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Elasticity and dynamics of uniaxial nematic liquid crystal with defects: Nemator model
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We present a model of static and dynamic properties of uniaxial nematic liquid crystals that brings together
the advantages of the Oseen-Frank (OF), Landau–de Gennes (LdG), and Ericksen-Leslie (EL) models. The
model is based on the introduced vector N = √

s n̂, called nemator, which defines both the director n̂ and the
uniaxial order parameter s. The equilibrium nemator field is determined from minimization of the free energy,
which contains the microscopic and macroscopic parts. The proposed microscopic term combines the features
of the LdG and Maier-Saupe models, and its minimization provides a good fit of temperature dependence of s
in the entire nematic phase. We derive the macroscopic part as a complete set of elastic, magnetic, dielectric and
flexoelectric terms. The dynamic equations for the nemator, flow velocity, and pressure are derived using the
conservation laws of mass, linear and angular momenta, and energy. The nemator model contains no nemator
gradients and thus does not create a singularity when N flips, allowing simulations of static and dynamic patterns
with semi-integer disclinations and other defects. Comparison of the nemator model with the OF, LdG, and EL
models reveals that the material parameters and viscous coefficients in the nemator model are nonzero when
N → 0 and can be determined from the existing experimental data.
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I. INTRODUCTION

Liquid crystals (LCs) have a rich, more than a century long
history [1], being the first and the most studied example of
the orientationally ordered soft matter systems. The unique
combination of LC properties, such as dielectric anisotropy,
birefringence, orientational elasticity, anisotropic fluidity and
sensitivity to the applied electric and magnetic fields, stimu-
lated the development of the multibillion display and optical
communications industries during the last 50 years. Recently
the concepts and models of LC physics have become a basis
for study of active matter, a field of physics that explores self-
organization and dynamics of living and other nonequilibrium
systems on length scales from nanometers to meters [2,3].

The theory of static and dynamic properties of LCs is
based on the translational and orientational symmetry of LC
phases. The uniaxial nematic LC (NLC) is the simplest, most
symmetric phase, which is anisotropic, axially symmetric,
nonpolar and translationally homogeneous. The axially sym-
metric medium is usually described by a vector, while a proper
order parameter of anisotropic nonpolar medium is a second
rank tensor. This duality has caused the development of two
alternative approaches for description of a uniaxial NLC.
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The traditional vector approach, introduced by Oseen [4]
and Frank [5], describes a uniaxial NLC as a field of the unit
vector n̂(r), called the director, oriented along the symmetry
axis. The nonpolar nature of NLCs implies that all their prop-
erties are invariant under the n̂ → −n̂ transformation. The
Oseen-Frank (OF) elastic energy density f (el)

OF (ni, n j,k ) is de-
fined as a complete set of invariant terms which are linear and
quadratic on the director spatial derivatives nj,k = ∂n j/∂xk .
Each term contains the phenomenological coefficient called
Frank elastic modulus. The elastic moduli are functions of the
uniaxial order parameter s, which is assumed to remain spa-
tially constant. The linear term exists only in chiral materials
with no inversion symmetry and causes the spontaneous twist
deformation, creating the chiral nematic (cholesteric) phase.

The OF elasticity model is widely used in experimental
studies and computer simulations of distortions in NLCs be-
cause it has four elastic terms and the experimental methods
to determine the elastic moduli are well established; however,
the model also has well-known limitations. First, the assump-
tion of constant s is not valid near the cores of point and linear
defects. In defects the director is undefined and the elastic en-
ergy density has a singularity. This assumption is lifted in the
generalized OF (gOF) model proposed by Poniewierski and
Sluckin [6] and Ericksen [7], who included additional elastic
terms with ∇s; however, the corresponding elastic moduli re-
main unknown. The second limitation is that the both OF and
gOF models are not well-suited for description of semi-integer
disclinations, because the director looping around the core of
such disclination results in the n̂ → −n̂ transformation, which
is allowed in a NLC, but creates infinite increase of the OF and
gOF elastic energy. To overcome these difficulties Ball et al.
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studied line fields and associated with them surface discon-
tinuities of the director field [8–10]; however, the proposed
method is rather complicated, especially when configuration
of disclinations is undetermined.

The Landau–de Gennes (LdG) model [11] provides an
alternative description based on the traceless symmetric Q
tensor, Qi j = s(n̂in̂ j − δi j/3) + p(l̂i l̂ j − m̂im̂ j ) [11,12], where
s and p are the uniaxial and biaxial orientational order
parameters, respectively, and l̂, m̂, and n̂ are the eigen-
basis, that defines the diagonal representation of Q =
diag(p − s/3, −p − s/3, 2s/3). The LdG free energy den-
sity fLdG = f (micro)

LdG + f (macro)
LdG is considered as a sum of the

microscopic term f (micro)
LdG (s, p), which determines the equi-

librium values of s and p in a homogeneous system, and
the macroscopic term f (macro)

LdG (Qi j, Qi j,k ) that contains the
contributions of the elastic energy caused by orientational
inhomogeneity and of interactions with electric and mag-
netic fields. The microscopic term f (micro)

LdG (s, p) is derived
as an invariant expansion on Q being a polynomial function
of the invariants I2 = TrQ2 = 2

3 s2 + 2p2 and I3 = TrQ3 =
s( 2

9 s2 + 2p2), and the macroscopic term f (macro)
LdG (Qi j, Qi j,k ) is

a sum of invariant products of the material parameters, ten-
sor components Qi j , their spatial derivatives Qi j,k = ∂Qi j/∂xk

and/or external fields. The fourth order expansion usually
used for f (micro)

LdG (s, p) is valid near nematic-isotropic phase
transition, but may give nonphysical values of order parameter
s > 1 at lower temperatures. The second-order expansion for
the elastic term in f (macro)

LdG (Qi j, Qi j,k ) contains three (two bulk
and one divergence) elastic constants instead of four in the
OF elasticity model, while in the higher order expansions
the number of elastic terms drastically increases. The next
non-negative expansion for the elastic energy is of the fourth
order and contains 18 bulk and four surface elastic terms
[13]. Using the integrity basis approach, Longa and Trebin
have determined the complete set of irreducible invariants for
biaxial nematics that contains 36 elastic terms and three chiral
terms [14]. Unfortunately, it is impossible to determine the
corresponding 39 material constants from the experiments in
the uniaxial nematic phase.

Based on the OF and LdG elasticity models, respectively,
the director and Q-tensor representations have been advanced
to study various phenomena and effects in the nematics, such
as flexoelectricity and order electricity [15,16], defect struc-
ture [17–19] and dynamic properties [20–27].

Both representations work very well in their domains of
applicability. The director (three variables with one condition)
is an efficient tool to study static and dynamic patterns of a
defect-free uniaxial NLC, where order parameter variations
are negligibly small. On the other hand, the symmetric trace-
less Q-tensor representation is more complex (five variables),
but it provides an adequate description of uniaxial and biaxial
NLCs with defects.

