
Brief Announcement: A Computational Model
for Tensor Core Units

Rezaul Chowdhury

Stony Brook University

US

rezaul@cs.stonybrook.edu

Francesco Silvestri

University of Padova

Italy

silvestri@dei.unipd.it

Flavio Vella

Free University of Bolzen-Bolzano

Italy

flavio.vella@unibz.it

ABSTRACT
To respond to the need for efficient training and inference of deep

neural networks, a plethora of domain-specific architectures have

been introduced, such as Google Tensor Processing Units and

NVIDIA Tensor Cores. A common feature of these architectures is

the design for efficiently computing a dense matrix product of a

given small size. In order to broaden the class of algorithms that

exploit these systems, we propose a computational model, named

the TCU model, that captures the ability to natively multiply small

matrices. We then use the TCU model for designing fast algorithms

for several problems, including dense and sparse matrix multipli-

cation and the Discrete Fourier Transform. We finally highlight a

relation between the TCU model and the external memory model.

CCS CONCEPTS
• Theory of computation→Models of computation; Design
and analysis of algorithms.

KEYWORDS
Tensor core, computational model, hardware accelerators, efficient

algorithms, linear algebra, graph problems

ACM Reference Format:
Rezaul Chowdhury, Francesco Silvestri, and Flavio Vella. 2020. Brief An-

nouncement: A Computational Model for Tensor Core Units. In Proceedings
of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA ’20), July 15–17, 2020, Virtual Event, USA. ACM, New York, NY, USA,

3 pages. https://doi.org/10.1145/3350755.3400252

1 INTRODUCTION
Deep neural networks are nowadays used in several application

domains where big data are available. The huge size of the data set,

although crucial for improving neural network quality, gives rise

to performance issues during the training and inference steps. In

response to the increasing computational needs, several notable

domain-specific hardware accelerators have been recently intro-

duced, such as Google’s Tensor Processing Units [5] and NVIDIA’s

Tensor Cores [6]. These compute units have been specifically de-

signed for accelerating deep learning. Although such accelerators

significantly vary in their design, they share circuits for efficiently

multiplying small and dense matrices of fixed size, which is one

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’20, July 15–17, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6935-0/20/07.

https://doi.org/10.1145/3350755.3400252

of the most important computational primitives in deep learning.

By using the terminology introduced in [3], we refer to all accel-

erators supporting hardware-level dense matrix multiplication as

Tensor Core Units (TCUs) (or simply tensor units). By focusing on

a specific computational problem, namely matrix multiplication,

TCUs simultaneously exhibit both high performance and low en-

ergy consumption which set them apart from traditional CPU or

GPU approaches [5]. Although TCUs were developed for domain-

specific problems, it would be interesting and profitable to extend

their application domain, for instance by targeting problems from

linear algebra to graph analytics. A similar scenario appeared with

the introduction of GPUs for general purpose computations.Will
TCUs have the same wide impact as GPUs?

The goals of this paper are to present a framework for designing

and analyzing efficient algorithms for TCUs, and to expand the

class of algorithms that can exploit TCUs for better performance.

We introduce a computational model for tensor core units, named

(m, ℓ)-TCU, that captures the main features of tensor units. We

then design TCU algorithms for dense and sparse matrix multipli-

cation and for the Discrete Fourier Transform. Other algorithms,

including graph algorithms, a class of stencil computations, integer

multiplication, and polynomial evaluation are given in the extended

version of this paper [2] (see Table 1 below). Finally, we observe that

some lower bounds on the I/O complexity in the external-memory

model [9] translate into lower bounds on TCU time.

