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Abstract

Spatial regression models have been widely used to describe the relationship between a response variable
and some explanatory variables over a region of interest, taking into account the spatial dependence of the
observations. In many applications, relationships between response variables and covariates are expected
to exhibit complex spatial patterns. We propose a new approach, referred to as spatially clustered coefficient
(SCC) regression, to detect spatially clustered patterns in the regression coefficients. It incorporates spatial
neighborhood information through a carefully constructed regularization to automatically detect change
points in space and to achieve computational scalability. Our numerical studies suggest that SCC works very
effectively, capturing not only clustered coefficients, but also smoothly varying coefficients because of its
strong local adaptivity. This flexibility allows researchers to explore various spatial structures in regression
coefficients. We also establish theoretical properties of SCC. We use SCC to explore the relationship between
the temperature and salinity of sea water in the Atlantic basin; this can provide important insights about the
evolution of individual water masses and the pathway and strength of meridional overturning circulation
in oceanography. Supplementary materials for this article, including a standardized description of the
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1. Introduction

Numerous problems today in the environmental, earth, and
biological sciences involve large amounts of spatial data that
are obtained from remote sensors, satellite images, scientific
climate computer models, and so forth. In many such applica-
tions, a main problem of interest is investigation of the rela-
tionship between a response variable and a set of explanatory
variables over a region of interest, taking into account the spatial
dependence of the observations. Spatial regression models such
as Gaussian process regression (Cressie 1993) or spatial gen-
eralized linear regression models (Diggle, Tawn, and Moyeed
1998) have been widely adopted for this problem; these account
for spatial dependence by adding a spatial random effect to
the (generalized) linear regression models or, equivalently, by
assuming a spatially varying intercept that absorbs a spatial
random effect. The effects of explanatory variables in such mod-
els are often assumed to be constant across the entire region.
However, for data that are collected from a large region, rela-
tionships between response variables and covariates may exhibit
complex spatially dynamic patterns that cannot be captured
by constant regression coefficients. In particular, relationships
among spatial variables may abruptly change across the bound-
aries of adjacent clusters but stay relatively homogeneous within
clusters.

The need to detect such clusters arises in many biological,
ecological, agricultural, environmental, and real estate applica-
tions, to name a few. Detecting these clusters allows straight-
forward interpretations of local associations between response

variables and covariates. For example, climate/environmental
conditions on the ground often exhibit abrupt changes across
certain topological boundaries. Housing prices per square
footage can differ substantially on opposite sides of a street.
Neuroscientists are interested in finding clusters of human brain
subregions that react to certain stimuli. Relationships among
underground geophysical properties as well as atmospheric
properties are also expected to change abruptly because both
the underground and the atmosphere consist of complex and
heterogeneous multiple layers.

Our specific motivating problem comes from an important
scientific question in geoscience. Geophysical fluids (i.e., air and
sea water) consist of distinct fluid masses (Talley 2011). Within
each fluid mass, the physical and chemical properties are rela-
tively homogeneous, but they change rapidly across the narrow
boundaries (termed fronts in geoscience) between adjacent fluid
masses. This phenomenon is a result of the nonlinear nature
of geophysical fluid dynamics and is ubiquitous in the atmo-
sphere and the ocean (Vallis 2006). The relationships between
different characteristics of fluids are likely to change abruptly
across fronts. One notable instance is the relationship between
the temperature and the salinity of sea water (referred to here-
after as the T-S relationship). In oceanography, temperature and
salinity are two important features of water masses that strongly
affect ocean currents (Talley 2011). Knowledge of the spatial
distribution of the T-S relationship in the ocean can provide
important information about the evolution of individual water
masses. Such information can be further used to monitor the
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pathway and strength of the meridional overturning circulation
(MOC), which plays a key role in the global climate system.

In the context of spatial statistics, various models have been
developed to capture spatially varying regression coefficients.
geographically weighted regression (GWR) (Fotheringham,
Brunsdon, and Charlton 2003) and spatially varying coefficient
(SVC) models (Gelfand et al. 2003) are two popular methods of
this type. GWR extends the ordinary least-square regression by
fitting a local regression model at each observation. Assuming
a linear model with y denoting the response variable and X
the design matrix, the regression coefficient at the ith location
is estimated from B; = (XTW;X)"'X"W,y, where W; is a
diagonal weight matrix defined by a kernel function of distance
to point i. Such weighting schemes make the GWR method
more efficient to deal with smoothly varying than clustered
regression coefficients. In Gelfand et al. (2003), spatially varying
regression coefficients are modeled as a multivariate spatial
Gaussian process. It fits into the Bayesian paradigm with
posterior inference attainable for all model parameters and
thus provides a richer inferential framework. Such an advantage
comes at the cost of a large computational burden due to its
requirement of the Metropolis algorithm. Recent advances in
dealing with large spatial datasets such as the predictive process
(Banerjee et al. 2008) and the Gaussian Markov random field
approximation (Lindgren, Rue, and Lindstrém 2011) could be
utilized in the SVC models to alleviate its computational burden.
Although the SVC models offer flexibility in modeling spatially
varying coeflicients through the choice of covariance/cross-
covariance functions, to our knowledge, there are very limited
existing covariance/cross-covariance functions appropriate to
capture arbitrary clustered patterns.