In this paper, we present a model of static and dynamic
properties of uniaxial NLCs, which combines the advantages
of the director and Q-tensor models. The model is based on
the vector of the variable length N, called nemator. Nemator
contains information on the amplitude s and direction n̂ of
the uniaxial nonpolar ordering, N = √

s n̂. The equilibrium
nemator field is obtained from minimization of the free energy

density fN = f (micro)
N (s) + f (macro)

N (Si j, Skl,m ), which is a func-
tion of dyadic tensor S = N ⊗ N with the components Si j =
NiNj and their spatial derivatives Si j,k = ∂Si j/∂xk , as shown
in Sec. II. The microscopic term f (micro)

N (s) depends on TrS =
N · N = s and determines the equilibrium value of s in a uni-
form sample in the absence of the electric and magnetic fields.
We propose an expression for f (micro)

N (s), which comprises
the LdG-type polynomial and the term from the Maier-Saupe
model with logarythmic singularity at s → 1. Minimization
of the proposed f (micro)

N (s) provides a good one-parameter
fit of s(T ) in the entire temperature range of the nematic
phase. We derive the macroscopic part f (macro)

N (Si j, Skl,m ) as
a complete set of elastic, magnetic, dielectric, and flexo-
electric terms. Comparison of f (macro)

N (Si j, Skl,m ) with the OF
and LdG models allows us to calculate the material param-
eters in the nemator model from the existing experimental
data. Following the continuous mechanics approach similar
to Refs. [20,21], we derive the dynamic equations for the ne-
mator N(r, t ), flow velocity v(r, t ), and pressure p(r, t ) using
the conservation laws of mass, linear and angular momenta,
and energy, as shown in Sec. III. The nemator model contains
no gradients Ni,k and thus does not create a singularity when
N flips, N → −N, allowing simulations of static and dynamic
patterns with semi-integer disclinations and other defects. All
material parameters and viscous coefficients in the nemator
model are nonzero when N → 0 and can be considered con-
stant in the first approximation.

II. STATIC PROPERTIES

The equilibrium nemator field in the volume V bounded
by the surface σ is found from minimization of the total free
energy

� =
∫

V
fNdV +

∫
σ

wNdσ , (1)

where fN = f (micro)
N (s) + f (macro)

N (Si j, Skl,m ) and wN =
wN(Si j ) is the surface anchoring term, which determines
the energy density of the surface interaction with the nemator
field. We consider the macroscopic term f (macro)

N (Si j, Skl,m )
as a sum of elastic f (elast)

N (Si j, Skl,m ), magnetic f (mag)
N (Si j ),

dielectric f (diel)
N (Si j ), and electrodistortion f (ed)

N (Si j, Skl,m )
terms; the latter describes flexo- and order electricity. In this
chapter, we describe the terms in

fN = f (micro)
N (s) + f (elast)

N (Si j, Skl,m ) + f (mag)
N (Si j )

+ f (diel)
N (Si j ) + f (ed)

N (Si j, Skl,m ), (2)

propose the expression for wN(Si j ), and derive the equations
for the equilibrium nemator field in the bulk and at the surface.

A. Nemator model: The microscopic free energy

In the nemator model, the spatial and temporal variations
of the order parameter s are defined by the variable length of
N(r, t ), |N(r, t )| = √

s(r, t ); thus it is important to establish
a correct behavior of f (micro)

N (s) in the entire range 0 � s � 1.
To test the validity of f (micro)(s) in different models, we com-
pare the model temperature dependence of the equilibrium
scalar order parameter seq(T ), obtained from a solution of the
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FIG. 1. Comparison of LdG and nemator models: (a) Fitting the experimental data s(T ) of nCB, n = 5−8 [34], with seq(T ) obtained from
Eq. (3) for the LdG (solid curves) and nemator (dashed curves) models; (b) f (micro)

LdG (s) and f (micro)
N (s) for 7CB at the temperatures defined by

the shown values of τ = (T − TIN )/(TIN − T ∗); all curves are obtained for parameters presented in Table I.

equation
(

∂ f (micro)

∂s

)
T

= 0, (3)

with the experimental results of s(T ) and critical behavior
of the Kerr effect in the isotropic phase slightly above the
temperature TIN of the isotropic-nematic phase transition.

In the LdG model, f (micro)
LdG (s) is a fourth-order polynomial

in s

f (micro)
LdG (s) = 1

2 a′(T − T ∗)s2 − 1
3 bs3 + 1

4 cs4, (4)

where T ∗ is the low-temperature limit of the isotropic phase
and a′, b, and c are the material parameters. Equation (4)
is justified for small s and yields reasonable seq at temper-
atures near TIN; however, the nonphysical values, seq > 1,
may appear at lower temperatures, Fig. 1. In the mean-field
Maier-Saupe (MS) model [28], s > 1 values are not possible,
since the free energy density has the singularity f (micro)

MS ∝
− log(1 − s) when s → 1 [28–30]. The MS model predicts
for all materials the same free energy profile f (micro)

MS (s) and
temperature dependence seq(T ); however, the predicted seq(T )
exhibits the significantly wider metastable regions of isotropic
and nematic phases than the observed in the experiments.
We propose the expression for f (micro)

N (s) that combines the
advantages of the LdG and MS models

f (micro)
N (s) = 1

2 a′(T − T ∗)s2 − 1
3 b′T s3 + c′ T Bs(4, 0), (5)

where the first two terms are similar to the LdG model
and the incomplete beta function Bs(k, 0) = − log(1 − s) −∑k−1

j=1 s j/ j, see, e.g., Ref. [31], provides the logarith-
mic singularity and does not interfere with the first two
terms, as Bs(k, 0) = sk/k when s → 0 and ∂Bs(k, 0)/∂s =
sk−1/(1 − s). To employ Eqs. (4) and (5) in a nematic phase
with a wide temperature range, we include the T factor in the
coefficients of the higher terms, assuming b = b′T and c =
c′T . The T factor appears in f (micro)(s) = U − T S because
the energy U is caused by the pair intermolecular interac-
tion and is quadratic on s, but the entropy S also contains

higher orders of s; similar considerations were presented in
Refs. [32,33].

