Session: Brief Announcement

SPAA 20, July 15-17, 2020, Virtual Event, USA

Brief Announcement: A Computational Model
for Tensor Core Units

Rezaul Chowdhury Francesco Silvestri Flavio Vella
Stony Brook University University of Padova Free University of Bolzen-Bolzano
Us Italy Italy
rezaul@cs.stonybrook.edu silvestri@dei.unipd.it flavio.vella@unibz.it

ABSTRACT

To respond to the need for efficient training and inference of deep
neural networks, a plethora of domain-specific architectures have
been introduced, such as Google Tensor Processing Units and
NVIDIA Tensor Cores. A common feature of these architectures is
the design for efficiently computing a dense matrix product of a
given small size. In order to broaden the class of algorithms that
exploit these systems, we propose a computational model, named
the TCU model, that captures the ability to natively multiply small
matrices. We then use the TCU model for designing fast algorithms
for several problems, including dense and sparse matrix multipli-
cation and the Discrete Fourier Transform. We finally highlight a
relation between the TCU model and the external memory model.

CCS CONCEPTS

« Theory of computation — Models of computation; Design
and analysis of algorithms.

KEYWORDS

Tensor core, computational model, hardware accelerators, efficient
algorithms, linear algebra, graph problems

ACM Reference Format:

Rezaul Chowdhury, Francesco Silvestri, and Flavio Vella. 2020. Brief An-
nouncement: A Computational Model for Tensor Core Units. In Proceedings
of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °20), FJuly 15-17, 2020, Virtual Event, USA. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3350755.3400252

1 INTRODUCTION

Deep neural networks are nowadays used in several application
domains where big data are available. The huge size of the data set,
although crucial for improving neural network quality, gives rise
to performance issues during the training and inference steps. In
response to the increasing computational needs, several notable
domain-specific hardware accelerators have been recently intro-
duced, such as Google’s Tensor Processing Units [5] and NVIDIA’s
Tensor Cores [6]. These compute units have been specifically de-
signed for accelerating deep learning. Although such accelerators
significantly vary in their design, they share circuits for efficiently
multiplying small and dense matrices of fixed size, which is one

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA 20, July 15-17, 2020, Virtual Event, USA

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400252

519

of the most important computational primitives in deep learning.
By using the terminology introduced in [3], we refer to all accel-
erators supporting hardware-level dense matrix multiplication as
Tensor Core Units (TCUs) (or simply tensor units). By focusing on
a specific computational problem, namely matrix multiplication,
TCUs simultaneously exhibit both high performance and low en-
ergy consumption which set them apart from traditional CPU or
GPU approaches [5]. Although TCUs were developed for domain-
specific problems, it would be interesting and profitable to extend
their application domain, for instance by targeting problems from
linear algebra to graph analytics. A similar scenario appeared with
the introduction of GPUs for general purpose computations. Will
TCUs have the same wide impact as GPUs?

The goals of this paper are to present a framework for designing
and analyzing efficient algorithms for TCUs, and to expand the
class of algorithms that can exploit TCUs for better performance.
We introduce a computational model for tensor core units, named
(m, £)-TCU, that captures the main features of tensor units. We
then design TCU algorithms for dense and sparse matrix multipli-
cation and for the Discrete Fourier Transform. Other algorithms,
including graph algorithms, a class of stencil computations, integer
multiplication, and polynomial evaluation are given in the extended
version of this paper [2] (see Table 1 below). Finally, we observe that
some lower bounds on the I/O complexity in the external-memory
model [9] translate into lower bounds on TCU time.

Problem Time in (m, €)-TCU

O((2]" tm+ 0]

Dense matrix multiplication

Sparse matrix multiplication o (Z (%)wo (m+4€)+1)
FFT O ((n+0)log,, n)
(n, k)-Stencil computation o (n log,,, k + Clog k)
Gaussian Elimination Paradigm | © (:::1//22 + ol + n\/ﬁ)
Graph transitive closure 0 ("—3 + 204 n? m)
m m
@y
All pairs shortest distance o ((%2 (m+¢)log n)
Tog3

. qs . n N

Integer multiplication o ((PN) (\/ﬁ + T))

Batch polynomial evaluation

o) (% +pVm+ %é’)
Table 1: Our results (details are in [2]).
2 THE (m,{)-TCU MODEL

We propose a computational model for tensor core units that cap-
tures the main features of tensor units.

