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Practical quantum computation of chemical and nuclear
energy levels using quantum imaginary time evolution and
Lanczos algorithms
Kübra Yeter-Aydeniz 1✉, Raphael C. Pooser1,2,3✉ and George Siopsis 3✉

Various methods have been developed for the quantum computation of the ground and excited states of physical and chemical
systems, but many of them require either large numbers of ancilla qubits or high-dimensional optimization in the presence of noise.
The quantum imaginary-time evolution (QITE) and quantum Lanczos (QLanczos) methods proposed in Motta et al. (2020) eschew
the aforementioned issues. In this study, we demonstrate the practical application of these algorithms to challenging quantum
computations of relevance for chemistry and nuclear physics, using the deuteron-binding energy and molecular hydrogen binding
and excited state energies as examples. With the correct choice of initial and final states, we show that the number of timesteps in
QITE and QLanczos can be reduced significantly, which commensurately simplifies the required quantum circuit and improves
compatibility with NISQ devices. We have performed these calculations on cloud-accessible IBM Q quantum computers. With the
application of readout-error mitigation and Richardson error extrapolation, we have obtained ground and excited state energies
that agree well with exact results obtained from diagonalization.

npj Quantum Information            (2020) 6:63 ; https://doi.org/10.1038/s41534-020-00290-1

INTRODUCTION
Noisy intermediate scale quantum (NISQ) computers have recently
become workhorse platforms for the study of codesign and the
design of near-term quantum algorithms1. Thus far, the variational
quantum eigensolver has proved to be one of the most useful
applications for these devices. Variational methods have been
used to solve problems in chemistry, nuclear physics, quantum
field theory, high-energy physics, and others2–8. While these small-
scale applications show promise for using NISQ devices to sample
from distributions and calculate expectation values, short
coherence times make calculations involving time evolution
exceedingly difficult on NISQ devices. Time evolution calculations
hold promise for calculating scattering amplitudes9 and,
excited10,11, and non-equilibrium states12. One approach to the
problem of short coherence times is quantum imaginary time
evolution (QITE)13, in which non-unitary evolution can be
calculated variationally. Combining QITE with the Lanczos
optimization method (referred to as QLanczos in the context of
quantum computing), one can obtain time-evolved phenomena
of various many-body systems1.
Here, we demonstrate the practical application of QITE and

QLanczos on current cloud-based NISQ hardware in order to
calculate ground and excited states in different fields of study. We
use the method to obtain the ground state of the deuteron
nucleus in one instance, and we calculate both the ground and
excited states of the H2 molecule in another. The quantum
computations were done on several cloud-accessible IBM Q
Experience devices, i.e. 20-qubit Johannesburg, 20-qubit Pough-
keepsie, 53-qubit Rochester, and 5-qubit Yorktown hardware. The
results obtained from the quantum computations were compared
with the classical calculations obtained from exact diagonalization.
Despite the fact that we used a simplified version of the deuteron

Hamiltonian, we were able to obtain the ground state energy of
deuteron without the need for any non-linear optimization or
ancillae. We also obtained the energy spectrum of H2 molecule
very close and even within chemical accuracy (1.6 × 10−3 Hartree).
These demonstrations show great promise for scaling up time
evolution as a solution method on near-term quantum hardware,
and they illustrate that the approaches have practical, near-term
applicability to an array of fields from high energy physics to
chemistry.
Quantum imaginary time evolution addresses the problem of

exponentially increasing resource requirements for computation
as a function of the number of interacting particles. It replaces the
real time in the time-dependent Schrödinger equation with
imaginary time (t→−iβ). The solution to this equation involves an
imaginary-time evolution operator, U ¼ e�βH . This operator leads
to the decay of all states except for the ground state provided that
the initial state has non-zero overlap with the ground state, Ωj i,
(i.e., 〈Ψ(0)∣Ω〉 ≠ 0). Therefore, the normalized imaginary-time
evolution of a state can be expressed as

ΨðβÞj i ¼ e�βH Ψð0Þj i
jje�βH Ψð0Þj ijj ;

(1)

where β is the imaginary time14, Ψð0Þj i is the initial state, and
jj � jj �

ffiffiffiffiffiffiffiffi
h�j�i

p
is the state norm.

Quantum computation of the ground state energy of many-
body systems using the imaginary-time evolution can be thought
of as a natural alternative as quantum computers provide
exponential speed ups. The basic idea behind QITE13 is to
approximate the non-unitary imaginary-time evolution in small
steps with unitary updates on a set of qubits, including data qubits
and ancilla qubits. The non-unitary evolution is provided by
variationally changing the parameters of the Ansatz circuit, which
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allows us to approximate imaginary time evolution and calculate
the decay to the ground state via (1). However, the algorithm of
Motta et al.1 eliminates ancillae as a requirement by using a
special type of Ansatz, e−iA[s]Δτ, considerably simplifying the
algorithm. On a quantum computer, the unitary evolution utilizes
Trotterization. Current quantum computers are incapable of
simulating long time evolution, or a large number of Trotter
steps, due to short coherence times and excessive gate noise that
further reduces coherence time. However, since QITE seeks to
approximate non-unitary evolution with a unitary operator, we
can reduce the number of Trotter steps by calculating a specific
unitary that corresponds to the largest possible steps in imaginary
time that yield a given desired accuracy. This amounts to solving a
linear system of equations that provide coefficients of expansion,
in terms of Pauli operators, for the unitary evolution operators. In
the case of the deuteron, we found that solving this system of
equations for the largest timesteps provided a unitary evolution
operator that corresponded to the familiar unitary coupled cluster
(UCC) Ansatz15.
While this was a large simplification of the QITE algorithm, a key

