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Abstract—This article is motivated by the lack of empirical
data on the performance of commercially available Society of
Automotive Engineers level one automated driving systems. To
address this, a set of car following experiments are conducted to
collect data from a 2015 luxury electric vehicle equipped with a
commercial adaptive cruise control (ACC) system. Velocity, rela-
tive velocity, and spacing data collected during the experiments
are used to calibrate an optimal velocity relative velocity car
following model for both the minimum and maximum following
settings. The string stability of both calibrated models is assessed,
and it is determined that the best-fit models are string unstable,
indicating they are not able to prevent all traffic disturbances
from amplifying into phantom jams. Based on the calibrated
models, we identify the consequences of the string unstable ACC
system on synthetic and empirical lead vehicle disturbances,
highlighting that commercial ACC platoons of moderate size can
dampen some disturbances even while being string unstable. The
primary contributions of this article are the development of a
data-driven approach to calculate string stability of ACC systems,
and the collection and interpretation of a dataset to understand
the car following behavior of a commercial ACC system.

Index Terms—Adaptive cruise control; phantom traffic jams;
field experiments.

I. INTRODUCTION

Traffic jams that arise in the absence of bottlenecks are
often referred to as phantom traffic jams [1], [2]. These may
be stop-and-go waves where the vehicles come to a complete
stop, or simply oscillatory traffic conditions that amplify as
they propagate against the flow of traffic. While there are
many common triggers that lead to phantom traffic jams, the
seminal experiments of Sugiyama, et al. [3], [4] demonstrated
that human driving behavior alone can be sufficient to trigger
these waves. This finding was later verified by Wu, et al. [5],
[6], who used a similar experimental setup and observed traffic
waves emerging from human driving behavior, as well as
Jiang, et al. [7], [8], who conducted a 51 vehicle platoon
experiment and observed the emergence of phantom jams as
a result of human driving behavior. These jams increase fuel
consumption and emissions of the traffic flow [9], [10].

To avoid phantom jams, it is important for a platoon of
vehicles to be string stable, meaning that small perturbations
from an equilibrium flow are dissipated as they propagate from
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one vehicle to the next along the platoon [11]. The question of
interest for phantom traffic jams is thus identifying whether
a platoon of vehicles is string stable. This can be done by
analyzing the car following dynamics of each vehicle in the
platoon [12]. Thus, assuming a homogeneous platoon where
all vehicles follow the same dynamics, analyzing the behavior
of a single vehicle pair is sufficient to identify the string
stability of the overall vehicle platoon.

Interest in modeling vehicle dynamics at the individual
vehicle level started in the 1950s when an expanding highway
system promised to improve mobility, and it became clear
that data was required to understand traffic at the level of
the individual vehicle [13]. Pioneering experimental efforts by
researchers at General Motors collected velocity and spacing
data to characterize driving behavior [14]–[17]. The early
experiments formed the basis of microscopic traffic flow
modelling, an area of study with numerous popular models
that followed such as the Gipps model [18], the intelligent
driver model [19], and the optimal velocity model (OVM) [20].
The latter two models, among others, are able to reproduce the
same type of instabilities seen in phantom jams [21], [22].

One approach to prevent phantom jams from arising is
to use connectivity and longitudinal vehicle control to form
string stable vehicle platoons. Interest in platoons of string
stable vehicles has existed for a while and it has been known
that adding connectivity can guarantee stability and prevent
phantom jams from arising within the platoon. This has been
demonstrated both in theory [11], [23]–[26] and experimen-
tally [27]–[30].

More recently there has been interest in how a small
number of autonomous vehicles (AVs) are able to achieve
string stability of a platoon even if not all vehicles in the
flow are autonomous or have connectivity (e.g., mixed human
and autonomous flows). This too has been considered both
in theory [31]–[34] and experimentally [9], [35], [36]. In
the experiments conducted by Stern, et al. [9], a single
autonomous vehicle in a stream of 20 human-piloted vehicles
was able to stabilize the traffic flow and dampen stop-and-go
waves. Recently, Jin, et al. [36] demonstrated experimentally
that substantial improvements in fuel efficiency and safety may
be achieved when only some vehicles use connected adaptive
cruise control (ACC).

Before vehicles become fully autonomous, it is likely that
we will start to see an increasing number of Society of Au-
tomotive Engineers (SAE) level one and level two automated
vehicle systems on commercially available vehicles [37], [38].
When ACC controllers are designed with traffic stability in
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mind, they have been shown to have positive effects on the
traffic flow [32] and on vehicle emissions [35], [39], even at
a low market penetration rate.