We seek to develop a spatial modeling approach that is
directly applicable for detecting spatially contiguous clusters
in regression coeflicients. One potential solution would be
motivated by the studies on the homogeneity pursuit of
regression coefficients in high-dimensional data analysis.
In these studies (e.g., Tibshirani et al. 2005; Ke, Fan, and
Wu 2015), pairwise coefficient differences are penalized to
encourage homogeneity among coefficients. A key ingredient
is the appropriate selection of sets of pairs on which to impose
penalties. When a complete order of regression coeflicients is
available, such as in time series problems, we could construct
fusion penalties (Tibshirani et al. 2005) on successive differences
between coefficients in order to encourage similarity in adjacent
coefficients. Then, the problem can be transformed to lasso
regularization (Tibshirani 1996), an optimization problem for
which efficient algorithms are available. However, this strategy
is not applicable to spatial data, as they do not have a natural
order. For cases where there is no prior information on the
order of coefficients, several recent studies propose establishing
a coefficient order based on preliminary coefficient estimates
(Ke, Fan, and Wu 2015; Tang and Song 2016). Clearly, such
methods require adequate sample replicates to obtain reliable
preliminary coefficient estimates for ordering. But in spatial
statistics, it is common to have spatial observations from only
one snapshot or spatio-temporal observations with a strong
dependence in time. Independent replicates are unavailable in
both of these cases.

In this article, we propose a new spatial regression modeling
approach, called spatially clustered coefficient (SCC) regression,

to estimate regression coefficients when there are spatial pat-
terns, especially clustered patterns, in the relationship between
a response variable and explanatory variables. SCC imposes
penalties on the difference between regression coefficients at any
two locations connected in an edge set. To address the challenge
of selecting an edge set that incorporates spatial information
while maintaining computational efficiency, we propose using
a minimum spanning tree (MST). An MST is a subgraph that
connects all vertices of an undirected graph with no cycles and
with minimum total edge weights. For a spatial problem, an
MST can be constructed efficiently based on spatial locations
with distances between locations serving as the edge weights.
It compactly represents a spatial topology of observed points:
two locations that are connected by an MST tend to be close
in space. Therefore, the penalties on the edges of an MST
encourage spatial homogeneity of the coefficients at proximate
locations. Moreover, such a choice of the edge set facilitates
computation: after a linear reparameterization, the estimation
problem is reduced to the usual lasso-type optimization, which
has a highly scalable algorithm suitable for large datasets.

SCC has several other advantages. It allows the investigation
of different clustered patterns in different regression coeflicients.
The number of clusters estimated from SCC is completely data
driven. Furthermore, although designed for clustered coeffi-
cients, our numerical studies show that the SCC model has
strong local adaptivity and can also successfully capture a highly
spatially variable pattern.

The rest of the article is organized as follows. Section 2
details the SCC model and discusses its theoretical properties.
In Section 3, we present simulation studies to illustrate the
performance of SCC. An application of the method is shown
in Section 4 using the aforementioned temperature and salinity
data in the Atlantic basin. Section 5 summarizes the major
conclusions of this study followed by discussion. Related proof,
more simulation results, and codes are provided in the supple-
mentary materials.

2. Methodology
2.1. SCC Model

Suppose a set of spatial data {(x(s;),y(s;)),i = 1,...,n}is
observed at locations sj,...,s, € RZ, where the response
variable y(s;) is assumed to be spatially correlated and x(s;) =
(x1(8i)s -+ 5 Xp (s)) 7T is the p-dimensional vector of explanatory
variables for the observation located at s;. Consider the standard
linear regression, y(s;) = Zi:l xx(si) Bk + €(s;), where By, k =
1,2,...,p,are the regression coeflicients and € (s;) are indepen-
dently identically distributed random noises with mean 0 and
variance o2. The intercept can be accommodated by including
1 as an entry of x(s;). Without loss of generality, we assume that
the explanatory variables are standardized to have mean 0 and
unit variance. The extension of the linear regression model to
allow spatially varying regression coefficients is straightforward,

P
y(s) =Y xi(s)Br(si) + €(si). (1)
k=1
In many spatial datasets, it is very common to observe only
one or a limited number of replicates at each location, making



the model (1) ill-posed if without any assumptions on Sk (s;).
For example, with only one spatial realization {(x(s), y(s;)),i =
1,...,n} at n observed locations, the regression model (1) can
be written in the matrix form

y=XB +e.

Here, we stack all the coefficients into a vector 8 = (B1(s1),. ..,
B1(sn)s -+ Bp(s1)s . .. ,ﬂp(sn))T, and the design matrix X =
[diag(x1),...,diag(x,)] is an n x np matrix with xz =
(xk(51)s - . . xk(sn)) L. Clearly, this regression problem needs to
be regularized since there are more variables than observations.
For spatial problems, it is expected that association between a
response variable and explanatory variables at nearby locations
is highly homogeneous. This motivates us to assign a regulariza-
tion function for B reflecting such spatial homogeneity patterns.

Specifically, we propose to estimate 8 by minimizing the
following objective function

n P
1 NS VAL (2
- ; {y(si) ;xus,)ﬂk(s,)}

p
+ )Y PalBrls) — Bi(s)). )

k=1 (i,j)€E

Here, E is the edge set of a graph consisting of n vertices,
where each vertex corresponds to one observed spatial location.
The term P, is a penalty function to encourage homogeneity
between two regression coefficients if their corresponding loca-
tions s; and s; are connected by an edge in . A is a tuning param-
eter determining the strength of penalization. The selections of
the penalty function P, the edge set E and the tuning parameter
A are the three ingredients of the model (2). Below, we discuss
strategies to choose them.