advantage over variational methods is the ability to use the
method in a QLanczos algorithm to calculate excited states. The
basic idea behind the QLanczos algorithm is to fill the Krylov space
with vectors in powers of e−2ΔτH, which is done using QITE, and
then these vectors are used to calculate Hamiltonian matrix
elements, which leads to a generalized eigenvalue equation,
yielding a computation of ground and excited states. Using the
single-step method in QITE, we reduced the depth of the quantum
circuit, which makes these algorithms more compatible with
NISQ16 devices. This method also economizes QITE calculations
that might be useful beyond the NISQ regime.

RESULTS
Here, we present the experimental results from IBM Q hardware
for QITE and QLanczos algorithms. Information on the experi-
ments and the hardware used can be found in Table 5 of the
“Methods” section.

QITE results
Using the QITE algorithm we were able to calculate the ground
state energy of deuteron for both N= 2 and N= 3 cases. Figure 1
depicts the convergence to the ground state energy for N= 2 and
N= 3 deuteron Hamiltonian.
Data in Figs 1 and 2 were obtained after 10 runs each with

8192 shot on IBM Q Johannesburg hardware. Figure 2 shows the
application of the Richardson extrapolation for N= 3 case at
β= 0.30. In this figure, the expectation value of the ground state
energy and the operators are plotted as a function of the number
of CNOT gates corresponding to each CNOT gate in the original
quantum circuit. As a result of our QITE computation the ground
state energy for N= 2 (N= 3) case is calculated as E2=−1.762 ±
0.2 (E3=−2.033 ± 0.1) MeV which is off by 0.76% (0.64%) from its
value obtained from exact diagonalization, i.e., E2,exact=−1.749
MeV (E3,exact=−2.046 MeV). To produce our energy estimates in
Fig. 1a we sampled several collections of qubits on the chip and
used results containing the least hardware noise from each set.
For example, at points β= 0.10, 0.15, and 0.25 we used the data
obtained from qubit layout [q0, q1]= [0, 5], where qi denotes qubit
i on quantum hardware. The data obtained from qubit layout [q0,
q1]= [0, 1] had greater standard deviation. Since each data set
was obtained with the same number of samples, we attribute the
extra noise in layout [0, 1] to quantum hardware errors. The
comparison of the data collected for these two-qubit layouts can
be found in Table 4 (see “Methods” section). Readout error
mitigation (ROEM) suffices for β= 0 data points in both N= 2 and
N= 3 cases, since they do not involve any CNOT gates. To obtain

the energy measurements in Fig. 1a, only ROEM was conducted,
except for β= 0.30, where both ROEM and extrapolation were
used. Each experimental point in Fig. 1b is the result of post-
processing with ROEM and Richardson extrapolation.
Although in ref. 1 the QITE algorithm is used for calculating the

ground-state energy of a system, we were able to calculate the
ground- as well as excited-state energies by changing the initial
state. A choice that is orthogonal to the ground state leads to the

Fig. 1 Energy expectation values of deuteron as a function of
imaginary time. a The hardware simulations for N= 2 with Ψ0j i ¼
10j i were run on IBM Q 20-qubit Johannesburg on qubit layouts
q0; q1½ � ¼ ½0; 1� (points β= 0, 0.05, 0.20, 0.30) and q0; q1½ � ¼ ½0; 5�
(points β= 0.10, 0.15, 0.25). b The hardware simulations for N= 3
with Ψ0j i ¼ 100j i were run on IBM Q 20-qubit Johannesburg. The
error bars represent ±σ (σ= standard deviation).

