TRAFFIC RECONSTRUCTION USING AUTONOMOUS VEHICLES *
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Abstract. We consider a partial differential equation - ordinary differential equation system
to describe the dynamics of traffic flow with autonomous vehicles. In the model the bulk flow
is represented by a scalar conservation law, while each autonomous vehicle is described by a car
following model. The autonomous vehicles act as tracer vehicles in the flow and collect measurements
along their trajectories to estimate the bulk flow. The main result is to both prove theoretically and
show numerically how to reconstruct the correct traffic density using only the measurements from
the autonomous vehicles.
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1. Introduction. In recent years Autonomous Vehicles (briefly AVs) have been
tested on urban and highway networks and appear to be the technology with the
highest chance of disruptive changes for the future of traffic monitoring and manage-
ment. Traffic monitoring already underwent a major disruption when the use of fixed
location sensors and cameras were supplemented by Lagrangian sensing via mobile
phones and other devices. AVs will further contribute to this disruption by acting
as highly reliable moving sensors equipped with high-tech on-board devices that can
record local traffic conditions. The aim of this paper is to show how a small number
of AVs immersed in bulk traffic are capable of monitoring the traffic density along a
road without any other data sources. Mathematically we rely on a coupled Ordinary
Differential Equation Partial Differential Equation (ODE-PDE) model representing
the combined evolution of bulk traffic density and the positions of AVs.

Let us start providing some background on traffic estimation. The field of traffic
reconstruction began with experiments in the Lincoln Tunnel in New York City [14,
25]. Since then, the field has seen significant development in terms of the modeling
employed as well as the estimation algorithms used to integrate realtime data [26,
27, 18]. For a recent summary of the developments of model based traffic estimation,
see [20, 11]. More recently there has been an interest to explore estimation in La-
grangian coordinates [28, 15] where sensors are embedded in the traffic flow instead of
being placed at fixed locations in the infrastructure. For example, the Mobile Century
project [16, 27] used GPS data from mobile phones as measurements for Lagrangian
traffic state estimation. Such Lagrangian traffic state estimation techniques have of-
ten relied on GPS data from the vehicles [27, 13], and more recently from spacing

*Submitted to the editors DATE.

Funding: The work of the first author was supported by the IDEX-IRS 2018 project “MAVIT-
Modeling autonomous vehicles in traffic low” and by the support of Inria associated team “ME-
MENTO.”” This material is based upon work supported by the National Science Foundation under
grants CNS-1837652 (D.W.) and CNS-1837481 (B.P.).

TUniv. Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
(ml.dellemonache@inria.fr).

fUniv. Grenoble Alpes, Inria, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
(thibault.liard@inria.fr).

$Rutgers University-Camden, NJ, USA (piccoli@camden.rutgers.edu).

TVanderbilt University, TN, USA (stern5Qillinois.edu).

'WVanderbilt University, TN, USA (dan.work@vanderbilt.edu).

1


mailto:ml.dellemonache@inria.fr
mailto:thibault.liard@inria.fr
mailto:piccoli@camden.rutgers.edu
mailto:stern5@illinois.edu
mailto:dan.work@vanderbilt.edu

2 DELLE MONACHE, LIARD, PICCOLI, STERN, WORK

measurements from on-board sensors [21]. Since AVs are also highly instrumented ve-
hicles, they may be able to provide additional measurements that can further improve
traffic estimation.

We now briefly describe the mathematical aspects of the paper. One of the
most widely used macroscopic models in traffic is the celebrated Lighthill-Whitham-
Richards model [17, 19], which consists of a single conservation law for the traffic
density. Particle trajectories for the model represent car trajectories and can be
constructed using solutions to discontinuous ODEs, see [6]. Considering together
the traffic density and a small number of particle trajectories gives rise to a partially
coupled PDE-ODE system, where the ODEs depend on the PDE solution but not vice
versa [5]. Alternatively, in [8] the authors introduced scalar conservation laws with
moving flux constraints. The latter represent a moving bottleneck, which in turn may
correspond to a vehicle such as a truck or an AV driving differently than the bulk
traffic. The model [8] is a completely coupled PDE-ODE model. Here we assume
that the AVs do not influence traffic by their driving, and therefore we consider the
partially coupled model.

Our problems can be formulated as control problems. We consider a stretch of
road with incoming and outgoing traffic and a small number of AVs entering the road
that are able to measure the density along their trajectories. The aim is to control
the speed of each AV (compatibly with the traffic conditions) in such a way that
the collected data allows for a complete reconstruction of the traffic density along
the road after a certain time. This corresponds to generating moving boundaries (by
controlling the AVs), so that the solution to the conservation law compatible with
the measured data along such boundaries is unique. This problem is new, and can be
addressed using typical tools from the theory of conservation laws. More specifically,
initial-boundary value problems are well understood [10, 2, 22, 23] and semigroup of
solutions are constructed via wave-front tracking [9, 1, 3]. Using these results, we first
show that it is possible to define explicitly a time horizon such that, if such horizon is
finite, then complete traffic reconstruction is possible for all times after such horizon.
Moreover, the main result (Theorem 3.2) determines all initial conditions which give
rise to the observed density at the time horizon. The result is then extended to the
case of a ring road.

We then turn to the attention to the problem of reconstructing the density from
the measurements from AVs (which is proved possible by the main Theorem 3.2).
Again using the wave-front tracking approach, we define an algorithm which takes the
the data from AVs as input and returns the reconstructed traffic density as output.
Since we use wave-front tracking, our solution is piecewise constant in time-space and
the trajectory of each AV has a piecewise constant speed (changing only at points
where the trajectory intersects with a wave). Therefore, all data (including each AV
trajectory and the measurements along it) are finite dimensional and the algorithm
can be implemented on a regular personal computer. We are then able to present
various numerical experiments of traffic reconstruction along a stretch of road.

The paper is organized as follows. In Section 2, we briefly introduce the coupled
ODE-PDE model before describing the main theoretical results in Section 3. In Sec-
tion 4 a numerical scheme to estimate the traffic density from the AVs is introduced,
and in Section 5 the scheme is applied to numerical experiments. Section 6 discusses
possible extensions of the work.

2. Model description. By detecting the local density via sensors of autonomousfi
vehicles, we want to reconstruct the density at a certain time 7" and on a portion of
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a road. In order to do this, we need to be able to describe the traffic dynamics and
reconstruct the density starting from the measurements of the autonomous vehicles.
Let us consider a stretch of road R with mixed traffic, i.e., partly human-piloted traffic
and partly autonomous vehicles. This situation can be modeled with a PDE-ODE
system consisting of a scalar conservation law accounting for the human-piloted traffic
and a system of ODEs describing the dynamics of the autonomous vehicles. From a
mathematical point of view this means that the main bulk of human-piloted traffic is
described with the Lighthill- Whitham-Richards (LWR) macroscopic model, [17, 19],
i.e. the mass conservation equation

(2.1) Owp+ 0:f(p) =0, (t,z) €RT xR.