While ACC vehicles (without connectivity) have tradition-
ally been considered a premium feature in luxury vehicles,
more recently they have become a standard feature on many
commercially available vehicles in the US. Through the second
quarter of 2018, 16 of the 20 best selling cars in the US
were available with ACC, and several of these vehicles were
equipped with ACC as a standard feature [40]. This indicates
the extent to which ACC vehicles are likely to become a
common sight on US highways. Therefore, it is crucial to
have a better understanding of the traffic stability implications
of ACC vehicles that are now commercially available.

In the early work by Bareket, et al. [41], a methodology
is proposed and applied by instrumenting vehicles with dif-
ferential GPS receivers to collect relevant positioning and
velocity data. After conducting a series of experiments on
three ACC equipped vehicles in 2003, the work concluded,
“Based on measured characteristics of ACC systems, sim-
ulation analyzes [sic] indicate that currently-available ACC-
equipped vehicles will have string-performance qualities that
are characterized by substantial overshoots in velocity and
range clearance in response to changes in the velocity of the
preceding vehicle” [41]. More recently in 2014, Milanés, et
al. [42] instrumented a platoon of ACC vehicles and collected
experimental data that also indicated the tested ACC system
was string unstable.

One approach to assessing the string stability of an ACC
system is outlined by Oncu, et al. [43] where the perturbation
frequencies that are amplified from one vehicle to the next
along the platoon of vehicles are identified. This approach
requires the collection of data from a platoon of at least
two identical ACC vehicles in addition to a lead vehicle to
observe amplification in the spacing disturbance. To assess the
string stability with just a single ACC vehicle, we consider an
approach in which a car following model is calibrated to data
collected from an ACC vehicle. The calibrated model is then
analyzed for string stability.

Our present work builds on the previous efforts to model
the car following behavior of ACC systems and addresses
the question of whether a recent commercial ACC system is
unstable. Our main contribution is to introduce a model-based
approach to assess the string stability of the ACC following
vehicle. We also provide an additional dataset that can be
used to understand the car following behavior of commercial
ACC systems. While the components of the string stability
analysis have been considered individually for simulation and
for stability analysis, to the best of our knowledge this is the
first time these are combined for a data-driven method to assess
string stability. Our main finding is that the tested commercial
ACC system is string unstable, indicating that some distur-
bances will be amplified. We also show the consequences of
string unstable ACC platoons on synthetic and empirical traffic
disturbances.

The string stability of the commercial ACC system is
determined from a series of experimental car following tests.
Using the collected data, a model of the ACC system is

calibrated to and then used to determine the string stability of
the vehicle and assess the consequences. Given the sparsity of
experimental work on the stability of commercially available
ACC vehicles, this article provides important data and findings
that can help characterize the impacts of these systems on
phantom traffic jams. We caution the reader that the results
presented here do not indicate whether or not ACC vehicles
perform better or worse than human drivers, who may also
have string unstable dynamics [3].

The remainder of the article is outlined as follows. In
Section II, we review a common car following model that
can be used to describe the dynamics of ACC equipped
vehicles and compute the parameter regimes under which
the model is string stable. In Section III, an overview of
the experimental setup, including vehicle instrumentation, and
description of the testing procedure is provided. The methods
used to estimate the model parameters from the data collected
during the experiments are given in Section IV. In Section V,
the main results are presented indicating that under the best fit
parameters, the ACC system of a recent, electric luxury sedan
is string unstable, building on the findings reported on earlier
commercially available ACC systems in 2014 [42]. We further
illustrate the practical consequences of the system on realistic
traffic disturbances.

II. ACC DYNAMICAL MODEL AND STABILITY ANALYSIS

In this section, modeling and analysis techniques are in-
troduced that allow for the simulation and stability analysis
of ACC-equipped vehicles. We first review a specific car
following model and determine the parameter regimes under
which the ACC model is string stable and string unstable. The
specific model considered here is the optimal velocity relative
velocity (OVRV) car following model. A brief numerical
example shows the impact of the stability on the behaviour
of a platoon of vehicles with ACC engaged.

A. ACC model
In general, high fidelity vehicle dynamics coupled with

adaptive cruise control systems can be complex and difficult to
replicate in simulation. The controllers may be implemented
with logic determined by the vehicle state and environ-
ment [41] and depend on factors such as the engine RPM, the
engine temperature, and the road grade. As such, approaches
to completely replicate the exact control logic on commercial
vehicle systems may be very difficult without complete infor-
mation about the internal vehicle state. Moreover, it may not
be necessary to characterize the overall impacts of the ACC
system on traffic flow stability. Consequently, we employ a car
following model of an ACC vehicle, which models the vehicle
dynamics and ACC as a single system. The model is able to
reconstruct the observed behavior of the ACC systems in field
tests. The benefits of this simple model are that it is easy to
analyze and can readily be calibrated to field data.