Fig. 2 Richardson extrapolation of the expectation values of the
Pauli operators (on the right axis) and Hamiltonian operator (on
the left axis) from their plots as a function of the CNOT gates
corresponding to each CNOT gate. The quantum circuit used is in
Fig. 5b (see “Methods” section) for N= 3 qubit Hamiltonian at β=
0.30. This simulation was run on IBM Q 20-qubit Johannesburg
hardware using the qubit layout q0; q1; q2½ � ¼ 8; 7; 9½ �. The error bars
represent ±σ.
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first-excited state. If, additionally, the initial state is chosen to be
orthogonal to the (known) first-excited state, then the algorithm
leads to the second excited state, etc.17,18. Orthogonality can often
be ensured by the symmetry properties of the system Hamiltonian.
In our case, the molecular Hydrogen Hamiltonian (7) is invariant

under exchange of the two qubits, owing to the symmetry of the
molecule under interchange of the two nuclei (protons). Let X be
the swap operator for the two qubits. Since X2 ¼ I, its eigenvalues
are ±1. The ground state has eigenvalue +1, whereas the first
excited state has eigenvalue −1. To produce the ground state
using QITE, we used the symmetric initial state Ψ0j i ¼ 00j i. We
obtained the ground state ϕ0j i ¼ �0:993 00j i þ 0:115 11j i. For the
first excited state, there is a unique choice that has eigenvalue X=
−1, namely the state ϕ1j i ¼ 1ffiffi

2
p 10j i � 01j i. In our quantum

computations, for the first excited state we used the initial state
Ψ0j i ¼ 10j i which is orthogonal to the ground state ϕ0j i, and
confirmed the result from the symmetry argument. Higher-level
states were derived using the QLanczos algorithm with input
provided by QITE.
In Fig. 3a we plotted the ground- and first-excited-state

energies as functions of bond length, R, that we obtained by
implementing QITE on quantum hardware, and compared with

the values obtained from exact diagonalization. Because of the
availability of devices, we used two separate processors for
calculation of the ground-state (on IBM Q 5 Yorktown) and first-
excited-state (on IBM Q Poughkeepsie) energies. In the case of
chemical systems we would like to calculate energy values
within chemical accuracy which is 1.6 × 10−3 Hartree. Here, the
terminology “chemical accuracy” refers to the difference between
the exact results and our heuristic calculations. Therefore, in the
inset of Fig. 3a we show the relative error in energy (ΔE(R)) as a
function of bond length compared with chemical accuracy. QITE
was able to obtain chemical accuracy for one or two steps
depending on the trial state.
As explained above, it is a challenge to access the whole energy

spectrum of the system using the QITE algorithm. The calculation
of excited-state energies using a variational imaginary-time
algorithm was first studied in ref. 19 where all energy levels could
be calculated by first targeting the ground state with imaginary
time evolution and then successive excited states could be
reached by penalizing the ground state and other lower-level
states with the use of the shallow swap test. In this work, to access
higher-level states, we used the QITE algorithm as a subroutine
that provided sufficient input to the QLanczos algorithm to
produce the entire spectrum of the system Hamiltonian, as
discussed below. Unlike the method in ref. 19, our QITE/QLanczos
implementation does not make use of ancilla qubits and has no
need of an additional variational optimization step.

QLanczos results
QLanczos algorithm can also be used for quantum computation of
both the ground- and excited-state energies. The choice of the
initial state, Ψ0j i, is the one that determines which energies are
being calculated. Here, we present our quantum computation of
the ground (for deuteron and molecular Hydrogen) and excited-
state energies (for molecular Hydrogen only—note that the
deuteron does not have a bound excited state) using QLanczos.
Quantum computation of the ground- and excited-state

energies using QLanczos might require stabilization of the
algorithm as the generalized eigenvalue equation (see Eq. (22)
in “Methods” section) might be numerically ill-conditioned. In our
particular deuteron problem, due to the linear dependence of the
vectors, Φlj i, in Krylov subspace, we had to perform the
stabilization process explained in the Supplementary Information
of ref. 1.
We ran QLanczos on two different devices: IBM Q 20-qubit

Poughkeepsie (for N= 2 deuteron and first and second excited-
state energies of molecular Hydrogen) and IBM Q 53-qubit
Rochester (for N= 3 deuteron and ground and third excited-state
energies molecular Hydrogen). The statistical error is calculated for
Nruns= 5 for deuteron and Nruns= 3 for molecular Hydrogen, each
run having 8192 shots. Results of our quantum computation of the
ground state energies for N= 2 and N= 3 deuteron Hamiltonian
are summarized in Table 1.
In Table 1 and Fig. 3b we present the results for QLanczos with

and without readout error mitigation (indicated as ROEM) for the
deuteron and molecular Hydrogen, repsectively. The results
obtained using (24) (given in “Methods” section) are in good
agreement with the values obtained from exact diagonalization,
while energies obtained from the stabilized generalized eigenva-
lue equation do not agree well with the exact values due to
stability issues in the case of molecular Hydrogen. Choosing a
smaller regularization parameter would make these values closer
to the exact values with a cost of adding more vectors to the
Krylov subspace. In our example, a Krylov subspace with two
vectors out of f Φ0j i; Φ2j i; Φ4j ig subspace were sufficient to obtain
the ground- and excited-state energies for the deuteron and
molecular Hydrogen examples. For molecular Hydrogen, we used
two different initial states ( Ψ0j i ¼ 00j i and Ψ0j i ¼ 10j i) which

