gap.

Explicitly, in this alternative reprsentation, we can write the
free part of the v = 1/n MR edge theory as

n 1 <« . )
L= —0p® —0)p+ — ; 3,97 (8, — 9,9’

1 . —j —j i
+ 5D 08 (<0 = 006 + x5 (8 — 00x, (533)

j=1
with the local operators being the electron operator
v = xe"?, (5.34)

the SO currents of Eqs. (C11)—(C13), as well as the condensed
operators of Egs. (C14)—(C15). As usual, it is important to
understand the organization of the Hilbert space. To that end,
let us place this MR phase on a cylinder so that we have chiral
and antichiral copies on the left (L) and right (R) edges of the
cylinder. We then define the operator

G = G(— 1)/ NN (1), Vet D)
o (539
= (_1)NR+NL(_1)F(_I)Zj(N,é-&-N‘L’)(_l)zj(Nfﬁ-NZ)’

where N,,, Nj, and N;, are the winding modes of ¢,,, ¢;,, and
&;,, respectively. One can check that G’ commutes with all the
local-electronic operators in this theory. Hence, similar to the
conventional MR edge theory, the physical Hilbert space is
defined by the constraint G’ = 1. This simply states that the
charge (i.e., the winding number parity of the ¢ field) must
match the combined fermion number parity and neutral boson
winding number parity. In particular, in the 1 sector we can
define separate fermion parities for each edge. As such, we
can define the operators

G, = (=DM (=Dfi (=M x (=X, (5.36)
The 1 sector is then defined by the constraint G|, = 1. For later

convenience, we can define the operator
Py =Py rPip, (5.37)

which projects states the cylinder to the 1 sector of the MR
edge theory. Here, Py, acts on edge u of the cylinder and for
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l) an eigenstate of (—1)fe, (—1)Me, (—1)¥, and (=)™, we
have that, schematically,
Py |Y) = ¥) (5.38)
it G, |y) = |¢) and
P ly)=0 (5.39)

otherwise.

Returning to the nonuniform interface, we can now employ
the current-current interactions described in Appendix C to
gap out the neutral modes [63]:

L,=u Z cos(2071) cos(2072) + u Z cos(209)ixr xr

N#j2 Jj=1
+uy cos(20”)cos(20”), (5.40)
J1#j2
where we have defined
200 = — ¢}, 20" =¢r—¢,. (541

In its fermionized form, as presented in Eq. (C20) of
Appendix C, we see that £, does indeed, heuristically, rep-
resent a ()z xz)* interaction, in line with our intuition from
the anyon condensation picture. It is clear that, taken together,
the charge sector and neutral sector interaction terms,

Egap =L+ Ly,
will fully gap the interface.

(5.42)

VI. NONUNIFORM INTERFACE
ENTANGLEMENT ENTROPY

Having established which interfaces of MR states can be
gapped and which explicit interactions can induce these gaps,
we can proceed to apply the cut-and-glue approach to the
calculation of the EE for these interface systems. We again
consider the geometry of Fig. 2 except, now, region A (B)
will be occupied by a v=! = pb* (v™! = pa®) MR state. The
entanglement cut thus lies on the interface between these two
distinct topological orders. We will consider the two classes
of interfaces discussed in the previous section in turn. Our
analysis will parallel that of Ref. [12], in that we will first
illustrate how the gapping interactions place constraints on
the ground state. Aside from these constraints, the actual
computation of the ground state and the EE then proceeds in
essentially the same way as for the uniform interfaces. We will
focus, for simplicity, on the trivial (1) sector.

A. Equal parity interface

We begin by considering the case where both a and b are
odd. As in the uniform interface calculation, we will focus on
the LA/RB interface (i.e., interface 1). For ease of access, we
restate here the free Lagrangian,

i pb?
Lace,1 = X1a= (0 — 0,00 xra + =—0xPra(9, — v:0x)Pr4
2 4
i
+ XRBE(BZ + v,0:) XRB
pa’
+ ——0x¢rp(—0; — V:0x)Pra, (6.1)

4

and the gapping interaction,

2
Lgap1 = _;giXLAXRB cos(pab*ra + pa’bgrg).  (6.2)

1. Gapping term constraints

As in the uniform interface problem, we will take the
strongly interacting limit and approximate

L
Hgap,l ~ / dx |:COIISt. + v, 8iXLAXRB
0

VAT 2
+ 2 (bpra + agrp — 7/ pab)” |dx, (6.3)
where g = —2g/(v,m) < 0 and we have expanded about the
vacuum

(pab*ra + pa’bers) = 7 (ixraxrs) > 0. (6.4)

We perform a similar approximation for interface 2. As
before, this violates the Z, gauge symmetries generated
by the G, operators [Eq. (3.12)], and so the ground state
to the approximated Hamiltonian will need to be projected
to the G, = 1 subspace. However, following Ref. [12], an
additional constraint is imposed by the gapping interaction.

Indeed, as in the case of the uniform interface problem,
the pinning of the cosine term implies the linear combination
of the scalar fields b¢r4 + agrp cannot fluctuate significantly
from its vacuum expectation value over the length of the
system. In particular, it cannot have a nonzero winding, which
requires that

bNLA + GNRB =0. (65)

Since a and b are coprime, this relation fixes the quantization
of the winding numbers to be

Nia =az, Ngrpg=-—bz, z€LZ. (6.6)

The physical content of this restriction is clear in view of
the form of the gapping interaction, which involves scattering
a electrons from edge LA with b holes from edge RB. The
ground state of the interface will then naturally consist of a
superposition of states consisting of multiples of (sz)”g/ng
particle-hole pairs. This is precisely what is expressed by
the above constraint, once we also enforce the Z, gauge
symmetry constraint, which ties the bosonic winding to the
fermionic parity.