Specifically, the adaptive cruise control is considered to be
a behavioral rule that governs the acceleration v̇(t) of the
following vehicle and is of the general form:

ṡ(t) = ∆v
v̇(t) = f(s, v,∆v),

(1)
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where v(t) is the velocity of the follower, ∆v := vl− v is the
difference between the velocity of the leader (denoted vl) and
velocity of the follower, and s is the space-gap. The space-gap
is defined as the distance between the rear bumper of the lead
vehicle and the front bumper of the follower vehicle. It differs
from the spacing (front bumper of the leader to front bumper
of the follower) by the length of the lead vehicle. Note that
∆v > 0 indicates that the lead vehicle is going faster than the
following vehicle.

One common car following model used to describe human
driving dynamics is the optimal velocity (OV) model [20]. The
model takes the form:

v̇(t) = α (V (s)− v) . (2)

The OV model above represents a relaxation of the follower
velocity to a desired (“optimal”) velocity prescribed by the
optimal velocity function V based on the current spacing to
the vehicle in front, and α is a model parameter. Note that
the name of the optimal velocity model comes from the fact
that the vehicle has an “optimal” velocity function (V (s)) for
a given space gap, and is not the result of optimization.

A possible extension to the OV model is to add a term that
relaxes the follower velocity to the velocity of the leader. This
results in an OV model with a relative velocity term and takes
the form:

v̇(t) = α (V (s)− v) + β (∆v) . (3)

In the OVRV, the parameters α and β control the trade-
offs between following the optimal velocity and following the
leader velocity.

For the purposes of modeling adaptive cruise control vehi-
cles, we adopt the OVRV model with a special case of the OV
component (2) corresponding to a constant effective time-gap
term [44]–[46]:

v̇ = f(s, v,∆v) = k1(s− η − τev) + k2(∆v), (4)

where η is the jam distance (space-gap when vehicles are
completely stopped), the parameter τe is the desired effective
time-gap, k1 is the gain parameter on the constant effective
time-gap term, k2 is the gain parameter on the relative velocity
term. Note that the model (4) operates under a linear optimal
velocity function V (s) := (s − η)/τe and with α := k1τe.
It is considered a constant effective time-gap term because
the space-gap and velocity are adjusted based on the velocity
such that the effective time-gap τe is maintained. It is well
known that constant time-gap based controllers are important
to overcome the inherent limitations of linear controllers to
achieve a string stable constant spacing policy [47]. It is
frequently used to model ACC systems because of its reported
goodness of fit to simulate real trajectories of ACC equipped
vehicles [45], [46]. Other models have also been considered to
model ACC vehicles but were found to be less effective [42].

We briefly note the importance of using an effective time-
gap by explicitly including the jam distance term η in (4),
rather than the time-gap directly. Let S(v) := vτ(v) and
consider an acceleration model v̇(t) = k(s−S(v)), where τ(v)
is the desired time-gap. In the special case where the time-gap

τ(v) is a constant, the cars will collide at zero velocity (i.e.,
the car will continue to accelerate until s = S(0) = 0). The
following nonlinear time-gap model,

τ(v) = η/v + τe, (5)

yields a spacing model S(v) = η + τev, and an acceleration
model of v̇(t) = k(s− η− τev) which is precisely a constant
effective time-gap model with effective time-gap of τe. This
turns out to be important when one fits empirical data collected
from ACC vehicles in the sense that a nonlinear time-gap
model (5) is in fact equivalent to a constant effective time-
gap model.

B. Stability analysis

In this work the string stability of ACC enabled vehicles
is examined. In broad terms, string stable driving behavior
is important to attenuate disturbances and prevent phantom
jams from appearing from initially smooth and uniform flow.
When a leading vehicle experiences a change in velocity in
a string stable platoon, the following vehicles will experience
a decreasing magnitude of response to the disturbance as it
propagates through the platoon. In the other case where the
platoon is string unstable, this perturbation will amplify as it
propagates along the platoon.

We first assume the ACC vehicle dynamics satisfy the
following rational driving constraints (RDC) [12]:

∂f

∂s
:= fs = k1 ≥ 0, (6)

∂f

∂∆v
:= f∆v = k2 ≥ 0, (7)

∂f

∂v
:= fv = −k1τe ≤ 0. (8)

These intuitive conditions imply that as the spacing or relative
velocity increase, the follower should accelerate, and when the
velocity decreases the follower will decelerate.