Fig. 3 Energy expectation values of two-qubit molecular Hydro-
gen as a function of bond length, R. We compared the values from
exact diagonalization with the values obtained from hardware. The
inset shows the relative errors of the quantum computed energy
values compared to chemical accuracy. a The ground state energy
(GSE) calculations (with Ψ0j i ¼ 00j i) were done on IBM Q 5 Yorktown
and the first excited state energy (1st ESE) calculations (with
Ψ0j i ¼ 10j i) were done on IBM Q Poughkeepsie hardware using the
QITE algorithm. ROEM and Richardson extrapolation were applied.
b The GSE and third excited-state energy (3rd ESE) calculations (with
Ψ0j i ¼ 00j i) were done on IBM Q Rochester and the first and second
excited-state energy (2nd ESE) calculations (with Ψ0j i ¼ 01j i) were
done on IBM Q Poughkeepsie hardware using the QLanczos
algorithm. The values with and without ROEM are presented. The
error bars represent ±σ.

K. Yeter-Aydeniz et al.

3

Published in partnership with The University of New South Wales npj Quantum Information (2020)    63 



helped us to calculate the energy spectrum as a function of the
bond length, R.
We found that using (24) gives very close values to exact

diagonalization with or without ROEM, meaning that QLanczos is
potentially noise resilient. Combined with fast convergence the
algorithm has a few advantages that make it useful for quantum
computation of the ground and excited-state energies of many-
body systems. Since our QLanczos results are in good agreement
with the exact values from diagonalization, we did not perform
Richardson extrapolation. This would require three more measure-
ments at every QITE step to build the Krylov space.
Although the computational limits of the quantum computers

require us to truncate the harmonic oscillator (HO) basis, different
schemes were proposed for extrapolating the bound state
energies to infinite basis. We will follow the scheme that is based
on the Lüscher’s formula20 that was used in ref. 5. The extrapolation
of the bound state energy values to the infinite basis is listed in
Table 2. For more information on the extrapolation of the ground
state energy to the infinite HO basis please see the “Methods”
section.

DISCUSSION
In this study, we presented a practical alternative for calculation of
the ground- and excited-state energies of the many-body systems
by using single-step version of the QITE and QLanczos algorithms
presented in ref. 1 using deuteron and molecular Hydrogen as
specific examples. This approach may be a good low-depth circuit
alternative to other contemporary methods. Depending on the

parameters of the system, the convergence to the ground state or
excited states may require too many steps for a small Δτ value. In
this case, one may limit the algorithm to two-step, three-step, etc.,
processes which will still reduce the circuit depth but provide
better imaginary-time evolution. As the system size increases, the
required computational resources increase. In this case, the inexact
QITE proposed in ref. 1 can be used. Although we were able to
reduce the circuit depth for less error in hardware by employing a
single-step process, the QITE algorithm still requires measurement
and calculation of the next unitary operator at every time step.
We also demonstrated how QITE can be used to calculate the

excited-state energy whose eigenvector is non-orthogonal to the
initial state Ψ0j i. We also presented examples of the applications
of ROEM and Richardson extrapolation with these algorithms. On
the other hand, QLanczos gave results that are good agreement
with the exact diagonalization calculations; therefore, it did not
require additional error mitigation procedures.
We obtained the bound state energy of the deuteron at the

next-to-leading order with a 0.5% (0.9%) error for N= 2 (N= 3)
using QITE and with a 2.2% (1.6%) error for N= 2 (N= 3) case
using QLanczos, compared to its experimental value of
−2.22 MeV. We also showed the ground- and excited-state
energies of the two-qubit molecular Hydrogen can be calculated
within chemical accuracy using the QLanczos algorithm for a few
bond lengths.
In future work, we will extend our implementation of the QITE/

QLanczos algorithm to study the scattering problem for heavier
nuclei and molecules as well as the Ising model.

METHODS
The model
We will apply QITE and QLanczos algorithms into two nontrivial systems,
i.e., deuteron and Hydrogen molecule, respectively.
For deuteron system, we follow the refs 5,21, in which the pion-less

effective field theory (EFT) is implemented through a discrete variable
representation in the HO basis based on refs 22,23. Then the pion-less EFT
Hamiltonian of the deuteron in the discrete variable representation using
the HO basis can be expressed as

HN ¼
XN�1

n;n0¼0

n0h jðT þ VÞ nj iayn0an ; (2)

where N is the maximum number of oscillator quanta included in the HO
basis and an and ayn are, respectively, the annihilation and creation
operators for n= 0, 1,…, N− 1 and they obey fermionic anti-commutation
relations

fan; an0 g ¼ fayn; ayn0 g ¼ 0;

fan; ayn0 g ¼ ana
y
n0 þ ayn0an ¼ δn;n0 :

(3)

The kinetic and potential energy terms in this Hamiltonian can be
written as

n0h jT nj i ¼ _ω
2 ð2nþ 3=2Þδn0n �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1=2Þ

p
δn

0þ1
n

h
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þðnþ 3=2Þ

p
δn

0�1
n

i
;

n0h jV nj i ¼ V0δ
0
nδ

n0

n :

(4)