2.1.1. Selection of the Penalty Function P;,

There are various forms of penalty functions encouraging spar-
sity in the literature of variable selection. The simplest and
perhaps the most widely adopted one is the lasso (Tibshirani
1996) that employs L;-penalty of the form

Py (1) = Alt. (3)

As the penalty in (3) is a convex function, efficient convex
optimization algorithms can be readily applied. In this case, the
Ly penalty P; (B (si) — Bk(sj)) enforces sparsity of the difference
in two edge-connected coeflicients. This allows the estimation
of regression coefficients with a spatially piecewise constant
(i.e., clustered pattern) if edge sets are selected appropriately
to incorporate spatial information. The nonzero elements of
|Bk(si) — Bi(sj)| correspond to boundary points, whereas any
two edge-connected coefficients with zero difference belong to
the same cluster. Naturally, spatial clusters for each explanatory
variable can be automatically detected. However, as lasso assigns
large penalties to large values of t, it tends to underestimate ¢, in
our case, the difference in two regression coefficients, when its
true value is large. To remedy this flaw, various penalty func-
tions have been proposed, including adaptive lasso (Zou 2006),
smoothly clipped absolute deviation (SCAD) (Fan and Li 2001),
minimax concave penalty (MCP) (Zhang 2010), and reciprocal
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L;-regularization (rlasso) (Song and Liang 2015). Adaptive lasso
assigns larger weights to the terms with small values in the L;
penalty. SCAD and MCP adopt some concave functions that
converge to constants as the penalized term becomes large. The
rlasso uses a class of penalty functions that are decreasing in
(0, 00) with a discontinuity at 0 and converging to infinity when
the penalized term approaches zero. These forms have smaller
estimation errors compared to lasso, which, however, is at the
expense of considerable increase in computational cost. In prac-
tice, penalty functions are often selected by weighing a trade-oft
between statistical efficiency and computational complexity for
specific problems.

It should be noted that the reduction of computational bur-
den is critically important in spatial analysis as large datasets
have become common in diverse fields such as geoscience,
ecology, and econometrics. In this study, we mainly focus on the
lasso penalty to demonstrate the power of SCC for its computa-
tional simplicity. We remark that SCC can adopt other forms of
penalty functions which may further improve its performance.

2.1.2. Edge Selections Based on Minimum Spanning Tree
The edge set E is the key ingredient in the SCC model since it
reflects the prior assumption about the structure of regression
coefficients. However, as mentioned in Section 1, unlike tempo-
ral data, spatial data do not have a natural order, which makes it
challenging to construct the set E.

We note that in many spatial problems, regression coeffi-
cients at proximate locations are likely to be similar due to
their homogeneous properties within a certain subregion. It
is therefore desirable to construct E such that only proximate
coordinate pairs are included in order to reflect spatial homo-
geneity among coefficients.

A common choice of an edge set [E that satisfies this criterion
is the set consisting of neighboring coordinate pairs, that is,
E = {Gis) : i = 1,...,ms; € Ny}, where Ny, is the set
of neighbors of s;. The neighboring set N, can be defined in
many different ways, for example, the k nearest neighbors of s; or
neighbors within a certain radius. Although such selections of E
seem natural, they suffer from two evident deficiencies. First, E
defined as above does not necessarily connect all the points in
irregular spatial locations, resulting in isolated points. In such
a case, (2) will not reduce to a constant regression coefficient
model when A — oo. Second, and more problematically, the
penalties on the pairwise differences based on this choice of
E include many redundant terms, and the computation is very
challenging when solving the optimization problem for a graph
with large numbers of nodes and edges (see Tang and Song
2016). Specifically, given an edge set [E, the corresponding model
can be formulated as a generalized lasso problem as follows:

1 p p
=D s = D x(sDBHY + A Y IHBh,  (4)
i=1 k=1 k=1

where H is an m X n matrix constructed from the edge set E
with m edges. For an edge connecting two locations s; and sj, we
represent the penalty term | By (s;) — Bi(sj)| as |H;, 8|, where Hy,
is a row vector of H and contains only two nonzero elements, 1
at the ith index and —1 at the jth.
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For most graphs constructed by k-nearest neighbors or
neighbors within a certain radius such that all points are
connected, the number of edges is greater than the number
of nodes. Path-following algorithms (Shen and Huang 2010;
Arnold and Tibshirani 2016) and the alternating direction
method of multipliers (ADMM) (Boyd 2011; Zhu 2017) have
been developed to solve the generalized lasso problem for this
case. Nevertheless, for an arbitrary H with m > n for large m
and n, these algorithms are computationally very costly. Indeed,
the computational complexities of these algorithms are typically
at least O(n®) for the problem we are considering here, which is
far slower than solving a lasso problem.

The previous discussion suggests that for large-scale prob-
lems, an appropriate choice for E that balances model accuracy
and computational efficiency should only include coordinate
pairs close to each other, should lead to connectivity of all data
points, and should have no redundant pairs. One choice of E that
satisfies all three of these criteria is the edge set of an MST. Given
an undirected graph G = (V,E¢) with a weight function d(e)
that assigns a weight to each edge e in an edge set Eg, an MST
is defined as the subgraph T = (V,E),E C E, that connects
all vertices without any cycles and minimizes ), p d(e). It is
known that an MST has |V| vertices and |V| — 1 edges.

MSTs were originally motivated by applications in the opti-
mal design of networks, such as computer networks, telecom-
munications networks, and transportation networks. Another
important application of MSTs is clustering (Grygorash, Zhou,
and Jorgensen 2006), where the MST for a given point set and
distance measure is first constructed, and then some edges are
removed from the MST according to certain criteria to form
clusters of points. In particular, MSTs have a close connection
with the single-linkage agglomerative clustering algorithm. The
clusters obtained from removing the edges in the MST whose
weights are greater than a given threshold are the same as those
obtained from applying the same threshold as a cut-off distance
for a single-linkage dendrogram. Indeed, this is the result of
a unique property of MSTs, referred to as the cut property. It
is known that for any cut of a given connected graph G, the
minimum-weight edge that crosses the cut is in the MST for G.

Based on this property, efficient algorithms for constructing
MSTs have been developed (Section 2.2 provides the com-
putation details), with a computational complexity close to
O(nlogn), where n is the number of vertices in a 2D Euclidean

space. In addition to their computational advantages, MST-
based clustering algorithms are also known to be effective in
detecting clusters with irregular boundaries, due to the fact
that they do not rely on the assumption of a spherically shaped
cluster structure for the underlying data.