2. Entanglement entropy calculation

The calculation of the EE is nearly identical to that of
the uniform interface case, with the primary difference being
that we must take into account the above constraints on the
winding numbers. The approximated Hamiltonian again takes
the decoupled form

Hy = H{; + H; + H{3°. 6.7)
The fermionic part of the approximated Hamiltonian, H}, is
identical to that for the uniform interface problem, Eq. (4.8),
and so the ground state of the fermionic sector will again be
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given by Eq. (4.13). The bosonic parts of the Hamiltonian are
now given by:

TV wiv.L
H{%° = 2Lp (aNgg — bNA)* + > (adrs.0 + bdrao)’,
(6.8)
osc __ E F Ak Bk Ay
HYY =) (@ a_k)(Bk a)lat ) ©9
k0
where

272 272
Ay =1kl + ——, By= . (6.10)

plk| plk|

Dispensing with the details, we simply jump to writing down
the ground state for the approximated Hamiltonian (including
both interfaces):

V) = [¥1.1) ® [¥21) (6.11)

h&l/Z,l) = |Gh,zer0,l/2> & |Gb,osc,l/2) &® |Gf,osc,l/2> s (612)

where

 vempa?b?N?
|Gb,zero,l> = Z e xL |NRB = bNa NLA = _aN) s
NeZ

ver pa® b2 N?
|Gheron) = Y € = |Ng = —bN, Nga = aN),
NeZ
(6.13)

while |Gposc,1/2) and |Gy osc,1/2) are again given by
Egs. (4.10), (4.17) and (4.13), (4.18), respectively. The con-
straint imposed by the gapping interaction manifests itself in
the sums over the winding mode states. The entanglement
velocities are given by
2 |p ~ 2
VA T
Following the now standard procedure, we must apply
the projection operator Py = Pj 4Py p defined in Eq. (3.20) to
obtain a physical state in the MR Hilbert space. As in the uni-
form interface case, we again have that Py 1) = Pia ) =
P [¥1). Indeed, we see that every state appearing in [1)
has (—1) = (—1)f1 and (—1)" = (—1)". Additionally,
since both a and b are odd, we have that (—1)? = (—1)%V,

and so the states also satisfy (—1)V = (—1)V4, as well as
(=18 = (—1)Mm, It then readily follows that

[Y1) = Py Y1) = Praln) = Pig V) -

As in the uniform interface problem, P |1/}1> is again in a
Schmidt decomposed form, and so we can directly read off
the entanglement spectrum and hence the reduced density
matrix for B (the only difference with the uniform interface
calculation is the winding mode sector. We have that

(6.14)

Ve =

(6.15)

pLB = P1,BPb€7HfLH‘€BPbP1,B, (6.16)

eid ¢
where HX® and HLB are given by Eqs. (4.22) and (4.23),
respectively, with the substitution n = pa®. The operator P,
enforces the constraint of Eq. (6.6):

Py, INrB, NL.B) = SNgy,0modbON,5,0modb |NrB, Nrg) . (6.17)

It is now a straightforward matter to derive the entangle-
ment partition function. As before, we can write Z;, as a
product of contributions from the right and left edges:

Zve=Z07(5. (6.18)
Explicitly,
o0
sing , ~ a 2 _ L iN—
A g(q)( > gty ”)q =[Ja-e)"
N eeven j=lI

sing , ~ a> _ 1 iN—

+ XlL/Zg(Q)< > (”N)z/2>q =[Ja-a)"
Neodd j=I

(6.19)

where xgsmg(ci) and X}jl;g(q) were defined in Eqgs. (4.31) and
(4.32), respectively, and ZL is given by a similar expression.
As in the entanglement peirtition function for the untwisted
sectors of the uniform interface problem, the first (second) line
of Eq. (6.19) arises from the states in the trace which have
both an even (odd) fermion parity and winding number parity.
It is immediate to see that Eq. (6.19) is formally equivalent to
Eq. (4.30) with the substitutions n — pa®b* and r — 0. This
implies that Eq. (6.19) is in fact the partition function in the
trivial sector for a MR state at inverse filling v™! = pa®b*. We
will have more to say on this point later in this section but, for
now, this observation allows us to immediately deduce the EE
in the present nonuniform interface problem to be,

L1 1
Si = —2m@yVp2) + (= + — ). (620
3 \v, 20,
We thus find the TEE for this nonuniform interface on the
torus (in the vacuum sector) is given by

v1 = 21n(2/ pa?b?),

which is one of the main results of this paper.

6.21)

B. Opposite parity interface

We now turn to the class of interfaces in which one of a
and b is even and the other odd. Without loss of generality,
we will again take a to be even and b to be odd. We will also
employ the topologically equivalent representation of the MR
CFT, as discussed in Sec. VB and detailed in Appendix C.
Again focusing on interface 1, the free part of the Lagrangian
is given by,

k i
Lot =Y [ﬁaxmuat = UedIPu + Xy (O = 10nde) X
I
1 < . .
+ o D {0, (b — vid)P,

4 £
j=1

+ 0. (udy — vnax)qb,f;}} (6.22)

where, in the interest of compactness, we have abused our ear-
lier notation by temporarily redefining u = LA/RB = +/—.
‘We have also set

kpa = pa®,  kgs = pb’. (6.23)
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The gapping interaction is given by

Loap1 = Lea + L, (6.24)

2
Lot = =28 cos@pab*pra + 2pa*bors), (6.25)
T

Lny=u Z [ cos (201") cos (207) + cos (2@{‘)
J1#)2
X COS (2@{2)] +u Z cos (2®{)iXLAXRB, (6.26)
j=1
where

28{ = ¢£B - ¢ZA’ 2@{ = E;QB - 52/4’ (6.27)

and we take u, g > 0. We will also require the mode expan-
sions

¢IJL = +27INJ =+ Z L|k| akelkx + (ak)f —lkx]
k<0
bu = b0+ 27tN’ + Z L|k| ake’k" + (ak)T ik,
k>0
(6.28)
where
[(a};)-;', al{’] = [(Zz};)-'L, 5’1{/] = Sk10i (6.29)
[0}.0-Nbs] = —[.0- N ] = —idi;.  (6.30)

and we have temporarily set u = LA/RB = +/—.