In (2.1), p = p(t,z) € [0, pmax] is the mean traffic density, pmax is the maximal density
and the flux function f : [0, pmax] — R™ is given by the following flux-density relation:

(2.2) f(p) = pv(p),

where v(p) is a smooth decreasing function denoting the mean traffic speed. We will
assume for simplicity that the following hold:

(A1) pmax = 1;

(A2) £(0) = f(1) = 0;

(A3) f is a strictly concave function.
Assumptions (A2), (A3) ensure the uniqueness of a maximum point of the flux func-
tion at a critical density pe, € [0, 1].
A typical example of a flux function for the LWR model is given in Figure 1.

O P T Pmax P

Fig. 1: The flux function (2.2) is commonly referred to as fundamental diagram in
the transportation literature.

The conservation law (2.1) with initial density po(-) € BV (R,[0,1]) N L'(R, [0,1])
admits an entropy solution p € C° ([0, +oo[;L' N BV(R;[0,1])), see [4]. For every
t € [0,00), p(t,) € BV(R;[0,1]), thus it admits right and left limits: p(t, zo+) :=

lim  p(t,z) and p(t,xzo—) := lim  p(t,x0).

T—To,T>To T—x0,r<To
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Let us briefly recall the concept of a Riemann problem and its solution. For (2.1) a
Riemann type initial data is given by

. PL, if <0,
(2.3) po(x) = { pn, if 2> 0.

Entropic self-similar solutions to the Riemann problem are defined as:

e If p, < pgr: ashock wave (pr, pr) traveling with speed given by the Rankine-

) = flor)—flor)

namely:
PL—PR

Hugoniot condition o(pr, pr

PL, if v < U(p[mpR)ta
t,x) = .
ol ) { pr, ifx>o(pr,pr)t.

o If p;, > pgr: a rarefaction wave (pr,, pr) namely:

PL, if @ < f'(pL)t,
plt,x)=q (f)71(5), if flpr)t <z < f'(pr)t,
PR if 2> f'(pr)t.

We will also make extensive use of the theory of generalized characteristics. Since

p is, in general, discontinuous in the space variable, classical characteristics must be
replaced by generalized ones, which solve a differential inclusion, instead of an ordinary
differential equation. We refer the reader to [7] for details. In the Appendix A.1 we
provide a brief overview. We consider that along the road at a certain time ¢ there are
N autonomous vehicles that are able to detect the local vehicle density via sensors.
We assume that we can collect their information starting at a position x = a € R and
at time ¢ > 0. The N autonomous vehicles are distributed in two groups Ny, No + 1
in the following way (see Figure 2):

e N, vehicles enter the stretch of road considered at time ¢ > 0 via an entrance

ramp positioned at x = a.

e N5 + 1 vehicles are located at position z > « at time ¢t = 0.

All the autonomous vehicles are modeled via the following ODE-system:

Ui (1) = wi(p(t, y;(t)+)) t € [t;,4+00),i = —Ny,--- , Na,
(2.4) { y(ts) = vi im N 1 2

Above, u; is a decreasing function verifying that

ui(p) > f'(p), if p>0,
(2:5) { ui(p) = f'(p), ifp=0.

The autonomous vehicles move faster than every wave-front allowing the existence of
solutions to (2.4) in Carathéodory sense, that is to say for ¢ € (¢;, +00), (2.4) holds.
If i € {—Ny,---,—1}, the vehicles enter the road [a, 00) at time ¢; > 0 in a position
vy = a. If i € {0,---, Ny}, the vehicles are already in the stretch of road [a,0),
therefore t; = 0 and o < y.

The Cauchy problem that describes the traffic dynamics is then:

B+ 0.(f(p) =0, (tx)€RF xR,
p(0,) = polx), reR,
(LWR-AVs) 510) = ws(plte3s(O4))s £ > i —Niy e\ No,

yl( ')_y07 Z__va : 7_]-~
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Fig. 2: AVs along the road at a certain time t.

with

ton, > >t >0:t0:"‘:tN2>
Above, po(-) € BV (R, [0,1])NLY(R,[0,1]) and, for every i € {—Ny,--- , No}, y5(-) €R
are the initial COI’ldlthIlS Fro [6, 8], the Cauchy problem admits an entropy solution
p € C°([0,+00[;L' N BV(R;[0,1])) and for every i € {—Nj,---, Ny}, a Carathéodry
solution y; € Whi([t,, +oo), R).

Our goal is to find a time T at which it is possible to reconstruct the true density

p between two autonomous vehicles based only on the measured local density of each
AV.

3. Main results. Let us first introduce the following operators that aim at
simplifying the notation of the proofs:
e S, : LY(R)NBV (R, [0,1]) = LY(R)NBV (R, [0,1]) is a L'-Lipschitz semigroup
defined by Si(po) = p(t,-) s.t. p is the solution of

O +a(( ) 0, (t,$)€R+XR,
(LWR) { p(g,x) = po(z), x €R.

e I': BV(R,[0,1]) N LY(R) — (C°(R4, BV(R,[0,1]) N LY(R))?)Y defined by
C'(po) = (p(-,4i(-)E))ic{—ny - ,No} Where ( 7yl) is the solution of (LWR-~AVs)
with initial data pg and N := Ny + N7 + 1 is the number of autonomous
vehicles. T;(-) denotes the i*" component of T'(-).

Let po € BV(R,[0,1])NL*(R) be some unknown initial data. For i € {—Ny,---, Ny —
1}7 by collecting Only (Fz(ﬁO)arz-l-l(ﬁO)) = (p(ayl()i)’p(ayl-i-l()i)) via sensors
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Traffic state Traffic state

4 1 4 1
08 08
3 3
06 0.6
E2
04 04
1 1
02 02
0 0 0 0
0 1 4 0 1 3 4

Time
~n
Time

Position Position
(a) po(z) = 0.161(_oo,1.33) + 0.631(1.33,00) (b) po(z) = 0.161(_oo,1y) + 0.471(1 9y +
with two autonomous vehicles positioned 0.631(2,00) With two autonomous vehicles
at yo =0 and y2 = 3. positioned at y¢ = 0 and 32 = 3.