In our application, taking a given set of n spatial locations
as vertices and the Euclidean distances between locations as
the edge weights, we can construct an MST, T = (V,E),
consisting of n — 1 edges with all n locations connected. By the
construction, T provides a connected, acyclic graph that com-
pactly represents the spatial topology of the n observed points,
and is thus an appropriate choice satisfying the aforementioned
desired properties for edge set selections. In this case, H is a
full row rank matrix encoding the n — 1 penalty terms on the
coefficients B.

An illustration of an MST based on 1000 spatial locations is
provided in Figure 1(a). By penalizing the coefficients at two
locations connected in the edge set of the MST, the estimated
coeflicients form different clusters (see Figure 1(b)). Within each
cluster, the vertices (spatial locations) remain connected and
the corresponding coeflicients take the same value, while across
different clusters, the connection is cut and the coefficients take
different values.

Finally, we remark that for data observed on a regular lattice,
all spanning trees are also MSTs, as all edges have the same
weight. To ensure that edges are selected such that the MST
properly represents the spatial topology, we can consider a so-
called random MST (Braunstein et al. 2007) that is formed by
assigning random weights to the edges of a lattice graph using
a uniform distribution from 0 to 1. As the weights are drawn
from a continuous distribution, the probability of having a tie
between two edge weights becomes zero, and the resulting MST
is unique (Dobrin and Duxbury 2001). See Figure 1(c) for an
example of the MST on a regular lattice.

2.1.3. Selection of Tuning Parameter A

The tuning parameter A controls the number of clusters
in regression coefficients in our context. When 1 — oo,
the model (2) yields a constant regression coefficient; when
A = 0, it reduces to the ordinary least square with all
different coeflicients across the region. With an appropriate
choice of X, the penalized least-square model (2) produces

Minimum Spannning Tree lllustration
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clustered regression coeficients. In practice, the optimal A
can be determined via some data-dependent model selection
criteria, such as generalized cross-validation (Golub, Heath,
and Wahba 1979), Akaike information criterion (AIC), Bayesian
information criterion (BIC) (Schwarz et al. 1978), and extended
Bayesian information criterion (EBIC) (Chen and Chen 2008,
2012).

2.2. Computation

The model fitting of SCC involves two major computation steps:
construction of the MST based on the spatial locations of the
dataset and regularized optimization in (2) for the given MST.

In the first step, we use Prim’s algorithm developed from
the cut property of the MST. The computational complexity
of this algorithm is O(m + nlogn) on a graph with » vertices
and m edges (m = n(n — 1)/2 for a complete graph). For
Euclidean MSTs, that is, MSTs using Euclidean distance as the
edge weight function, computation can be further reduced by
using Delaunay triangulation (March, Ram, and Gray 2010).
Given n points in two-dimensional space, a Delaunay trian-
gulation forms a connected graph. Prim’s algorithm is then
applied to the Delaunay triangulation to find the corresponding
MST. Note that the construction of a Delaunay triangulation
requires O(nlogn) time and O(n) storage, and the number of
edges in a Delaunay triangulation is O(n). The final algorithm
that combines Prim’s algorithm and the Delaunay triangulation
method takes O(nlogn) time and O(n) space. We remark that for
data on a sphere, we can use a so-called geodesic MST, in which
the great circle distance is used as the distance metric, that is,
the edge weight function, between any two locations (nodes).
Dolan, Weiss, and Smith (1991) have developed algorithms
for computing the Delaunay triangulation and geodesic MST
for a graph on a sphere, with the computational complexity
remaining at O(nlogn).

Once the MST is constructed, the resulting penalties no
longer contain redundant terms and hence can be easily trans-
formed into a lasso, or lasso-type problem after suitable repa-
rameterization. Define new parameters 0,k = 1,...,p as

0 = (lIiIT> By = HB,.

The new design matrix can be written as X = [diag(xl)ﬁ_l,
e ,diag(xp)H_l]. Note that H is an n x 1 invertible matrix
since H has full row rank, and thus there is a one-to-one trans-
formation between 8, and 0. Then, the SCC model in (4) can
be rewritten as

1 ~
Zllv = X012
—lly = X015+ ) 16, (5)
123:]
where § = (0T, . OE)T, a vector of size np, and B represents

the index set B = {¢ : mod(¢,n) # 0,for{ = 1,---,np}

excluding every nth element. Henceforth, we will denote Y |6y
teB
as ||@g||1 for neatness.

Therefore, the solution to the SCC model (2) with a lasso
penalty can be obtained by solving the lasso problem in (5) with
respect to the parameters 6. Estimators for f are then given by
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ﬁ\k = H 0, fork = 1,... ,p- Many efficient lasso solvers,
such as the LARS (Efron et al. 2004), coordinate decent (Fried-
man, Hastie, and Tibshirani 2010), and stochastic Frank-Wolfe
(Frandi et al. 2016) algorithms, can be readily applied to the
SCC model for large datasets. For example, using the stochastic
Frank-Wolfe algorithm, the lasso optimization with a size of up
to one million penalties can be handled within a minute.

2.3. Theoretical Properties

In this subsection, we consider theoretical results concerning
the behavior of SCC. We provide error bounds for its estimation
and prediction, as well as its performance in detecting spatially
clustered patterns of unknown regression coeflicients. As there
is a one-to-one transformation between B and 0y, we present
theorem in terms of 6.