To test the validity of f (micro)
LdG (s), Eq. (4), and f (micro)

N (s),
Eq. (5), we calculate seq(T ) from the corresponding solutions
of Eq. (3)

df (micro)
LdG

ds
= a′(T − T ∗)s − b′T s2 + c′ T s3 = 0, (6)

df (micro)
N

ds
= a′(T − T ∗)s − b′T s2 + c′ T

s3

1 − s
= 0, (7)

and use it to fit the experimental dependence for the 4-cyano-
4′-n-alkylbiphenyl series (nCB), n = 5−8, determined from
the measurements of the birefringence [34], Fig. 1. During
the fitting seq(T ) in the nematic phase, it is also important to
reconstruct its hidden part seq(T ) < sIN, which corresponds
to the metastable and unstable nematic states; the hidden part
reveals the profile f (micro)(s) for small s < sIN that controls the
structure and properties of the defects’ cores in the nematic
phase. Thus, the parameters a′ and TIN − T ∗ in Eqs. (4)–(7)
are selected from the Kerr effect data in the isotropic phase
slightly above TIN [35], Table I, and are set the same for
f (micro)
LdG (s) and f (micro)

N (s). The condition of the phase transition
f (micro)(s) = 0 at TIN imposes a constrain between b′ and
c′; thus for both models seq(T ) is a function with a single
fitting parameter, which we choose as the order parameter
sIN = seq(TIN) at the isotropic-nematic phase transition. The
nemator model seq(T ), Eq. (5), dashed curves in Fig. 1(a),

TABLE I. Parameters of nCB, n = 5−8, used for fitting of s(T ):
TIN, TIN − T ∗ and a′ are determined by Coles from the Kerr effect
measurements [35] and sIN is the single fitting parameter.

5CB 6CB 7CB 8CB

TIN (K) 308.3 302.3 315.1 313.8
TIN − T ∗(K) 1.1 1.3 1.4 1.3
a′ (MJ m−3 K−1) 0.13 0.15 0.21 0.18
sIN, fitting value 0.28 0.28 0.31 0.34
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provides a good fit in the entire region of nematic phase with
sIN, shown in Table I. On the other hand, the LdG model
seq(T ) is much steeper than the experimental dependences for
any sIN; the LdG model solid curves in Fig. 1(a) are calculated
for the same values of sIN as the dashed curves of the nemator
model.

Comparison of the profiles f (micro)
LdG (s), Eq. (4), and

f (micro)
N (s), Eq. (5), presented in Fig. 1(b) for 7CB at different

temperatures, shows that f (micro)
N (s) practically coincides with

f (micro)
LdG (s) for s < 0.4, but reaches its minimum at T < TIN at

smaller s = seq than f (micro)
LdG (s), and has a substantially steeper

increase for s > seq. The proposed f (micro)
N (s) is justified for

0 � s < 1 in the entire nematic temperature range because
(a) it exhibits the logarithmic singularity when s → 1; (b)
f (micro)
N (s) describes adequately the thermodynamics near the

isotropic-nematic phase transition since its parameters match
the experimental values of TIN, TIN − T ∗, and a′, determined
from the Kerr effect measurements in the isotropic phase,
Table I; and (c) the temperature dependence of seq(T ), which
defines the position of f (micro)

N (s) minimum, fits the experi-
mental data in the entire nematic phase. Thus, f (micro)

N (s) is
used in the nemator model to control the length of N(r, t ),
|N(r, t )| = √

s(r, t ).

B. Nemator model: The elastic free energy

We start with a general invariant expression

f (elast)
N = f (b)

N + f (d )
N + f (c)

N , (8)

where the bulk term f (b)
N = Bi jklmn(S)Si j,kSlm,n is a quadratic

form of spatial derivatives, f (d )
N = [Di jkl (S)Si j,k],l is the di-

vergence term, and f (c)
N = Ci jklmn(S)εi jkSlm,n is the linear on

spatial derivatives chiral term. Here the tensors Bi jklmn(S),
Di jkl (S), and Ci jklmn(S) are sums of products of Si j , the Kro-
necker deltas δi j , and the elastic moduli Mα (s), which are
functions of TrS = s. The proposed approach prohibits the
bulk and divergence terms that contain second-order spatial
derivatives, like K13, the splay-bend term in the director repre-
sentation; thus, the elastic free energy is bounded from below
and eliminates the possibility of the Barbero-Oldano paradox
behavior [36,37].

To obtain all relevant products in f (b)
N , we use the diagrams

with the following notation: Si j,k ⇔ , Si j ⇔ , δi j ⇔
, and connections correspond to the summation over proper

indices. The products in Bi jklmn(S) with summations over
other indices do not yield new products, because δipδpk = δik ,
Sipδpk = Sik , and SipSpk = sSik . Thus, all irreducible products
correspond to the diagrams presented in Fig. 2, e.g., diagram
2,1 corresponds to f2,1 = Si j,kSi j,k .

Not all terms shown in Fig. 2 are independent because
some of them can be represented as linear combina-
tions of other terms. We form the independent basis 	 =
{ f2,1, f2,2, f2,3, f2,4, f2,5, f3,2b, f3,4b, f3,5a}, which contains
all second-order terms, f2,1 = Si j,kSi j,k , f2,2 = Si j, jSik,k =
μ2, f2,3 = Si j,kSik, j , f2,4 = Si j, jSkk,i = μ · ∇s, and f2,5 =
Sii,kS j j,k = (∇s)2, and three third-order terms that are simi-
lar to the second-order terms: f3,2b = μ · S · μ, f3,4b = μ · S ·
∇s and f3,5a = ∇s · S · ∇s; here μ = ∇ · S. All other terms,

2,1 2,2 2,3 2,4 2,5

3,1a 3,2a 3,3a 3,4a 3,5a

3,1b 3,2b 3,3b 3,4b 3,5b

3,4c

4,1a 4,2a 4,3a 4,4a 4,5a

4,1b 4,2b 4,3b 4,4b 4,5b

4,4c

5,1 5,2 5,3 5,4 5,5

FIG. 2. The diagrams correspond to the products fα,β in f (b)
N ,

Eq. (8), where α indicates the order on tensor S = N ⊗ N, and β

labels the diagram’s structure. The diagram notation is Si j,k ⇔ ,

Si j ⇔ , δi j ⇔ .

shown in Fig. 2, can be represented as their linear combina-
tion,

fα,β =
∑

n

〈α, β|αn, βn〉s�α fαn,βn , (9)

where fαn,βn = 	n is the nth term of the basis 	, �α = α −
αn, and 〈α, β|αn, βn〉 is the numerical expansion coefficient,
shown in Table II. Note that f4,1a = f4,2a = f4,3a, f4,4a =
f4,5a, f4,1b = f4,5b, f4,2b = f4,4c, f4,3b = f4,4b, and all the fifth-
order terms give the same contribution f5,1 = f5,2 = f5,3 =
f5,4 = f5,5 because Sjl Skm = S jkSlm.