The string stability of the following model of the ACC is
considered:

ṡ(t) = ∆v
v̇(t) = k1(s− η − τev) + k2(∆v) + d,

(9)

in which d represents a disturbance to the acceleration. The
corresponding velocity to velocity (also the space-gap to
space-gap) transfer function reads [48]:

Γ =
zk2 + k1

z2 + z(k2 + k1τe) + k1
, (10)

where z := jω and ω ≥ 0 is the frequency. A sufficient
condition for string stability of (9) is:

|Γ(jω)| =

√
ω2k22 + k21

(k1 − ω2)
2
+ ω2 (k2 + k1τe)

2 ≤ 1, ∀ω ≥ 0,

(11)
see [48] for details. The condition (11) is equivalent to the
well known conditions [12]:
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Fig. 1. Stability criterion λ2 for a range of gain values k1 and k2. The model
is string stable for λ2 < 0, indicated in grey. For large τe, the model is string
stable but λ2 approaches 0.
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e

2
+ k1k2τe − k1

]
< 0. (12)

To evaluate either condition, it suffices to compute the partial
derivatives fs = k1, fv = −k1τe, and f∆v = k2, which
depend only on the model parameters. Note that the jam-
spacing η does not affect the string stability of the model.

As an illustration in Figure 1, we determine the stability
of (9) for ranges of k1, k2, and τe. For models with small
k1 and k2, a larger desired effective time-gap is necessary for
string stability. Figure 1 shows that increasing the effective
time-gap τe may initially reduce λ2 before eventually increas-
ing λ2. While some combinations of model parameter values
yield a string unstable system, under the RDC the real parts of
the poles and zeros of the transfer function (10) remain on the
left half plane, and thus the system remains minimum phase.
Note that for large values of τe the system is stable but λ2

approaches 0. However, a consequence of a higher effective
time-gap is that the traffic stream will have a lower throughput,
since flow is inversely related to time gap.

An illustration of the consequences of string instability are
provided in the form of a simulation where nine ACC equipped
vehicles form a platoon behind a lead vehicle. All following
vehicles proceed using the dynamical model in (4). The lead
vehicle drives at a constant velocity then experiences a step-
function decrease in velocity, and then after some time a
following step-function increase back to the original velocity.
In Figure 2, each ACC equipped vehicle is simulated using (4)
with values of k1 = 0.5, k2 = 0.5, η = 8, with the left figure
using an effective time-gap τe = 0.75 seconds and the right
figure using τe = 3.2 seconds. It is easy to verify that for
k1 = 0.5 and k2 = 0.5 the two effective time-gaps represent
respectively a string unstable system (left) and a string stable
system (right). The left simulation displays significant over-
shoot both on the braking event and the acceleration event.
The right simulation shows for the higher τe that the platoon
does not overshoot either the braking or acceleration event
and each following vehicle has a smoother response than the
preceding vehicle.
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Fig. 2. Effect of varying τe on platoon string stability. The lead vehicle in red
is followed by a platoon of nine ACC vehicles under the common parameters
k1 = 0.5, k2 = 0.5, and η = 8. On the left, the effective time-gap τe = 0.75
s results in a string unstable platoon. Under a larger time-gap of τe = 3.2 s,
the platoon on the right is string stable.

Fig. 3. Vehicles used during experiment. Lead vehicle drives pre-specified
velocity profile and following vehicle drives behind lead vehicle with ACC
engaged.

III. EXPERIMENTAL OVERVIEW AND TEST VEHICLE
DESCRIPTION

In this section we present the design and execution of
a series of field experiments with the goal to observe the
following dynamics of an ACC-equipped following vehicle.
Each experiment involves a lead vehicle that executes a pre-
determined velocity profile and a following vehicle that fol-
lows the lead vehicle under adaptive cruise control (Figure 3).

The ACC system in the commercially-available vehicle
tested in this experiment has two input settings: desired
velocity and desired following setting (a minimum following
setting, a maximum following setting, and several intermediate
following settings, which relate to the time gap in the OVRV
model (5)). The desired velocity (to the nearest mile per hour),
and the following setting are selected by the driver. Data is
collected with the ACC engaged on either the closest or the
furthest following setting and the ACC desired velocity set at
5 mph above the maximum lead vehicle velocity for the given
test. The ACC velocity setting ensures the vehicle remains
in gap closing mode during the data collection. Tests are
conducted on flat roadways with no hills or other topographic
abnormalities.

Each vehicle is equipped with a U-blox EVK-M8T GPS
evaluation kit that is capable of tracking the position and ve-
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locity of the vehicle throughout the experiment at a frequency
of up to 10 Hz. Each evaluation kit is connected to a laptop
computer, which runs a script to log the data as it is recorded.