We choose the HO energy spacing as ħω ≈ 7 MeV, the potential
coefficient as V0 ≈−5.686MeV and the ultraviolet cutoff for the potential
as Λ ≈ 152 MeV .
The simulation of the physical systems on quantum computers is made

possible by mapping the creation and annihilation operators onto Pauli
matrices. This process is done using the Jordan–Wigner transformation24

and for N= 2 and 3 we obtain

H2 ¼ 5:907I þ 0:2183Z0 � 6:125Z1 � 2:143ðX0X1 þ Y0Y1Þ
H3 ¼ H2 þ 9:625ðI � Z2Þ � 3:913ðX1X2 þ Y1Y2Þ;

(5)

with the Pauli matrices defined as

σj ¼ I � � � � � σ � � � � � I; (6)

Table 1. N= 2 and N= 3 ground state energies (in MeV) calculated
using the QLanczos algorithm.

E from exact diagonalization

N= 2 N= 3

−1.749 −2.046

QLanczos E from eigenvalues of Eq. (22)

N= 2 N= 3

Raw ROEM Raw ROEM

−1.024 ± 0.1 −1.631 ± 0.1 2.347 ± 0.4 −1.402 ± 0.5

QLanczos E from Eq. (24)

N= 2 N= 3

Raw ROEM Raw ROEM

−1.726 ± 0.02 −1.728 ± 0.02 −2.025 ± 0.02 −2.022 ± 0.02

We ran the simulations on IBM Q 20-qubit Poughkeepsie (N= 2) and 53-
qubit Rochester (N= 3) hardware. We chose the initial state Ψ0j i ¼ 10j i
( Ψ0j i ¼ 100j i) for N= 2 (N= 3). Please see “Methods” section for (22)
and (24).

Table 2. Lüscher’s extrapolation of the deuteron bound state energies
(in MeV) to the infinite basis.

N EN Oðe�2klÞ OðkLe�4klÞ Oðe�4klÞ

Exact 2 −1.749 −2.394 −2.194

3 −2.046 −2.336 −2.199 −2.209

QITE 2 −1.762 −2.410 −2.208

3 −2.033 −2.334 −2.198 −2.174

QLanczos 2 −1.728 −2.369 −2.171

3 −2.022 −2.311 −2.175 −2.185

K. Yeter-Aydeniz et al.
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where σ ∈ {X, Y, Z} is in the jth position with j= 0, …, N− 1, ⊗ indicates
tensor product and I is the identity matrix.
We will use the two-qubit molecular Hydrogen Hamiltonian2

HðRÞ ¼ h0ðRÞI þ h1ðRÞZ0 þ h2ðRÞZ1 þ h3ðRÞZ0Z1

þ h4ðRÞX0X1 þ h5ðRÞY0Y1 ;
(7)

where coefficients hi(R) for i ∈ {0, 1, …, 5} are real-valued functions of the
bond length, R, of the molecule. We have h1= h2, so that the Hamiltonian
is invariant under interchange of the two qubits (interchange of labels:
0↔ 1), which is due to the symmetry of the Hydrogen molecule. For
calculation of the binding and excited state energies of the Hydrogen
molecule we will use the coefficients calculated in STO-3G basis given in
Table I of Supplementary Information of ref. 7.

Algorithms
Here, we present a brief review of the QITE and QLanczos algorithms that
were proposed in ref. 1.
To be able to simulate the dynamics of many-body systems we need to

break down the Hamiltonian of these systems into local components such
that H ¼

PM
m hm where hm are non-commuting local terms of the

system25. For many-body systems, the number of terms in the Hamiltonian
scales polynomially with the number of particles in the system. For
example, the N= 2 deuteron Hamiltonian in (5) can be decomposed into

h1 ¼ 5:906709I þ 0:218291Z0 � 6:125Z1 ;

h2 ¼ �2:143304ðX0X1 þ Y0Y1Þ :
(8)

Because of the non-commuting terms in the Hamiltonian the decom-
position of the evolution into small time steps and decomposing these
steps into local gates can be done using the first order Lie–Trotter–Suzuki
decomposition formula26 which gives

U ¼
YM
m¼1

e�Δτhm

 !n

þOðΔτÞ; (9)

where n ¼ β
Δτ is the number of steps in the evolution.

For two non-commuting operators the matrix exponential can be
written as

e�AΔτe�BΔτ ¼ e� AþBð ÞΔτ�1
2 A;B½ �ðΔτÞ2þ¼ ; (10)

following the Baker–Campbell–Hausdorff lemma.
This formula is given for two operators only, but it can be generalized to

n operators. In our calculations assuming that Δτ is small we can
approximate the imaginary-time evolution up to an order of OðΔτÞ as
follows:

ΨðβÞj i � cnðe�ðh1þh2þ���þhMÞΔτÞn Ψð0Þj i; (11)

where

cn ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ψð0Þh jðe�ðh1þh2þ���þhMÞΔτÞ2n Ψð0Þj i
q (12)

is the normalization constant.
The sth step of the imaginary-time evolution can be written as