The divergence term f (d )
N can also be expressed through

the chosen basis and it is instrumental to find its explicit
form. Because f (d )

N has no second-order spatial derivatives,
Di jkl (S) is antisymmetric on indices k and l , and is repre-
sented as Di jkl (S) = D̃i jkl (S) − D̃i jlk (S) with corresponding
elastic modulus Md (s), where D̃i jkl (S) = Md (s)δikS jl is the
only nonsymmetric tensor product. Thus, f (d )

N is a difference
of diagrams shown in Fig. 3(a), and reads

f (d )
N = ∇[Md (s)η] = Md (s)∇η + M ′

d (s)∇s · η, (10)

where M ′
d (s) = d (Md (s))/ds and introduced in Eq. (12) vec-

tor η has components

ηi = S jkSi j,k − Si jS jk,k = sμi + Siks,k − 2Si jμ j . (11)

FIG. 3. The diagrams for the divergence term f (d )
N (a) and for the

chiral products f2,c (b) and f3,c ≡ 0 (c); the diagram notation is the

same as in Fig. 2 with ∂/∂xl ⇔ and εi jk ⇔ .
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TABLE II. Numerical expansion coefficients 〈α, β|αn, βn〉 in Eq. (9), bold, and 〈α, β|αn, βn〉 in Eq. (18), underlined in parentheses.

2,1 2,2 2,3 2,4 2,5 3,2b 3,4b 3,5a

2,1 1(1) (−1/3)
2,2 1(1) (−2/3) (1/9)
2,3 1(1) (−2/3) (1/9)
2,4 1
2,5 1
3,1a (−1/3) 2(2) (1/9) −2(−2) 1(2/3)
3,1b 1/2(1/6) 1/2(1/18)
3,2a 1(2/3) (−1/9) (−1/27) −1(−1) 1(1) (−2/9)
3,2b (−1/3) (2/9) (−1/27) 1(1) (−2/3) (1/9)
3,3a 1(1) (−1/3) 1(8/9) (−1/27) −1(−1) −1(−1) 1(7/9)
3,3b 1(−1) 1(2/3) (−4/9) (−1/27) 1(1) (2/3) (−5/9)
3,4a 1 −1 1
3,4b 1
3,4c 1(2/3) (−2/9)
3,5a 1
3,5b 1
4,1a (−1/18) 1(1/3) (−1/54) −1(−1/3) 1(2/9)
4,1b (−2/9) 1(4/9)
4,2a 1(4/9) (4/27) (1/81) −1(−1/3) (−2/3) 1(16/27)
4,2b (−2/9) (1/27) (1/81) 1(5/9) (−5/27)
4,3a 1(1/3) (1/9) (−14/27) (1/81) −1(−1/3) (2/3) 1(−2/27)
4,3b (−2/9) 1(16/27) (1/81) −1(−5/9) 1(10/27)
4,4a 1
4,4b 1(4/9) (2/27) −1(−2/3) 1(4/9)
4,4c (−2/9) (2/27) 1(2/3) (−2/9)
4,5a 1
4,5b 1(4/9)
5,1 (2/27) (−4/9) (−4/27) (4/9) 1(2/9)
5,2 (−4/27) (−4/81) (−1/243) (2/9) (−8/27) 1(11/27)
5,3 (−2/9) (2/27) (−28/81) (−1/243) (2/9) (8/27) 1(1/9)
5,4 (−4/27) (−2/81) 1(10/27)
5,5 (−4/27) 1(4/9)

Using Eqs. (10), (11), we exclude f2,3 term from the basis
and substitute it with the divergence term f (d )

N , because ∇η =
f2,3 − f2,2 and ∇s · η = s f2,4 + f3,5a − 2 f3,4b.

The chiral NLC term f (c)
N contains the only independent

second-order product f2,c = εi jkSl jSil,k , Fig. 3(b), where the

antisymmetric Levi-Civita tensor εi jk is represented in dia-
grams as a triskelion; the third order product, Fig. 3(c), is
crossed with a red line, because it vanishes over summation
f3,c = εi jkSl jSkmSil,m = εi jkSk jSlmSil,m ≡ 0.

Combining the derived expressions for f (b)
N , f (d )

N , and f (c)
N

we result in f (elast)
N :

f (elast)
N = 1

2

[
M1Si j,kSi j,k + M2μ

2 + M3μ · S · μ + M4μ · ∇s
+ M5μ · S · ∇s + M6(∇s)2 + M7∇s · S · ∇s

]
+ Mcεi jkSil,kSl j + ∇ · (Mdη), (12)

where η = s μ + S · ∇s − 2 S · μ, μ is the vector with components μi = Si j, j , and the elastic moduli Mα = Mα (s) are polyno-
mial functions of s = N · N. The linear on the gradient term with Mc appears in chiral NLCs. The last term is a divergence and
its volume integral is reduced to the surface integral. To determine the elastic moduli Mα (s), we compare f (elast)

N with the OF,
gOF, and LdG models.

Comparison with the OF and gOF models. The bounded from below OF elastic energy density fOF is defined in terms of the
director gradient

f (elast)
OF = 1

2 K1(divn̂)2 + 1
2 K2(n̂ · curln̂)2 + Kc(n̂ · curln̂) + 1

2 K3(n̂ × curln̂)2 − K24div(n̂ divn̂ + n̂ × curln̂), (13)

where the elastic moduli K1, K2, K3, and K24 are related to the
splay, twist, bend and saddle-splay deformations, respectively.
The linear term with Kc exists in the chiral nematic. The

elastic moduli are considered to be functions of s, which is as-
sumed to remain spatially constant. Under this assumption the
last term is a divergence and is reduced to the surface integral.
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The elastic energy in the gOF model contains additional
terms with the order parameter gradient ∇s [6,7]

f (elast)
gOF = f (elast)

OF + 1
2 K5(∇s)2 + 1

2 K6(n̂ · ∇s)2

+ 1
2 K7(n̂ · ∇s)divn̂ + 1

2 K8∇s · [∇ · (n̂ ⊗ n̂)]. (14)

Using the definition of the nemator N = √
s n̂, and compar-

ing Eq. (12) with Eqs. (13) and (14), we obtain the following
relations between the elastic moduli Ki(s) and Mj (s):

Kc = s2Mc, (15)

K1 = s2(2M1 + M2 + sM3), K2 = 2s2M1,

K3 = s2(2M1 + M2), K24 = s2(M1 + Md ), (16)

K5 = M1 + M6, K6 = M2 + sM3 + M4 + sM5 + sM7,

K7 = s(2M2 + 2sM3 − 8Md + sM5 − 2sM ′
d ),

K8 = s(4Md + M4 + sM ′
d ). (17)

Equations (16) show that the Frank moduli K1−3(s) and
K24(s) are expressed with the four nemator moduli M1−3(s)
and Md (s) and vice versa. Similarly, Eqs. (17) exhibits the re-
lations for the moduli K5−8(s). Note that contrary to Eqs. (13)
and (14), Eq. (12) does not create a singularity when N flips,
N → −N, and are therefore well-suited for simulation of pat-
terns with semi-integer disclinations.

Comparison with the LdG model. To compare orientational
elasticity in the nemator and LdG models we represent the
elastic term in the nemator model f (elast)

N
in terms of the trace-

less uniaxial tensor Q = S − 1
3 sI, where I is the unit tensor.