Fig. 3: Illustration of Example 1: T is not a surjective function.

of the i autonomous vehicle and the (i + 1)™ autonomous vehicle, we want to
reconstruct S, (po)(x) for every = € [y;(T3),yi+1(T3)] at a certain time T; > 0. For
every i € {—Ny,---, Ny} the trajectory of the i-th autonomous vehicle is described
by (2.4).

Example 1 shows that we cannot reconstruct the solution at any time. Theo-
rem 3.2 gives a way to find the reconstruction time 7.

EXAMPLE 1. Assume that f(p) = p(1 — p) and two autonomous vehicles are de-

ployed at (0,0) and at (3,0) respectively with speed ui(p) = ua(p) =1 — p (see Figure

3). Let po < p1 < p2 and pll = ﬁ. We introduce the two following initial densities

Po=pol_ o rieamery t P2l pmn o)

po = pol(—co,1) + P111,2) + Pol(2,00)-

We have T'(po) = I'(po) and for every t € [0, ﬂ) Se(po) # Si(po). Thus, we
) by collecting only T'(po) = T'(po) via

cannot reconstruct p(t,-) for every t € [0

’P2 4
the sensors of both autonomous vehicles.

We define the multifunction ¢; : [t;, +00) — P(R), where P(R) is the set of subsets
of R, as follows:

(3.1)  wilt) = [f'(pt, yi(t) =) (tixr — t) + wi(t), F'(p(t, i (£)+)) (tig1 — ) + i (t)].

Remark 3.1. The minimal backward characteristic s — f'(p(t,y:(t)—))(s — t) +
y;(t) and the maximal backward characteristic s — f'(p(t,y;(¢)+))(s —t) + y;(¢) from
the point (¢,y;(¢)) bound the domain of dependence of p(t,y;(t)) (see the shaded
region in Figure 4).

THEOREM 3.2. Let po € BV(R,[0,1]) N L*(R). For everyi € {—=Ny,---,Na—1},
the ™" autonomous vehicle starts at time t; in the position yb and its trajectory is
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0 Yo

wi(t1)

Fig. 4: Representation of the domain of dependence by backward characteristics:
@i(t1) with t; > 0 (shaded region). The trajectory of the i*® autonomous vehicle is
represented by dashed red line.

described by (2.4). Moreover, we impose that u; verifies (2.5). Let T; € [t;, +00)U{oc0}
be defined by

(3.2) T; = sup T.
{TeRy /ys™ €pi(T)}

If T; < oo then for every po € I1(I'(po)), St,(po)(x) = St,(po) (), for every
i € {—N1, -, N2} and for almost every x € [y;(T3), yi+1(Ti)] with (yi, yit1) solution
of (24).

EXAMPLE 2. Assume that f(p) = p(1 — p) and two autonomous vehicles are de-
ployed on the road at (0,y3) and at (0,y2) with speed ui(p) = uz(p) = 1 — p. As-
sume that the first autonomous vehicle collects only the density p1, that is to say
p(t,y1(t)) = p1 for every t € Ry. Then, we have, for everyt € Ry,

o1(t) = —=fp)t+ 1 —p)t+yg,
= p1t+yéa

2 1
From (3.2), we conclude that Ty = yop;lyo.

2 1
In Example 2, lim 77 = lim % — 0o, Theorem 3.3 gives a sufficient condi-
p1—0 p1—0
tion on the initial density gy to have a finite reconstruction time T, i € {—Ny, ..., Na—

1}.
THEOREM 3.3. We assume that po € BV (R,[0,1]) N LY(R) with the additional
property that for every x € R, 0 < pmin < po(2) < pmax. Then, we have

;= min  (ui(p) — f'(p)) >0
pe[f’minvﬂmaX]

and for every i € {—Ny, -+, Na},

(3.3)
i+l i+l d / . .t
Yo Yo tti <Ti < (yO Yo + f (Pmin) (ti — tit1)) (1 + exp (O‘TV(/JO)))
Uq (pmin) - f/ (pmax) Cj C;

with oo = sup ,ep0.1) 1 (p)-
The proofs of Theorem 3.2 and Theorem 3.3 are presented in Appendix A.
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Remark 3.4. The reconstruction time 7T; in Theorem 3.3, depends on the distance
between the initial positions of the AVs. For a fixed road one can estimate the number
of AVs needed to guarantee a reconstruction time as function of the road length.

Main ideas of the proof of Theorem 3.2.

Let po be an unknown initial data. For every time ¢ > 0, the i-th AV (denoted
by AV;) measures locally in time the density p(¢,y;(t)£) and its new speed becomes
w;(p(t, yi(t)+)). The trajectory of AV; is described by (2.4). Since u;(p) = f'(p) for
every p € [0, 1], the speed of AV; is faster than (or equal to) the speed of every discon-
tinuity. At time 7T;, defined in (3.2), the AV} has already interacted with every discon-
tinuity wave coming from (0, x) with = € (y§,y5™) or from (¢, a) with t € (ti1,t;).
Thus, the solution over {(T;,z) € Ry x R/4:i(T;) < z < y;4+1(T;)} can be deduced
using only the data p(-, y;4+1(-)—) collected by the AV ;. Therefore, Theorem 3.2 is
proved using the uniqueness of (LWR) defined on {(¢,2) € Ry x R,z < y;41(¢)} with
the boundary condition p(-, yi4+1(+)).

A smaller reconstruction time as compared to (3.2) can be found when the speed
of AV} is constant.

LEMMA 3.5. Let i € {—Ny,---,Na}. We assume that u;(p) > f'(p). Let T; >
0 such that (3.2) holds. If there exists a € Ry and b € Ry such that p(-,y;(-))
is a constant function over [a,b) and T; € [a,b) then, for every po € IT"*(T'(py)),
Sa(po)(x) = Sa(po)(x) for almost every x € [yi(a), yi+1(a)] with (yi, yiv1) the solution
of (2.4).
The proof is deferred to Appendix A.5.

3.1. Extension to ring roads. We consider a ring of length L. By detecting
local traffic density via M autonomous vehicles, we want to reconstruct the density
on the whole ring at a certain time Ty,,. We consider the following LWR model with
periodic boundary conditions

dhp+0:(f(p) =0, (t,z)€ R* x [07LL
(LWR-ring) p(0,2) = o), w0, L,
p(t,O) :p(taL)a te R+'

All the autonomous vehicles are modeled via the following iterative method: t €
[0,t}) — ;(t) is solution of

z(t) = ui( (t’ i(t>+))7 te [Oat%)vi =1 M
34 LS =1,

with ¢} > 0 is defined as follows: if there exists a time £ > 0 such that y;(f) = L then
t! = £. Otherwise, we have t} = +oo. If t} # +oo, t € [t},t?) — y;(t) is a solution of

177

. y(tzl): ) izl?"'7M7
where ¢? > t! is defined as t} > 0 and so on.