Assumptions 1. (a) There is a positive constant C; so that

noo
n1 ZXf,(Z < Cforanyn > 0and ¢ € {1,...,np}.
i=1
(b) There is a positive constant ® so that for any vector u €
R" satisfying |luac|l1< 3|lusll; where A = {€ : 6; # 0,£ €
B} U B and |A| denotes its cardinality, we have

1 i~
;uT<XTX)u > ®|[ull3. (6)

Assumption 1(a) means the random variables V, =

no<
n~1 > Xjeei to be sub-Gaussian for any £ € {1,...,np}.
i=1
Assumption 1(b) is known as the restricted eigenvalue condition
(Tibshirani, Wainwright, and Hastie 2015) .

Theorem 1. Suppose that Assumption 1 holds. If 1, /n/log(n) >

4,/(1 + Cz)ZC%O’Z where C, is a positive constant for any n > 0,

the following inequalities hold with probability tending to unity
asn — 0o

l ~  ~a~ 9A2|A|
Z11X0 — X603 < =, 7
nll 5 < 10 (7)
~  3aIA]
10 — 0], < ==X —. (8)
20

The detailed proof for (7) and (8) is provided in the sup-
plementary materials. Assuming that |A| grows with a rate as
o(n/logn), the right-hand sides of (7) and (8) decrease asymp-
totically to zero as n — oo. We note that such an assumption
for |A| is generally satisfied under infilling domain asymptotics
in which case the number of clusters is often fixed.

Finally, we demonstrate in Corollary 1 how the estimation
error bound (8) can be used to guide the detection of clusters in
practice. Define )y = min(|0¢|,£ € S), where S = {£ : 6, #
0,¢ € B} . We have the following corollary based on Theorem 1:

Corollary 1. Assuming that |A| grows with a rate as o(n/logn)
and the conditions in Theorem 1 hold, the following statement
holds with probability tending to unity as n — oc:

0] <8 < ¢S
forany £ € Band any 0 < § < ).
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In many applications, the possible range of 63 could be
known a priori, that is, 6’]1\/[ < 6 < 0} According to
Corollary 1, § = 6’}\4 can be used as a threshold for 6, to detect
clusters.

3. Simulation Studies

In this section, we present two simulation studies to illustrate
the robust performance of the SCC method under two
different scenarios. The true regression coeflicients in Study
1 are designed to have clustered patterns. In practice, we
may not know whether the true regression coefficients are
clustered or smoothly varying. To examine the behavior of
SCC in capturing spatially highly variable patterns even under
unfavorable scenarios, we design Study 2 in which the true
regression coefficients are generated from a spatial Gaussian
process.

In both studies, we randomly generate 1000 spatial locations
in the square domain [0, 1] x [0, 1]. Then, the response at each
location is generated according to

y(si) = B1(s)x1(si) + Ba(si)xa(si)) + B3(si) +€(si),  (9)

where €(s;) id N(0,0%). We set o to be 0.1.

Numerical data analyses in previous work often generated
values of predictors from a white-noise process (e.g., Finley
2011; Wheeler and Calder 2007). However, in geoscience
studies, many variables serving as predictors of a regression
model have evident spatial structures (Talley 2011). Therefore,
we generate covariates from spatial processes to mimic real
situations in the numerical studies. Let {z1(s;)} and {z(s;)}
denote the two independent realizations of a spatial Gaussian
process with mean zero and a covariance matrix defined
from an isotropic exponential function: Cov{z(s;), zk(s))} =
exp(—|ls; —sjll /@), k = 1,2, where ¢ is the range parameter. We
generate two covariates x1 (s) and x,(s) by linearly transforming
z1(s) and z,(s). Specifically, we set x;(s;) = z1(si) and x2(s;) =
rz1(si) + v/ 1 — r?z,(s;), allowing dependence between the two
spatially varying predictors. In the following analysis, we set
r = 0.75, corresponding to moderate collinearity, and we
consider three range parameters ¢ = 0.1,0.3,1 corresponding
to weak, moderate, and strong spatial correlations. For each
value of ¢, we run 100 simulations to examine the behavior of
SCC in parameter estimation.

As indicated in Section 1, GWR and SVC are two popular
existing spatially varying coefficient models. Previous studies
suggest that SVC typically produces results that are comparable
to GWR (Finley 2011) since it can be viewed as a model-based
version of GWR (LeSage 2004). Therefore, we compare the
results for SCC with those of GWR. To quantify the performance
of each method in estimation, we consider the mean-squared
error of estimation (MSEg), defined as

1 L .
MSEg = — Y ) " (Bi(s)—Br(si)).
"o =
For SCC, the tuning parameter A is chosen using BIC. Our
numerical experiments (see the supplementary materials) indi-
cate that the performances of AIC and BIC are comparable

in terms of MSEg while EBIC performs much worse. Indeed,
previous studies (Foygel and Drton 2010; Song and Liang 2015)
suggest that EBIC tends to produce oversparsity in the penalized
term (the difference of regression coefficients in our model). For
the GWR method, we employ an exponential kernel function
with the optimal bandwidth chosen by the cross-validation
method.

We use the package glmnet to solve the lasso optimization
and the package gwr to implement GWR (both packages are
available in R and Matlab), and we use the Matlab function
graphminspantree and the R function mst in the igraph package
to find the MST. We use the R function admm.genlasso in
the penreg package to solve the generalized lasso problem
for comparisons. The computations were performed on a
Mac Pro with a 3.0GHz eight-core processor and 64GB of
memory.

3.1. Study 1: Clustered Coefficients

The true regression coeflicients in this study are set to be spa-
tially clustered. As shown in the top panel of Figure 2, each of
the coefficients B1(si), B2(si), and B3(s;) is assigned a distinct
cluster pattern to reveal the ability of SCC in detecting various
patterns.