To determine f (elast)
N

= f (b)
N

+ f (d )
N

+ f (c)
N

with the bulk f (b)
N

=
Bi jklmn(Q)Q

i j,k
Q

lm,n
, divergence f (d )

N
= [Di jkl (Q)Q

i j,k
],l , and

chiral f (c)
N

= Ci jklmn(Q)εi jkQ
lm,n

terms, we use the same di-
agrams, Figs. 2 and 3, with substitution Si j → Q

i j
; e.g.,

diagram 2,1 in Fig. 2 yields the term f
2,1

= Q
i j,k

Q
i j,k

. We
then expand f

α,β
using the same basis 	

f
α,β

=
∑

n

〈α, β|αn, βn〉 s�α fαn,βn , (18)

where 〈α, β|αn, βn〉 are the numerical expansion coefficients,
shown in Table II. Expansion (18) and relations between the
chiral f

2,c
= εi jkQ

l j
Q

il,k
= f2,c, f

3,c
= εi jkQ

l j
Q

km
Q

il,m
=

s f2,c/3, and divergence f (d )
N

= f (d )
N terms demonstrate that

f (el)
N

is also described by Eq. (12).

Note that f (elast)
N and f (elast)

N
are not equivalent. Since f

2,4
≡

f
2,5

≡ 0 and f (elast)
N

contains only three independent second-

order terms, the equivalence of f (elast)
N and f (elast)

N
requires that

the second-order elastic moduli Mα (0) in Eq. (12) for f (elast)
N

should obey the relations

M5(0) = −2M2(0)/3, M7(0) = (M2(0) − 3M1(0))/9. (19)

Similarly, the six independent third-order terms in f (el)
N

result in the additional relations for Mα (0) in f (elast)
N

M8(0) = M ′
5(0) − M ′

1(0) + 3M ′
7(0),

M6(0) = (M ′
2(0) − M3(0) − 6M8(0))/3. (20)

In our opinion, the validity of f (elast)
N

and conditions (19)

and (20) in Eq. (12) for f (elast)
N , depends on the specifics of

the nematic phase. Conditions (19) and (20) are probably
justified for standard nematics, e.g., 5CB, but may be invalid
in materials with additional intrinsic parameters, like lyotropic
chromonic liquid crystals where order parameter changes with
concentrations of the components and length of aggregates
[38–41].

C. Nemator model: Interaction with external fields

The interaction with external electric E and magnetic
B fields can be derived from comparison with the OF
model. Because magnetic intermolecular interaction are
small, the magnetic susceptibility tensor χ = χ⊥I + (χ|| −
χ⊥)(n̂ ⊗ n̂) = Nmol〈κ〉 is expressed by the components par-
allel χ|| and perpendicular χ⊥ to the director, and is a product
of the number of molecules per unit volume Nmol and an
orientational average 〈κ〉 of the molecular magnetic tensor
κ. Thus χ|| + 2χ⊥ = NmolTrκ is constant and the magnetic
anisotropy χa = χ|| − χ⊥ = χ̂as is proportional to s with
χ̂a = Nmolκa being a constant factor, and the magnetic term
of the free energy in the OF model f (m)

OF = − χa

2μ0
(n̂ · B)2,

where μ0 is the magnetic constant, transforms into f (m)
N =

− χ̂a

2μ0
[(N · B)2 − s

3 B2] in the nemator model.

The dielectric term of the free energy f (diel)
OF =

− ε0
2 (E · ε · E) is more complex than the magnetic one,

because the electric intermolecular interactions are strong and
the dielectric permittivity tensor ε = ε⊥I + (ε|| − ε⊥)(n̂ ⊗ n̂)
is the nonlinear function of s; here ε|| and ε⊥ are components
of the tensor parallel and perpendicular to the director,
respectively. Still the dielectric anisotropy εa = ε|| − ε⊥ → 0
when s → 0 and can be represented as εa(s) = ε̂a(s)s
resulting in ε = ε⊥(s)I + ε̂a(s)S for the nemator model.

In addition to the dielectric term the bulk free energy
associated with the external electric field also contains the
electrodistortion term f (ed) = −E · P(ed), where the polariza-
tion P(ed) is caused by the distortion of the orientational
ordering.

To obtain all possible terms in P(ed)
N , we build the linear

on Si j,k vector diagrams, Fig. 4, using the same notation as
in Fig. 2, e.g., diagrams 1,1 and 2,1a correspond to p1,1 =
∇ · S = μ and p2,1a = S · μ, respectively.

Keeping the similarity with representation (8) of f (el)
N , we

express P(ed)
N through the basis of independent vector terms

	(p) = {p1,1, p1,2, p2,1a, p2,2a} = {μ, ∇s, S · μ, S · ∇s},

P(ed)
N = ξ1(s)μ + ξ2(s)∇s + ξ3(s)S · μ + ξ4(s)S · ∇s, (21)

where ξ1(s) are the materials parameters, which we call elec-
trodistortion coefficients.

Similarly, any term, shown in Fig. 4, can be represented as

pα,β =
∑

n

〈α, β|αn, βn〉(p)s
�αpαn,βn , (22)

where pαn,βn = 	
(p)
n is the nth term of the basis 	, �α = α −

αn, and 〈α, β|αn, βn〉(p) is the numerical expansion coefficient,
shown in Table III.
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FIG. 4. The diagrams for the electrodistortion term f (ed)
N ; the

diagram notation is the same as in Fig. 2.

In the director model, P(ed)
OF = P( f l )

OF + P(o)
OF splits on the

flexopolarization P( f l )
OF = e1n̂ divn̂ − e3n̂ × curln̂, produced

by the director distortions [15], and the order polarization
P(o)

OF = r1(n̂ · ∇s)n̂ + r2∇s, proportional to ∇s [16]; here ei

and ri are the flexo- and order-electric coefficients, respec-
tively. Using the definition N = √

s n̂, and comparing the
expressions above for P(ed)

OF and P(ed)
N , Eq. (21), we obtain

the following relations between the flexo- and order-electric
coefficients and the electro-distortion coefficients ξ1(s) :

e1 = sξ1 + s2ξ3, e3 = sξ1, r1 = ξ1 + s(ξ3 + ξ4),

r2 = ξ2. (23)

To compare P(ed) in the nemator and LdG models we con-
struct P(ed)

N using the same diagrams, Fig. 4, and substituting
Si j → Q

i j
, e.g., diagram 1,1 yields p

1,1
= ∇ · Q. We then

TABLE III. Numerical expansion coefficients 〈α, β|αn, βn〉(p)

in Eq. (22), bold, and 〈α, β|αn, βn〉(p)
in Eq. (24), underlined in

parentheses.