THEOREM 3.6. Assume py € BV([0,L],[0,1]) N L*([0,L]) with the additional
property that for every x € [0, L], 0 < pmin < Po(%) < Pmax, and let

(3.6) c= min min  (u;(p) — f'(p)).

i€{1,+ ,M} p€[Pmin;Pmax)
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There exists Tar < 00 satisfying

Tmaz g 7.6{I1r,la},(M}(y0 Yo c

i+ iy (1 +eXp(aTVc(p0))>

such that for every po € T=1(T'(po)), St,..(po)(x) = St.... (P0) () for every x € [0, L].
The proof of Theorem 3.6 is postponed to Appendix A.6

4. Numerical scheme. The goal of this section is to describe the numerical
scheme that is used to reconstruct the density. Our aim is to design a scheme that is
able to numerically approximate the conservation law and the autonomous vehicles on
a fixed mesh, and use this scheme for the reconstruction algorithm. In the following
section we show how to simulate the PDE-ODE system by describing the numerical
methods adopted. Then we describe the reconstruction algorithm in detail.

4.1. Construction of the true state (p™,y™).

4.1.1. Wave-front tracking method for the conservation law. To con-
struct piecewise constant approximate solutions, we adapt the standard Wave-Front
Tracking (WFT) method, see for example [4, Chapter 6]. The goal of the wave-front
tracking is to approximate and compute the solution of the conservation law. Fix a
positive n € N, n > 0 and introduce in [0, 1] the mesh M,, = {pP'}?" defined by

M, = (2-"NN[0,1)).

The WFT method works as follows:

1) Approximate the initial data po € BV(R, [0, 1]) with piecewise constant func-
tions pf such that for every = € R, pjj(z) € M,,.

2) Solve the Riemann problems generated by the jumps (pf(x;—), pi(x;+)) for
1=1,---,N where ¢y < --- < xy are the points where pf is discontinuous.

3) Piece the solutions together approximating rarefaction waves with fans of
rarefaction shocks where the speed of each shock has strength 27" and is
prescribed by the Rankine-Hugoniot condition.

4) The piecewise constant approximate solution p™ that is constructed can be
prolonged up to the fist time ¢; > 0, where the two discontinuities collide. In
this case, a new Riemann problem arises and needs to be solved.

4.1.2. Numerical method for the ODE. Let p"(¢,-) be the WFT approxi-
mate solution associated to pj} (see subsection 4.1.1). In this section, we describe how
to solve the following ODE numerically:

(4 1) { yln(t) = ui(p"(t,y?(t)—l—)) te [tia+oo]’i = _va' e ’N27
' y(t:) = yo i =—Np, -, Na.

Since the solution y}* of (4.1) is a continuous piecewise linear function, it is enough
to find the points of discontinuity of ¢, denoted by (¢; . ygl’k)ke{l’_.. K}

Step 0. We impose (t; 0, y"") = (i, y}).
Step 1. From (¢ .,y ’k), we determine the position of the autonomous vehicles
(ti,k+1,y?”"+1) as follows. For the ODE (4.1), we have

n,k+1

y; =i (p" (tigo, Y 4))) (tiors — tige) + ¥,
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where ¢; ;41 is the first interaction time between the straight line defined by

{wa(p™ (g ) = tig) + ¥ > tis,
and elements of the set of discontinuity waves of p™(¢,-) with ¢ > t; x.

4.2. Reconstruction scheme. In this section we describe in detail the algo-
rithm for the density reconstruction. For simplicity, we drop the index n. We assume
that the initial density pp : R — M,, is a piecewise constant function and p is the
solution to (LWR) with initial density po.

Algorithm. Algorithm for the reconstruction of the density between two AVs i and
14 1.

Input data:
e Discontinuity points (¢; x)re{1,... .k} of ¥i-
e AV trajectories: y;(t;x) := yF and yip1 (k) == yF, ;.
e Densities measured by the AVs p(t; x, yF+)) and p(t; , y¥ £)).

Step 0. Impose ti,KJrl = o0, piJrl,rec(ta ‘T) = p(ti+1a y6+1_) for every (t,.’L’) €
[ti+1,ti+1,1] X R. To avoid misunderstanding, we recall that ¢;1; is the starting time
of AV; and ;41,1 > t;41 is the first discontinuity point of y;.

Step 1. Compute the reconstruction density pit1 rec(ti+1,k,) at every time ¢;41
only using data collected by the (i + 1)*-autonomous vehicle.
For every k € {1,--- ,K — 1},

e Solve all Riemann problems at time ¢;+1, for (LWR-AVs) associated with

pi+1,rec(ti+1,k7 ')]l(oo,yi+1(ti+1,k)) + p(ti+1,k7 yi+1(ti-‘rl,k_"))]l(yi+1(tz‘+1,k);00)'

e Piece solutions together where the speed of each wave front is prescribed by
the Rankine-Hugoniot condition.

o The solution (denoted by p;t1 rec) is prolonged until min(¢y, ¢;41 x4+1) where ¢;
is the first time when two wave-fronts interact. If £; < t;41 x+1, the Riemann
problems associated with p;11 vec(t1,-), which is still a piecewise constant
function, can again be approximately solved within the class of piecewise
constant functions and so on until £ = ¢;41 gy1.

end

We end our construction by taking the restriction over {(¢,z) € Ry X [y;(t), yir1(t)]}.
Step 2. Compute the reconstruction time 7} only using (y¥, p(-,y¥(-)%)) and yé“.
For every k € {1,--- K},

it € [ (ol yE ) (i —ti) + £ (g =) (b — ti) ++) then T, =ty
end

Output data: pii1rec(T;, ), for every x € [yi(T}), yir1(T7)]-

Remark 4.1. If we start with a density po € BV (R, [0, 1]), the source of errors in
the reconstruction of the true solution only comes from the approximation of pg €
BV (R, [0,1]) (step (1) subsection 4.1.1) and the fact that we split a rarefaction wave
into a sequence of rarefaction shocks with strength 27" (step (3) subsection 4.1.1).
Thus, the reconstruction procedure presented in Section 4.3 does not create additional
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errors. To simplify the numerical results, we will only consider initial data po : R —
M,, in the next section.

5. Numerical results. Numerical results are simulated using the flux function
f(p) = p(1—p) and the speed of each AV} is u;(p) = 1 — p. Simulations are conducted
using the WFT method described above. Rarefaction shocks are approximated as
waves with a change in density of 275 ~ 0.03. This prescribes Card(M,,) = 33
possible initial densities.