1. Gapping term constraints

We now take the strong coupling limit. Without loss of
generality, we expand about the vacuum defined by the ex-
pectation values

(2pab*¢ra + 2pa*borp) = 7,

(207) = 20]) =0,
(ixzaxrp) <0, (6.31)
so that
LTam , —j _
Hgap,l ~ /O |:7 Z [(26/ )2 + (2®I )2] + ngLAXRB
J
2:|dx. (6.32)

Here, A.,A >0 and §= —ru <0. As in the equal parity
interface problem, the pinning of b¢;4 + agrp enforces the
constraint Eq. (6.6), while the pinning of the 2@{ and 2@{
fields enforces the constraints

Nl ,=NjyeZ, N, =Njel. (6.33)

Note that, at this level of our approximation, the factor of two
in the argument of L. ;, which reflects the fact that we must
tunnel an even number of electrons, does not play any role.
This will be accounted for once we project to the physical
Hilbert space.

2. Entanglement entropy calculation

We see that, in the approximated Hamiltonian, the Majo-
rana fermion, neutral boson, and charged boson sectors all
decouple. In particular, the Hamiltonians for each of these
sectors have already appeared in our calculations for the
equal-parity interface in Eq. (6.7). Hence, we will skip the
details of the computation and simply jump to writing down
the ground state of the approximated Hamiltonian:

|1//}1,l> = |Gb zero.l) ® |Gb.osc l) 02y |Gf osc, l)

®H|aner01 ®H’Gnoscl

where, |Gbp,o0sc,1)> |Gf,osc,1), and |Gb,zero,1> are again given by
Equations (4.10), (4.13), and (6.13), respectively, while the
ground states for the neutral boson oscillator and zero-mode
sectors of interface 1, respectively, take the form

G ) = e (Z o [(a-,i>*(a£k>*+(ai)*(af;k)*]) 0.

k>0
(6.35)

nzero 1 (Ze UMZ(LN/) V B - N NI{A = NJ))
’ (Z ¢ Ny = NN = Nf>)
Ni

(6.36)

where the nonuniversal entanglement velocity v, , depends
on the field expectation values in an unimportant way. The
corresponding state for interface 2, |1 »), is given by a similar
expression.

As usual, we obtain an approximation to the physical
ground state of the unapproximated gapping Hamiltonian in
the 1 sector by applying a projection to |). Defining Z,
symmetry operators, Eq. (5.36), for each cylinder, G, (Where
w=0L,R, a=A,B), the 1 sector is defined by the constraint
G, = 1. Likewise, we define copies of the projection opera-
tors, Eq. (5.37), for each cylinder: Py, = Py 1o P1 re- We thus
obtain an approximation to the ground state in the physical
Hilbert space via the projection

[Y1) = Py Y1) = PuaPus 1Y) -

In contrast to our earlier calculations, however, the projection
requires a bit more care, since a is even while b is odd, and so
(—1)™ £ (—=1)"N for N odd. Explicitly, we have that

(=DM |y 4) = [14)

since each state appearing in |1ﬁ1,1) is an eigenstate of Ny4
with eigenvalue aN and (—1)¥ = 1. So, Py 14 will project
out all states in |y} 1) with

(6.34)

(6.37)

(6.38)

(_1)FLA(_1)Z/NL/A(_1)ZjﬁiA =—1, (6.39)

that is, those states whose fermion parity does not match the
neutral boson winding parity. However, we can see from the
explicit form of [y 1) that

(—1)frsty; Njp+3 Nag — (— 1)ty NL+Y N, (6.40)
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for each state appearing in [ ). Now, when we ap-
ply Pirp to Piral¥11), we must project out those states
with (—1)¥» = —1, since all the remaining states have

(—1)fert X Nes+ X Nes — 11 But, each state in |¥1.1) has
N; = bN, with b odd, and (—1)*¥ = (=1)". Thus, the only
states remaining in the sum after projection will have N €
27—i.e., Ngp = 2bz and N; 4 = —2az, with z = N/2. Phys-
ically, this reflects the fact that we are scattering an even
number of electrons and holes, as manifested by the factor
of two in the argument of L. ; [Eq. (6.25)].

oo
(3 o) oo
j=1

N eeven

[}
I YiN/2
17;g(q) Z qn 1—[ 1 - qn ’
j=1

ZNeodd

where g and ¢ are again take forms given by Eq. (4.29) and
we have defined g, = exp(2mit,), with T, = ifv, /L [Ve.n 1S
defined implicitly in Eqgs. (6.35) and (6.36)]. We have also
used the fact that, since we are in the untwisted sector, we
can write

Zy. =238z (6.42)
and, as usual, Z; ;4 takes a similar form to that of Zj gp.
We can express the partition function in terms of modular
functions:

Ho(pazbzt) + 91/2(pa2bzr)

RB
n(z)
00(r) |67, (D) Ho(rn)z’ + 075 (m)”
n(%) n(t) n(Ta)*"

/eg(f) ) \/ 09,(2) | 00(5, % — 60,5 ()
n(®) n(%) n(T,)*"

Applying the usual modular transformations and taking the
large length limit, we find

L2 1 1
S1=—21n(4\/pa2b2)+%< L= ) (6.44)
Ve,n

v, 20,

(6.43)

Hence, the TEE for this nonuniform interface on the torus (in
the vacuum sector) is given by

1 = 21n(4+/ pa?b?),

which is another of the main results of this paper. Note
that this differs from that of the same-parity interface [cf.
Eq. (6.21)].

(6.45)

X "4(G)

It is now a simple matter to deduce the entanglement spec-
trum and hence the entanglement partition function for, say,
cylinder B. Taking into account the constraints on the fermion
parity and bosonic winding number quantum numbers im-
posed by the projections, we can read off the entanglement
spectrum from the explicit forms of |y ;) and [y2.1), which
are in Schmidt-decomposed form. Indeed, we find for the
entanglement partition function,

oo

N2)2 ,i
Z an, [ 24

{Ni} J=1
> i Ni € even

1—qn

2r

(6.41)

C. Relation to parent topological phase

We now provide a physical interpretation for the values of
the TEE associated with the nonuniform interface between
A and B, which is based on determining whether a gapped
interface can be formed between phases .4 and B using anyon
condensation. This approach has been fruitful in classifying
gapped interfaces of 2D Abelian phases [24,27] as well as the
case where the bulk topological order is non-Abelian [34,55].