1,1 1,2 2,1a 2,2a

1,1 1(1) (-1/3)
1,2 1
2,1a (−1/3) (1/9) 1(1) (−1/3)
2,1b 1(2/3) (1/9) −1(−1) 1(2/3)
2,2a 1
2,2b 1(2/3)
3,1 (−2/9) (−1/27) 1(5/9)
3,2 (−2/9) 1(2/3)

expand p
α,β

using the same basis

p
α,β

=
∑

n

〈α, β|αn, βn〉(p)
s�αpαn,βn , (24)

where 〈α, β|αn, βn〉(p)
are the numerical expansion coeffi-

cients shown in Table III.
Note that similar to the elastic terms f (el)

N and f (el)
N

, P(ed)
N

and P(ed)
N are not equivalent either. When P(ed)

N is valid, then
p

1,2
≡ p

2,2a
≡ 0 and the electrodistortion coefficients ξ1(s) in

Eq. (17) for P(ed)
N obey the relations

ξ2(0) = −ξ1(0)/3, ξ4(0) = ξ ′
1(0). (25)

Equations (19), (20) and (25) are probably valid for the
same materials and temperature ranges.

Surface anchoring and static equilibrium. Minimization
of the total free energy �, Eq. (1), is a multidimensional
variational problem with soft boundary conditions, see, e.g.,
Ref. [42]. These conditions are controlled by the surface an-
choring wN(Si j ), which we present as

wN = 1
2wi jkl

(
Si j − S(w)

i j

)(
Skl − S(w)

kl

)
, (26)

where S(w)
i j = s(w)n(w)

i n(w)
j is the optimal value for Si j ten-

sor at the surface σ that is defined by the easy axis n̂(w)

and the optimal surface value s(w) for the order parameter
s, and wi jkl are the elements of the positive-definite fourth
order three dimensional strongly paired symmetric tensor
w, which is symmetric with respect to i ↔ j, k ↔ l , and
i j ↔ kl permutations and provides wN(Si j ) > 0 for any Si j .
It is convenient to analyze the properties of w in the local
orthogonal basis {ê1, ê2, n̂(w)}. If n̂(w) is not parallel to the
outward normal unit vector ν̂ to the surface σ (surface align-
ment is not homeotropic), then ê1 = (ν̂ × n̂(w) )/|ν̂ × n̂(w)|
and ê2 = n̂(w) × ê1; note that if n̂(w) is tangential to the
surface, n̂(w) · ν̂ = 0, then ê2 = ν̂. For the homeotropic align-
ment, n̂(w) = ν̂, ê1 and ê2 are tangential to the surface and
can be chosen arbitrarily or based on the surface geometry.
In the chosen basis, elements wi jkl have the following prop-
erties: (a) wi jkl = 0, if any index value appear an odd number
of times; (b) w1133 = w2233 = 0; (c) w3333 is the anchoring
coefficient for (s − s(w) )2 term, that penalizes deviation of the
surface value of s from s(w); (d) the elements w1313 = 4s2waz

and w2323 = 4s2wpol control the small deviations N from n̂(w)

and are related, respectively, to the azimuthal waz and polar
wpol anchoring coefficients in the Rapini-Papoular anchoring
potential wRP in the OF model

wRP = 1
2 [waz(n̂ · ê1)2 + wpol(n̂ · ê2)2]. (27)

Expression (26) is a generalization of the anchoring repre-
sentation with a second rank tensor and covers various cases
of surface anchoring in the LdG model [43]; e.g., it reproduces
the isotropic anchoring around n̂(w) [44] with wi jkl = w0δikδ jl

and the degenerate tangential alignment [45–47] with S(w)
i j =

s(w)(δi j − νiν j ).
The equilibrium state is determined by zero variation

δ � = 0 with respect to variations of the nemator field δNi and
of the electric potential δu in LC volume, when the electric
field E = −∇u is applied; we consider fixed values of u at the
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boundaries. Because � is a function of Si j rather than Ni, we
apply the chain rule for variations δSi j = NiδNj + NjδNi and
obtain

δ � = 2
∫

V

δ fN

δSi j
NjδNi dVT −

∫
V

(
∂ fN

∂u,k

)
,k

δu dV

+ 2
∫

σ

(
∂ fN

∂Si j,k
ν̂k + ∂wN

∂Si j

)
Nj δNi dσ = 0, (28)

where the variations in three integrals are independent and
should vanish in equilibrium. The first integral requires zero
static bulk nemator force field h̄

h̄i = −δ fN

δNi
= −2Nj

[
∂ fN

∂Si j
−

(
∂ fN

∂Si j,k

)
,k

]
= 0. (29)

The second integral provides the equation for the electric
displacement D = ε0ε · E + P(ed)

N in LC with no free charges

∇ · D = 0, (30)

and the surface integral zeros the static surface nemator force
field h̄(σ )

h̄(σ )
i = −2Nj

(
∂ fN

∂Si j,k
ν̂k + ∂wN

∂Si j

)
= 0. (31)

Equations (29), (30), and (31) allow one to study and
simulate the equilibrium structures with bulk and surface de-
fects adequately, because when N loops around a semi-integer
disclination, it flips at some point and h̄ and h̄(σ ) flip with N,
but do not exhibit singularities.

III. DYNAMIC EQUATIONS

The dynamic equations for uniaxial NLC has been ex-
tensively studied using the director and tensor models, see
e.g., Refs. [20–23,25,48,49] and references therein. Based on
OF elasticity, Ericksen [20] and Leslie [21] employed the
continuous mechanics approach in a uniaxial NLC and de-
rived the dynamic equations for the hydrodynamic flow and
director reorientation using the balance equations for mass,
linear and angular momenta, energy, and entropy. The Harvard
group has developed the hydrodynamic model, where only
hydrodynamic (Goldstone) variables are considered [22,23].
Within the LdG approach the dynamic properties are usually
described by the Beris-Edwards model [25] based on the Pois-
son bracket formalism.

In the absence of the electric and magnetic fields the free
energy of uniform uniaxial NLC depends on the nemator
amplitude in f (micro)

N (s), but does not on its direction because
f (macro)
N (Si j, Skl,m ) = 0. Thus, the nemator direction is a hy-

drodynamic variable and its amplitude is not. We, therefore,
develop the nemator dynamic model using the continuous
mechanics approach, similar to the Ericksen-Leslie model, but
with two modifications. First, the nemator N has a variable
length and therefore is entirely determined by the dynamic
equations. Second, the resulting dynamic equations should
depend on Si j,k rather than on Ni,k to allow N ↔ −N flip,
required for description of a system with semi-integer discli-
nations. We derive the dynamic equations for the nemator
N(r, t ) and flow velocity v(r, t ) using the conservation laws
of mass, linear and angular momenta, and energy for a NLC

fluid parcel of the volume Vp bounded by the surface σp. For
simplicity we consider a uniaxial NLC to be incompressible
and neglect effects of diffusion, temperature change, and ionic
movement.