Problem Time in (m, ℓ)-TCU
Dense matrix multiplication O

((
n
m

)ω0

(m + ℓ)
)

Sparse matrix multiplication O
(√

n
Z

(
Z
m

)ω0

(m + ℓ) + I
)

FFT O
(
(n + ℓ) logm n

)
(n, k)-Stencil computation O

(
n logm k + ℓ logk

)
Gaussian Elimination Paradigm Θ

(
n3/2

m1/2 +
n
m ℓ + n

√
m

)
Graph transitive closure Θ

(
n3

√
m
+ n2

m ℓ + n2
√
m

)
All pairs shortest distance O

((
n2

m

)ω0

(m + ℓ) logn
)

Integer multiplication O
((

n
κ
√
m

)
log 3

(
√
m + ℓ√

m

))
Batch polynomial evaluation O

(
pn
√
m
+ p
√
m + n

m ℓ
)

Table 1: Our results (details are in [2]).

2 THE (m, ℓ)-TCU MODEL
We propose a computational model for tensor core units that cap-

tures the main features of tensor units.

Matrix acceleration. The hardware circuits implement a parallel

algorithm to multiply two matrices of a fixed size, and the main cost

is dominated by reading/writing the input and output matrices. For

a given hardware parameterm, the multiplication of two matricesA

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

519

https://doi.org/10.1145/3350755.3400252
https://doi.org/10.1145/3350755.3400252

and B of size

√
m×
√
m each is implemented to execute in timeO (m).

With time, we mean the running time as seen by the CPU clock

and it should not be confused with the total number of operations

executed by the unit, which is always Θ
(
m3/2

)
. Indeed, no existing

tensor unit implements fast matrix multiplication algorithms, such

as Strassen’s. The matrix multiplication operation is called by an

instruction specifying the addresses (in memory) of the two input

matrices and of the output matrix where the result will be stored;

data will be loaded/stored by the tensor unit.

Latency cost. A call to the tensor unit has a latency cost. As the

state-of-the-art tensor units use systolic algorithms, the first output

entry is computed after Ω
(√

m
)
time. There are also initial costs

associated with activation, which can significantly increase when

the unit is not connected to the CPU by the internal system bus

or is shared with other CPUs. We thus assume that the cost of the

multiplication of two matrices of size

√
m×
√
m isO (m + ℓ), where

ℓ ≥ 0 is the latency cost.

Asymmetric behavior. As tensor units are designed for deep

learning, the two matrices in the product A × B are managed dif-

ferently. Matrix B represents the model (i.e., the weights of the

deep neural network), while the rows of matrix A represent the

input vectors to be evaluated. As the same model can be applied

to k vectors, with n >>
√
m, it is possible to first load the weights

in B and then to stream the n rows of A into the tensor unit, and

thus reducing the latency cost. Hence, we assume in our model

that two matrices of size n ×
√
m and

√
m ×
√
m are multiplied in

time O
(
n
√
m + ℓ

)
, where the number n of rows is specified by the

algorithm and n ≥
√
m.

We define the Tensor Computing Unit (TCU) model as follows. The
(m, ℓ)-TCU model is a standard RAMmodel where the CPU contains

a circuit, named tensor unit, for performing a matrix multiplication

A × B of size n ×
√
m and

√
m ×
√
m in time O

(
n
√
m + ℓ

)
, where

m ≥ 1 and ℓ ≥ 0 are two model parameters and n ≥
√
m is a value

(possibly input dependent) specified by the algorithm. The matrix

operation is initialized by a (constant size) instruction containing

the addresses in memory of the two input matrices A and B, of the
output matrix C , and the row number n of A. The running time (or
simply time) of a TCU algorithm is given by the total cost of all

operations performed by the CPU, including all calls to the tensor

unit. We assume no concurrency between the tensor unit, memory

and the CPU, and hence at most one component is active at any

time. Each memory (and TCU) word consists of κ bits (in general,

we denote κ = Ω (logn) where n is the input size, that is enough

for storing the input size in one word.)