Suppose A and B share a common parent phase C—that is
to say, a phase in which condensing one set of anyons yields A
and condensing a different set of anyons yields phase B. Then,
one can form an interface between A and B by starting with
C, condensing down to A in one region, and then condensing
down to B in another region, yielding a configuration which
is gapped everywhere as follows:

A 1 © I ®. (6.46)

Shrinking the region containing C yields a gapped interface
between .4 and 5. Similarly, a gapped interface can be formed
if C is a daughter phase of A and B—that is, .A and 53 can be
condensed to obtain C.

The intermediate state C can be thought of as originating
from A or B by gauging of an appropriate discrete symmetry,
insofar as anyon condensation can be viewed as the inverse
operation of gauging an anyonic symmetry [64,65] (related
observations of the connection between boundary physics and
bulk physics have been made in Ref. [66]). Consequently,
the local interactions that gap the interface manifest this
symmetry, which, in the Abelian case can be precisely shown
to contribute to a correction to the TEE [27]. Furthermore,
in Ref. [55], it was argued that the choice of C determines
the ground state of the interface to be a particular Ishibashi
state, from which the interface TEE was calculated to be
In D¢, where De is the total quantum dimension of C. In this
subsection, after first reviewing this construction for interfaces
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of Laughlin states, we identify the appropriate parent phases
for the two classes of MR interfaces identified above, as
determined by the choice of gapping interaction, and verify
this relation with the TEE.

1. Review of Laughlin interfaces

Let us again consider an interface between Laughlin v—! =
pb? and v~ = pa? states, where a and b are coprime [24]. In
this case, the parent topological phase is a Laughlin state at

inverse filling v = pa®b*:
1 1 1
(A) VIW ©) VZW (B) V=1ﬁ,
(6.47)

The state C originates from A and B by gauging discrete Z,
and Z;, symmetries, respectively. As such, the local gapping
interaction of the A — C interface displays a discrete Z,
symmetry associated with the pairing of a local quasiparticles
of A with one local quasiparticle of A. Similarly, on the
B — C interface, the local interaction displays a Z;, symmetry.
Consequently, as the phase “thins out,” one is left with the
A — B interface where a local quasiparticles of A bind to b
local quasiparticles of B.
Now, the anyon content of C is given by

C={e"") i, pr (6.48)
These anyons have spin
1 72

Consider the anyon labeled by ry = pa’b. It has the same
spin, h,, = 1pa’, as the electron operator in the v=' = pa?
Laughlin state. The mutual statistics between r( and all other
anyons is given by

Br0r = EXP (2711'157). (6.50)
So, if we condense ry, only anyons of the form r = bl will
remain deconfined. These remaining anyons have mutual

statistics
e
6. = exp (2711’ 2).
pa

This precisely describes the topological order of B. It is easy
to see that condensing r = pab® would instead give .A. Thus
C is indeed the parent state of .4 and B.

Now, the total quantum dimension of a Laughlin vl =
pa’b? state is D = /pa?b?, which agrees with the value of
the TEE for an entanglement cut lying along the physical
interface, y = In \/pa®b?, as computed in Ref. [12].

(6.51)

2. Extension to Moore-Read interfaces

Let us now consider the interface between v~! = pb* and

vl = pa2 MR states, with a and b both odd. We calculated
the TEE in this scenario to be given by y = In(2./pa?b?).
This is precisely the TEE for a uniform v=! = pa’h* MR
state. We thus claim that the parent phase for the v=! = pb?

and v = pa2 MR states, with a and b both odd, is the
v~ = pa’b? MR state:

(A) MR, | (€) MR,pp | (B) MR, (652)

where we have introduced the shorthand MR -1 to denote the
MR state at filling v. Now, C has the anyon content

C={e" xe, o t/2%y (6.53)

""" pati?-

In order to obtain, say, phase 13, we must condense an anyon
of the form ye”?, since this will serve as the new electron
operator and we wish to obtain another MR state. From the
discussion of the Laughlin interface, it is straightforward
to see that condensing ¥ = xe”"'?* will yield the correct
Laughlin quasiparticle content, as well as Majorana content
(since x has trivial braiding with itself, under a full 27
rotation).

As for the non-Abelian anyons, o¢'"T1/2¢  their braiding
with ¥z is given by,

b+2 1
O icn gy = exp | 2mi( 21 |, (6.54)
’ 2b
In order for this phase to be trivial, we require
2r+1=b2m+1), meZ. (6.55)

Both the LHS and 2m + 1 are odd, and so a solution exists if
and only if b is also odd. If this is the case, we find that the
non-Abelian anyons parameterized as

r=bm+1/2)—1/2 = gl T1/29 = gbmt1/29 (656)
remain deconfined. These anyons have spin

1, Lot 1/2)?

T 16 2 paz 6.57)

which are precisely the spins of the non-Abelian anyons in
the MR ;> state. We can also compute the braiding of these
anyons and the deconfined Abelian anyons, ¢/, to be

A(m + 1/2)}

egei(z'+]/2)¢‘ei1h¢ = exXp |:27Tl 5 (658)
pa

This is the expected phase for braiding of the corresponding
anyons in the MR, state. It is straightforward to see that the
correct braiding statistics between the remaining non-Abelian
anyons and Majoranas will also be obtained. We thus conclude
that by condensing xe”? in phase C, we obtain phase 5.
Provided a is odd, it follows immediately that condensing
x€'P*9 in phase C will yield phase .A. We thus conclude that
if both a and b are odd, we can obtain a GI between MR >
and MR, states which is characterized by an intervening
MR, state, consistent with the fact that the TEE for this
interface is y = In(2y/ pa?b?).