In Figure 5a, we consider the case where the initial density py : R = Mj5 =
(27°N N [0,1]) is defined as follows: po(x) = 0.9688 for x € (—o0,10) and po(x) =
0.0938 for z € (10,00]. Two autonomous vehicles, denoted by AVy and AVy, are
deployed on the road at (0,8) and (0,12), respectively (N7 =0, Ny =1 and N = 2).
The solution (p, yo,y1) of (LWR-AVs) is

0.9688 if + < —0.9376t + 10,
p(t,z) =<{ 3 —(510) if —0.9376t + 10 < x < 0.8124¢ + 10,
0.0938 if 0.8124¢ + 10 < =,

and

0.0312t +10  if t < 2.06,
yo(t) = 10+t —2.78VF if2.06 <t <220.22, and y(t) = 0.9062¢ + 10.
0.9062t — 10.60  if 220.22 < ¢,

Using the on-board sensors on the AVs, we observe p(-,yo(-)£) and p(-, y1(-)=£).
From Theorem 3.2, Ty ~ 240.93. Using Lemma 3.5, we can reconstruct the density
p(220.22, ) over [y0(220.22), y1(220.22)]. To solve numerically (LWR-AVs) with initial
density pg, we use the wave-front tracking method described in subsection 4.1.1 with
n = 5. The trajectories of the autonomous vehicles are plotted in black in Figure 5a
and Figure 5b. In Figure 5b, we reconstruct traffic state using two AVs over the first
20 seconds. Since we don’t observe enough time (20 < 220.22), we notice that the
reconstructed traffic state is not the true traffic state.

In Figure 6, we consider the example of two shocks with a fan of rarefaction
shocks between the two shocks. A total of three AVs, denoted by AV, AVy and AV,
are used to reconstruct the traffic state (resulting in two regions of reconstruction
between AV and AV;, and between AV; and AVs). Specifically, the initial density pg
is defined as follows: po(x) = 0.0938 for x € (—00, 8], po(x) = 0.9062 for = € (8, 10],
po(z) = 0.2188 for x € (10,13] and po(z) = 0.9062 for x € (13,00). AVy, AV4, and
AV, start at © = 5, x = 9, and & = 12, respectively. The resulting traffic state
solved using wave front tracking over the first 20 seconds is shown in Figure 6a, while
the reconstructed state between the AVs is shown in Figure 6b. The time at which
the reconstruction becomes valid is Ty = 6.87 between AVy and AVy, and T = 3.39
between AV; and AVs.

In Figure 7, a total of four AVs, denoted by AVy, AVy, AV, and AV3, are used to
reconstruct the traffic state (N3 = 0, N3 = 1 and N = 2). The initial density pg is
defined as follows: po(x) = 0.0938 for z € (—00,2.1), po(x) = 0.9688 for x € [2.1,10.1),
po(z) = 0.2500 for = € [10.1,12), po(z) = 0.4375 for = € [12,16), po(x) = 0.7812 for
x € [16,19), and po(x) = 0.9688 for & € [19,00). The initial positions of AVy, AV,
AV,, and AV3 are 4, 8, 12 and 17.5, respectively. The time at which a reconstruction
is found is Ty = 5.12 between AV and AV, T7 = 12.45 between AV; and AV,, and
T5 = 0.00 between AVy and AVs.
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Traffic state Reconstructed density between AVs

20 1 20 1
0.8 0.8
15 15
0.6 0.6
[0} (o)
£10 £10
= =
0.4 0.4
5 5
0.2 0.2
0 0 0 0
5 10 15 5 10 15
Position Position
(a) True state over the first 20 seconds (b) Reconstructed traffic state using two
solved using wave front tracking. AVs over the first 20 seconds.

Fig. 5: Traffic state reconstruction with two autonomous vehicles starting at z = 8
and z = 12 with initial density defined as follows: po(z) = 0.9688 for = € (—o0, 10)
and po(x) = 0.0938 for z € (10, co].

Traffic state s 20 Reconstructed density between AVs
08 08
15
06 06
[0}
£10
=
04 0.4
5
02 02
0 0 ‘ 0
4 & 8 10 12 14 16 4 6 8 10 12 14 16
Position Position
(a) True state over the first 20 seconds (b) Reconstructed traffic state using three
solved using wave front tracking. AVs over the first 20 seconds.

Fig. 6: Example comparison of the true state solved using wave front tracking and
the reconstructed state reconstructed using three AVs starting at x = 5, x = 9 and
x = 12. The initial density po is defined as follows: po(z) = 0.0938 for z € (—o0, 8],
po(z) = 0.9062 for = € (8,10], po(z) = 0.2188 for x € (10, 13] and po(z) = 0.9062 for
x € (13,00). Note that the reconstruction is exact and thus there is no error between
the reconstructed density and the true density after time 7.

In Figure 8, AV_y, AV_; and AV, starts respectively at (t_o,75°) = (6,0),
(t_1,95") = (1,0) and (to,y]) = (0,8) (Ny = 2, Ny = 0,N = 3). The initial density
po is defined as follows: po(z) = 0.3125 for € (—o0, —1], po(z) = 0.5 for = € [—1,4],
po(z) = 0.8125 for z € [4,10], and po(x) = 0.5 for z € (10, 00). Thus, AV_y and AV_,
start after AV} is already driving. The times at which the state can be reconstructed
is T_5 = 8.615 for the state between AV_s and AV_q, and T_; = 5.538 between the
AV_q1 and AV,.
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Traffic state ’ 30 Reconstructed density between AVs ;
08 25 08
20
06 0.6
(o)
£15
=
0.4 0.4
10
0.2 s . 02
0 0 0
0 5 10 15 20 0 5 10 15 20
Position Position
(a) True state over the first 30 seconds (b) Reconstructed traffic state using four
solved using wave front tracking. AVs over the first 30 seconds.

Fig. 7: Example comparison of the true state solved using wave front tracking and the
reconstructed state reconstructed using four AVs starting at x = 4,8,12 and = = 17.5.
The reconstruction is exact and thus there is no error between the reconstructed
density and the true density after time T'.

Traffic state 0 Reconstructed density between AVs

20 1 2 1
0.8 0.8
15 15 1
0.6 0.6
2 2
:10 10 1
0.4 0.4
5 5 1
0.2 0.2
0 0 0 0
0 5 10 15

0 5 10 15
Position Position
(a) True state over the first 20 seconds (b) Reconstructed traffic state using two
solved using wave front tracking. AVs over the first 20 seconds.