Matrix acceleration. The hardware circuits implement a parallel
algorithm to multiply two matrices of a fixed size, and the main cost
is dominated by reading/writing the input and output matrices. For
a given hardware parameter m, the multiplication of two matrices A

https://doi.org/10.1145/3350755.3400252
https://doi.org/10.1145/3350755.3400252

Session: Brief Announcement

and B of size vVmx+/m each is implemented to execute in time O (m).
With time, we mean the running time as seen by the CPU clock
and it should not be confused with the total number of operations
executed by the unit, which is always © (m3/ 2). Indeed, no existing
tensor unit implements fast matrix multiplication algorithms, such
as Strassen’s. The matrix multiplication operation is called by an
instruction specifying the addresses (in memory) of the two input
matrices and of the output matrix where the result will be stored,;
data will be loaded/stored by the tensor unit.

Latency cost. A call to the tensor unit has a latency cost. As the
state-of-the-art tensor units use systolic algorithms, the first output
entry is computed after Q (\/ﬁ) time. There are also initial costs
associated with activation, which can significantly increase when
the unit is not connected to the CPU by the internal system bus
or is shared with other CPUs. We thus assume that the cost of the
multiplication of two matrices of size vm X Ym is O (m + €), where
¢ > 0 is the latency cost.

Asymmetric behavior. As tensor units are designed for deep
learning, the two matrices in the product A X B are managed dif-
ferently. Matrix B represents the model (i.e., the weights of the
deep neural network), while the rows of matrix A represent the
input vectors to be evaluated. As the same model can be applied
to k vectors, with n >> /m, it is possible to first load the weights
in B and then to stream the n rows of A into the tensor unit, and
thus reducing the latency cost. Hence, we assume in our model
that two matrices of size n x ym and v/m x y/m are multiplied in
time O (n\/m +4) where the number n of rows is specified by the

algorithm and n > Vm.

We define the Tensor Computing Unit (TCU) model as follows. The
(m, €)-TCU model is a standard RAM model where the CPU contains
a circuit, named tensor unit, for performing a matrix multiplication

A X B of size nx\/ﬁand\/ﬁxx/ﬁintimeO(n\/ﬁ+€),where

m > 1and £ > 0 are two model parameters and n > /m is a value
(possibly input dependent) specified by the algorithm. The matrix
operation is initialized by a (constant size) instruction containing
the addresses in memory of the two input matrices A and B, of the
output matrix C, and the row number n of A. The running time (or
simply time) of a TCU algorithm is given by the total cost of all
operations performed by the CPU, including all calls to the tensor
unit. We assume no concurrency between the tensor unit, memory
and the CPU, and hence at most one component is active at any
time. Each memory (and TCU) word consists of k bits (in general,
we denote k = Q (log n) where n is the input size, that is enough
for storing the input size in one word.)

2.1 Discussion on the model

Our goal is to understand how to exploit circuits of fixed size for
matrix multiplication without including some characteristics of
existing hardware accelerators (e.g., number of TUs or numerical
precision). In the Google TPU, the right matrix B has size 256 X 256
words (i.e., m = 65536) [5]. The left matrix A is stored in the local
unified buffer of 96k X 256 words; thus, TPUs can compute the
product between two matrices of size 96kx256 and 256 X 256 in one
(tensor) operation. The systolic array works in low precision with
8 bits per word (k = 8). The bandwidth between CPU and TPU was
limited in the first version (16GB/s), but it is significantly higher in

520

SPAA 20, July 15-17, 2020, Virtual Event, USA

more recent versions (up to 600 GB/s). Although TPU has a quick
response time, the overall latency is high because the right hand
matrix has to be suitably encoded via a TensorFlow function before
loading it within the TPU. The high latency cost might mitigate the
fact that our model does not capture limited bandwidth.

The Nvidia programming model allows multiplying matrices of
size 16 X 16, although the hardware unit works on 4 X 4 matrices; we
thus have m = 256. Memory words are of k = 16 bits. Matrices can
be loaded within TCs without a special encoding as in TPUs, since
NVIDIA Volta natively provides support for matrix multiplication.

3 MATRIX MULTIPLICATION ALGORITHMS

Dense matrix multiplication. A Strassen-like algorithm for ma-
trix multiplication is a recursive algorithm that utilizes as base case
an algorithm A for multiplying two y/ng X 4/ng matrices using py
element multiplications and O (ng) other operations (i.e., additions
and subtractions) [1]; we assume ng = O (pp). Given two Vn X n
matrices with n > ng, a Strassen-like algorithm envisions the two
/i X \/n matrices as two matrices of size y/ng X y/ng each, where
each entry is a submatrix of size Yn/ng X Vn/ng: then, the algorithm
recursively computes py matrix multiplications on the submatrices
(i.e., the po element multiplications in A) and then performs O (n)
other operations. For given parameters py and ng, the running time
of the algorithm is T(n) = O (n0), where! wg = log,,, po. By setting
no = 4 and py = 8, we get the standard matrix multiplication algo-
rithm (wg = 3/2), while with ny = 4 and pg = 7 we get Strassen’s
algorithm (wo = log, 7 ~ 1.403). Any fast matrix multiplication
algorithm can be converted into a Strassen-like algorithm [7].