Ψsj i ¼ cse�ðh1þh2þ���þhMÞΔτ Ψs�1j i; (13)

where s= 1, 2, …, n. The purpose of the QITE algorithm is to approximate
(13) with unitary updates such that

Ψsj i � e�iΔτAs Ψs�1j i: (14)

where As can be written in terms of Pauli operators (defined in (6)) up to D+
1 qubits and can be expressed as

As ¼
X

i0 i1 ¼ iD

a½s�i0 i1 ¼ iD
σi0σi1 ¼ σiD : (15)

For our two (three)-qubit systems we used D= 1 (D= 2). To be able to
approximate the imaginary-time evolution with these unitary updates we
need to calculate the coefficients a[s]. For small Δτ, up to an order of
OðΔτÞ, the coefficients are found by solving a linear system of equations
Sa½s� ¼ b at every step of the imaginary-time evolution, where

SI ;I0 ½s� ¼ Ψsh jσyi0σ
y
i1
¼ σyiDσi00σi01 ¼ σi0D Ψsj i; (16)

bI ½s� ¼ �ic�1=2
s Ψsh jσyi0σ

y
i1 ¼ σyiD hm Ψsj i (17)

with I ¼ i0; i1; ¼ ; iD . The solution to this equation minimizes the operator

norm jjc�1=2
s Ψsj i � ð1� iΔτAsÞ Ψs�1j ijj. More detailed discussion on the

calculation of the coefficients a[m] can be found in the Supplementary
Information of ref. 1.
The calculation of the unitary updates for our deuteron and molecular

Hydrogen examples gave us interesting results. For N= 2 case the unitary
updates have the form of As ¼ a½s� X0Y1 � X1Y0ð Þ and N= 3 the unitary
updates have the form of As= a1[s](X0Y1− X1Y0)+ a2[s](X0Z1Y2− X2Z1Y0)
which are in the same form as UCC (unitary coupled cluster) Ansätze that
were proposed for molecular Hydrogen in ref. 2 and for deuteron in ref. 5.
This means that the unitary updates recover the UCC Ansatz.
Using QITE it is possible to obtain the excited state energies since the

system does not necessarily converge to the ground state, but rather
depends on the initial state, Ψ0j i, choice. In general, the system converges
to the eigenvalue of the Hamiltonian whose eigenvector is non-orthogonal
to the initial state, Ψ0j i.
The QLanczos algorithm is based on the QITE algorithm, but provides

the advantage of faster convergence, and it can be used to calculate
excited state energies. The basic idea behind the QLanczos algorithm is to
fill in the Krylov subspace with vectors in powers of e−2ΔτH at each Lanczos
iteration such that K : f Φj i; e�2ΔτH Φj i; e�4ΔτH Φj i; ¼ g. The vectors in the
Krylov subspace are obtained using the QITE algorithm as

Φlj i ¼ cle�lΔτH Ψtj i (18)

for 0 � l < Lmax assuming l is an even number. Here, Ψtj i ¼
ct
Qt

s¼1 e
�iΔτAs

� �
Ψ0j i ¼ Φ0j i is the initial QLanczos state which is obtained

from QITE subroutine. After building the Krylov subspace we need to
calculate the overlap matrix elements ðT l;l0 Þ and Hamiltonian matrix
elements ðHl;l0 Þ in terms of the expectation values since they are the only
experimentally accessible values. The calculations give overlap and
Hamiltonian matrix elements as

T l;l0 ¼ hΦl jΦl0 i ¼
clcl0

c2r
; (19)

Hl;l0 ¼ Φlh jH Φl0j i ¼ T l;l0 Φrh jH Φrj i ; (20)

where r ¼ lþ l0
2 . The normalization constants can be recursively calculated in

terms of expectation values using

1
c2rþ1

¼ Φrh je�2ΔτH Φrj i
c2r

: (21)

The next step of the QLanczos algorithm is to utilize the calculated
overlap and Hamiltonian matrix elements and solve the generalized
eigenvalue equation

Hx ¼ ET x : (22)

The ground and excited states can then be found from the eigenvectors
of the generalized eigenvalue equation. For example, the normalized
ground (g) (excited (e)) state approximation is

ΦgðeÞ
�� �

¼
PLmax

l¼0;2;¼ xlgðeÞ Φlj i
jj
PLmax

l¼0;2;¼ xlgðeÞ Φlj ijj
; (23)

where the coefficients xlgðeÞ are obtained from the eigenvector that
corresponds to the ground (excited) state energy such that
ðx0gðeÞx2gðeÞ ¼ xLmaxgðeÞÞT. Then the energy expectation values are calcu-
lated from

EgðeÞ ¼ ΦgðeÞ
� ��H ΦgðeÞ

�� �
; (24)

which then leads to calculation of the ground and excited state energies
using QLanczos algorithm. In the exact calculations the energy values
obtained from the eigenvalues of the generalized eigenvalue equation (22)
match with the values obtained from (24). Our quantum computation
shows that using (24) is numerically more stable and gives much better
results than using the eigenvalues of (22) as seen in Table 1.
The QLanczos method converges much faster than the QITE algorithm

but one needs to do measurements at each imaginary-time projection of
the Krylov subspace vectors to obtain the corresponding overlap and
Hamiltonian matrix elements from the expectation values. The more
vectors in the Krylov subspace the more QITE measurements with an
increasing quantum circuit depth are required. At this point, the single-step
method we proposed that is explained in next section plays an important
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role in terms of reducing the circuit depth and possible noise that will arise
due to the gates in the circuit.