The first part of the simulation study compares the perfor-
mance of the GWR and SCC methods using an MST as the edge
set. The coeflicients estimated from the GWR and SCC methods
in one simulation are plotted in Figure 2(d)-(i). It can be seen
that the spatial patterns of the coefficients derived by SCC, as
shown in the bottom panel of Figure 2, are highly consistent
with the true regression coefficients shown in the top panel. SCC
successfully captures the cluster structure in the regression coef-
ficients and detects the abrupt changes across the boundaries
of adjacent clusters. In contrast, the coefficients estimated from
GWR do not exhibit a clear cluster structure. Specificall, GWR
produces poor estimations of regression coefficients both within
clusters and near their boundaries.

We further examine the performance of SCC in terms of
parameter estimation. Table 1 compares MSEg for GWR and
SCC under three different settings of spatial correlation for the
covariates. For coeflicient estimation, SCC clearly outperforms
GWR, with considerably smaller values of MSEg in all three
settings. As the spatial correlation in the covariates becomes
stronger, the performance of GWR degrades substantially,
whereas the SCC estimates are relatively more stable. For
instance, the mean MSEg for the GWR estimates over 100 sim-
ulations is 0.36 when spatial correlation among the covariates is
weak (¢=0.1) but increases to 3.73 in the case of strong spatial
correlation (¢=1). In contrast, the mean MSEg for the SCC
estimates changes by less than a factor of three. Therefore, SCC
provides more robust inferences for the regression coeflicients,
especially in the presence of strong spatial correlation in the
covariates.

We end the first part of Study 1 by examining the perfor-
mance of SCC in recovering clusters of coeflicients. Table 2 lists
the individual Rand index for the SCC estimates, 81 (s;), B2(s),
and B\3 (s;) averaged over 100 simulations. The values of the Rand
index range from 0.72 to 0.85. In particular, the Rand index
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Figure 2. Study 1: spatial structures of (a)-(c) true coefficients 81, B2, and B3; the estimated coefficient surfaces from (d)—(f) GWR; and (g)-(i) SCC in one simulation with

the spatial range parameter ¢ = 0.3 for predictors.

Table 1. Summary of Study 1 (clustered coefficients): the mean MSEg for the SCC
and GWR methods over 100 simulations, under various spatial correlations for
predictors.

Spatial correlation MSEg

GWR Nee
Weak 0.36 0.09
Moderate 1.07 0.12
Strong 3.73 0.22
Table 2. Rand index for the SCC method in Study 1.
Rand Index B By B3
Weak 0.72 0.82 0.85
Moderate 0.72 0.82 0.85
Strong 0.73 0.83 0.85

does not degenerate as the spatial correlation among predictors
becomes stronger, suggesting that SCC is robust for detecting
clusters in regression coefficients.

For the second part of the study, our goal is to examine
the performance of SCC using different choices of edge sets,
including the MST (denoted as “SCC-MST”), the radius-based
nearest-neighbor graph (denoted as “SCC-RNN”)—using 0.05
as the radius since it is the smallest threshold that guarantees
that each node has at least one neighbor, and the four-nearest-

neighbor graph (denoted as “SCC-KNN”). Figure 3 shows
the computation time and the boxplots of MSEg for each
method for the case where the spatial correlation among the
covariates is weak. Looking first at computation time, SCC-
MST took an average of 1.4 sec to compute solutions for
200 values of A. In comparison, GWR took an average of 7.5
sec, SCC-RNN an average of 972.0 sec, and SCC-KNN an
average of 961.9 sec to compute 200 solutions for the same
dataset.

All of the SCC-based methods achieve much smaller MSEg
values than GWR, with SCC-MST outperforming GWR in
terms of both computation time and parameter estimation
accuracy. Among the SCC methods using different edge sets,
there is clearly a trade-oft between statistical efficiency and
computational efficiency. Both SCC-RNN and SCC-KNN
produced a more accurate parameter estimation than SCC-
MST, with about a 50% reduction in MSEg, which is not
surprising since RNN and KNN graphs are denser than MSTs
and hence, allow more edges to be checked to detect changes
among nodes. However, as mentioned above, the improvement
in statistical efficiency from using denser graphs comes with
a substantially greater computational burden; for example, the
computation time for SCC-KNN with four neighbors was nearly
700 times greater than that of SCC-MST. These results suggest
that for a small-to-medium size dataset—say, when the number
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label.

of the nodes is less than a few thousand—a denser graph such
as KNN or RNN can be used to implement the SCC method
to achieve more accurate parameter estimation. But for a larger
dataset size, such as the real data example with 10,000 locations
shown in Section 4, SCC-MST has a strong computational
advantage, as it becomes computationally too expensive to
implement SCC-RNN or SCC-KNN.

3.2. Study 2: Smoothly Varying Coefficients

The design of this study is similar to Study 1, except that
the regression coefficients are independently generated from
a Gaussian spatial process. Here, all the coefficient processes
have a zero mean and an anisotropic exponential covariance
function:

cov(Bi(si)> Bi(s)

=o;exp(_

2
(Svi — 5v,j)

2
d)v,k

2
(Sni — Sh,j)
2
Dk

>,k= 1,2,3,

where (¢nk, Py ) is the anisotropic range parameter and oé is

the variance parameter. o2 is fixed at 4, and (¢y,, ¢y) is set to be
(3, 1) for B1(s), (1, 3) for By(s;), and (2, 2) for B3(s;).

The estimated coefficients from GWR and SCC in one sim-
ulation are displayed in Figure 4. The spatial pattern of coeffi-
cients derived by SCC agrees reasonably well with that of the
true model. The estimates from GWR are, however, quite noisy,
with artificially large coefficient values in some parts of the
domain. This is partly because the isotropic kernel function used
for GWR is too restrictive when fitting an anisotropic spatial
field. In contrast, an advantage of SCC is its strong local adap-
tivity. The use of a local pairwise penalty function allows the
fitting of a spatial field that is homogeneous in one direction but
highly varying in the other. Comparisons of MSEg for the two
methods further confirm the superiority of SCC in estimating
smoothly varying coeflicients. For instance, in the presence of
strong spatial correlation in the predictors, MSEg for SCC is
only 1/6 of that for GWR (Table 3).