The TCU model can be exploited in Strassen-like algorithms by
ending the recursion as soon as a subproblem fits the tensor unit:
when n < m, the two input matrices are loaded into the tensor unit
and their product is computed in O (m) time. We assume m > ny,
otherwise the tensor unit would not be used.

THEOREM 1. Given a Strassen-like algorithm with parameters ny
and py, there exists an algorithm that multiplies two \/n X \/n matrices
on an (m, £)-TCU model, with m > ng, in O ((%)wo (m+ é’)) time.

The standard recursive matrix multiplication algorithm requires
(0] (n3/2/m1/2 + (n/m)3/2€)) time. On the other hand, Strassen’s
algorithm takes O (n1'4°37/m0'4037 + (n/m)1'4037£’) time.

We observe that the latency cost of the standard algorithm (wo =
3/2) can be further reduced to (n/m)3/2¢. The idea is to keep the
right matrix B inside the tensor unit as much as possible. We split
the left matrix A into Vn/m blocks A; of size \/n X \/m (i.e., vertical
strips of width 4/m) each and the right matrix B into square blocks
Bj, j of size Vmx+/m each, with 0 < i, j < v/n/m. Then, we compute
Ci,j = Aj-Bjjforeach0 <i,j< vn/m using the tensor unit in
time O (nx/ﬁ + f). The final matrix C follows by computing the

\n X \/m submatrices C; =

THEOREM 2. There exists an algorithm that multiplies two \/n X
\/n matrices in the (m, £)-TCU model in © n’/?

mi’z
algorithm is optimal when only semiring operations are allowed.

+ £ L) time. The

!We observe that «, corresponds to /2, where ¢ is the traditional symbol used for
denoting the exponent in fast matrix multiplication algorithms.

Session: Brief Announcement

Sparse matrix multiplication. A TCU algorithm to multiply two
sparse matrices follows from the work [4] that uses as a black box
a fast matrix multiplication algorithm for multiplying two vn x /n
matrices in O (n“’/ 2) time. Let Z be the number of non-zero entries
in the output C = A- B. We consider here the case where the output
is balanced, that is there are © (Z / \/ﬁ) non-zero entries in each
row or column of C. The idea is to compress the rows of A and
the columns of B from v/ to VZ using a hash function or another
compression algorithm to re-order the matrix A. Then the algorithm
computes a dense matrix product between a VZ x y/n matrix and a
vVnxVZ using the fast matrix multiplication algorithm. By replacing
the fast matrix multiplication with the result of Theorem 1, we get
the following:

THEOREM 3. Let A and B be two \/n X \/n matrices with at most I
non-zero entries, and assume that C = A - B has at most Z non-zero
entries evenly distributed among its rows and columns. Let Z > m and
let wg = log,, po be the exponent given by a Strassen-like algorithm;
then there exists an algorithm for the (m,{)-TCU model requiring
0 (2(Z2)” (m+0)+ 1) time.

m

4 DISCRETE FOURIER TRANSFORM

The Discrete Fourier Transform y of an n-dimensional (column)
vector x can be defined as the matrix-vector product y = xT - W,
where W is the Fourier matrix and T denotes the transpose of a ma-
trix/vector. The Fourier matrix W is a symmetric n X n matrix where
the entry at row r and column c is defined as: W, ¢ = e~(@mi/njre,
The Cooley-Tukey algorithm is an efficient recursive algorithm for
computing the DFT of a vector. The algorithm arranges x as an
n1 X ng matrix X (in row-major order) where n = np - ny; each
column X, . is replaced with its DFT and then each entry X, .
is multiplied by the twiddle factor wy,¢; finally, each row X, . is
replaced by its DFT and the DFT of x is given by reading the final
matrix X in column-major order.