2.1 Discussion on the model
Our goal is to understand how to exploit circuits of fixed size for

matrix multiplication without including some characteristics of

existing hardware accelerators (e.g., number of TUs or numerical

precision). In the Google TPU, the right matrix B has size 256× 256

words (i.e.,m = 65536) [5]. The left matrix A is stored in the local

unified buffer of 96k × 256 words; thus, TPUs can compute the

product between two matrices of size 96k×256 and 256× 256 in one

(tensor) operation. The systolic array works in low precision with

8 bits per word (κ = 8). The bandwidth between CPU and TPU was

limited in the first version (16GB/s), but it is significantly higher in

more recent versions (up to 600 GB/s). Although TPU has a quick

response time, the overall latency is high because the right hand

matrix has to be suitably encoded via a TensorFlow function before

loading it within the TPU. The high latency cost might mitigate the

fact that our model does not capture limited bandwidth.

The Nvidia programming model allows multiplying matrices of

size 16×16, although the hardware unit works on 4×4 matrices; we

thus havem = 256. Memory words are of κ = 16 bits. Matrices can

be loaded within TCs without a special encoding as in TPUs, since

NVIDIA Volta natively provides support for matrix multiplication.

3 MATRIX MULTIPLICATION ALGORITHMS
Dense matrix multiplication. A Strassen-like algorithm for ma-

trix multiplication is a recursive algorithm that utilizes as base case

an algorithm A for multiplying two

√
n0 ×

√
n0 matrices using p0

element multiplications and O (n0) other operations (i.e., additions
and subtractions) [1]; we assume n0 = O (p0). Given two

√
n ×
√
n

matrices with n > n0, a Strassen-like algorithm envisions the two
√
n ×
√
n matrices as two matrices of size

√
n0 ×

√
n0 each, where

each entry is a submatrix of size

√
n/n0×

√
n/n0: then, the algorithm

recursively computes p0 matrix multiplications on the submatrices

(i.e., the p0 element multiplications in A) and then performs O (n)
other operations. For given parameters p0 and n0, the running time

of the algorithm isT (n) = O (nω0), where1 ω0 = logn0

p0. By setting
n0 = 4 and p0 = 8, we get the standard matrix multiplication algo-

rithm (ω0 = 3/2), while with n0 = 4 and p0 = 7 we get Strassen’s

algorithm (ω0 = log
4
7 ∼ 1.403). Any fast matrix multiplication

algorithm can be converted into a Strassen-like algorithm [7].

The TCU model can be exploited in Strassen-like algorithms by

ending the recursion as soon as a subproblem fits the tensor unit:

when n ≤ m, the two input matrices are loaded into the tensor unit

and their product is computed in O (m) time. We assumem ≥ n0,
otherwise the tensor unit would not be used.

Theorem 1. Given a Strassen-like algorithm with parameters n0
and p0, there exists an algorithm that multiplies two

√
n×
√
nmatrices

on an (m, ℓ)-TCU model, withm ≥ n0, in O
((

n
m

)ω0

(m + ℓ)
)
time.

The standard recursive matrix multiplication algorithm requires

O
(
n3/2/m1/2 + (n/m)3/2ℓ)

)
time. On the other hand, Strassen’s

algorithm takes O
(
n1.4037/m0.4037 + (n/m)1.4037ℓ

)
time.

We observe that the latency cost of the standard algorithm (ω0 =

3/2) can be further reduced to (n/m)3/2ℓ. The idea is to keep the

right matrix B inside the tensor unit as much as possible. We split

the left matrix A into

√
n/m blocks Ai of size

√
n ×
√
m (i.e., vertical

strips of width

√
m) each and the right matrix B into square blocks

Bi, j of size
√
m×
√
m each, with 0 ≤ i, j <

√
n/m. Then, we compute

Ci, j = Ai · Bi, j for each 0 ≤ i, j <
√
n/m using the tensor unit in

time O
(
n
√
m + ℓ

)
. The final matrix C follows by computing the

√
n ×
√
m submatrices Ci =

∑√n/m−1
j=0 Ci, j .