Let us now consider the case where one of a and b, say
a, is even and the other odd. Our claim is that the parent
phase in this case is given not by a MR state, but by an
Ising x U(1)4pq22 theory:

(A MR, | (C)Ising x U(Dapere | (B) MR0.

(6.59)
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The anyon content of C is given by

C=A{1x,0} x {€"}1m1._aparie- (6.60)

It is readily seen that C has the correct total quantum dimen-
sion, D¢ = 4./ pa®b?, given that the TEE for this interface is
given by y = In(4/ pa®b?).

Suppose we condense

Yp = g, (6.61)
This quasiparticle has spin
1 14p%a* 1 1
hs =~ + P97 L (6.62)

2 " 24pa2r T 2 2

which matches that of the electron operator in phase B.
Now, the braiding of a Laughlin quasiparticle e/? with /5 is
given by

0, e 2mwi (2pa2b)l
; =ex —
e vs P 4pab

which is trivial when [ = 2bm, m € Z. So, all Laughlin quasi-
particles except those of the form ¢?"® are confined. The
remaining Laughlin quasiparticles have mutual statistics

.(2bm)(2bm’) .mm’
0 ,imp yimy = €XPp | 2mi————- | = exp | 2nwi— |,
' 4pa’b pa?
(6.64)

:| = exp [Qniﬁ}, (6.63)

which are precisely the mutual statistics of the Laughlin
anyons in phase B. It immediately follows that anyons of the
form x e?’"® are also deconfined and reproduce the Majorana
sectors of phase B. The braiding statistics of the non-Abelian
anyons, oe''® with 3 is given by

1 1 Qpa’by 1 t b+t

a et = 5t e Tt T gy (009
The deconfined non-Abelian anyons thus satisfy
b+t=2b(r+1)=t=0b2r+1) (6.66)
with r € Z. These deconfined anyons have spin
h,=%+%=%+(r—;+z/2)2, (6.67)

which matches that of the non-Abelian anyons in phase
B. Hence, condensing ¥ in C correctly reproduces phase
B. It follows, of course, that by instead condensing ¥ 4 =
xe2Pi’¢ e would have obtained phase A. Hence, C =
Ising x U(1)4p,2,> appears to be the correct intermediate
phase to describe the a even, b odd interface. Note that,
however, at no point was it necessary to impose that one of
a and b was even and the other odd; indeed, both could have
been odd as well. This is consistent with the fact that the a, b
odd interface could, in principle, also be gapped using the
tunneling terms of Eq. (5.42).

VII. DISCUSSION AND CONCLUSION

In this paper, we extended the cut-and-glue approach to
calculating entanglement entropy of two-dimensional topo-
logically ordered phases to interfaces of the simplest non-

Abelian fractional quantum Hall states, namely, the general-
ized Moore-Read states. By carefully taking into account the
Hilbert space structure of the MR CFT, as reviewed in Sec. II,
we first demonstrated, in Sec. IV, that we can reproduce the
entanglement spectrum and hence the topological entangle-
ment entropy for each of the topological sectors of the MR
state on a torus. In Sec. VB, we investigated interfaces of
distinct generalized MR states, identifying when and how they
can be gapped out. In particular, we looked at interfaces of
MR states at inverse fillings v=' = pa® and v=! = pb?, with
a and b coprime, finding that they can always be gapped,
but also that the form of the gapping interaction depends on
whether a and b are both odd or if one is even. We then
found that this distinction manifests itself in the TEE when
the entanglement cut is placed along the interface. Indeed, we
found in Sec. VI that, in the trivial sector, the TEE is given
by y1 = 2In(2,/pab?) when a and b are both odd and by

y1 = 21In(4+/pa?b?) when one of a and b is even. Finally, we
demonstrated how this value of the TEE is connected to the
existence of a parent topological phase from which both the
v~ = pa® and v = pb®> MR states descend.

Although we focused on the generalized MR states, in
principle, the cut-and-glue approach could, in principle, be
extended to other non-Abelian topological orders whose edge
CFTs possess a free-field representation. Following our pre-
scription, one can approximate a gapping term to quadratic
order and then project the resulting ground state to the ap-
propriate topological sector of the physical Hilbert space. It
should be possible, for instance, to repeat our calculation for
states in the Bonderson-Slingerland hierarchy [67] and for the
orbifold FQH states of Barkeshli and Wen [68]. It would also
be interesting to see whether our methodology could be used
to investigate interfaces of Abelian and non-Abelian states.

Aside from calculations of the entanglement entropy in
other systems, another open question is the extent to which
the anyon condensation picture of gapped interfaces of non-
Abelian states is connected to the existence of explicit gapping
interactions for such interfaces. In the examples we consid-
ered, we found that there did indeed appear to be a close
correspondence between the two. For an interface of MR
states at inverse fillings v™' = pb? and v~! = pa® with a and
b both odd, we were able to write down a gapping term which
simply corresponded to a local operator constructed by fusing
together elements of the set of anyons to be condensed. In
contrast, when one of a and b was even, we found it useful
to resort to a topologically equivalent description of the MR
edge theory to be able to write down an interaction which fully
gapped the interface. Nevertheless, this interaction was still
closely connected to the set of condensed anyons character-
izing the interface. Now, for interfaces of Abelian states, it
is known that there is a one-to-one correspondence between
Lagrangian subgroups and gapping interactions, provided one
allows for the introduction of additional topologically triv-
ial edge states (physically, this corresponds to edge recon-
struction). Two Abelian theories differing from one another
only by the addition of such trivial edge states are said to
be stably equivalent theories [31,32]. At a superficial level,
our construction mirrors this notion of stable equivalence,
in that we write down a theory with the same topological
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content, but with additional degrees of freedom. However, the
additional fields which are added in our case are not local,
in contrast to the Abelian case. It is not clear how general
this coset construction of topologically equivalent CFTs is,
but it could perhaps be used as a basis to write down general
gapping interactions for interfaces of arbitrary non-Abelian
orders—or at least those with free field representations. Such a
scheme could potentially be used to derive the different sets of
tunneling interactions that can be used to gap out an interface
between two given non-Abelian topological orders.