3.3. Summary of Simulation Results

In both cases, SCC is capable of capturing the spatial pattern
in coefficients, and it outperforms GWR with a considerably
smaller estimation error. It should be noted that Study 1 and
Study 2 can be treated as two distinct scenarios of spatial pat-
terns of coefficients. The former is consistent with the assump-
tion underpinning the SCC method, while the latter favors the
setting of the GWR method. Simulations for a hybrid scenario
with B (s;) and B, (s;) clustered but B3(s;) smoothly varying are
included in the supplementary materials, which also reveals the
superiority of SCC over GWR. The results of simulation studies
show that even under misspecified models, SCC is capable of
producing reasonable estimates, illustrating its robustness and
strong adaptivity.

4, Real Data Analysis
4.1. Dataset

In this section, we use the SCC method for the detection of
the Antarctic intermediate waterway (AAIW) (Talley 2011) by
investigating the temperature-salinity (T-S) relationship in the
Atlantic Ocean, along with a comparative analysis using the
GWR method. The AAIW, formed and subducted at the high
midlatitudes of the Southern Ocean, is moved northward by the
upper limb of the Atlantic meridional overturning circulation
(AMOC), which has a major influence on Earth’s climate system
and acts as an effective sink of anthropogenic CO, (Sabine
et al. 2004). Knowledge of the extent of the AAIW can help
in inferring the strength of the AMOC (Came et al. 2008; Xie,
Marcantonio, and Schmidt 2012; Oppo and Curry 2012). The
AAIW is characterized by a negative T-S relationship, which
is different from other water masses, so that the AAIW can be
identified from the T-S relationship.

We obtained temperature and salinity records from the
World Atlas 2013, version 2 (WOA 13 V2) (Locarnini et al.
2013; Zweng et al. 2013), which is archived at the National
Oceanographic Data Center (https://www.nodc.noaa.gov/OC5/
woal3/). To facilitate analysis, we take a meridional segment
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Figure 4. Study 2: spatial structures of (a)-(c) true coefficient 81, B2, and B3; the estimated coefficient surfaces from (d)-(f) GWR; and (g)—(i) SCC in one simulation with
the spatial range parameter ¢ = 0.3 for predictors. Note that the color scale is nonlinear to accommodate outliers in the GWR estimation.

Table 3. Summary of Study 2 (smoothly varying coefficients): the mean MSE for
the SCC and GWR methods over 100 simulations, under various spatial correlations
for predictors.

Spatial correlation MSEg

GWR ScC
Weak 0.18 0.17
Moderate 0.58 0.22
Strong 2.04 0.34

of temperature and salinity in the Atlantic basin along 25°W
between 60°S and 60°N (Figure 5), a standard segment
widely used in oceanographic studies because it is highly
representative of the spatial variations of oceanic variables.
We use measurements of temperature and salinity at 10,000
locations in total, with the density of points decreasing vertically
due to the fact that oceanic variables typically change much
more rapidly in the upper ocean than in the abyss. Figure 5(a,b)
displays the spatial distributions of temperature and salinity,
respectively, along the 25°W segment.

This dataset has three notable features. First, the tempera-
ture and salinity are not randomly distributed but have well-
organized spatial structures. Specifically, the temperature is gen-
erally higher at lower latitudes and in the upper ocean as a
result of solar radiation. The spatial distribution of salinity is
somewhat more complicated. Near the sea surface, the salinity

values peak around 30°S and 30°N due to the low precipitation
rates at these latitudes. In addition, there is a pronounced low-
salinity tongue originating from the sea surface around 50°S to
60°S and extending northward and downward. This low-salinity
tongue corresponds to the AATW. The AAIW’s encounter with
a high-salinity water mass centered at 30°S leads to a strong
salinity front.

The second notable feature is that the temperature and salin-
ity are highly anisotropic. The temperature and salinity gradi-
ents in the vertical direction are several orders of magnitude
larger than those in the horizontal direction. The anisotropy
is essentially a result of the ocean’s geometry. It has a width of
around 20,000 km but a thickness of about 4 km. To account
for the geometry of the ocean, oceanic studies typically adopt
the nondimensional coordinates (sy, s,) = (52 /L, 58 /H), where
sp (sy) is the nondimensional horizontal (vertical) coordinate
transformed from the original coordinate 52 (s9), and L (H)
is the horizontal (vertical) length of the ocean (Vallis 2006).
In the nondimensional coordinates, the horizontal and vertical
gradients are at the same order of magnitude, largely eliminating
the anisotropy. In this study, we follow the convention of oceanic
studies and adopt this scaling technique.

The third notable feature is that the distributions of tem-
perature and salinity appear to be nonstationary. As mentioned
above, there is a strong salinity gradient around the front formed
by the AAIW and the high-salinity water mass centered at 30°S.
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Figure 5. Spatial distributions of (a) temperature in °C and (b) salinity in PSU along the meridional segment 25°W.

In addition, there is also a strong temperature gradient near the
sea surface around 40°S and 40°N. These temperature fronts are
maintained by the energetic eastward ocean currents through
the thermal wind relation. Furthermore, the gradients of both
temperature and salinity are generally stronger in the upper
ocean than in the abyss. This is because the turbulent mixing,
a process that homogenizes the fluid properties, dominates the
evolution of temperature and salinity in the abyss (Vallis 2006).

4.2. Analysis Results

To detect the spatial structure of the T-S relationship, we con-
struct the regression model as follows:

S(si) = B1(s)T (si) + Polsi) + €(sp).

where the response variable S(s;) denotes salinity at location
(Sn,i> Sv,i)> T (si) denotes temperature, the regression coefficient
P1(s;) measures the T-S relationship of interest, and By (s;) is the
intercept.