Theorem 2. There exists an algorithm that multiplies two
√
n ×

√
n matrices in the (m, ℓ)-TCU model in Θ

(
n3/2

m1/2 +
n
m ℓ

)
time. The

algorithm is optimal when only semiring operations are allowed.
1
We observe that ω0 corresponds to ω/2, where ω is the traditional symbol used for

denoting the exponent in fast matrix multiplication algorithms.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

520

Sparse matrix multiplication. A TCU algorithm to multiply two

sparse matrices follows from the work [4] that uses as a black box

a fast matrix multiplication algorithm for multiplying two

√
n ×
√
n

matrices inO
(
nω/2

)
time. Let Z be the number of non-zero entries

in the outputC = A ·B. We consider here the case where the output

is balanced, that is there are Θ
(
Z/
√
n
)
non-zero entries in each

row or column of C . The idea is to compress the rows of A and

the columns of B from

√
n to

√
Z using a hash function or another

compression algorithm to re-order the matrixA. Then the algorithm

computes a dense matrix product between a

√
Z ×
√
n matrix and a

√
n×
√
Z using the fast matrixmultiplication algorithm. By replacing

the fast matrix multiplication with the result of Theorem 1, we get

the following:

Theorem 3. Let A and B be two
√
n ×
√
n matrices with at most I

non-zero entries, and assume that C = A · B has at most Z non-zero
entries evenly distributed among its rows and columns. LetZ ≥ m and
let ω0 = logn0

p0 be the exponent given by a Strassen-like algorithm;
then there exists an algorithm for the (m, ℓ)-TCU model requiring

O
(√

n
Z

(
Z
m

)ω0

(m + ℓ) + I
)
time.

4 DISCRETE FOURIER TRANSFORM
The Discrete Fourier Transform y of an n-dimensional (column)

vector x can be defined as the matrix-vector product y = xT ·W ,

whereW is the Fourier matrix andT denotes the transpose of a ma-

trix/vector. The Fourier matrixW is a symmetric n×n matrix where

the entry at row r and column c is defined as:Wr,c = e−(2πi/n)rc .
The Cooley-Tukey algorithm is an efficient recursive algorithm for

computing the DFT of a vector. The algorithm arranges x as an

n1 × n2 matrix X (in row-major order) where n = n1 · n2; each
column X∗,c is replaced with its DFT and then each entry Xr,c
is multiplied by the twiddle factor wrc

n ; finally, each row Xr,∗ is
replaced by its DFT and the DFT of x is given by reading the final

matrix X in column-major order.

To compute the DFT of x using an (m, ℓ)-TCU, we use the Cooley-
Tukey algorithm where we set n1 =

√
m and n2 = n/

√
m. We then

use the tensor unit for computing the n2 DFTs of size n1 =
√
m by

computing XT ·W√m . Subsequently, we multiply each element in

X by its twiddle factor and transpose X . Finally, we compute the

n1 DFTs of size n2: if n2 >
√
m, the DFTs are recursively computed;

otherwise, if n2 ≤
√
m, the n1 DFTs are computed with the product

XT ·Wn2
obtained using the tensor unit. For simplicity, we assume

that the TCU model can perform operations on complex numbers

(the assumption can be removed with a constant-factor slowdown).

Theorem 4. The DFT of a vector with n entries can be computed
on an (m, ℓ)-TCU in O

(
(n + ℓ) logm n

)
time.

We observe that the DFT algorithm generalizes the approach

used in [8] on an NVIDIA Verdi architecture, which uses a Cooley-

Tukey algorithm with n1 = 4 and n2 = n/4.

5 IMPACT ON EXTERNAL MEMORY MODEL
The time complexity of some of our TCU algorithms resemble the

I/O complexity of the corresponding external-memory algorithms.