Lastly, as noted in the introduction, gapped interfaces of
Abelian topological phases have attracted much interest in
recent years, due to the possibility of realizing non-Abelian
defects at terminations of said interfaces [15-24,26]. In fact,
as also noted in the introduction, the value of the TEE
of an entanglement cut along an interface between Abelian
topological phases has been connected to the emergence
of a one-dimensional symmetry protected topological phase
(SPT) along the interface [27]. The endpoints of these SPTs
support parafermions, in contrast to purely one-dimensional
SPTs which can only host Majorana zero modes. It would
be interesting to see whether an analogous statement holds
for interfaces of generalized MR states and if one can obtain
bound states more exotic than parafermions.

Recently, Ref. [69] appeared, which examines gapped in-
terfaces between distinct non-Abelian Chern-Simons theories.
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APPENDIX A: MODULAR FUNCTIONS

In this Appendix, we collect the definitions and basic
properties of the 6 and n functions. First, we introduce the
notation

qzeZﬂiT’ (Al)

where 7 € C is the modular parameter. The Dedekind 5
function is defined as

() =q"* ] —q".

n=1

(A2)

Under modular transformations, the n function satisfies

n(t +1) =" n(r), (A3)
n(—=1/t) =~/ —itn(z). (A4)

We also make use of the 6 functions,

eg(r) — Z q%(l’l-kot)zeZﬂi(n-‘ra)ﬁ' (AS)
neZ
Under modular transformations, these functions satisfy
9§(T T1)= e—ﬂia(a—1)92‘+ﬁ7% (1), (A6)
05(—1/1) = V=ite?™ P’ (). (A7)

The standard Jacobi 6 functions (see, for instance, Ref. [70])
can be expressed in terms of these more general functions:

Oo(r) =Y g™ =0 (), (A8)
neZ
63() =Y q"* =65(x), (A9)
neZ
Oa(1) =Y (—1)'q" > = 0} (7). (A10)
neZ

Lastly, we note that for T = i1y, with 7, € R*, we have that

lim n(r) =q¢"**. (Al1)
Tp—> 00
lim 05 (1) = 8.0 (A12)
T)—>00

APPENDIX B: DETAILS OF PROJECTED
GROUND STATES

1. Untwisted sectors

For completeness, we can write down the explicit form of
the ground state in, say, the €' sector:

|‘¢fe["¢> = Pei"”,B |l&e"¢’> = |Ipe”¢,1> by |1/’e"‘1’,2) s (Bl)

where we made use of Eq. (4.19). Following Sec. IIT A, we
further rewrite P,is g = P,irs gpP.ire 15 SO that we can express
the exact interface ground states as

|wei"”,1) = Pe”¢,RB |1ﬁe""¢,1>
= (1L 4+ (=D (=D 1), (B2)

= Pei’¢,LB |1/,}e"”¢,2>
= 3L+ DB DT ) (B3)

[Veirs 2)

As is evident from the above expression, the effect of the
projection on, say, |1ﬁeir¢,1), is to annihilate all states not
satisfying (—1)fs(—1)Ves+r/m = 1 As discussed in the main
text, the form of |1/}e.'r¢. 1) is such that the remaining states will
also satisfy (—1)f4(=1)M4="/* = 1. Analogous statements
hold for the action of the projection on |1/Afe,r¢,2). Note that these
expressions for the projections require that |1ﬁe,-r¢,1 s2) already
obey the correct quantization of the winding numbers, N, for
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sector ¢, Explicitly, we can write

Vi )—1 Gose) ® Y ~% | N = N) N
eird 1) = ) b,o0sc, 1 e RB = LA

NeZ-1%
=-N)y® [ [ +ie ™ d’ ,c])10)
k>0
+1Ghoset) ® Y (—D)NFie 5 |Ngp = N)
NeZ-*%

X INea = =N) ® [ [(1 = ie™™*d" ,cf) |0>],
k>0

(B4)

with [, ) taking a similar form. Focusing on the explicit
expression for |, 1), we see that every state appearing in the
second line of Eq. (B4) with (—1)f#s(—1)Nes+r/m = 1 will
indeed cancel with a corresponding state in the first line.

1 vynnNz
[Va) = 5 |Gp,osc,1) @ Z e
NeZ— "2
® |Gb,0sc,2) ®
NeZ-— "2
1 .
® EUOAa 0p) +i|la, 1g))
1 N+r+]/2 _ vennN?
+ E |Gb,osc,l> ® Z (—1) n e 2L
NezZ—t12
r+ vernN2
® |Gb,osc,2) ® Z (—1)_N_ I:/z e_TN
NezZ-—"12

1
® EOOA’ 0g) — i1a, 18)).

Although this is a rather cumbersome expression, we can
parse its meaning as follows. The first three lines are simply
a reexpression of |1/,). The last three lines correspond to
the state obtained by acting on |1/,) with (— 1) (—1)Nes+Nes,
Every state appearing in the last three lines for which
(—1)F(—1)Mes+Nes = _1 will thus cancel with a state in the
first three lines, leaving only states with (—1)(—1)Nes+Nz =
1, as desired.

b. Zero-mode fermion parity

Now, as alluded to in the main text, there is a subtlety
regarding how to interpret the fermion parity of the zero
mode. We constructed the fermion f; from the MZMs d,
and dj as fa = (do + ic?o)/\/i. However, we can also define

2. Twisted sectors
a. Ground state

We present here the explicit form of the approximated
ground state in the a = o¢'"1/2)? sector:

[Wa) = P 1Ya) = (1 + (==Y tVsy |y - (BS)

where we used Eq. (4.45) to write P [¥.) = Pg |Y,). As in
the untwisted sector case of the previous subsection, we made
use of the fact that all the states appearing in |1/,) obey the
correct quantization of the winding modes, N,,,, appropriate
to the a = o/’ T1/2? sector to write down a closed form
expression for Pg|y,). The effect of the projection is to
annihilate all states not satisfying (—1)(—1)Ms+Nz =1,
Again, as discussed in the main text, the remaining states will
also automatically satisfy (—1)f (—1)Nu+Nu = 1, Explicitly
evaluating the above expression for |y,), we can write

i |Ngp = N) INLa = =N) @ [ [(1 + ie™**2d" ] 10)

k>0

verrnN2 .~ ~t 3
Z e % |Nyg = —N) [Nga = N) ® H(l + ie VK2 d7)10)

k>0

INes = N) INLa = =N) ® [ [(1 = ie™"*2d" ,c]) |0)

k>0

INLg = —=N) INea = N) ® [ J(1 —ie™ ¥, d)10)

k>0
(B6)
[
fi = (do + idy)/~/2, so that
10,0) = %(IOA, Og) +illa, 1)) (B7)
= %(Il’ ,0g) — 10}, 15)). (B8)

In other words, f4 being occupied is equivalent to saying
that f; is unoccupied and vice versa. The point at issue is
that the Z, symmetry operators, G, [see Eq. (3.12)], are
defined in terms of the total fermion parities, (—1)™, and one
must decide whether this parity is measured relative to the
occupation of f4 or f;. Indeed, if we measured it with respect
to f;, one would find that P, |1/}a) = 0 since, for each state
appearing in |v,), the total fermion parities of A and B would
be opposite to one another.
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In order to remove this ambiguity in the definition of the
fermion parity, it is necessary to resort to physical arguments
which can provide additional input, which we now provide.
Before physically cutting the torus into the cylinders A and
B, the torus starts in the ground state with a ge'"+1/2)9
Wilson loop wrapping around the y cycle (i.e., the cycle
perpendicular to the entanglement cut). On performing the
physical cut of the torus into two cylinders, the Wilson loop
is cut into two Wilson lines with endpoints at the edges of
the cylinders. Physically, this configuration corresponds to
having a o¢/"*1/29 anyon on one end of each cylinder and
the corrsponding conjugate anyon on the other end of each
cylinder.

Let us label these anyons as oy, = oxe/ /29 5, =
GAe TP gy = gpelHUD9 and Gy, = GelTH120,
We claim that the pairs of anyons at each interface must fuse
to the identity, and not to a neutral Majorana:

OAr X OBy = 0By X 04y = L. (B9)

Physically, we can think of the electron tunneling terms which
glue the edges together as hybridizations of o4 , with 6 , and
op.r with 64 .. This would make it energetically preferable for
each pair of these anyons to fuse into the identity, as opposed
to a Majorana fermion. In particular, when we expanded the
tunneling term about one of its minima, we did so assuming
that this corresponded to the ground state, which one should
interpret as the vacuum.

Now, we wish to identify what the allowed fusion possibil-
ities for o4 x &4 and op x 6 should be. From the previous
paragraph, we see that fusing all four of the twist anyons
should yield the vacuum. This requires that either o4 X 64 =
op X op =1 or oq x 64 = o x 6g = x. This suggests that
we should define the complex fermions f;, on cylinders A
and B to be such that we can express the ground state as

1

10,0) = 7

(101, 02) + « [11, 12)), (B10)

where « is some unimportant phase. Hence, our choice of
measuring the fermion parity relative to f4 and fp is consistent
with this physical picture. We note that this line of reasoning
is similar to more carefully constructed arguments for deter-
mining the ground state degeneracy of the Moore-Read state
on the torus—see, for instance, Refs. [71,72].

APPENDIX C: ALTERNATIVE REPRESENTATION OF THE
ISING CFT

In this section, we consider the edge theory of the Ising
topological order which, conventionally, is described by the
Ising CFT. We first write down a CFT description of the edge
which is topologically equivalent to the Ising CFT, in a sense
to be made more precise shortly. We then show how we can
write down an explicit gapping interaction for the interface
of two Ising edges using this alternative CFT description,
which does not appear possible (at least based on a superficial
analysis) in the standard Ising CFT description of the edge.

1. Coset construction and Hilbert space structure

In the usual free-field representation, the Ising edge theory
contains a single chiral Majorana:
L=y 30 =0y (€1
The three topological sectors in the theory are 1, o, and
Y—the vacuum, twist operator, and Majorana sectors, respec-
tively. Gapping an interface between two Ising topological
orders thus appears difficult, as any local tunneling operator
would have to involve terms quadratic in both the left- and
right-moving Majoranas, which naively would square to unity.
We instead make use of the coset representation,

. SO(N + 1)
ISlIlg = T(]V)

Here we take N = 2r, 1 < r € Z. On the left hand side of the
equivalence, we have a theory of N + 1 chiral Majoranas in
which we gap out N of them. On the right hand side, we have a
theory of N + 1 chiral Majoranas and N antichiral Majoranas
in which we have condensed a certain set of bosonic anyons so
as to identify certain topological sectors. Now, the Ising CFT
is identical to the coset SO(N + 1);/SO(N), in that they have
the same primary operator content as well as total and chiral
central charges. In contrast,we will say the Ising CFT and
the SO(N + 1); X SO(N), CFT are topologically equivalent,
in that they possess the same primary operator content (i.e.,
topological sectors) and chiral central charge, but not the same
total central charge [49,73].