The coeflicient surface of B (s;) estimated from SCC is shown
in Figure 6(a). As discussed above, the boundary of the AATW
can be identified as the contour of §; = 0. Its encompassing
region covers the well-recognized generation site of the AAIW
and the low-salinity tongue that is believed to be associated with
the AATW (Talley 2011). To investigate the change rate of the
T-S relationship around the boundary, we compute the mag-
nitude of the spatial difference quotient of the T-S relationship

(Simmonds 2012) derived by SCC defined as follows:

(B1(s)—P1(s1)))? n (B1(s)—B1(siy))?
d?sin? y d?sin? y
7 (B1(s)—B1(si)) (B1(si)—Pa(siy)) cosy
did; sin? y

D(sj) =

where s;, and s;, are the two nearest points of s;, y is the angle
between vectors (sp,i; — Sh.i> Sv,i; — Sv,i) and (S5, — Spis Sviy — Sw,i)»
and d; (d;) is the distance between s;, (s;,) and s;. The value
of D(s;) exhibits evident enhancement around the identified
boundary of the AAIW (Figure 7), indicating a rapid change of
the T-S relationship across the boundary. This feature is con-
sistent with the geophysical fluid dynamics, as different water
masses are formed at different sites and characterized by distinct
T-S relationships (Talley 2011), giving us confidence regarding
the good performance of SCC.

The GWR estimates, on the other hand, is quite noisy with
occasional outliers (Figure 6(b)). We note that the noisy esti-
mates similarly occurred in the simulation studies (see Sec-
tion 3), which strongly suggests that such noise in estimation is
perhaps not due to an actual feature of this dataset but probably
due to the GWR method’s deficiency in cases with spatially
correlated explanatory variables. Indeed, the noise, especially
in the abyss, is not consistent with the fluid dynamics, since
there is no dynamical process that can lead to changes of the
T-S relationship over such a short distance in the abyssal ocean
(Talley 2011). According to the above heuristic interpretation of
the results with regard to fluid dynamics, the SCC method seems
to produce a more reasonable estimate for the T-S relationship
than the GWR method.
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5. Conclusions and Discussion

This article presents a new spatial regression approach, called
the SCC method, to capture spatial patterns, especially clustered
patterns in regression coeflicients. SCC accommodates spatial
dependence through structured coefficients and employs penal-
ized least squares for estimation; the penalty function is carefully
specified to encourage similarity in coefficients between loca-
tions connected by an MST. The estimation algorithms of SCC
are easy to implement and allow highly scalable computation,
as the penalized optimization can be transformed into a lasso
(or lasso-type) problem. Although SCC is designed to detect
a cluster structure in coefficients, our numerical studies show
that it also works reasonably well in capturing a wide range of

spatial patterns. Thus, SCC is a robust and flexible tool that
will allow researchers to explore spatial patterns in regression
coeflicients without any priori information. We apply the SCC
method to the analysis of a large temperature and salinity dataset
for the Atlantic Ocean. The estimated regression coefficients
reveal a spatially clustered pattern in the relationship between
temperature and salinity. Our statistical findings are consistent
with the interpretations from ocean dynamics.

SCC could be potentially improved from several aspects. As
an MST is determined by spatial locations and may not be fully
compatible with cluster structures of regression coefficients, it
tends to miscluster especially for small sample sizes. A potential
remedy suggested by an anonymous reviewer is to employ a
two-step approach, using the SCC method to obtain an initial
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estimate of 8, and then obtaining a refined SCC estimator using
a new edge set [E constructed based on both the initial estimate
of B and spatial information. Alternatively, clusters could be
refined by thresholding the estimated coeflicients according to
some criteria. Such a thresholding idea may also be applied
to GWR and SVC to create clusters. Furthermore, the random
errors in (1) are currently assumed to be independent, and we
rely on the spatially varying intercept to capture some of the
spatial dependence that is unexplained by the covariates. In
future work, we may consider a model with a spatially depen-
dent random error.

Finally, as pointed by an anonymous reviewer regarding the
theoretical side, more attention needs to be paid to the validity
of condition (6) for the design matrix. This restricted eigen-
value condition is a commonly used regularity condition on
the design matrix for lasso regressions. However, its verification
can be very challenging in practice (Dobriban and Fan 2016).
For many spatial problems, covariates may show strong spatial
dependence within each covariate as well as cross-dependence
among covariates, so that both rows and columns of the design
matrix become dependent. In this case, the distribution of the
design matrix depends not only on the number of locations
but also on their point pattern distributions in space, among a
few other determining factors. Although L;-methods still work
very well in practice in spatial settings, as evidenced by our
numerical examples and several other previous studies (Zhu,
Huang, and Reyes 2010; Sun, Wang, and Fuentes 2016), fur-
ther theoretical investigations are needed for this random and
dependent design. One could assume a stationary multivariate
Gaussian process for the covariates and follow a similar idea to
that in Basu et al. (2015) for a time series context in order to
establish conditions using multivariate spectral properties. We
are currently investigating these topics.
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Supplementary Materials

Data and Codes: Data and codes to reproduce the numerical results are
posted on Github page (https://github.com/furong-tamu/Supplementary
-files-for-SCC).

Supplementary Numerical Results: Auxiliary numerical simulation
results: (a) influence of the selection criteria for the tuning parameter A
on the MSEg derived from SCC, (b) comparisons of the MSEg derived
from GWR using different bandwidths, (c) performance of SCC on
regular grids, and (d) performance of SCC for a hybrid scenario with
clustered coefficients and a smoothly varying intercept (or equivalently,
a spatially random effect).

Supplementary Proof: Proof of Theorem 1.
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