In each test, the vehicles are arranged with the lead vehicle
in front under cruise control with the velocity selected by the
driver, while the following (test) vehicle operates under control
of the ACC system. A total of 18 tests are run using one of nine
different lead vehicle velocity profiles and either the minimum
or maximum following setting on the ACC follower vehicle.
In each test, the lead vehicle uses cruise control to execute
the desired velocity profile for the test. In conditions where
cruise control is not available on the lead vehicle (i.e., for lead
vehicle velocity profiles below 28 mph), the velocity profile is
executed manually. The velocity profiles consist of a variety
of steady car following conditions (i.e., where the lead vehicle
follows a fixed velocity for a long period of time), and more
dynamic conditions where the lead vehicle changes velocity
quickly. The specific profiles (labeled A through I) are:

• velocity profile A: low-velocity step test, the lead vehicle
travels at velocities ranging from 5 mph (2.2 m/s) to
30 mph (13.4 m/s) increasing the velocity by 5 mph at
each step and holding the velocity for 60 seconds before
moving to the next velocity. The same step function is
followed again when decreasing the velocity from 30 mph
to 5 mph.

• velocity profile B: medium-velocity step test, the lead
vehicle travels at velocities ranging from 35 mph (15.6
m/s) to 55 mph (24.6 m/s) increasing the velocity by 5
mph at each step and holding the velocity for at least 60
seconds before moving to the next velocity. The same step
function is followed again when decreasing the velocity
from 55 mph to 35 mph.

• velocity profile C: high-velocity step test, the lead vehicle
travels at velocities ranging from 60 mph (26.8 m/s) to
70 mph (31.3 m/s) increasing the velocity by 5 mph at
each step and holding the velocity for 60 seconds before
moving to the next velocity. The same step function is
followed again when decreasing the velocity from 70 mph
to 60 mph.

• velocity profile D: low-velocity oscillatory, the lead
vehicle oscillates between 30 mph and 20 mph (8.9 m/s)
holding each velocity for 30 seconds.

• velocity profile E: medium-velocity 5 mph oscillatory,
the lead vehicle oscillates between 50 mph (22.4 m/s) and
45 mph (20.1 m/s) holding each velocity for 30 seconds.

• velocity profile F: medium-velocity 10 mph oscillatory,
the lead vehicle oscillates between 50 mph and 40 mph
(17.9 m/s) holding each velocity for 30 seconds.

• velocity profile G: high-velocity 5 mph oscillatory, the
lead vehicle oscillates between 70 mph and 65 mph (29.1
m/s) holding each velocity for 30 seconds.

• velocity profile H: high-velocity 10 mph oscillatory, the
lead vehicle oscillates between 70 mph and 60 mph
holding each velocity for 30 seconds.

• velocity profile I: medium-velocity dip, the lead vehicle
drives at 50 mph and conducts a series of rapid velocity
decreases by 5 mph, 10 mph, 15 mph (6.7 m/s), and 20

mph holding each decreased velocity for 5 seconds and
returning to 50 mph for 45 seconds after each velocity
decrease.

IV. MODEL CALIBRATION METHODOLOGY

A. Calibration of the ACC following dynamics

In this section we outline how the ACC model (4) is
calibrated to the data collected during the driving experiments
to determine the parameters k1, k2, τe, and η that yield the best
reconstruction of the observed data. The calibration is posed
as a simulation-based optimization problem in which an error
function is minimized by selecting optimal model parameters.
In this work we consider an error metric based on the root
mean square error (RMSE) of the velocity:

RMSE =

√
1

T

∫ T

0

(vm(t)− v(t))2dt (13)

Note that in Milanés and Shladover [42], a mean absolute
error (MAE) in velocity is considered. However, both MAE
and RMSE were compared were found to produce similar
models. In (13) the term v(t) is the simulated velocity of the
following vehicle at time t, vm(t) is the measured velocity
of the following vehicle in the data at time t, and T is
the duration of the data collection period. Practically, in
implementation, the RMSE is computed at the discrete time
steps when measurements are collected (10 Hz).

The parameter values for each model (i.e., minimum and
maximum following settings) are found using a constrained
interior-point search method as implemented in the fmincon
function in Matlab. The constraints consist of the initial
spacing and velocity conditions, the assumed form of the
dynamics of the adaptive cruise control system, and the
rational driving constraints, which constrain the model to be
physically realistic. For the ACC model, the rational driving
constraints and safety imply k1, k2, τe, and η are all non-
negative. The simulation of the follower vehicle trajectory is
solved using an explicit Euler step at 10 Hz (i.e., the sampling
rate at which the data is collected). An explicit Runge-Kutta
scheme [49] was also considered, but was found to be slower
while producing calibrated parameter values that were not
substantially different from optimal parameters found using
an explicit Euler step.