Let us now outline in detail the structure of the SO(N +
1); X SO(N), theory. Placing the Ising topological order on
a cylinder, as in Fig. 1, the u =L,R =+, — edges are
described by the Lagrangians

~SON + 1), KSON),. (C2)

N . N .
Loo= Y Ui5 0 — kOIS + Y Vi3 (0r+ o)
a=0 a=1
(C3)

So, on edge L (R), there are N + 1 chiral (antichiral) Ma-
joranas, ¥7 and N antichiral (chiral) Majoranas, 1}5 For
simplicity, we have set all velocities to unity. Additionally, we
adopt the convention that Greek indices «, 8 run from 0 to N
and the Latin indices a, b from 1 to N. This theory possesses
the currents

P =iyl T =i,
which generate the SO(N + 1); and SO(N); Kac-Moody
algebras of the two edges, respectively. Additionally, the
operators

(C4)

My = i, (C5)
correspond to the condensed bosons encoded in the tensor
product, X, and hence, like the currents, are local-electronic
objects. Using these expressions, we can see that this theory is
in fact topologically equivalent to the Ising CFT. For instance,
starting with one Majorana fermion, say, %, we can obtain
any other Majorana ¥# or ¥ by fusing it with J*# or M*“.
Hence, there is only one distinct Majorana fermion sector, as
in the Ising theory.
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Although not strictly necessary, it will prove convenient for
our purposes to bosonize as many of the fermions as possible.
Since we have taken N = 2r to be even, we can pair up all
the Majoranas in the SO(N); factor into Dirac fermions and
bosonize them:

_i 2j—1
J —
Cu = wu

Hence,

i) V2~ P j=1,...,r. (C6)

—2j—1 —j —2j . =

v, ~cos(4)), ¥, ~sin(d)). (C7)
As for the SO(N + 1) factor, we can bosonize all but one of
the Majoranas, say the u = 0 one:

ol =W +iy) N2~ e, j=1,..n  (C8)

Hence

YU~ cos (¢7), w2~ sin (¢7). (€9)

The u =L, R = +, — edges are then described by the La-
grangians

1 r ) ) . .
Lp=7- ; [0:0) (18, — 8)0] + 0,6, (— 110y — D)), |

+ wué(a, — ) (C10)

where we have relabelled 1///‘_1‘20 = ¥,. In this partially
bosonized language, the currents are given by

« odd, B odd
a odd, B even

cos(¢@+D/2) cos(@PHD12),

J ~ L cos(p@tD/2)sin(pP/?),

sin(¢®/?) sin(¢p#/?), o even, B even
(C11)
for «, B # 0, while
08 _ Y cos(pBtD/2) B odd
! {df sin@#2),  pevens (1P
for B # 0, and
, cos(@ T cos(@"™"?),  aodd, bodd
TV ~ cos(a(aﬂ)ﬂ)sin@b/z), a odd, beven -
sin(aa/z) sin@b/z), a even, b even

(C13)

The local-electronic operators, M*“, are likewise given by

—(a+1)/2

cos(¢p@t1/2) cos(¢p ), «odd, aodd

M** ~ § cos(¢p@tD/?) sin@a/z), « odd, a even
sin(¢*/?) sin@a/z), o even, a even
(C14)
for ¢ # 0, and by
—(a+1)/2
ppoo ~ [Yeos@ T a0

. a2
W sm(d)a/ ), a even

We have suppressed the © = L, R edge subscript for compact-
ness in the above expressions.

Now, as discussed in Sec. II for the MR theory, it is impor-
tant that we understand the organization of the Hilbert space
as dictated by the currents. Let us first work in the fermionic
language of Eqgs. (C3) and (C4). As described above, there
are three topological sectors: 1, i, and o. Since the currents
are all bilinears in the Majorana fields, it immediately follows
that all states within a topological sector have the same total
fermion parity, (—1)F, where (—1)" anticommutes with all
the Majorana fields.

Similar statements hold in the (partially) bosonized lan-
guage. From Egs. (C11)—(C15), we see that the current op-
erators either change the bosonic winding number parity of
two bosonic fields, or change the bosonic winding number
parity of one field and the Majorana fermion parity. In other
words, in the identity sector, the total bosonic winding number
parity (of both the barred and unbarred fields) must much that
of the fermion parity—note the similarity with the “gluing”
constraint in the Moore-Read CFT.

In order to express this Hilbert space organization more
formally, let us identify the operator which generates the un-
derlying Z, gauge symmetry. As usual, we write the bosonic
winding numbers as

Lo 4 Lag’
; ax —j 8x
N/ :/ ﬂdx, N’ :/ ¢”dx,
® 0 27 ® 0 2

which have infeger eigenvalues. We then define the operator

(C16)

1= (=DF (DD RN (1)
where (—1)F anticommutes with the Majorana fields 1/, and
Y. This generates the Z, transformation,

Y~y ¢l > ¢l +um, b, — ¢, — ur,
(C18)

under which the currents are manifestly invariant. The phys-
ical Hilbert space is defined by the constraint / = 1, which
simply states the total number of fermionic excitations (re-

calling that the vertex operators ¢+ and ¢® obey fermionic
statistics) is even.

2. Gapping term

Let us now return to the question which motivated the
search for an alternative representation of the Ising edge
theory, namely, how to gap out an interface of Ising edges. For
instance, suppose we would like to glue the two edges of the
cylinder in Fig. 1 together by bringing them close together and
adding an interaction to gap them out. To do so, we can simply
write down a current-current interaction, which is local by def-
inition and takes the form of a Gross-Neveu interaction [63]:

Hyp =1y JPTP +uy JIf (C19)
o,f a,b
= —u(Wg ¥ —u(¥g - ¥, (C20)

In the language of the standard Ising edge theory (i.e., the
usual Ising CFT), this interaction heuristically corresponds to
(Yr¥r)?, as one would expect on the basis of an anyon
condensation picture of the gapped interface. Indeed,
condensing Y in the Ising x Ising theory yields the
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Toric code topological order, which can further be condensed
to a trivial order. In the partially bosonized language, this
Gross-Neveu interaction becomes (dropping terms which
only renormalize velocities)

Hgp= —u Y _ [c0s(20/) cos(207)+c0s(20” ) cos(26”)]
N#j2

—uy  cos(20))iy g (C21)

j=1

where we have defined

20/ = ¢l — ¢!, 20" =gl —§). (C22)
It is straightforward to see that Eq. (C21) will gap out the
interface—the sine-Gordon terms will pin the angle variables,
which in turn will result in a mass term for the remaining
Majoranas.
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