Fig. 8: Traffic state reconstruction with three autonomous vehicles starting at
(t_a,y52) = (6,0), (t_1,95") = (1,0) and (to,%3) = (0,8). The initial density po
is defined as follows: pg(x) = 0.3125 for = € (—o0,—1], po(x) = 0.5 for = € [—1,4],
po(z) = 0.8125 for x € [4,10], and po(z) = 0.5 for & € (10,00). The reconstruction
is exact and thus there is no error between the reconstructed density and the true
density after time T

In Figure 9, one autonomous vehicle, denoted by AV, is deployed on a ring
(M =1 in subsection 3.1). The initial density po is a 10-periodic function defined
as follows: po(z) = 0.8125 for = € (0,2), po(z) = 0.3125 for = € (2,10). Since p
and yg are also 10 periodic functions, both trajectories plotted in black in Figure 9b
are the ones of AVj. The traffic state on the whole ring can be reconstructed after
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Traffic state s Reconstructed density between AVs

15

0.8 0.8
@ 10 | 06 @10 06
E £
= =
0.4 0.4
5 5
0.2 0.2
0 [ 0 0 0
0 5 10 15 20 0 5 10 15 20
Position Position
(a) True state over the first 18 seconds (b) Reconstructed traffic state using one
solved using wave front tracking. AV over the first 18 seconds.

Fig. 9: Traffic state reconstruction with one autonomous vehicles on a ring of length
10 with a 10-periodic initial density defined as follows: pg(z) = 0.8125 for = € (0,2),
po(z) = 0.3125 for x € (2,10). The reconstruction is exact and thus there is no error
between the reconstructed density and the true density after time 7.

Thax = 15.444.

6. Conclusions. The main result of this work is the theoretical analysis and a
numerical scheme to reconstruct the bulk traffic density using only data along the
trajectory of a small number of autonomous vehicles. The results are derived for
the case when the bulk flow is described by LWR-type traffic flow models. Moving
forward, there are several interesting extensions of the present work. For example,
we are also interested in using AVs to estimate the traffic in and around phantom
traffic jams [24], which are jams that seemingly appear without a cause but are due
to human driving behavior. These jams are particularly challenging to track on real
freeways due to the space and timescale on which they are found. Extending the
methods developed in the present article to bulk flow models (e.g., [12]) that are able
to reproduce these waves is a promising direction. Other directions include extension
of the developed methods to traffic flow networks and testing of the algorithm on
empirical traffic data collected from the field.

Appendix A. Proof of Theorem 3.2, Theorem 3.3, Lemma 3.5 and
Theorem 3.6. In order to simplify the notations, we introduce the function g; :
[ti, +00) — [0,1] in

gi(t+) := lim p(t,x) = p(t,y:(t)+)
=y (t),yi () <z

and
i(t—) = lim t,z) =p(,ui(-)-),
git=)s=__ [t pltw)=pCui()-)
where (p(t,yi(t)%))ic{—ny,... .o} = I'(po). Since the speed of the AV is faster than
(or equal to) the speed of every discontinuity, the function g; is well-defined.
We recall that the i*® autonomous vehicle starts at time ¢; in the position y§. If
i€{-Ny, - ,—1}L y?=aand t; >0and ifi € {0,--- ,No}, a« < 3? and t; = 0.
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A.1. Generalized characteristics. The proofs of Theorem 3.2, Theorem 3.3
and Lemma 3.5 are based on the concept of generalized characteristic (see [7, Chapter
XI]). A generalized characteristic £(+) is a Lipschitz curve, defined on the time interval

[0, 7] C [0, 00) associated with the solution p, verifying for almost all ¢ € [0, 7],
(A1)
éu>=={ F(p(t,€(1)) when p(t, £(t)+) =

p
Qe L) when p(t,&(1)=) < p(t, §(1)+)-

Let £ > 0. We denote by £_(+,%, %) and &, (-, ,Z) the minimal and maximal backward
characteristics, associated with an admissible solution p, coming from a point (, ).
From [7, Thm 10.3.1, Thm 11.1.3], we have, for every i € {—Ny, -, No},

(A.2)

5 (t,f, Z/zO)g:( ( 7?3)1(7?)) :( f(/ggz)()iz)(t SE) + Z(/S(E) when gi(f—) = gi(f“‘)
£, "(gi(=))(t —t) + yi(t ~ -
E4(t,t. i()) ’(i(ﬂ))(t —) + i(i) when g;(t—) < gi(t+).

The next Lemma gives the domain of dependence of (LWR) for a point (¢,z) € Ry xR
(see [7, Theorem 10.2.2]).

LEMMA A.1l. Let i € {—Ny,---,Na}, po € L*(R) N BV (R,[0,1]) and (t,x) €
(ti,o0) X [yé,00). The value Si(po)(x) := p(t,x) depends only on values of p(-,-) in
the subsct {(5,9) € [0,1] x RIE_ (5, 1,2) <y < &4 (5,,2)} 0 {(s,5) € [0,1] x R/gh < )
of R2.

A.2. Some properties of ;. First of all, using (A.2), ¢; defined in (3.1) can
be rewritten as follows:

(A.3) @it t = [€-(tiv1, 1, yi (1), &4 (L, 2 wi (1))

LEMMA A.2. ¢; is an increasing application over [t;,c0] in the following sense:
for every t; < t1 < ta,

FlgitiH))(tivr —t1) +yi(ta) < f(9i(t2—)) (tigr — t2) + yilta).

PT’OOf. Let ti < tl < t2. If €+(',t1,yi(t1)) and 5_(‘,t2,yi(t2)) coincide over [ti,tl]
then, from (A.2),

F(gi(ti4))(tigr — t1) +wits) = f(gi(ta=)) (tiy1 — t2) + wi(ta).

Otherwise, since £, (-, t1,y;(t1)) and £_(-,t2,;(t2)) are shock-free', from [7, Corol-
lary 11.1.2], &4(-,t1,y:(t1)) and & (-, t2,y;(t2)) cannot interact for any ¢t € (0,t1].
Moreover, using that u;(p) = f'(p) for every p € [0,1], we have &, (¢,t1,v:(t1))
E_(t,t2,yi(t2)) for every t € [tit1,t1]. In particular, we obtain & (ti41,t1,v:(t1))
E_(tit1,t2,yi(t2)). From (A.2), we deduce that if t; < ¢t; < to then

F(gi(ti+)) (tivr — 1) + wi(ta) < f/(gi(t2—)) (tivr — t2) + wi(t2).

LEMMA A.3. Let 0 < pmin < po(-) < Pmax and ¢; := mingep, o (ui(p) —

f'(p)) > 0.

<
<

LA generalized characteristic £(-), associated with p and defined on [0, 7], is called shock-free if
p(E(t)—,t) = p(&(t)+,1), for almost all ¢ in [o, T].
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o Let tg > 0. Assuming that gi(-) is well-defined over (to,t1) and g.(t) < 0 for
every t € (to,t1) then

(A1) tl<twmp(f“%@rﬁ>—f%w@ww>>.