Summarizing, the parameter values k1, k2, τe, and η are
found by solving the following optimization problem con-
strained by the ACC dynamics, the initial conditions, and the
rational driving constraints:

minimize
s,v,k1,k2,τe,η

:
√

1
T

∫ T

0
(vm(t)− v(t))2dt

subject to: v̇(t) = f(s, v,∆v)
ṡ(t) = vℓ,m(t)− v(t)
s(0) = sm(0)
v(0) = vm(0)
k1 ≥ 0
k2 ≥ 0
τe ≥ 0
η ≥ 0.

(14)
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In (14), the term vℓ,m(t) denotes the measured velocity of
the lead vehicle, which is used to evolve the spacing between
the real lead vehicle and the simulated following vehicle. The
initial space-gap s(0) and the initial following velocity v(0)
are set as the initial measured spacing and initial measured
following velocity of the ACC respectively.

The optimization problem (14) is nonlinear due to the fact
that the state variables s, v depend on the parameters to be
calibrated and consequently are also decision variables in the
optimization problem. The nonlinear optimization problem
potentially has local minima, so problem (14) is solved 100
times using randomly initialized parameters. The parameter
values that yield the lowest RMSE out of the 100 runs are
selected as the optimal parameter set for the model.

V. RESULTS

In this section we first provide an analysis of the accuracy
of the GPS units that are used to measure vehicle positions
and velocity. Next the calibration of the model (4) for both
following settings is presented, and the results are compared to
the measured ACC vehicle trajectory data. Finally, the stability
of the calibrated dynamical models for the minimum and max-
imum following setting are determined and its consequences
are described.

A. Validation of GPS measurements

The U-blox evaluation kit GPS units are tested for relative
velocity and positional accuracy by placing two U-blox sensors
a known distance apart on the same vehicle and driving this
vehicle on a roughly 6.5 km (4 mile) test to observe the GPS
measured distance and difference in velocity throughout the
drive.

The distance between the two antennae mounted on the
same vehicle is computed using the Haversine formula [50].
The mean recorded sensor distance is 1.37 m while the actual
sensor distance is 0.94 m. This represents a mean position
accuracy of 0.43 m, which corresponds to 1–3% error when
compared to a typical following distance of between 15 m
and 60 m, depending on the velocity. The mean absolute
difference in velocity between the two sensors is 0.06 m/s
(0.13 mph), which is an error of less than 3% of the lowest
velocity observed in the tests with lower relative errors at
higher velocity. The distribution of the relative position and
velocity differences are shown in Figure 4. Note that since
the tests were conducted on flat terrain and on a straight road,
there are few changes in pitch and yaw of the sensors that
could influence the measurements. Due to the low relative
error between sensor velocity and position measurements, the
U-blox EVK-M8T is a suitable GPS unit for recording position
and velocity data.

B. Model calibration and validation

In this section, the calibration of the dynamical model in
(4) to the experimental data collected is presented. This is
done using the experiments from Section III and the calibration
routine outlined in Section IV.
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under the minimum following setting for the velocity (top) and space-gap
(bottom) for velocity profile F. The first 200 s is training data, while the
remainder is the hold out test data.
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Fig. 6. Comparison between the empirical data and the calibrated ACC model
under the maximum following setting for the velocity (top) and space-gap
(bottom) for velocity profile F. The first 200 s is training data, while the
remainder is the hold out test data.
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velocity Following Duration Distance Max velocity Min velocity velocity train velocity test Space-gap Space-gap
profile setting [s] [km] [km/h] [km/h] error [m/s] error [m/s] train error [m] test error [m]

A minimum 620 5.7 49.9 13.8 0.13 0.14 0.86 0.83
B minimum 832 11.3 88.1 53.4 0.17 0.11 1.78 0.98
C minimum 443 12.5 113.1 93.3 0.20 0.13 2.01 1.29
D minimum 470 5.4 51.5 29.5 0.27 0.26 1.25 1.42
E minimum 370 7.7 81.4 68.4 0.21 0.19 0.87 0.88
F minimum 402 8.0 81.3 62.0 0.24 0.25 0.84 0.84
G minimum 451 13.3 113.1 99.6 0.28 0.28 1.87 1.9
H minimum 428 12.2 113.3 91.9 0.32 0.32 2.16 2.23
I minimum 255 5.4 81.4 51.8 0.21 0.30 0.99 1.43