Quantum program
As mentioned earlier, the imaginary-time evolution in QITE algorithm is
provided by unitary updates of the form Us ¼ e�iΔτa½s� X0Y1�X1Y0ð Þ for our
two-qubit examples. One way to obtain the ground state energy using
QITE is to start with an initial product state, say Ψ0j i ¼ 10j i and apply the
unitary updates while calculating the coefficients a[s] that give the state
Ψsj i at every step of the imaginary-time evolution. At the end of the nth
step of the imaginary-time evolution one expects to reach the ground
state energy. This version of QITE would require a quantum circuit as seen
in Fig. 4, which only shows the first two steps of the imaginary-time
evolution; the depth of the quantum circuit increases as the number of
steps increases. At every step of the imaginary-time evolution, the
quantum circuit in the shaded area is repeated such that θs= 2Δτa[s].
Naturally, large depth circuits are very noisy, and not necessarily amenable
to error mitigation techniques.
To reduce the circuit depth we reduce the number of time steps. In the

single-step version, instead of building the quantum circuit that combines
each unitary update which gives Ψsj i � e�iΔτA½s� Ψs�1j i we build the
quantum circuit based on the calculated coefficient A0 that gives
Ψsj i � e�iΔτsA0 Ψ0j i. In this case, the quantum circuit is given in Fig. 5a
which only includes one CNOT gate for a specific initial state of
Ψ0j i ¼ 10j i. The rotation angle is now defined as θs0 ¼ 2sΔτa0½s� such that
β0 ¼ sΔτ is the imaginary-time corresponding to a specific expectation
value, and at β= nΔτ the energy converges to the ground (or excited) state
energy. We run the same quantum circuit with different calculated a0½s�
coefficients until the energy expectation value converges to the ground (or
excited) state energy.
Applying the same strategy to our three-qubit deuteron example with

an initial state of Ψ0j i ¼ 100j i gives the unitary updates of the form

Us0 � e�iΔτsa01 ½s�ðX0Y1 � X1Y0Þe�iΔτsa02 ½s�ðX0Z1Y2 � X2Z1Y0Þ : (25)

with θs0 ¼ 2sΔτa0½s� for i= 1, 2 which can be approximated with the
quantum circuit in Fig. 5b.
In addition to our single-step QITE approach we also applied the error

mitigation strategies to improve results. In our quantum computations, we
applied these error mitigation strategies to obtain the energy expectation
values.

Error mitigation
The noise due to the nature of the quantum simulators requires the
application of the error mitigation strategies. Although there are various
error mitigation strategies proposed in the literature, for our purposes, we
used ROEM and Richardson extrapolation techniques to reduce the noise
involved in our calculations.
Out of the different sources of errors in a quantum circuit the readout

errors are the errors associated with the final measurements in the
quantum circuit. Therefore, we start by mitigating these errors in our

quantum computation. To this end, we use the ROEM scheme proposed in
ref. 27. In that scheme, the expectation values of the operators in the
Hamiltonian are calculated using the following formula:

hσi ¼ σji ¼
P

x2possibleoutcomes
pðxÞ ´ ð�1Þxi � p�i

1� pþi
´ � � � ´ ð�1Þxj � p�j

1� pþj
; (26)

where p(x) is the probability of each qubit outcome and it takes 2N values.
For example, for N= 2, x∈ {00, 01, 10, 11}. The symmetric and anti-
symmetric combinations of the probability of ith qubit flipping from 0 to 1
(pi(0∣1)) or from 1 to 0 (pi(1∣0)) is defined as

p±
i ¼ pið0j1Þ± pið1j0Þ : (27)

Although pi(0∣1) and pi(1∣0) values are provided by IBM’s Qiskit library, to
get the most up-to-date values we obtained the readout error probabilities
by preparing each qubit in computational basis 0 and 1 and then
performing a measurement on each qubit in each case which gives us

pð1j0Þ ¼ # of states prepared in 1j imeasured in 0j i
# of shots

(28)

or vice versa for p(0∣1). We ran the simulations using 8192 number of shots.
To propagate the error due to the statistical error in the readout errors for
N= 2 deuteron case we did the readout error measurements 10 times and
propagated the statistical error in measurements and statistical error in
readout measurements in our results. As a result of our experimental
measurements the statistical error in measurements is not different than
the statistical error in readout error measurements therefore, we calculated
the statistical error only for our N= 3 deuteron and molecular Hydrogen
calculations.
Although we were able to reduce the depth of the quantum circuit