Ci

o Assuming that g;(-) is an increasing function over (to,t1) then, for every
x1 € p;i(t1) and zo € p;(to),
r1 — 20 = ¢i(t1 — o).
o If gi(to—) < gi(to+) then
Api(to)) = (f'(9i(to+)) — f'(gi(to—))) (ti+1 — to),
where \ denotes the Lebesgue measure.
Proof.

e Since ¢gi(t) < 0 for every ¢ € (to,t1), then there exists x, € R such that
g:(t) = (f’)_l(yl(t)%) for every ¢ € (to,t1). Thus, y; verifies
{mw=WWW%“T“»tww<m
yi(to) = wo.
Above, z, is the starting point of the rarefaction wave crossed by the i*®
autonomous vehicle over (¢o,t1). Let ¢;(-) defined by
< _ Fit) =z,
(A.5) { Z{i(t)—yf“rcia t > to, O
¥i(to) = o.
Since u;(p) = f'(p) + ¢i, we have §;(t) < y;(t) for every t € [to,t1]. In

particular, yz(tl) < yi(t1) = f(gi(t1—))t1 + x,. From (A.5), for every t > to,
7i(t) = c;t In( 2) +x, +tf(g91(to+)). Thus, we have

t1 < toexp (-f (gz(tl_)) — fl(gz(t0+))> ’

(&

whence the conclusion of (A.4).
o Let @1 € p;(t1) and xo € p;(ty). By definition of ¢; in (3.1) and using that
y; is solution of (2.4), we have
z1—zo = fg(t1=))(tit1 — t1) +yits) — £ (gi(to+)) (tit1 — to) — yilto),
> fgi(t1=) (b1 — t1) = f/(gi(toH)) (tivr — to) + [} wilgi(s)) ds
Since g¢;(-) is an increasing function over (to,t1) and u;(p) > f'(p) + ¢; for
every p € [pmin; Pmax;

zy—x0 = f9i(t1—))(tiv1 —t1) — f'(9i(to+)) (tit1 — to)
+f(gi(t1— ))(fl —to) + ci(t1 — to)
> (f'(9i(t1—)) — ['(g9:(to+))) (tit1 — to) + ci(ts — to).
Using that f/(g;(t1—)) — f'(g:(to+)) < 0 and t;41 — to < 0, we conclude that

1 —xo = ¢(t1 — to).
e We have

Mei(to)) = f'(gi(to+))(tix1 —to) +wi(to) — f'(g:(to—))(tix1 — to)
+yi(to)
= (f'(gi(tot)) = f'(gi(to—))) (tis1 — to).
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A.3. Proof of Theorem 3.2. Let pg € L*(R) x BV (R, ][0, 1]),
i € {=N1,--- ,No— 1} and x € (3(T3), yi+1(T3)).
Since T; verifies (3.2) and using that T; < +oo with (A.2), we have

(A.6) o € [ (tivn, Ty y(T2)), &4 (tivn, i, y(T7))-

Above, &_(-,T;,y(T3)) and &4 (-, T;,y(T3)) are the minimal and maximal backward
characteristics respectively, associated with pg, coming from the point (T}, y(T;)).
Using that y;(7;) < « and since T; verifies (3.2) we have

(A7) Er(tivs, Ti,y(Th)) < E4(tis, Ty @)

From (A.6) and (A.7), we conclude that yi™' < &_(ti11,Ti, ). and since u;q(p) >
f'(p), &~(-,T;,x) (vesp. &4(-,T;,x)) interacts only once at time t_ > t;11 (resp. at
time ¢4 > t;41) with y;11(-). Thus, Sz, (po)(z) depends only on {S;(po)(yi+1(t)),t €
[t_,t]}. Since, for every py € T=1(T'(po)) and for every t € Ry, Si(po)(yir1(t)) =
St(po)(yi+1(t)), we have
St;(po) () = Sz, (po) ().

A.4. Proof of Theorem 3.3. Since, for every € R, 0 < pmin < p0(2) < Pmax,

we have pmin < gi(t) < pmax for every i € {—Ny, -+, No}. Thus, for every t > t;,

wi(t) C [(t - ti+1)(ui<pmax) - f/(pmin)) + y(iJ’ (t - ti+1)(ui<pmin> - f/<pmax)) + y(zJ]

Since u;(p) = f'(p), for every p € [0,1], we have u;(pmin) — f'(Pmax) = 0 and we
conclude that , ,
o'~ b
Ui (Pmin) — f'(Pmax)
Since the quantity u;(pmax) — f'(Pmin) Mmay be negative, finding an upper bound of T;
is not as straightforward as before. Using TV (pg) < oo, there exists (tar41)re{o,..-,N}
such that g¢;(-) is a non-increasing function over ngo({2k+1,£2k+2) with N € NU
{oo} and g;(-) is an increasing function over R\{UN_ (f2+1, t2x+2)}. For every k €
{0,-++,N + 1}, o1 > t; and since y; is solution of (2.4), we have t; > 0. We
introduce the set Z C N U {oo} defined by

Ti 2 +ti+1~

T = {k € NU {00} /&4 (ti1, tans1, Yi(Tans1)) = €= (tir, Eonta, vi(Tanga)) < it

Using (A.4), for every k € N, we have

tok+2 < log41€Xp (f,(g'i(m”_));f/(gi(£2H1+)) ,

(A'S) f/(gi({z’k—))_f,(gi:(&k—l"r))) )

Ci

tor < tog—1€xp (

If o1 = tok, from (A.8), we have immediately that
I (gi(tant2—)) — £/ (9i(Fart1+)) + £ (9:(Far—)) — f’(gi(fzk—1+))) .

Cq

(A.9)  fopqo <lop—1exp (

Otherwise,

tokyo < eXp(f,(gi(52k+2_));f,(9i(£2k+1+)) )

: (t—?kﬂ B (f’(gi<f2kf>>ff’(gi<t’2k_1+>))) .

Ci

(A.10)
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Since,ifor every k € N, B B B
F(gi(takya—)) — f'(gi(tans+1+) < algi(tort1+) — gi(tapr2—)) with

Q= SUDpepi o 1" (p), we have, for every p € {0,--- ,k},
k f. ny —
(A.11) Z f'(gi(taj42=)) = f'(9i(t2j41+)) < aTV(pO).
j=p Ci Ci

We introduce A(k) = {j € {0, ,k}/taj+1 # t2;}. Using (A.9), (A.10) and (A.11),
by induction we obtain, for every k € N,

(A12) t_2k+2 g Z (£2j+1 — t_Zj) exp (aTV(pO)) .

o
JEA(K) !