To compute the DFT of x using an (m, £)-TCU, we use the Cooley-
Tukey algorithm where we set ny = v/m and nz = n/+/m. We then
use the tensor unit for computing the ny DFTs of size n; = v/m by
computing X7 - Wym- Subsequently, we multiply each element in
X by its twiddle factor and transpose X. Finally, we compute the
ny DFTs of size ny: if ny > 4/m, the DFTs are recursively computed;
otherwise, if ny < \/m, the ny DFTs are computed with the product
XT - W, obtained using the tensor unit. For simplicity, we assume
that the TCU model can perform operations on complex numbers
(the assumption can be removed with a constant-factor slowdown).

THEOREM 4. The DFT of a vector with n entries can be computed
on an (m,£)-TCU in O ((n +¢)log,, n) time.

We observe that the DFT algorithm generalizes the approach
used in [8] on an NVIDIA Verdi architecture, which uses a Cooley-
Tukey algorithm with n; = 4 and np = n/4.

5 IMPACT ON EXTERNAL MEMORY MODEL

The time complexity of some of our TCU algorithms resemble the
I/O complexity of the corresponding external-memory algorithms.
For instance, the cost of dense matrix multiplication on an (m, {)-
TCU using only semiring operations (Theorem 2) is O (n3/ 2y \/ﬁ)

521

SPAA 20, July 15-17, 2020, Virtual Event, USA

when ¢ = O (1), while the I/O complexity of computing the same
dense matrix product in the (M, B) external-memory model is
o (n3/2/\/M) when B = O (1) [9].

We observe that computing the product of two matrices of size
y/m x +/m each requires O (m) I/Os to load and store the input
matrices in an internal memory of size M = 3m and block size
B = O (1). Therefore any call to the tensor unit in a TCU can be
simulated in the external memory of size M = 3m with © (m) I/Os.
Therefore, a lower bound in the external-memory model translates
into a lower bound in a weaker version of the TCU model. In the
weak TCU model, the tensor unit can only multiply matrices of size
\/m x 4/m. All our TCU algorithms can be simulated in the weak
version with a constant-factor slowdown when ¢ = O (m). We have
the following result:

THEOREM 5. Consider a computational problem P with a lower
bound Fp on the I/O complexity in an external memory with memory
size M = 3m + O(1) and block length B = 1. Then, any algorithm for
P in the weak TCU model requires Q (Fp) time.

6 CONCLUSION

The paper leaves several open questions. It would be interesting
to extend the class of problems that can be accelerated with TCUs,
and to analyze whether existing algorithms for deep learning on
tensor cores can be further improved. It is also crucial to validate
the TCU model from an experimental point of view, and to extend
the model by including parallel tensor accelerators and the low
numerical precision.

ACKNOWLEDGMENTS

This work was partially supported by NSF grant CNS-1553510,
UniPD SID18 grant, PRIN17 20174LF3T8 AHeAd, UniBZ-CRC 2019-
IN2091 Project, and INdAAM-GNCS Project 2020 NoRMA. Some
results are based upon work performed at the AlgoPARC Workshop
on Parallel Algorithms and Data Structures at the University of
Hawaii at Manoa, in part supported by the NSF Grant CCF-1930579.

REFERENCES

[1] G.Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communi-

cation costs of fast matrix multiplication. J. ACM, 59(6):32:1-32:23, 2013.

R. A. Chowdhury, F. Silvestri, and F. Vella. A computational model for tensor core

units, 2020. Arxiv 1908.06649.

A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-M. Hwu. Accelerating reduction and

scan using tensor core units. In Proc. Int. Conf. on Supercomputing (ICS), pages

46-57, 2019.

R. Jacob and M. Stéckel. Fast output-sensitive matrix multiplication. In Proc.

European Symposium on Algorithms (ESA), pages 766-778, 2015.

N. P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit.

In Proc. 44th Int. Symposium on Computer Architecture (ISCA), pages 1-12, 2017.

Nvidia Tesla V100 GPU architecture. http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.

R. Raz. On the complexity of matrix product. SIAM Journal on Computing,

32(5):1356-1369, 2003.

A. Sorna, X. Cheng, E. D’Azevedo, K. Won, and S. Tomov. Optimizing the fast

fourier transform using mixed precision on tensor core hardware. In Proc. 25th

Int. Conf. on High Performance Computing Workshops (HiPCW), pages 3-7, 2018.

[9] J.S. Vitter. Algorithms and data structures for external memory. Foundations and
Trends in Theoretical Computer Science, 2(4):305-474, 2006.

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

	Abstract
	1 Introduction
	2 The (m,l)-TCU model
	2.1 Discussion on the model

	3 Matrix Multiplication Algorithms
	4 Discrete Fourier Transform
	5 Impact on external memory model
	6 Conclusion
	Acknowledgments
	References