Summary minimum – – – – 0.23 0.22 1.51 1.37

A maximum 551 4.8 49.2 16.3 0.13 0.16 2.87 2.2
B maximum 744 11.2 89.8 53.1 0.22 0.11 2.99 1.28
C maximum 458 12.9 113.5 92.7 0.27 0.13 2.84 1.56
D maximum 409 4.7 49.4 31.0 0.32 0.30 2.66 2.71
E maximum 383 7.9 81.9 68.4 0.23 0.26 2.48 2.48
F maximum 391 7.8 81.7 62.2 0.21 0.21 3.27 3.2
G maximum 496 14.6 113.7 98.8 0.40 0.44 3.59 3.97
H maximum 498 14.2 113.7 91.9 0.41 0.42 3.42 3.55
I maximum 307 6.6 81.7 53.7 0.26 0.37 2.56 2.66

Summary maximum – – – – 0.28 0.30 3.00 2.77

TABLE I
SUMMARY STATISTICS FOR THE FOLLOWING VEHICLE IN EACH EXPERIMENT.

Following k1 k2 τe η λ2 String
[1/s2] [1/s] [s] [m] stability

minimum 0.0782 0.4445 0.5162 8.3365 70.7 unstable
maximum 0.0131 0.2692 1.6881 7.5699 8.36 unstable

TABLE II
CALIBRATED MODEL PARAMETERS AND RESULTING STRING STABILITY

For each following setting, we split each velocity profile in
half. The first half of each velocity profile is used for training
data, and the second half of each velocity profile is used
as the hold out test set. A single model for each following
setting is calibrated across all of the velocity profiles. The
overall training and test errors are reported as the summary
values in Table I, and the best-fit calibrated model parameters
are presented in Table II. In addition to the RMSE velocity
error (13), which is used as the performance measure to
determine the best fitting parameters, we also report the space-
gap RMSE errors.

For the minimum following setting, the RMSE training
error across all velocity profiles is 0.23 m/s and 1.51 m for
the velocity and space-gap, respectively. The test errors for
the minimum following setting are 0.22 m/s and 1.37 m,
which is slightly lower than the training error. The overall
magnitude of the training and test errors are small and agree,
indicating the model is both a good fit and is not overfitting the
data. Exploring the performance of the model on the different
velocity profiles, the lowest velocity test errors occur on the
step tests (A, B, and C) that are near equilibrium, while
the lowest space-gap errors occur on the medium velocity
oscillatory tests (E and F). To help interpret the overall quality
of fit, in Figure 5 the velocity and space-gap are plotted for
all of test F (medium velocity oscillatory), which has velocity
(0.25 m/s) and space-gap (0.84 m) test errors. The figure shows
that the calibrated model agrees with the observed data, both

for the training data (the first half of the test) and for the test
data (the second half).

For the maximum following setting, a new model is cal-
ibrated and the overall quality of fit is slightly worse than
the minimum following setting. The RMSE training errors are
0.28 m/s and 3.00 m for the velocity and space-gap, while the
test errors are 0.30 m/s and 2.77 m. Again the training error
and test errors are similar, indicating that the model is not
overfitting the data. We again show the performance of the
model on velocity profile E (medium velocity oscillations),
which has velocity (0.26 m/s) and space-gap (2.48 m) test
RMSE errors.

The calibrated model parameters are also validated by
comparing the velocity and space-gap observed in the data
with the velocity and space-gap relationship that results from
the calibrated model. This is presented in Figure 7, where the
relationship between velocity and space-gap resulting from
the calibrated models for both the minimum and maximum
following setting closely agree with the experimental data.
The y-intercept, which corresponds to the jam distance η,
agree for both the minimum and maximum following settings.
The difference in slopes corresponds to the different constant
effective time-gaps (0.5 s for the minimum following setting,
and 1.7 s for the maximum setting).

C. String stability of calibrated models

In this section, the stability of the calibrated models is
calculated and discussed. First, the string stability criterion
(12) is calculated for each model. For the minimum following
setting model under the calibrated parameters from Table II,
λ2 = 70.7, and for the maximum following setting model,
λ2 = 8.36. Since λ2 is non-negative for both the minimum
and maximum following setting models, both settings are
string unstable. This result indicates that under either following
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setting, perturbations to the traffic state may be amplified in
magnitude as they propagate through the platoon.

These results can be further explained by examining the
Bode plots of the calibrated models (Figure 8). The Bode plot
is generated for the velocity to velocity transfer function (10),
evaluated using the calibrated model parameters. The ampli-
tude of the transfer function in dB is given as a function
of the frequency, where a positive amplitude indicates that
a disturbance at a given frequency will grow in magnitude as
it propagates through the platoon, while a negative amplitude
indicates that the disturbance will decay (see (11)). The ACC is
string stable provided the amplitude of the transfer function is
less than 0 dB for all frequencies. It can be seen from Figure 8
that both models have portions of the frequency domain with
a positive amplitude and as such, are string unstable.