AbOVG, t_o =0, t_l > t; and {1 > 0.
e If t; = 0; we have immediately that ¢;;1 = 0. For every j € A(k), for every
t € (to,t25+1), 9i(+) is an increasing function, using Lemma A.3, we have, for
every Togj € (pi(fgj) and for every Tg;j41 € gOi(EQj_;,_l),

(A.13) Tojp1 — T2 = ¢i(taj1 — ta5).

Since #; > 0 and #o := 0, we have 0 € A(k) and ¢;(0+) = {y}. Since k € Z,
for every Togt1 € @(togt1), Topt1 < y(Z)'H. Using that, by Lemma A.2, ¢; is
an increasing function and (A.13), we conclude that
i+l _ i
r 7 Y — Y%
(A.14) Z (faj11 — taj) < OT'
JEA(K)

e If t; # 0; by definition of ¢; in (3.1) and using that 0 < pyin < 20(%) < pmax,
for every @ € @;(ti+), © = f(pmin)(tis1 — t;) + yo'". Since k € Z, for

every Tog+1 € @(tart1), Tapr1 < Yo', Using that, by Lemma A.2, ¢; is an
increasing function, we conclude that

i+1 % 1
- — — Yo T J (Pmin)(ti — i

) C;
JEA(K)

Combining (A.12) with (A.15), we have, for every i € N*,

(Wt — v+ F (prmin) (£ — tiz1)) exp( 2220 )

Ci

(A.16) lokt2 < < +o0.

o If Card(Z) < oo; we have T € [tacard(z)+2, t2card(z)+3) and g;(+) is an increas-
ing function over (tacard(z)+2,t2card(z)+3). We notice that tacara(z)43 may
be infinite. Thus, from Lemma A.3, we deduce that

i+1 / )
o — (' (Pmin) (i1 — &) +y
1y s < U7 G =10 410)

Using (A.16), we conclude that

T < Wo™ — 46 + f'(Pmin) (ti — tit1)) <1 +exp (@TV(PO)>) .

~
(&

%
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o If Card(Z) = oo; from (A.16), the increasing sequence {tax12}kez is bounded.
Thus, there exists ¢ (= ;) such that limg_, oo togro = teo
From Lemma A.3, we deduce that

(y8+1 y(z) + f/(pmin)(ti - ti+1))
&

Using (A.16), we conclude that

T, < o™ = yb + [ (pmin) (ti — tis1)) (1 + exp (OéTV(Po)>) .

(& i

A.5. Proof of Lemma 3.5. Let py € L'(R)x BV(R,[0,1]),i € {—Ny,--- ,Na—
1} and z € (y;(a),yir1(a)). Since g;(+) := p(-,y:(+)) is a constant function over [a, b)
and T; € [a,b) we have, for every t € [ti11, T3],

F(gi(To) =)t = t:) + y:(T3) = f'(9:(T3)+)(t = T;) + yi(Ty).

By definition of T; in (3.2), if z > f/(g:( Z))( TZ) +4:(T3), Sa(po)(z) only depends
on {8u(p0) (yi: (1)), € [tir 1, 00]}. T yila) < o < F/(gu(T)(a T) + ya(Ts), since g
is a constant function over [a,b) and u;(p) > f (p) for every p € [0,1], no waves can
interact with the straight line passing through (a,y;(a)) and (73, y;(7;)) and therefore
with the straight line passing through (a,y;(a)) and (a, f'(g:(T;))(a—T;) +y; (T;)). We
conclude that S, (po)(z) depends only on {S¢(po)(Yit+1(t)),t € [ti+1,+00)}. Since, for
every py € T™1(T'(fo)) and for every t € [tiy1,+00), Si(po) (Yi+1(t)) = Se(Po) (Wi+1(t)),

we have
Sa(po)(x) = Sa(po)(x).
A.6. Proof of Theorem 3.6. Consider the following PDE-ODE system

Op+ 0:(f(p)) =0, (t,x) € Rt xR,
50, 2) = po(a), rER,

(A17) 5i(t) = w(p(t, (D), tERTi=1, M
y’L(O) yo; 1:177M

where (y})i=1.... ;s € [0, L]M are the initial positions of the M autonomous vehicles.
We add a (M + 1)*® autonomous vehicle defined as follows:

(A.18) { U (t) = u%+1(ﬁ(t,§M+1(t)+))), t e Rt
Gar1(0) =yt
with yM+1 =y? 4+ L and up;1 = uy. Since p is solution of (3.4) and p is solution of
1 +

(A.17), we have immediately the following Lemma.

LEMMA A4, Lette Ry andie {l,--- ,M}, keN.
o If kL < 4;(t) < (k+ 1)L and kL < §41(t) < (k+ 1)L, we have g;(t) =
yi(t) + kL and §;11(t) = yiy1(t) + kL. Moreover, for every x € [§;(t), §it1(t)]

p(t,x) = p(t,x — kL).

o If kL < g;(t) < (k+ 1)L and (k+ 1)L < §i+1(t) < (kK + 2)L, we have
7i(t) = yi(t) + kL and §;41(t) = yiy1(t) + (k+ 1) L. Moreover,

~(t ) _ P(t, T = kL) Ve € [gl(t)a (k + 1)L]
P = { p(t.x = (k+1)L) Va € [(k+ 1)L, Gipa (1)].
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For every i € {1,---, M}, we define T; € RU {400} as in (3.2) with

@i(t) = [f (p(t, 5i(t)=)) (tigr — t) + 7a(t), £ (p(L, Ga(t)+)) (tixr — t) + 7a(t)].

Since for every i € {0,--- , M} yé“ —yb < Land py is a L-periodic function verifying
that po = po over [0, L], we have TV (p(-,9:(-)),[0,Ti]) < TV (py). Mimicking the
proofs of Theorem 3.2 and Theorem 3.3, we have, for every ¢ € {1,--- , M}
i+l
~ — T
(A.19) Tigu <1+exp <O‘V('DO))>7
Ci i

and for every po € T"1(T'(py)), S'T (po)(z) = S'T (po)(x), for every i € {1,--- , M} and

for almost every x € [§:(T3), §i+1(T3)] with (s, Ji+1) solution of (A.17) and (A.18).
Here, S, is the L!-Lipschitz semigroup defined by S;(po) = j(t,-) s.t. 5 is the solution
of (A.17). Using that p is a L-periodic function such that g = p over [0, L], Lemma
A4 and 31 (t) — gar41(t) = L for every t € Ry, we conclude the proof of Theorem 3.6.
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