(a) The incompressibility condition, ρ = const results in

div v = vi,i = 0. (32)

(b) The linear momentum balance is

d

dt

∫
Vp

ρ vdV =
∫

Vp

ρFdV +
∫

σp

T · ν̂p dσ , (33)

where F is the body force per unit mass, T is the stress
tensor, ν̂p is the outward normal unit vector to the surface σp,
and d

dt is the material time derivative also denoted below by
the superposed dot. The arbitrary choice of Vp allows one to
obtain the linear momentum balance in differential form

ρv̇i = ρFi + Ti j, j, (34)

where v̇i = dvi/dt = v′
i + vi, jv j .

(c) The angular momentum balance is

d

dt

∫
Vp

ρ( r × v + I N × Ṅ)dV

=
∫

Vp

ρ( r × F + N × g)dV

+
∫

σp

( r × T · ν̂p + N × H · ν̂p)dσ , (35)

where I is the moment of inertia per unit mass, g is the external
nemator force per unit mass, and H is the nemator stress
tensor. Following Leslie [50], we introduce the intrinsic force
density h, which in our case includes the contribution of H
and controls the nemator dynamics

ρ I N̈i = hi + ρ gi. (36)

Using Eqs. (34) and (36), we rewrite the angular momentum
balance (35) in differential form as

εi jk[Njhk − Tk j − (NjHkl ),l ] = 0. (37)

(d) In the energy balance, the viscous losses defined by the
dissipation function R and changes of the kinetic energy, in
parentheses, and the nematic free energy f are powered by
body and surface forces, right side of the equation,

d

dt

∫
Vp

[
1

2
ρ (v · v + I Ṅ · Ṅ) + fN

]
dV +

∫
Vp

R dV

=
∫

Vp

ρ (v · F + Ṅ · g)dV +
∫

σp

(v · T · ν̂p + Ṅ · H · ν̂p)dσ .

(38)

Using the chain rule for partial derivatives and noncom-
mutativity of the material time derivative and the gradient
d
dt (Si j,k ) = (Ṡi j ),k − Si j,lvl,k , we derive ḟN as

ḟN = 2Ṅi

(
∂ fN

∂Si j
Nj + ∂ fN

∂Si j,k
Nj,k

)
+ ∂ fN

∂Skl, j
Skl,ivi, j

− 2
∂ fN

∂Sik, j
Nk (Ṅi ), j . (39)
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Substituting Eqs. (34), (36), and (39) in Eq. (38) we obtain

R = vi, j

(
Ti j + ∂ fN

∂Skl, j
Skl,i

)
+ (Ṅi ), j

(
Hi j − 2

∂ fN

∂Sik, j
Nk

)

− Ṅi

(
hi − Hi j, j + 2

∂ fN

∂Si j
Nj + 2

∂ fN

∂Si j,k
Nj,k

)
. (40)

The non-negativity of the dissipation function R � 0 for
any dynamic process leads to the following expressions:

Ti j = − ∂ fN

∂Skl, j
Skl,i − p δi j + T̃i j, (41)

Hi j = 2
∂ fN

∂Sik, j
Nk + H̃i j, (42)

hi = Hi j, j − 2
∂ fN

∂Si j
Nj − 2

∂ f

∂Si j,k
Nj,k − h̃i, (43)

where p is the pressure, determined from the incompressibility
condition (32) and T̃i j , h̃i, and H̃i j are the viscous parts of the
corresponding tensors and vector. We select the negative sign
for h̃i to make all terms in Eq. (40) positive; thus h̃i is the
thermodynamic flux. Following the Leslie approach [50], we
assume that R does not depend on nonobjective (Ṅi ), j ; thus
H̃i j = 0 and Eq. (40) reduces to R = vi, j T̃i j + Ṅih̃i. Combin-
ing Eqs. (42) and (43) we obtain

hi = −2

[
∂ fN

∂Si j
−

(
∂ fN

∂Si j,k

)
,k

]
Nj − h̃i = h̄i − h̃i. (44)

Note that the static force h̄ is a reactive part of h.
We split the velocity gradient vi, j = Ai j + Wi j into

the symmetric rate of strain tensor Ai j = 1
2 (vi, j + vi, j )

and the skew-symmetric vorticity tensor Wi j = 1
2 (vi, j − v j,i )

and the viscous stress tensor T̃i j = T̃ s
i j + T̃ a

i j into the sym-
metric T̃ s

i j and the skew-symmetric T̃ a
i j parts. The latter is

determined from the angular momentum balance (37)

T̃ a
i j = 1

2 (h̃ jNi − h̃iNj ), (45)

and allows us to express R as a sum of products of the objec-

tive (frame-indifferent) thermodynamic forces Ai j and
◦

Ni =
Ṅi − Wi jNj with the corresponding thermodynamic fluxes T̃ s

i j

and h̃i

R = Ai j T̃
s

i j + h̃i

◦
Ni . (46)

Because of Eq. (45), T̃i j is also objective and the constitutive
equations can be written for T̃i j and h̃i as linear functions of

the thermodynamic forces Ai j and
◦

Ni:

T̃i j = α1NiNjNkAkl Nl + α2

◦
Ni Nj + α3Ni

◦
Nj +α4Ai j

+ α5NjAikNk + α6NiAjkNk + α7NiNjNk

◦
Nk, (47)

h̃i = γ1

◦
Ni +γ2Ai jNj + γ3NiNj

◦
Nj +γ4NiNjA jkNk, (48)

where αl and γm are the phenomenological viscous coeffi-
cients, which are functions of s = TrS = N · N and obey the
relations γ1 = α3 − α2, γ2 = α6 − α5 because of Eq. (45), and
γ2 = α3 + α2, γ4 = α7 from the Onsager reciprocal relations.

Comparison of Eq. (48) with the corresponding expression
in the EL model provides the relations between α1−6 and γ1,2

and the Leslie coefficients α
(L)
1−6 and γ

(L)
1,2

α
(L)
4 = α4, α

(L)
1 = s2α1, α

(L)
l = sαl ,

l = 2, 3, 5, 6, and γ
(L)

1,2 = sγ1,2. (49)

The remaining α7 and γ3,4 describe the viscosities associated
with the change of order parameter s and can be expressed
through the coefficients β1−3 introduced by Ericksen [7]

β1 = sα7/2, β2 = γ3/4, β3 = sγ4/2. (50)

We assume that all αl and γm in constitutive Eqs. (47) and
(48) have finite nonzero limits when s → 0. Calculations of
the Leslie coefficients α

(L)
l in Marrucci [51], Kuzuu-Doi [52],

and Osipov-Terentjev [53] models support this assumption;
the only difference is that α

(L)
1 ∝ 〈P4〉 in the Osipov-Terentjev

model instead of α
(L)
1 ∝ s2 in Eq. (49). Thus in the first

approximation, αl and γm can be considered constant for
modeling dynamic processes in systems with inhomogeneous
orientational order and defects.