For instance, the cost of dense matrix multiplication on an (m, ℓ)-

TCU using only semiring operations (Theorem 2) is O
(
n3/2/

√
m

)

when ℓ = O (1), while the I/O complexity of computing the same

dense matrix product in the (M,B) external-memory model is

O
(
n3/2/

√
M

)
when B = O (1) [9].

We observe that computing the product of two matrices of size
√
m ×

√
m each requires O (m) I/Os to load and store the input

matrices in an internal memory of size M = 3m and block size

B = O (1). Therefore any call to the tensor unit in a TCU can be

simulated in the external memory of sizeM = 3m with Θ (m) I/Os.
Therefore, a lower bound in the external-memory model translates

into a lower bound in a weaker version of the TCU model. In the

weak TCU model, the tensor unit can only multiply matrices of size
√
m ×
√
m. All our TCU algorithms can be simulated in the weak

version with a constant-factor slowdown when ℓ = O (m). We have

the following result:

Theorem 5. Consider a computational problem P with a lower
bound FP on the I/O complexity in an external memory with memory
sizeM = 3m +O (1) and block length B = 1. Then, any algorithm for
P in the weak TCU model requires Ω (FP) time.

6 CONCLUSION
The paper leaves several open questions. It would be interesting

to extend the class of problems that can be accelerated with TCUs,

and to analyze whether existing algorithms for deep learning on

tensor cores can be further improved. It is also crucial to validate

the TCU model from an experimental point of view, and to extend

the model by including parallel tensor accelerators and the low

numerical precision.

ACKNOWLEDGMENTS
This work was partially supported by NSF grant CNS-1553510,

UniPD SID18 grant, PRIN17 20174LF3T8 AHeAd, UniBZ-CRC 2019-

IN2091 Project, and INdAM-GNCS Project 2020 NoRMA. Some

results are based upon work performed at the AlgoPARCWorkshop

on Parallel Algorithms and Data Structures at the University of

Hawaii at Manoa, in part supported by the NSF Grant CCF-1930579.

REFERENCES
[1] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Graph expansion and communi-

cation costs of fast matrix multiplication. J. ACM, 59(6):32:1–32:23, 2013.

[2] R. A. Chowdhury, F. Silvestri, and F. Vella. A computational model for tensor core

units, 2020. Arxiv 1908.06649.

[3] A. Dakkak, C. Li, J. Xiong, I. Gelado, and W.-M. Hwu. Accelerating reduction and

scan using tensor core units. In Proc. Int. Conf. on Supercomputing (ICS), pages
46–57, 2019.

[4] R. Jacob and M. Stöckel. Fast output-sensitive matrix multiplication. In Proc.
European Symposium on Algorithms (ESA), pages 766–778, 2015.

[5] N. P. Jouppi et al. In-datacenter performance analysis of a tensor processing unit.

In Proc. 44th Int. Symposium on Computer Architecture (ISCA), pages 1–12, 2017.
[6] Nvidia Tesla V100 GPU architecture. http://images.nvidia.com/content/volta-

architecture/pdf/volta-architecture-whitepaper.pdf.

[7] R. Raz. On the complexity of matrix product. SIAM Journal on Computing,
32(5):1356–1369, 2003.

[8] A. Sorna, X. Cheng, E. D’Azevedo, K. Won, and S. Tomov. Optimizing the fast

fourier transform using mixed precision on tensor core hardware. In Proc. 25th
Int. Conf. on High Performance Computing Workshops (HiPCW), pages 3–7, 2018.

[9] J. S. Vitter. Algorithms and data structures for external memory. Foundations and
Trends in Theoretical Computer Science, 2(4):305–474, 2006.

Session: Brief Announcement SPAA ’20, July 15–17, 2020, Virtual Event, USA

521

http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
http://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

	Abstract
	1 Introduction
	2 The (m,l)-TCU model
	2.1 Discussion on the model

	3 Matrix Multiplication Algorithms
	4 Discrete Fourier Transform
	5 Impact on external memory model
	6 Conclusion
	Acknowledgments
	References