using the single-step method, the decoherence effects became apparent in
the expectation value measurements. Therefore, in addition to the ROEM
we also used the Richardson extrapolation15,28 technique for the short-
depth quantum circuits29 to mitigate the errors associated with the noise
produced by the gates used in the quantum circuit. The basic idea in this
technique is to increase the error rate deliberately by a constant factor of
r which is followed by an extrapolation to obtain the noise free expectation
value. In this particular study, we increase the error rate by adding pairs of
CNOT gates. The process of adding CNOT pairs is not expected to change
the result of measurements since it corresponds to an identity matrix but it
will contribute to the noise produced by CNOT gates. Our results showed
that for two-qubit systems the expectation values of the observables scale
linearly as

hOðrÞi ¼ Ar þ hOð0Þi (29)

and for N= 3 deuteron system they scale quadratically as

hOðrÞi ¼ Ar2 þ Br þ hOð0Þi; (30)

where the coefficients A, B, and the extrapolated noiseless expectation
value hOð0Þi are found from the linear and quadratic fit to the data points
of the expectation values of the operators for each case. We did not apply
Richardson extrapolation technique to the QLanczos measurements since
the results obtained using the QLanczos algorithm were in good
agreement with the exact diagonalization results.

Extrapolation to the infinite HO basis
The finite-size corrections to the infinite size HO basis based on the
Lüscher’s method can be stated as

EN � E1 ¼ Ae�2k1L þ Bk1Le�4k1L þ Ce�4k1L ; (31)

where

A ¼ _2k1γ2

m ; B ¼ 2_2γ4

m ;

C ¼ _2k1γ2

μ 1� γ2

k1
� γ4

4k21
þ 2w2k1γ4

� 	
:

(32)

The values and definitions of the variables in (31) are given in Table 3.
The terms in right-hand side of (31) refer to leading order (LO), next-to-
leading order (NLO), and N2LO, respectively. Curve fitting the LO and NLO
terms gives the binding momentum, k∞ and the asymptotic normalization
coefficient, γ, for each order by using E1 and E2. Fitting to N2LO term
adding E3 data helps calculating an effective range parameter, w2.

Fig. 4 Two-qubit QITE quantum circuit with initial state
Ψ0j i ¼ 10j i. The quantum circuit in the box is repeated at each
QITE step after the second step of the algorithm for convergence.

Fig. 5 Two- and three-qubit single-step QITE quantum circuit. The
initial state is a Ψ0j i ¼ 10j i and b Ψ0j i ¼ 100j i, respectively.
The angle parameters are calculated for the same circuit until the
convergence is reached.
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Information on experimental runs on IBM Q hardware
In Table 4 exact and ROEM energy expectation values are given for the
β= 0.10, 0.15, 0.25 points in Fig. 1a for qubit layouts [q0, q1]= [0, 1] and
[q0, q1]= [0, 5] on IBM Q Johannesburg hardware.
Table 5 demonstrates the hardware used, the number of runs, and the

number of shots in each run to obtain each figure and table in this study.
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Table 3. The values and definitions of the variables in (31).

Variable Symbol, Equation Value

Finite-basis energy EN
Infinite-basis energy E1 ¼ � _2k21

2μ

Binding momentum k∞
Reduced mass μ ¼ mp þ mn

4 469.45925MeV c−2

Proton mass mp 938.272MeV c−2

Neutron mass mn 939.565MeV c−2

Effective hard-wall radius L(N) L(1)= 9.14 fm

L(2)= 11.45 fm

L(3)= 13.38 fm

Conversion constant ħc 197.326MeV fm

Energy spacing ħω 7MeV

Table 4. The exact and ROEM energy expectation values calculated
using qubit layouts [q0, q1]= [0, 1] and [q0, q1]= [0, 5] on IBM Q
Johannesburg hardware are compared.

Exact (MeV) ROEM (MeV)

[q0, q1]= [0, 1] [q0, q1]= [0, 5]

β= 0.10 −1.743 −1.516 ± 0.2 −1.679 ± 0.06

β= 0.15 −1.749 −1.645 ± 0.2 −1.643 ± 0.06

β= 0.25 −1.749 −1.441 ± 0.4 −1.729 ± 0.05

To plot Fig. 1a we used the values from layout [q0, q1] = [0, 5] at points β=
0.10, 0.15, 0.25 as they revealed less deviation and less error out of 10 runs.

Table 5. Information about the experimental runs on hardware.

Figure/Table # of shots # of runs IBM Q hardware
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Figure 1b 8192 10 Johannesburg (v1.1.5)

Figure 2 8192 10 Johannesburg (v1.1.5)

Table 1 (N= 2) 8192 5 Poughkeepsie (v1.2.6)

Table 1 (N= 3) 8912 5 Rochester (v1.1.1)

Figure 3a 8192 3 5 Yorktown (v2.0.1)

Figure 3b 8192 3 Poughkeepsie and Rochester
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