(e) For surface dynamic equations, when NLC is in a cell
or capillary, the bulk dynamic Eqs. (32), (34), and (36) for
v(r, t ), N(r, t ) and p(r, t ) should be supplemented with the
surface conditions. We consider the standard geometry of
solid surfaces, which are fixed, sliding or rotating, like in vis-
cosity measurements. For the nonslipping condition v(r, t ) at
the surfaces coincides with the velocity of the solid substrate.
The nemator dynamic equation at the surface is simpler than
the bulk one, Eq. (36),

h(σ )
i = h̄(σ )

i − h̃(σ )
i = 0, (51)

because the inertial term and external forces are negligibly
small. We also neglect the effects of nonlocality in surface
interactions investigated by Durand and Virga [54] and adopt
the viscous force h̃(σ ) similar to h̃ (48), but without the terms
associated with gradients of the velocity at the surface

h̃(σ )
i = γ

(σ )
1 Ṅi + γ

(σ )
3 NiNjṄj, (52)

where γ (σ )
m are the surface viscous coefficients. The surface

viscosities γ (σ )
m are small, as the experimental data reveals that

γ
(σ )

1 /γ1 ∼ 0.01 − 1 μm [55–57] and the second term with
γ

(σ )
3 , which ∝ ṡ at the surface, is probably even smaller. Thus,

the static Eq. (31), h̄(σ ) = 0, may be also used as the nemator
boundary condition for the dynamic processes.

The slow surface processes, such as sliding and gliding,
are caused by modification of soft polymer surfaces [58–62]
or by adsorption of dopants from a liquid crystal [63]; they
can be modeled through the additional dynamic equations for
the parameters in the surface anchoring wN, Eq. (26).

IV. DISCUSSION

The proposed nemator model is not the first attempt to
describe NLCs with a vector of the variable length that
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incorporates information of the direction and the degree of
molecular arrangement. Ericksen discussed and rejected the
possibility of using the vector m = sgn(s)

√|s| n̂ because the
energy terms have different expressions for positive and neg-
ative s [7]. Lin introduced the vector u = s n̂ to study the
existence of minimizers for the single-elastic-constant version
of the nematic free energy [64]. Calderer et al. employed the
single-elastic-constant model with the vector u to investigate
properties of NLC composites with ferromagnetic inclusions
[65]. To improve numerical schemes for modeling flows in
NLCs n̂ was substituted with the variable length vector d,
and the rigid condition |n̂| = 1 was replaced with the penalty
energy term F (d) = (|d|2 − 1)2/4ε2 [66,67].

There are two drawbacks of the nemator model, which
ought to be addressed in the future. First, the presented ver-
sion of the model is not capable to describe a spontaneous
biaxial phase as well as the field-induced biaxiality [68] and
local biaxiality near semi-integer disclinations [17–19] in a
uniaxial NLC. Second, the nemator model seems inapplicable
for a uniaxial NLC with negative s, because N is imaginary.
However, the static Eqs. (29), (31), and dynamic Eqs. (36),
(51) equations for N(r, t ) look valid because the external
force g and the intrinsic forces h, Eqs. (44), (48), and h(σ ),

and Eqs. (31) and (52), also have imaginary values. The
further study should investigate the nemator model validity
for the systems with s < 0 and with mixed, s > 0 and s < 0,
regions.

In conclusion, the nemator model provides an alternative
way to analyze and simulate the static and dynamic proper-
ties of uniaxial NLCs with various patterns and defects. The
static patterns can be reconstructed as an equilibrium nemator
field N(r, t ) determined by direct minimization of the total
free energy �, Eq. (1), or by solving Eqs. (29) and (31) for
bulk h̄ and surface h̄(σ ) nemator force fields, respectively. To
study the dynamic properties, the nemator model provides the
complete set of dynamic Eqs. (32), (34), and (36) for v(r, t ),
N(r, t ) and p(r, t ), where the stress tensor T is defined by
Eqs. (41) and (47), and the intrinsic nemator force density h is
defined by Eqs. (44) and (48). For simplicity, the equations are
derived under conditions of constant density and temperature,
but the generalization is rather straightforward. The model is
suitable for a description of a nematic with point and linear
defects, because the dynamic equations do not contain spatial
derivatives of N(r, t ) and are either symmetric, Eqs. (32) and
(34), or antisymmetric, Eq. (36), with respect to the local flip
N ↔ −N. In the usually applied noninertial limit, I = 0 in
Eq. (36), the equations contain only first time derivatives of
v(r, t ) and N(r, t ), and the numerical modeling simplifies.
Within this model, the interaction of N with applied electric
and magnetic fields can be described either by the intrinsic
nemator force density h via including interaction in fN or by
the external nemator force g. The former description is prob-
ably more convenient for dc and stationary high frequency
ac fields, whereas the latter is required for nonstationary
conditions.

The proposed nemator model is equivalent to the director
and Q-tensor models in their validity domains for uniaxial
NLCs. This equivalency justifies applicability of the nemator
model in the entire uniaxial nematic phase and allows one to
determine the nemator model material parameters from the
existing experimental data.

In our opinion, the proposed nemator representation and
model possess certain advantages over the existing director
and Q-tensor representations and models. Comparison of the
director n̂ and nemator N = √

s n̂ representations reveals that
the latter is more efficient because it contains the additional
information on the uniaxial orientational order s and identifies
linear and points defect cores in uniaxial NLCs from the con-
dition N = 0, whereas n̂ is undefined in the defect cores. The
equations in the nemator model contain spatial derivatives of
the dyadic tensor S = N ⊗ N rather than derivatives of N, and
thus are insensitive to the flip, N → −N in any point of space.
This feature allows one to simulate semi-integer disclinations
and provides a broader range of applicability for the nemator
model than for the OF, gOF, and EL models. Currently, semi-
integer disclinations are simulated in Q-tensor representation
using the LdG and Beris-Edwards models; however, N (three
variables) provides a more efficient representation than Q (five
variables) and the dyadic nature of the S tensor allows one to
avoid a polynomial expansion and to build the free energy and
dynamic equations in the complete form.

The nemator model can also serve as a starting point to
build a model for active uniaxial soft matter systems, because
it (a) uses the vector N(r, t ), which defines the amplitude
and direction of orientational ordering in a uniaxial nonpolar
system and has limited length |N(r, t )| � 1 controlled by the
proposed microscopic part of free energy f (micro)

N , Eq. (5),
where T ∗ and the temperature dependences of coefficients a′,
b′, and c′ can be chosen according to specifics of an active
system; (b) is based on the continuous mechanics approach
and balance equations that allows one to incorporate naturally
the required active forces and energy terms; (c) provides the
advanced representation, Eq. (26), of the surface anchoring;
(d) contains the material parameters, which are constant in the
first approximation and, therefore, convenient for modeling;
and (e) describes generation and recombination of defects.
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