While it is found from above analysis that the ACC sys-
tem in consideration is string unstable under both following
settings, there is a range of frequencies over which both
ACC following settings will amplify disturbances, and also a
range over which both ACC systems will dissipate them. For
the minimum following setting, disturbances with frequencies
less than 0.358 rad/s are amplified, while larger frequency
disturbances will be dissipated along the platoon. Under the
maximum following setting, the same is true for disturbances
of frequency of 0.118 rad/s. The largest amplitude (1.25 dB)
for the minimum following setting occurs at ω = 0.204
rad/s, while the largest amplitude (0.386 dB) for the maximum
following setting occurs at ω = 0.062 rad/s.

To further illustrate that some frequencies are dissipated

Fig. 9. A simulation of 10 ACC vehicles for both minimum and maximum
settings following a lead vehicle executing a sinusoidal velocity profile at
ω = 0.204 rad/s. The minimum following setting amplifies the perturbations,
while the maximum setting dampens them.

even with a string unstable ACC system, Figure 9 shows the
response of a 10 vehicle platoon to a lead vehicle executing
a sinusoidal velocity pattern. The lead vehicle (shown in red)
drives for 20 s with a velocity of 20 m/s with all following ve-
hicles under ACC initialized at the corresponding equilibrium
velocity and space-gap. After 20 s, the lead vehicle velocity
follows a sinusoidal profile centered around the equilibrium
velocity with a magnitude of 1 m/s and ω = 0.204 rad/s, which
is where the minimum following setting transfer function has
the largest amplitude. The transfer function for the maximum
following setting has a negative dB amplitude, meaning it will
dissipate an oscillation of this frequency. As can be seen in
Figure 9, the minimum following setting ACC amplifies the
oscillation along the platoon, while the maximum setting ACC
dissipates the disturbance.

D. String unstable platoons following empirical lead vehicle
velocity profiles

In order to give a better understanding of the implication of
the string instability of the calibrated models, a long ACC pla-
toon is simulated following a lead vehicle driving according to
the recorded velocity profile data from test I (medium-velocity
dips). The lead vehicle velocity profile from test I represents
a sudden slowdown by the lead vehicle and reflects a realistic
braking event in the traffic flow that could trigger a phantom
jam. Each vehicle in the ACC platoon is simulated using
both the calibrated parameters under the minimum following
setting, and the parameters for the maximum following setting.
From Figure 10, we observe that the sudden braking event is
amplified by the 15 vehicle ACC platoon under the minimum
following setting, which is a consequence of the string unstable
ACC. Interestingly, for the maximum following setting, the 15
vehicle ACC platoon initially dampens the disturbance, even
though the ACC system is string unstable. However, for longer
platoons (e.g., more than a 30 vehicle platoon), the velocity
perturbation will eventually begin to grow again ultimately
amplifying the initial disturbance. The consequence of the
initial decay is that the overall magnitude of the disturbance
is small for moderate sized platoons.
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Fig. 10. Consequences of lead vehicle disturbance following velocity profile
I for a 30 vehicle platoon for the minimum following setting and maximum
following setting. The minimum following setting amplifies the disturbance
while the maximum setting initially dampens them (before amplifying them
for longer platoons).

VI. CONCLUSIONS

In this work, car following experiments are conducted
with a luxury electric sedan with a commercially-available
ACC system to collect data and fit a car following model
that approximates the dynamics of the ACC system under
minimum and maximum following settings. The system is
found to be string unstable, in line with the distinct com-
mercial ACC system reported in Milanés and Shladover in
2014 [42]. Consequently there are disturbance frequencies that
are amplified as they propagate from one vehicle to another
in a platoon. We also show that under practical disturbances
such as a slow down event, the string unstable ACC systems
are able to dampen disturbances for moderate sized platoons,
even though they are eventually amplified for longer platoons.

Design of ACC systems with guaranteed string stability
has been previously studied with many innovative approaches
being considered [29], [30], [45], [51]. However, these results
depend on a proper characterization of the vehicle dynamics
so that the designed controllers achieve string stability during
implementation to real vehicle platforms. Moreover, the string
stable control laws do not explicitly consider other design
criteria such as fuel consumption and rider comfort. The
finding that commercially-implemented ACC systems are not
string stable indicates further research is needed on advanced
ACC systems to achieve string stability that meet requirements
for commercial implementations.
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